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PRECISION: A reconfigurable SIMD/MIMD
coprocessor for Computer Vision

Systems-on-Chip
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Abstract—Computer vision applications have a large disparity in operations, data representation and memory access patterns from
the early vision stages to the final classification and recognition stages. A hardware system for computer vision has to provide high
flexibility without compromising performance, exploiting massively spatial-parallel operations but also keeping a high throughput on
data-dependent and complex program flows. Furthermore, the architecture must be modular, scalable and easy to adapt to the needs
of different applications. Keeping this in mind, a hybrid SIMD/MIMD architecture for embedded computer vision is proposed. It consists
of a coprocessor designed to provide fast and flexible computation of demanding image processing tasks of vision applications. A 32-bit
128-unit device was prototyped on a Virtex-6 FPGA which delivers a peak performance of 19.6 GOP/s and 7.2 W of power dissipation.

Index Terms—Reconfigurable hardware, parallel processors, FPGA, embedded computer vision
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1 INTRODUCTION

COMPUTER vision applications are increasingly robust
and accurate offering new possibilities for the treat-

ment of visual information. However, this entails an increase
in the computing requirements, and their implementation
on devices beyond the scope of prototypes is becoming
more complex. Novel approaches are required to avoid
trimming of the characteristics of the algorithms and to
meet trade-offs such as speed, power consumption or cost.
The variety of algorithms is very broad and they present
very different characteristics, including not only data repre-
sentation or arithmetic operations but also different com-
puting paradigms and program complexity. This makes
the design of the hardware devices very challenging if the
same architecture has to face different algorithms with tight
constraints.

The mathematical operations of the computer vision
algorithms can be classified into three groups:

• Repetitive and simple operations over a large set of
data, where massive spatial parallelism is key for
performance.

• Relatively simple operations with data-dependent
program flow, where temporal and task parallelism
are easier to exploit than spatial parallelism.

• High-level operations and sets of data organized in
a complex manner, where the program flow is very
irregular. The computational complexity is reduced
when compared with previous groups and suitable
for conventional CPUs.

• The authors are with the Centro de Investigación en Tecnoloxı́as da
Información (CITIUS), University of Santiago de Compostela, Campus
Vida, 15782 Santiago de Compostela, Spain.

The objective of this work is to provide a coprocessor
architecture for computer vision with adaptive performance
on the heaviest computational steps of the algorithms al-
leviating the workload of the main CPU. From the flexi-
bility point of view, the system is modular and scalable in
order to address different targets and meet different trade-
offs such as performance, power dissipation and cost. This
coprocessor, named PRECISION (PRrocessor for Embedded
Computer vISION), along with the CPU, provides enough
flexibility and performance to run efficiently a broad variety
of computer vision algorithms on a single device.

1.1 Related Work

Efficient embedded computer vision requires to exploit dif-
ferent levels of parallelism across the different stages of an
algorithm in a small footprint. A natural solution to this
issue is designing a reconfigurable architecture capable, on
a single chip, to find the most suitable type of configu-
ration or parallelism at compilation or runtime [1]. Fixed-
type architectures exploiting only one type of parallelism to
speed up a given stage of computer vision algorithms might
fail to optimize the overall throughput of the computer vi-
sion algorithm. Also, their limited programmability hinders
their adaptability to changing conditions in the intended
application. Next, we outline a representative set of recent
hardware architectures for computer vision related to our
solution and sorted out according to the taxonomy of fixed-
type or reconfigurable solutions with one or multiple levels
of parallelism.

CMOS vision sensor chips, which feature acquisition and
next to the sensor processing, like SCAMP [2], or chips like
those in the Xetal family [3] run only one type of parallelism.
The former exploits pixel-level parallelism, while the latter
executes row-level parallelism. Both of them follow the
SIMD paradigm, and they are very suitable for the lowest
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image level processing stages. On the other hand, there are
examples of stream processors closer to the pure MIMD
paradigm, allowing to execute different tasks at a time. This
is the case of the MORA processor [4], which is intended
for multimedia processing, or the stream-based Ambric
processor [5]. Both of them comprise coarse-grain compute
objects working in synchronous mode. Their downside for
computer vision applications comes out during early vision
when fine-grain data parallelism matches the processing
of this stage. The difficulty of stream-based processors to
adapt to this type of processing degrades their performance
during this stage.

The base architecture with several SIMD units or Pro-
cessing Elements (PEs) with a varying degree of customiza-
tion from general purpose to specialized kernels for com-
mon computer vision tasks in every SIMD unit (e.g. con-
volution, gradient or max-min suppression operators) is the
approach followed today in many intelligent vision systems
(see [6] and references therein). In this context, general pur-
pose SIMD units could be configured as many core clusters
for MIMD configuration. Differences with our approach lie
in the microarchitecture level of every SIMD unit. Also,
specialized kernels permit to increase performance, but at
the cost of larger area and possibly of a more complex
toolchain, making it difficult to both map them onto an
FPGA without a decline in performance metrics, and to use
them in practical applications.

In the line of customization of the data path, the memory
or the control there are System-on-Chip (SoC) solutions
like those reported in [7], [8], [9]. These are state-of-the-
art fixed-type architectures, although with multiple levels
of parallelism. The SoC reported in [7] comprises an array
of 64 × 64 vision sensors connected to a reconfigurable
array of processing elements (PEs) working in SIMD mode,
and a set of row parallel (RP) processors. Higher levels of
parallelism are tackled with a dual core on-chip processor
that permits thread parallelism, and with a Self-Organizing
Map (SOM) for pattern recognition tasks. Similarly, the SoC
in [8] features SIMD for data parallelism and MIMD for task
parallelism with a pipeline multicore architecture. Also, the
SoC in [9] contains two set of processors; one of them to
exploit row parallelism, and another set for full pixel-level
parallelism. Although these solutions achieve impressive
performance, e.g. the chip reported in [7] yields more than
1000 fps in face recognition, the dedicated hardware for
every type of parallelism on the Silicon substrate makes
them very bulky, being very challenging to map them onto
a reconfigurable device.

An example of architecture which combines on the same
device both SIMD and MIMD modes is IMAPCAR [10]. Al-
though implemented on a SoC, the IMAPCAR architecture
could be mapped onto an FPGA with a loss of performance.
It comprises a set of 128 processors with their own memory
that can be reconfigured at runtime to work in SIMD or
MIMD mode. The downside of this approach is that when
running MIMD operations, several processing elements are
merged into only one MIMD processor, being the number
of MIMD processing elements inferior to the whole initial
set of 128 processing elements for SIMD. This, along with
the overhead time for such a reconfiguration, leads to a
degradation in performance. In our architecture, the number

of processing elements remains the same for both SIMD
and MIMD modes. Also, at microarchitecture level every
processing element in our architecture has a higher degree
of customization, containing a separate memory for SIMD
and MIMD modes, falling down memory access time.

1.2 Overview
The processor addressed in this paper is introduced in
Section 2. It includes a detailed description of the main
components (I/O processors and processing elements) and
the operation modes (SIMD and MIMD). In this section,
the instruction set for the coprocessor is also addressed. In
Section 3, results from an FPGA prototyping of the copro-
cessor are presented, including the execution of some usual
image processing algorithms and applications together with
a discussion on the coprocessor capabilities compared with
other architectures. Finally, the conclusions are gathered in
Section 4.

1.3 Contributions
The primary contributions of this work are:

• A modular and scalable architecture for embedded
computer vision systems, which focuses on easing
algorithm migration by natively parallelizing the
processing threads and data transfer. The architec-
ture presents capabilities for runtime reconfigurabil-
ity allowing to adapt the internal datapath to the
algorithm execution.

• An FPGA implementation of the architecture and the
evaluation of the potential value of reconfigurable
datapaths to face computer vision applications.

This paper represents an extended version of [11]. Par-
ticularly, a more detailed description of the proposed archi-
tecture is included; new sections for instructions sets and
scheduling are added; an extended section of performance
evaluation and power consumption is presented; and a com-
parison with other architectures based on the computation
of practical image processing algorithms is discussed.

2 PRECISION ARCHITECTURE

Fig. 1 illustrates the main modules of a System-on-Chip in-
cluding the proposed coprocessor, PRECISION. The embed-
ded CPU is intended to manage irregular data and program
flows. These high-level operations do usually represent a
small fraction of the whole computation so control tasks are
feasible to be executed on the same processor without com-
promising performance. Although the CPU is able to fully
run computer vision algorithms, the performance does not
usually meet the requirements. The coprocessor is intended
to reduce the workload during the most computational
expensive tasks.

The coprocessor architecture consists of three main
modules: a Programmable Input Processor (PIP), a Pro-
grammable Output Processor (POP) and an array of Process-
ing Elements (PEs). The two former modules are responsible
for data retrieving while the array of PEs performs the
computation. The array supports two working modes to
accomplish efficient algorithm processing. In SIMD mode,
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Fig. 1. Simplified scheme of the PRECISION coprocessor integrated on a SoC.

all PEs execute the same instruction over their own data set,
located in a local memory. The side-to-side network, which
connects uniquely adjacent PEs in a 1-dimensional array, is
employed to collaboratively exchange data. In MIMD mode,
each PE stores its own program and data set in a a local
memory. However, they are able to exchange information
using a local network, a 2-dimensional auto-synchronized
and distributed network. The modules of the coprocessor
architecture are described below.

2.1 Processor datapath

2.1.1 I/O Processors
The I/O processors manage the data transfer between the
external memory and the processing elements. The PIP
supplies data to the processing array, while the POP collects
the results and stores them in the external memory. Both
PIP and POP have their own program space and work in
parallel, overlapping in/out operations with computation
when possible. In addition, data transfer does not need to be
synchronous, improving performance when the size of the
input data stream is different from the output data stream.

The I/O Processors comprise a memory bank for instruc-
tion storage, a set of registers, an Address Generation Unit
(AGU) and a data cache. Both PIP and POP have the same
internal architecture. External RAM memory is interfaced
with PIP using a read-only port, while POP employs a write-
only port.

I/O processors use the Address Generation Unit to ease
data transfers and memory management. This unit auto-
matically calculates the source and destination addresses
of the data streams enabling linear, modulo and reverse-
carry arithmetic addressing modes. This is done with a set of
quad-registers which configure each pattern and enable to
manage several data streams simultaneously. Each quartet
comprises a base register (base address of the data set), an
index register (relative displacement inside the data set),
an increment register (increment of the index value after
each read/write operation) and a modifier register (type of
address arithmetic).

The memory bank contains the instructions that PIP or
POP run. Each pattern is defined with the four parameters
aforementioned. It requires a single instruction to perform
the transfer, which sets which one of the quad-registers is
employed to calculate source and destination addresses. In
order to increase flexibility, the quad-registers can also be
managed as independent registers. This permits to modify
their value at runtime without needing to load a new

program. In addition, zero-delay loops are available to
increase throughput when transferring large data sets. In
this case, the registers are employed as standard registers
to store variables when checking loop termination. Simple
addition/subtraction and jump operations are enough for
this purpose. This scheme reduces the complexity of the
memory management. All calculations occur in parallel so
each processor is able to provide a valid address and update
the quartet values or execute an auxiliary operation in a
single clock cycle.

2.1.2 Processing Elements Array
Processing Elements in the array are connected through a
reduced and programmable network (see Fig. 1). Each PE
comprises a Memory Element, an Arithmetic and Logic Unit
(ALU), a Register Bank and a set of Stream Queues (only used
in MIMD mode). Fig. 1 also illustrates the PE architecture,
which adopts different working modes (SIMD and MIMD)
according to the operation to be performed.

The instruction set includes the standard signal pro-
cessing and logic operations with up to three operands,
as well as result saturation: basic arithmetic (addition, sub-
traction, multiplication...), DSP (multiply-add, add-multiply,
abs, abs-subtraction...), helpers (max, min) and Boolean (bit-
wise and shifts) operations. To save hardware resources, the
ALU only supports signed/unsigned and fixed-point data
representation. Data-hazards are handled automatically by
bypass to speed-up the computation and to avoid halts in
the pipeline. The data selector drives the operands to the
ALU. Input data and output data from previous compu-
tations are stored in the two-ports Memory Element or the
smaller Register Bank but provided with three independent
ports (two read-only, one write-only). The output data can
also be transferred to neighboring PEs through the network
interface. This network is dual, i.e. there are side-to-side
connections between adjacent PEs and a point-to-point in-
terconnection with automatic synchronization between each
PE and some of its neighbors as showed in Fig. 1.

2.2 Configuration of the processing array

The coprocessor is intended to execute different sub-tasks of
a given algorithm in either SIMD or MIMD mode, depend-
ing on the type of operations and the algorithm sequence.

2.2.1 SIMD mode
Fig. 2 shows the array and the PEs configured in SIMD
mode. The data selector drives the operands to the ALU,
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Fig. 2. Coprocessor array layout and Processing Element in SIMD mode configuration.

selecting up to three, which come from the Register Bank,
the internal or the neighbor Memory Element (left or right),
or an immediate value encoded in the instruction. The
Stream Queues and the local network are not employed in
SIMD mode. The result is always stored in the Register
Bank, which is used as temporal storage. The Memory
Element only has two independent ports for reading and
writing, so employing the Register Bank to store partial
results (two read and one write ports, all simultaneously
accessible) greatly increases the throughput.

As all PEs execute the same instruction, a block of
data with the same size of the number of PEs must
be transferred between PIP or POP and the processors.
The Serial-In-Parallel-Out (SIPO) and Parallel-In-Serial-Out
(PISO) queues were added to introduce or retrieve data from
the Memory Element of each PE (see Fig. 2). When loading
data, the PIP fills the SIPO queue serially, and then the
whole queue is transferred in parallel to the processors, one
word to the Memory Element of each PE. The POP performs
the opposite task. First, the PISO is filled in parallel retriev-
ing a word from the Memory Element of each processor.
Then, the queue is emptied serially by the POP. This way,
PIP and POP take control of the Memory Element for only
one clock cycle, greatly reducing the time in which each
PE is stalled due to data transfer operations as the PEs can
continue processing while the queues are being emptied or
filled (see the Appendix).

The PEs are arranged in a 1-dimensional array, exchang-
ing data with the side-to-side network, allowing to shift
data one position left and right. Boundary PEs are also
connected, enabling circular shifts. To access to PEs at a
further distance, several shift operations must be performed.
However, setting adequately the quad-registers of the PIP, it
is possible to interlace the input data stream and therefore
reduce the communication overhead. This network is made
of synchronous direct links with zero-latency, so additional
operations or clock cycles are not necessary to share data.

When working in SIMD mode all PEs execute the same
instruction but retrieve data from their own data storage,
the Memory Element. Therefore, only one controller for all
the array is needed, the SIMD Control unit, which stores
the program and performs automatic addresses calcula-
tion. Internally, it is similar to the PIP and POP structure,
providing quad-registers and the same address generation
capabilities. It permits to manage flexible access patterns to
retrieve data from the Memory Element and to control the
program flow. The reason to include an address generator

is that the Register Bank contains a few registers which
can be directly managed setting their addresses explicitly
on each instruction. This is not applicable to the Memory
Element as its size is too large. The size of the instructions
and data management would be impractical. However, a
reduced form of direct addressing is included to face irreg-
ular patterns, although the performance is lower as only an
operand can be managed at a time. Unlike PIP and POP,
the SIMD Control unit provides up to two simultaneous
addresses to read two operands from the Memory Element.
The ALU output is always stored in the Register Bank, so
to write the result back to the Memory Element, only one
additional instruction and one address are needed. Besides
address generation, the SIMD Control unit also decodes the
instruction, controls the side-to-side network and sets all the
control signals, which are driven to the array of PEs using a
pipelined bus, as all of them execute the same instructions.

2.2.2 MIMD mode

MIMD mode aims to handle irregular program executions
with data-dependent execution to take advantage of the
task-parallelism. The processing array is configured as an
enhanced pipeline, where each stage does not execute a single
operation but a micro-kernel. Therefore, a suitable algorithm
partitioning and the design of an efficient communication
pattern between each of the parts is required.

In MIMD mode every PE handles its own code including
computation, flow control and network access by the MIMD
Control. Each PE works as an independent and encapsu-
lated processor connected to the network, as Fig. 3 depicts. It
uses the Memory Element for data and instructions storage.
In this mode, the ALU operands come from the Regis-
ter Bank, the Stream Queues or can be immediate values
directly encoded in the instruction. Unlike SIMD mode,
the Memory Element is not directly connected to the data
selector. Data can be moved between the Register Bank and
the Memory Element if larger storage is needed, although
load and store operations take several clock cycles as the
processor is heavily segmented. As detailed previously,
data-hazards are handled by bypass to speed-up processing.
However, load/store hazards and branch-hazards are not
handled to save hardware resources. Independent instruc-
tions or bubbles must fill the pipeline to avoid it. The ALU
output can be stored both in the Register Bank or directly in
other PE through the local network.

The Stream Queues are employed during network access
to buffer and synchronize communication. For communi-
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Fig. 3. Coprocessor array layout and Processing Element in MIMD mode configuration.

cation among PEs, a 2D-Torus network was selected. As a
difference with other network models such as hypercube or
a 2D-mesh, 2D-Torus uses a reduced amount of resources
without sacrificing communication between processors [12]
[13]. The local network is built of point-to-point stream
connections synchronized by FIFO queues. No routing or
any other kind of control is needed because the data flow
through the network is totally determined by the program
each PE runs. Network access is transparent to the pro-
grammer as the source and destination Stream Queues are
treated as standard registers. This way, all modules can
work concurrently, improving performance by overlapping
communication. The access to the Stream Queues is done
without latency and synchronization is automatic, easing
programming: network access blocks the processor until the
data are available to be read or there is a memory position
available to write the result, ensuring data coherence.

The data access patterns in MIMD mode are the same as
in SIMD mode. However, PIP and POP do not use the SIPO
and PISO queues to preload data. Instead of that, they access
directly to the Stream Queues which form a local network
using a simple handshake interface. As shown in Fig. 3, PIP
and POP are only connected to the first and last columns
of PEs. In MIMD mode, a configurable amount of data are
transferred to a single PE, indicated in each transfer. A single
instruction sets which one of the quad-registers is employed
to calculate the source addresses in the external memory
and the destination PE, encoded explicitly in the instruction.
Additionally, a third field encodes the size of the transfer.
This is done by PIP to supply data. POP works in the same
manner.

2.3 SIMD/MIMD configuration
From the operational point of view, the selection of either
SIMD or MIMD mode involves two main steps. First, the
CPU selects the mode by setting a global flag which directly
indicates if the processor is in SIMD or MIMD mode. Then
the CPU has to load the programs of all involved modules,
this is, the PIP, POP, and the SIMD Control unit (SIMD
mode) or the used PEs (MIMD mode). This is done through
the Control Interface shown in Fig. 1, which also offers
status and performance information.

PIP, POP and SIMD Control modules act during the pro-
gram transferring. All of them are directly accessed through

the bus of the system. However, to load the program into
all PEs when running in MIMD mode, a pipelined shared
bus is employed to avoid large resource consumption and a
drop in the clock frequency due to a high fan-out. Program
storage is done serially but with random access, greatly
reducing loading time if just a few processors are employed
or a compact program is executed.

2.4 Instruction set
The selection of the instruction set is important to meet some
of the trade-offs of the architecture. The coprocessor uses
a RISC architecture with regular and compact instructions,
permitting to decrease hardware requirements and to ease
instruction decoding, a critical aspect for a functional MIMD
mode. In addition, RISC architectures are generally faster
than their CISC counterpart, with shallower datapaths.
However, even more important is to select a set of operands
and complementary operations that permit to efficiently
implement most of the computer vision algorithms. Consid-
ering that the architecture is focused on a general-purpose
solution, the instruction set has to contain the basic building
blocks that enable to execute more complex operands. How-
ever, this may result in a performance decrease if for every
major operation the number of sub-operations is too large.
It is not possible to upscale the number of processors at the
same ratio to compensate for this limitation. Fig. 4 shows the
instruction format indicating the size of the different fields.
An optimal set of operands matches 32-bits instructions,
allowing particular implementations of the coprocessor with
different number of registers. The set of instructions does
not depend on the number of PEs.

2.4.1 I/O Processors
PIP and POP are responsible for data transferring. Fig. 4(a)
shows the instruction format for the I/O processors. The dif-
ferent operations are grouped according to their format. R-
type refers to regular, I-type to immediate operation, J-type
to unconditional jumps and S-type to other non-standard
(special) operations. The move instruction transfers a set of
data to the desired location. Considering the PIP in SIMD
mode, the source and destination addresses are calculated
using the Address Generation Unit and the configuration
stored in the quad-registers. In MIMD mode, the source is
also encoded in a quad-register. However, the destination
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address is a mask which sets the destination PEs of the first
row of the array. Data transferring is equivalent for POP,
although inverting source and destination fields.

As discussed previously, I/O processors are also able
to perform basic arithmetic and control operations. They
only include signed integer arithmetics and support for
immediate values. As a difference with the move operation,
the registers are considered as independent. For example,
quartet Q0 includes individual registers R0-R3. This permits
to set the values of the quartets at runtime during program
execution. A zero-flag is employed for conditional branch
checking. Additionally, two fast-loops are available. The first
(loop) automatically decreases the register value and jumps
when it reaches the zero value. The second (rep) repeats the
immediately following instruction as many times as indi-
cated with zero-delay, employing an additional dedicated
register without modifying the program counter until the
loop ends. While the loop instruction permits nested loops,
the rep does not. The last is intended for block transfers, e.g.
to transfer 10 chunks of a 640px width image to a 64-unit
SIMD array.

2.4.2 Processing Element
The instruction set for the PEs is the same for both operation
modes to ease decoding, although separate control units
handle each mode. Therefore, some operations related with
flow control are not available in SIMD mode because the
SIMD Control unit stores and decodes the program, acting
the PEs as stand-alone computation units, while in MIMD
mode each PE stores and decodes its own program. Fig. 4(b)
shows the instruction format for the PEs.

In SIMD mode, the SIMD Control unit provides the
addresses for the operands, being in the Memory Element
or the Register Bank. While the last are directly encoded in
the instruction field, the former is calculated using the dual
Address Generation Unit, which works in the same manner
as the I/O processors do. Except the move operation, the
same operations are available, including arithmetic and flow
operations. An immediate addressing mode is available
by setting the desired value in the base address register

(a) Data I/O: PIP and POP

(b) Data processing: PEs and SIMD Control

Fig. 4. Instruction format of the different PRECISION units.

and unsetting the increment value to zero. All the above
is intended for address generation and runs in the SIMD
Control unit. The rest of arithmetic operations are executed
in the array of PEs. They include signed/unsigned integers
and fixed point support, besides immediate operands.

In MIMD mode, the operands can come from the Reg-
ister Bank, the Stream Queues or be an immediate value.
In contrast to SIMD mode, in all cases the source and
destination addresses are encoded in the instruction fields,
so no additional tasks are required for address calculation.
The Stream Queues are accessed in the same manner as the
Register Bank, using the adequate queue for the desired
direction of communication, without latency or additional
operations for synchronization. However, when the source
or destination queues are empty or full, the PE halts until
more data or space is available to continue operating (see
the Appendix). This ensures data coherence and simplifies
algorithm implementation. When the size of the partial re-
sults set exceeds the Register Bank size, load/store operations
are available to transfer data between the Register Bank and
the Memory Element. As each PE controls its own program
flow, additional conditional and unconditional branches are
available. The loop and rep instructions for fast-looping are
not available, so special care has to be taken to avoid branch
hazards by inserting bubbles (nop instruction) or indepen-
dent operations. The same applies to load/store operations.

3 FPGA PROTOTYPING AND VALIDATION

3.1 FPGA prototyping

PRECISION has been prototyped on an FPGA to evaluate
its feasibility and performance, although this architecture
is not limited to FPGAs, being an ASIC implementation
ideal to show its full potential. The target FPGA was a Xil-
inx Virtex-6 XC6VLX240T-1, included on the Xilinx ML605
Base Board [14] which provides enough resources to vali-
date the architecture. An AXI4-based standard MicroBlaze
System-on-Chip was implemented. Among other modules,
it includes a Multi-Port Memory Controller and a 10/100-
Ethernet unit. The coprocessor was described using VHDL
and synthesized with Xilinx Design Suite tools [14].

The proposed architecture is highly configurable, includ-
ing the number of processing units, the size of the internal
registers, queues or even the arithmetic operations, being
able to include application-specific extensions for the most
demanding algorithms without major modification in the
design. In order to implement a prototype that can run a
significant variety of algorithms, the critical parameters that
balance the computational power of each module and the
degree of parallelism are the following:

• Instructions and data are represented using 32-bit
words. Therefore, the width of all buses in Figs. 2
and 3 is 32-bits.

• PIP and POP have 4 quad-registers of 24-bit wide for
off-chip RAM address generation and two caches for
instructions and data of 32Kbit (1024 words).

• Each PE has a Memory Element of 32Kbit which
stores up to 1024 data-words (SIMD mode) or 512
data and 512 instructions (MIMD mode). The Regis-
ter Bank and each of the four Stream Queues store
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Module FF LUT 36K-BRAM DSP48E1 fmax

PIP 1118 1197 2 1 1750.4% 0.8% 0.5% 0.1%

POP 1080 1257 2 1 1730.4% 0.8% 0.5% 0.1%

PE 1130 1023 1 2 1650.4% 0.7% 0.2% 0.3%

Array 144994 131043 134 264 15348.1% 86.9% 32.2% 34.4%

Total 148323 134520 139 268 15349.2% 89.3% 33.4% 34.9%
TABLE 1

Synthesized results for a 128-unit 32-bit implementation of PRECISION
on a Virtex-6 XC6VLX240T-1 FPGA.

Power (W) Power (W)
Static 2.142 PIP 0.044
Logic 3.850 POP 0.045
Clock 0.643 PE (each) 0.039
36k-BRAM 0.298 Array of 128 PEs 4.967
DSP48E1 0.158 Total 5.056
Others 0.106
Total 7.197

TABLE 2
Power consumption of the 128-unit 32-bit implementation of

PRECISION on a Virtex-6 XC6VLX240T-1 FPGA. Left table shows
power consumption per FPGA component and right table shows the

dynamic power consumption per coprocessor unit.

8 and 4 words respectively. The ALU includes 20
DSP/Boolean and 12 control and data movement
operations.

• The array of PEs is made up of 128 units. For SIMD
mode, both SIPO and PISO queues are 128-word, and
the SIMD Control unit includes an instruction cache
of 1024 instructions plus 4 quad-registers of 10-bit
wide. In MIMD mode, the PEs form an 8× 16 torus,
so PIP and POP are interfaced with 8 PEs each and
the minimum route between them is 16 PEs.

The ML605 board includes 512MB DDR3 SO-DIMM
clocked at 400MHz. Ports are configured with 64-bit width
and, when employing 32-word burst length, providing a
maximum data throughput of 1400 MB/s (reading) and
1140 MB/s (writing). The cache block size of PIP and POP
direct-mapped data caches are configured to 32 words in
SIMD mode and 16 words in MIMD mode. This way, each
burst transfer also preloads adjacent data to the current
address location, reducing the memory accesses by transfer-
ring more data in each transaction. Two different structures
to control cache coherence, hits and miss are implemented
using the distributed memory resources.

Table 1 summarizes the synthesized data for the copro-
cessor in number of LUTs and Register slices, Block RAMs
and DSP slices. The MicroBlaze system, clocked to 150 MHz
using the performance profile, additionally takes around
7500 slice LUTs, 6700 slice registers, 10 Block RAMs and
3 DPS48E1 slices. A 128-unit coprocessor fits on the selected
FPGA leaving enough space to include other modules of
the SoC. The theoretical peak performance of PRECISION
is 19.6 GOP/s at 150MHz (around 130 operations per
clock cycle). As data transfer occurs in parallel if a careful
schedule is done, the amount of halts in the pipeline is
reduced, so the real performance is expected to be close to
this value. The power consumption was determined with

the Xilinx XPower Estimator [14], resulting in 7.197 W
at peak performance in standard ambient conditions. 46%
corresponds to logic resources and 30% to device static
consumption. Table 2 details the power consumption per
FPGA component and per coprocessor unit.

3.2 Algorithm evaluation
To evaluate the performance of the proposed architecture,
a set of algorithms and operations were executed. They in-
clude some representative image processing tasks, covering
the SIMD and MIMD operation modes.

3.2.1 SIMD mode
Image filtering or convolution are the most basic and em-
ployed operations for tasks such as noise removal, image
enhancing or edge detection. They involve intensive com-
putation and neighbor accesses which penalize the overall
performance. These window-based operations can be imple-
mented by storing one pixel in each PE, so that each one is
able to access the neighborhood of a given pixel using the
side-to-side network. This has direct consequences. First, it
eases memory management as each row is directly mapped
onto a 1-dimensional array. Second, the SIMD network has
no latency, so the performance is not affected. Fig. 5 shows
how to organize the Memory Element of each PE in SIMD
mode to speed-up a 3×3 convolution. Considering an image
of 640px width and 128 PEs, each row of the image has to
be split into 5 blocks of 128 words each. Therefore, each
PE stores 5px per row. For simplicity we are considering
that each 32-bit word only stores one pixel. Additional rows
of the image are stored in the same manner. It is possible
to directly access the neighborhood of each pixel both in
vertical and horizontal directions employing the side-to-
side network and knowing that rows are separated by 5
positions in the Memory Element. As all PEs execute the
same instruction, the global effect is a row shift towards left
or right directions as needed. The complete processing of
a single image row requires to perform a number of MAC
operations equivalent to the number of blocks the image is
split to, in this case 5 times.

The data access pattern is very regular so its imple-
mentation is straightforward. The PIP employs two quad-
registers for source and destination addresses. The first

Fig. 5. Memory scheme for a 3×3 convolution on 640 pixel-wide images.
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is configured to go over the input image stored in the
off-chip memory sequentially (increment is set to +1 and
modifier, to linear addressing). The destination has the
same configuration, although the parameters refer to the
Memory Element storage space. The rep operation is very
useful for fast-looping when transferring the 5 blocks each
row is divided in. Additional instructions are employed
for transferring the different rows. The SIMD Control unit
employs the side-to-side network for horizontal accessing.
This is directly encoded on each instruction, as seen in
Fig. 4(b). For vertical communication, immediate addressing
simplifies the program as a 3 × 3 neighborhood implies
only a few instructions. However, it is a better option to
employ the Address Generation Unit since the Memory
Element is able to store tens of full rows. This way, setting
the modifier register to modulo addressing, it is possible
to program a computing kernel and iterate over all stored
rows, employing a few lines of code. This scheme also
permits to manage the chunks in which the rows are split (5
blocks in this case) as they behave as additional rows of the
image. Finally, the POP extracts the results and write them
back in the off-chip memory. The program is essentially
the same as the PIP although the source and destination
addresses are interchanged.

3.2.2 MIMD mode
MIMD mode is much more flexible than SIMD as the
local network permits to better adapt the datapath to the
algorithm in execution. Color to gray-scale conversion is
an operation which illustrates this capability. Among the
plethora of possible conversions, we will consider the fol-
lowing: Gray = 0.21R + 0.71G + 0.07B. For simplicity,
we assume color image is stored in memory uncompressed
and using RGBA format (red-green-blue-alpha) and 8-bit
per channel (32-bit word). Fig. 6.a shows how to implement
this operation in MIMD mode.

PIP is continuously broadcasting the RGBA value of each
pixel of the image. In the same manner as in the convolution
operation, the image is read linearly. As a difference, the
destination address is a mask which simply indicates the
destination PEs of the first row of the 2-dimensional torus.
The first column of PEs extracts the values of each channel
using bitwise operations, transferring the output to the
adjacent PEs, which perform the conversion employing the
mentioned equation by adding the input values. Finally, the
processed pixels are transferred to the off-chip memory by
the POP. It reads pixels from the rightmost PE by using a
mask, and employs the Address Generation Unit to store
this value in the external memory.

The example shows a many-to-one conversion, where
many input streams (in this case the same although repli-
cated) are combined into a single one. It should be noted
that if pixel packing is programmed, input and output
streams do not have the same length. As PIP and POP are
independent and autonomous; this becomes a benefit and
the performance increases. Color space converting shows
other possibilities. For instance, RGB to YUV conversion
which represents a many-to-many conversion. Under the
same assumptions as the previous conversion, the different
channels of an RGBA value are combined to produce three
different channels on the YUV color space. In this case, the

(a) RGB to gray

(b) RGB to YUV

Fig. 6. Color space conversion using MIMD mode.

POP has to manage three output streams, one per channel.
However, they can be packed into a single word depending
on the goals of the following processing steps. Fig. 6.b shows
how to implement this operation in MIMD mode. In the
RGB to Gray conversion, each arithmetic operation is per-
formed by a PE. Although it is also possible to implement
it in the same way, the RGB to YUV conversion follows a
different approach: all conversion operations are performed
by a single PE, employing one for each channel of the
output format. An additional PE unpacks the RGBA input
stream, providing the R,G and B values in a serial manner,
as opposite in the previous conversion. The final result is
then packed into a single 24-bit word. While the first scheme
permits a high throughput for simple operations which
can be expanded along the array, the last eases algorithm
deployment by parallelizing tasks much more complex than
a simple arithmetic operation.

One advantage of this mode is that the local network
ensures automatic synchronization and deterministic data
processing. This way, no additional instructions are required
for synchronization or for data coherence checking. In addi-
tion, network access is done without latency (unless there
are no data available in the queues). In particular, these
operations do not require to check which part of the image
is being processed, so there is no needed to check boundary
conditions and all instructions are arithmetic operations.

3.2.3 Remarks
Although it is possible to implement color conversion in
SIMD mode, the described MIMD-based version illustrates
how easy it is to implement algorithms when written as
a graph. Likewise, the convolution operation can also be
implemented in MIMD mode, although the problem we
face here is different. A single 3 × 3 convolution is easy to
perform using a few PEs. However, as soon as the filter size
grows, many PEs have to be employed simply to distribute
data between them due to the layout of the network. This
becomes critical if recursive operations are present. Another
limitation comes when intensively access to the Memory
Element is needed in MIMD mode. The ALU has to perform
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address calculations and care of load/store hazards have to
be taken into account. It is possible to employ the Memory
Element as a shift register to store the input pixels as usual
in custom implementations [15]. However, if the row length
is larger than the Memory Element, several PEs have to be
chained to emulate a larger storage, adding complexity to
the program.

In SIMD mode, all PEs and the whole Memory Element
can be used without restrictions. However, only a single task
can be executed at a time. On the contrary, MIMD mode
allows many simultaneous tasks. As detailed above, color
conversion can be chained with other tasks. Other possibil-
ity is to replicate the same task several times by replicating
the distribution of processors in different parts of the 2D-
torus. This can greatly increase the performance avoiding
PEs unused by processing several pixels in parallel. As
the coprocessor contains 128-units, color conversion can be
replicated more than 10 times. Depending on the algorithm,
it is possible that some processors are employed as simple
routers, so the implementation could be sub-optimal and
the performance can not scale linearly with the number of
processing units.

Although it is possible to switch mode at a very low cost
(essentially the program load time), the coprocessor usage
must be complete to fully take advantage of each mode. For
instance, the 3 × 3 convolution in SIMD mode is limited
by the speed we can enter data. It only requires 9 MAC
operations (9 clock cycles) while transferring each 128 data
block takes 129 clock cycles. This is, PEs are 93% of the
time waiting for new data to process (data transferring and
processing occur simultaneously). However, if the amount
of computation exceeds the time the PIP or POP employ
for data transferring, data I/O is no longer the bottleneck.
As pointed before, employing as much as possible the on-
chip memories is essential to fully take advantage of this
mode. MIMD mode does not experience this problem as
it processes streams and data preloading is not necessary.
However, it is hard to fully employ the processing array as
the network does not fit perfectly all data exchanges of most
algorithms.

Despite all the above, to select SIMD or MIMD mode
depends on the particular algorithm and how operations are
scheduled. Consider a color conversion in these two cases:
a) followed by a mean calculation for further analysis, and
b) followed by a filtering for noise reduction. As discussed
above, color conversion suits both SIMD and MIMD modes.
In the first case it is better to perform both tasks in MIMD
mode as only a few processors need to be employed freeing
resources for other parallel or subsequent tasks. Perfor-
mance is not compromised as a rate of 1 px per clock cycle
is easily achievable. However, the second case fits better
the SIMD mode. It eases algorithm implementation as large
convolutions natively fits this mode and it is possible to
fully exploit the on-chip memories. In addition, as all PEs
are employed, the performance is much higher. Switching
between SIMD and MIMD modes for simple operations is
not the recommended approach. As the output has to be
written back to the off-chip memory when changing mode
(except in some particular cases when the Memory Element
is not manually reset), PIP and POP have to transfer the data
twice on each change of mode, reducing the performance.

SIMD
px/cycle Mpx/s #PEs nJ/px

3x3 Convolution 0.9996 149.9 128 48.0
15x15 Convolution 0.5689 85.3 128 84.4
3x3 Binary Erosion/Dilation 0.9997 150.0 128 48.0
8x8 DCT 0.8136 122.1 128 58.9
Harris Corner Detector 0.3130 79.6 128 90.4
Stereo Matching (SAD,9,32) 0.0455 6.8 128 1058.4

MIMD
px/cycle Mpx/s #PEs nJ/px

RGB to Gray 0.9998 150.0 9 3.37
6x RGB to Gray 5.8988 884.8 55 3.50
RGB to YUV 0.9997 150.0 9 3.37
Entropy Encoding (4x4) 0.5781 86.7 14 9.08
6x Entropy Encoding (4x4) 3.4108 511.6 90 9.89
Median 0.9999 150.0 1 0.37
Histogram 0.4311 64.7 1 0.87
Integral image 0.6135 92.0 5 3.06

TABLE 3
Performance of SIMD/MIMD modes for usual image-processing tasks.

Although the current mode could not be the most suitable
for subsequent operations, to use the coprocessor below
its capacity with small kernels has more impact in the
performance.

Besides the two previous operations, other algorithms
were implemented to evaluate the feasibility of the architec-
ture. Table 3 shows the most relevant results of several tasks
in SIMD and MIMD modes. All test images are 640×480px.

Note that the performance of the 15× 15 convolution is
only a half of the 3×3 convolution despite of having 25 times
more MAC operations. This is because in the first case the
amount of computation largely exceeds the time required
for data preloading in the SIPO/PISO queues. This does not
occur with smaller kernels, where the PEs halt until more
data are available. To avoid this issue, many operations
must be chained and the on-chip data caches have to be
employed to store the partial results. The POP must only
extract the final results. This is the case of Stereo Matching,
which employs sum of absolute differences (SAD) for block
matching (9× 9) with a disparity of 32px.

MIMD results show the performance of several oper-
ations when implemented in stream-like fashion. As seen
before, a rate of a pixel-per-cycle can be achievable with
few PEs, so it is possible to replicate each mode several
times and increasing the throughput. Results show that
replicating RGB to Gray and Entropy Encoding 6 times the
performance increases practically linearly. Other operations,
such as median calculation, are purely arithmetic and can
be performed very efficiently without consuming resources.
However, others require internal storage as the Register
Bank is not large enough. This results in lower throughput
as load/store hazards drops the performance if there are not
independent instructions to fill the pipeline, as is the case in
histogram or integral image calculations.

Program loading represents a small fraction of the whole
operation. In SIMD mode, the worst case comes when
PIP, POP and SIMD Control instructions storages are filled
completely. In the current implementation, all memories are
1024-instructions wide, so less than 22 µs are required to
fully program the coprocessor (with a clock frequency of
150 MHz). In MIMD mode, each PE stores its own program,
which is 512-instructions wide. In the worst case, all PEs
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Operation t (ms) Mode
Detection 0.353 SIMD
Orientation calculation 0.081 SIMD
Image-to-array conversion 0.002 MIMD
Description 0.193 MIMD
Matching 0.251 MIMD
Total 0.880

TABLE 4
Feature detection and matching performance in 320× 240px images

employing PRECISION.

completely fill the memory, requiring at most 460 µs in total.
However, this has never happened in the test algorithms.
In addition, as it is possible to randomly access each PEs,
loading times are usually much lower.

Note that the performance of computing those relative
simple algorithms can be optimized by using custom accel-
erators. However, the cost of integrating dedicated acceler-
ators is also higher. The aim of the proposed coprocessor is
to perform multiple tasks in either SIMD or MIMD mode
assuming a trade-off between performance and cost.

With the aim of showing the capabilities of the pro-
posed coprocessor to perform complex computer vision
algorithms, a feature detection and matching technique has
been implemented. The selected algorithm, proposed in [16]
has been partitioned in subtasks which were executed in
either SIMD or MIMD model according with their charac-
teristics.

The feature detection is carried out by the FAST corner
detector. A 16 pixel ring surrounding the pixel under study
is considered. If the intensity of 9 adjacent pixels is greater
or lower than the center pixel, it is considered as a corner.
FAST corner detection is suitable for SIMD computation.
However, since the PEs array working in SIMD mode
presents a side-to-side connectivity, an interlacing scheme
is needed to access to the farthest pixels. Each row of the
image is read from memory with a step of 3 pixels, so a
PE can directly access to the complete 16- pixel ring. The
PIP permits to read pixels in a non-aligned fashion. This
transfer is completely regular, so PIP can do it easily with
modulo addressing arithmetic.

A non-maximum suppression removes multiple re-
sponses for the same corner. Finally, orientation is computed
by accumulating the differences between opposite pixels in
the pixel ring. Therefore, two output images are provided:
one containing the corner locations and another with the
corner orientations. These images are compacted in a vector
representation by the PEs working in a pipelining configura-
tion (MIMD mode). Before the matching stage it is needed to
extract the descriptors for the previously detected features.
To this end, an extended patch around every feature loca-
tion is rotated and interpolated according with the feature
orientation. Then the intensity pixels in an 8×8 grid around
the feature location is considered to compose the feature
descriptor. It is possible to exploit the on-chip memories in
SIMD for patch rotation, using precomputed pixel positions
and weights and a storage scheme similar to that of the
corner extraction. However, as corner distribution is highly
irregular along the image, MIMD offers better results.

Finally, the matching between the detected features and
those stored in a database are carried out. The strategy

for matching depends on the number of features to be
checked. For relative small databases a tree-based approach
allows to split similarities among feature models and then
accelerate the computation. We have followed this approach
for a database of 700 features. Table 4 summarizes the
average performance on QVGA test images. This imple-
mentation which combines different steps working in SIMD
and MIMD modes permits to process up to 7 simultaneous
targets on 640 × 480px images in less than 5 ms. Further
details of the algorithm implementation and mapping issues
can be found in [17].

3.3 Discussion

Most of the image processing tasks fit better on SIMD
computation than on MIMD computation. However, from
the perspective of the architecture design is not always clear
what the best paradigm is. MIMD units are usually more
complex and require more hardware resources, leading to a
lower degree of parallelism, so a fast sequential processor
or a large SIMD unit can offer comparable performance
maintaining better figures of merit in other areas. Never-
theless, large SIMD units require fast memories and a high
bandwidth to supply data at optimal rate. If this require-
ment is not met, a smaller MIMD unit may outperform it
by parallelizing tasks, serializing part of the computation,
although some of these tasks would fit better in a SIMD
unit. This section shows a comparison of the PRECISION
coprocessor with other SIMD and MIMD architectures. This
gives us a clearer picture of the actual performance and the
advantages and drawbacks of the proposed architecture.

In [18] an algorithm for retinal vessel segmentation has
been deeply analyzed from the computation point of view.
The algorithm, proposed in [19], was originally designed to
be executed on massively parallel processor arrays follow-
ing the SIMD paradigm. All the steps of the algorithm con-
sist of simple local dynamic convolution and morphological
hit and miss operations together with simple arithmetic
and logical operations. The algorithm was tested in four
different architectures, a standard PC (Intel Core i7 940
2.93 GHz), a coarse-grain processor array (custom FPGA
implementation [20]), a focal-plane processor array (SCAMP
vision system [21]) and a MIMD processor array (Ambric
Am2045 [5]).

With the aim of comparing the proposed system with
those architectures under the same conditions this retinal
vessel-tree extraction algorithm has been implemented on
the proposed coprocessor. The most suitable configuration
for this algorithm is the SIMD mode due to the algorithm
inherent massively spatial parallelism. On the other hand,
the processor array is not large enough to run the algorithm
in MIMD mode without compromising performance or ac-
curacy. Table 3 shows performance data from the algorithm
execution on the coprocessor together with those addressed
in [18] for the mentioned architectures.

The coarse-grain processor array employs a 2-
dimensional grid of processing elements with local inter-
connections to exchange data. The processing elements are
made of a dual-port RAM block and a DSP unit for integer
and fixed-point arithmetics. The NEWS (north-east-west-
south) network between these units permits to fit an image
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Intel Core i7 SCAMP-3 Coarse-grain Am2045* PRECISION
Processors 4/4 16384/16384 192/192 125/360 128/128
Clock (MHz) 2930 1.25 150 333 150
Window size (px) – 128× 128 384× 256 - 768× 195
Window time (ms) – 6.55 30.8 - 63.7
Required windows 1 30 4 1 3
Total time (s) 13.6 0.193 0.123 0.008* 0.191
Cycles-per-pixel 357993 8950 7873 742* 8167
Maximum Average Accuracy 0.9202 0.9180 0.9192 0.8132* 0.9191

TABLE 5
Retinal vessel-tree extraction algorithm performance on different processors.

*The Ambric Am2045 runs a simplified version of the algorithm. See Sec. 3.3 for further details.

on the plane of processors so that a small sub-window of
the image is stored on each processor. Both the coarse-grain
implementation and the proposed coprocessor were imple-
mented on the same Xilinx Virtex-6 FPGA. Results show
that the SIMD/MIMD architecture requires only 3.73% more
clock cycles to accomplish the same tasks. All processing is
done without additional I/O operations due to the nature of
the algorithm. Therefore, data supply is not the bottleneck
in this particular algorithm, representing less than 4% of the
whole computation time. However, generally PRECISION
will outperform the coarse-grain processor array as data
I/O can be accomplished simultaneously to computation.
Although this is not critical in the retinal vessel-tree extrac-
tion algorithm, it becomes a large advantage when the on-
chip memory is not large enough to store all the necessary
data and the number of external memory accesses grows,
which is the most common case.

The SCAMP processor employs analog computation to
reduce the size of each processing unit. However, there is
an upper limit in scalability in practical implementations.
In addition, the maximum clock frequency is much lower
than digital architectures. The proposed architecture offers
much more features and a larger set of operations, including
additional computation stages which are unpractical on the
SCAMP processor. For instance, the size of the images are
fixed for SCAMP and the coarse-grain processor array. This
constraint is not present in PRECISION, which is able to
handle images of any shape and in a large variety of sizes,
including resolutions greater than Full HD. However, we
have to remark that focal-plane vision chips focus on early
vision, where integrating the sensing stage and a basic
computation stage for high frame rate and very low power
consumption is a benefit. In this field, they clearly out-
perform the proposed architecture, even though it should
be noted that this is a very specific application and most
general purpose solutions may not meet the requirements.

The Ambric Am2045 is made of a large set of encap-
sulated processors interconnected through a large network.
The processors are optimized for signal-processing opera-
tions and includes two different versions with distinct capa-
bilities in order to save hardware resources and to increase
the parallelism. The processing elements of PRECISION are
all the same in order to meet the requirements of the SIMD
mode. Regarding Ambric network, it is made of 1-word
depth queues which employ a simple handshake protocol.
This permits to include a large network with few resources.
One disadvantage of this network is the small depth of
the communication channels, leading to halts on the pro-

cessors which block the processing. However, it is possible
to configure the distributed RAM in the Ambric device as a
buffer to avoid this issue. The proposed coprocessor permits
to configure this parameter according to the trade-offs of
each particular implementation. As the network is not so
complex, the hardware resources do not represent a high
cost. In addition, it is also possible to employ the Memory
Element as a buffer, although in a more limited way as the
access to the network is being blocked, and the control of
this buffer has to be done by software, programming the
Processing Element adequately.

Ambric architecture offers a very high throughput when
performing low-level operations, as can be also seen from
the performance on the retinal-vessel tree extraction algo-
rithm, reported in Table 5. However, this was achieved after
the reduction of the algorithm complexity which affects the
segmentation accuracy. Otherwise, the required hardware
resources would have to be too large for a practical im-
plementation, and the throughput would be considerably
lower. The MIMD mode of PRECISION also experiences
similar issues as all processing is done on-chip. However,
the existence of the SIMD mode makes unnecessary em-
ploy the MIMD computing paradigm to implement this
algorithm. This is one clear advantage of using hybrid
processors, as it is possible to choose the optimal computing
paradigm according to the characteristics of the algorithm.

The major difference between the MIMD mode of the
coprocessor and the Ambric architecture is the kind of
computation they were designed to perform. Ambric archi-
tecture aims to perform all computation on-chip, requiring
a more complex datapath. However, the MIMD mode of
the coprocessor aims to work as an enhanced pipeline of
arithmetic units, in which each stage applies a small kernel
to the input stream, thus parallelizing the processing. The
EnCore processor [22] was designed with a similar phi-
losophy. It is a configurable 32-bit single-issue RISC core
which implements the ARCompact instruction set. For its
evaluation in Silicon, it was integrated within a System-on-
Chip, including an extension interface for reconfigurable ac-
celerators. The specific reconfigurable accelerator of the En-
core processor, called Configurable Flow Accelerator (CFA),
allows customizations in application-specific instruction-set
processors (ASIPs) through the use of user-defined instruc-
tion set extensions. The CFA entails only a limited increase
in hardware resources and power consumption, but usually
implies a large increase in performance. This is achieved
by making use of several single-function ALUs that allow
spatial and temporal parallelism through resource sharing



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2493527, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Operation Parameters CFA (ms) PRECISION (ms) Average Speed-up

Global
max/min 13.7 2.11

x3.8mean 5.9 2.11
histogram 11.1 4.89

Image displacement

horizontal 20px 23.6 2.34

x9.2horizontal 60px 23.6 2.37
vertical 20px 23.0 2.64
vertical 60px 20.8 2.68

Image rotation
20o 18.8 20.71

x0.8445o 18.7 22.49
75o 18.8 24.42

Image scaling

50% (nearest-neighbor) 7.0 9.19
x0.76150% (nearest-neighbor) 4.9 55.66

200% (nearest-neighbor) 74.9 98.94
50% (bilinear) 32.5 38.99

x0.76150% (bilinear) 420.55 504.66
200% (bilinear) 935.7 1122.83

Horn-Schunck optical-flow - 630.5 32.5 x19.4

SAD-based stereo matching

16/7 (disparity/window) 1087.3 15.77

x47

16/11 1785.0 35.54
32/7 1836.8 31.54
32/11 3000.7 72.09
64/7 2361.5 63.07
64/11 3760.5 144.18

TABLE 6
EnCore (with CFA) and PRECISION coprocessor comparison. Average performance in 640× 480px images.

and pipelining. In addition, the CFA is fully programmable,
supporting up to 64 reconfigurable extension instructions.

PRECISION working in MIMD mode can be placed
midway between the CFA and the Ambric architecture.
It was conceived as an enhanced pipeline of ALUs but,
contrary to CFA, it works independently of the CPU and
has their own memory controllers and ports. This per-
mits to improve memory access performance in compute
intensive algorithms, which becomes a requirement when
upscaling the array of PEs. The memory hierarchy of the
Encore processor is more limited and does not permit to
scale the CFA easily. Another aspect to take into account
is code overhead. PRECISION employs very little overhead
for synchronization and data transferring between the com-
puting units, permitting to achieve speed-ups close to the
peak performance. The EnCore processor needs to manage
the CFA unit for each ISE under execution, behaving as
a single issue processor, while the coprocessor has com-
pletely independent units for control, computing and data
transferring. Table 6 shows the performance of some typical
image processing algorithms executed in both the EnCore
and PRECISION. Note that some operations perform better
on the EnCore processor due to the integration of the CFA
in the processor datapath. Image transformations, although
accelerated, are not suitable for PRECISION due to the
type of memory access. It is possible to perform simple
transformations in SIMD mode taking advantage of the
large on-chip memories. However, when the data access
patterns become irregular, to run them completely on the
main CPU is a more suitable solution. The results shown in
Table 6 for image rotation and scaling were obtained using
the MIMD mode of the PRECISION processor, which only
computes the source addresses of the pixels to be copied in
the destination image.

4 CONCLUSION

In this work, a hardware architecture intended to efficiently
compute embedded vision applications named PRECISION
is introduced. It consists of a reconfigurable processor array
which can be dynamically arranged for SIMD or MIMD
computation depending on the operation to be performed.
The architecture shares functional units to reduce hardware
consumption and includes a flexible network to adapt the
datapath to the algorithm to be executed. The proposed
coprocessor was tested on a System-on-Chip deployed on
a Virtex-6 FPGA, providing 128-units of 32-bit each with a
peak performance of 19.6 GOP/s consuming around 7.2W.

Results indicate that this solution provides enough flexi-
bility to take advantage of different data- and instruction-
parallel processing, making it suitable as coprocessor of
high-throughput vision systems.

APPENDIX

This section shows how the different operations of each
module of the coprocessor are scheduled. The time scale
does not indicate the real duration of each operation but
how the different tasks are scheduled on each operation
mode. A sample task for each mode is described below.

SIMD mode

In SIMD mode, all Processing Elements execute the same
instruction and are controlled by the SIMD Control module.
The timing diagram refers to them employing the label
PEs. In this example, three data blocks are copied from the
external RAM to the array of PEs and then the results are
extracted.

• The CPU loads the program which PIP, POP and SIMD
Control will execute.

• All modules are idle until a start flag is asserted by the
CPU.
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PIP LP idle LP CD CD end

SIPO F E F E F E

PEs LP idle wait PD PD PD end

PISO F E F E F E

POP LP idle wait ER ER ER end

start

(a) SIMD mode

PIP LP idle CD end

PE[0] LP idle wait PD end

PE[1] LP idle wait PD end

PE[2] LP idle wait PD end

...

PE[N] LP idle wait PD end

POP LP idle wait ER end

start

(b) MIMD mode

Fig. 7. Timing diagram for SIMD and MIMD operating modes. (LD)=Load Program, (CD)=Copy Data, (PD)=Process Data, (ER)=Extract Results,
(E)=Empty, (F)=Fill.

• The PIP starts filling the SIPO queue according to the
program and employing the AGU for address calcu-
lation. Data are copied serially in the SIPO until it is
filled. The rest of modules wait until this process ends.
Once the SIPO is full, the stored data are moved to the
Memory Element of each PE. This only takes one clock
cycle, leaving the PEs ready to continue processing. This
process is executed as many times as blocks of data are
needed by the PEs to start processing (one block, in this
example).

• Now, the PEs can start computing. The PIP is able to
continue filling the SIPO with a new block of data
but it can only be copied when the PE Array finishes
processing, as all PEs are busy.

• Once the PE Array finishes processing a number of
blocks of data, the POP reads the results from the
Memory Element of each PE and copies them in the
PISO queue. This only takes one clock cycle, leaving the
PEs ready to continue processing.

• The POP extracts the results from the PISO serially and
move them to the data cache, and then to the external
RAM, according to the program it is being run.

• This process iterates until all data are processed. At this
point, all modules assert an end flag which is monitored
by the CPU. Since all modules work in parallel, simulta-
neous data transfers between the PIP, POP and PE Array
are possible.

MIMD mode
In MIMD mode, each Processing Element executes a small task
of the whole algorithm. All modules operate concurrently, so
task parallelism is exploited natively by the coprocessor. Each
one executes the operations programmed and transfers the data
to other adjacent PE using the local network. This network is
automatically synchronized by the Stream Queues. The size
of each program is application-dependent, so it is possible
that one PE would be waiting for input data or due to the
destination PE is not processing fast enough and its input queue
is full. In this example, a data stream is processed by the PEs,
acting PIP and POP as the supplier and the receiver of the
results, respectively.

• The CPU loads the program which PIP, POP and all the
PEs involved will execute.

• All modules are idle until a start flag is asserted by the
main CPU.

• The PIP starts supplying data according to the program
and employing the AGU for address calculation. Data
are copied serially in the input Stream Queues of the
destination PE. This process is executed iteratively until
the whole stream is transferred.

• Once there are data available in the input Stream
Queues of the different PEs, they start processing, ex-
changing data according to the program.

• The POP extracts the results from the PEs once they are
reaching the end of the pipeline. Results are stored in the
data cache, and then copied to the external RAM.

• As soon as the different modules end the processing,
they assert an end flag which is monitored by the CPU.
It should be noted that all units operate in parallel.
There are not conflicts for memory access as the Stream
Queues automatically manage synchronization and per-
mit simultaneous read and write access. If one queue is
full or empty, the unit which is trying to access remains
in wait state until more data or space is available.
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