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Heartbeat classification using abstract features from
the abductive interpretation of the ECG

Tomás Teijeiro*, Paulo Félix, Jesús Presedo, Daniel Castro

Abstract—Objective: This paper aims to prove that automatic
beat classification on ECG signals can be effectively solved
with a pure knowledge-based approach, using an appropriate
set of abstract features obtained from the interpretation of the
physiological processes underlying the signal. Methods: A set of
qualitative morphological and rhythm features are obtained for
each heartbeat as a result of the abductive interpretation of the
ECG. Then, a QRS clustering algorithm is applied in order to
reduce the effect of possible errors in the interpretation. Finally,
a rule-based classifier assigns a tag to each cluster. Results:
The method has been tested with the MIT-BIH Arrhythmia
Database records, showing a significantly better performance
than any other automatic approach in the state-of-the-art, and
even improving most of the assisted approaches that require
the intervention of an expert in the process. Conclusion: The
most relevant issues in ECG classification, related to a large
extent to the variability of the signal patterns between different
subjects and even in the same subject over time, will be overcome
by changing the reasoning paradigm. Significance: This work
demonstrates the power of an abductive framework for time se-
ries interpretation to make a qualitative leap in the significance of
the information extracted from the ECG by automatic methods.

Index Terms—Heartbeat classification, Abductive reasoning,
Knowledge based systems, Biomedical signal processing.

I. INTRODUCTION

HEARTBEAT classification from electrocardiogram sig-
nals is a valuable tool for the study of the cardiac

arrhythmia, and it is one of the challenges that has raised
more efforts in the field of biosignal analysis [1]. Despite
new proposals appear incessantly, it is still considered an open
problem, and it seems we are far from providing sufficiently
satisfactory solutions to be transferred to clinical routine,
integrated in the bedside instrumentation or in the emergent
home monitoring. A number of difficulties can be identified: 1)
the variability of the physiological and pathophysiological pro-
cesses underlying the ECG tracing between different patients,
or even in the same patient over time; 2) the stochastic nature
of these processes; 3) the simultaneous occurrence of multiple
physiological processes that can interact in different ways; 4)
the presence of noise and artifacts in the signal which mask
the physiological processes; or 5) the absence of an accurate
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heart model and the tacit, subjective, and hardly formalizable
knowledge that constitutes the experience of the cardiologist.

Heartbeat classifiers have traditionally failed to apply to new
patients those categories learned from a training set, no matter
how large this training set may be. Some sort of automatic
adaptation to the specific characteristics of each new patient
could be thought of as the solution, but results have not been
satisfactory enough. In fact, recent bibliography shows that
most of the state-of-the-art approaches rely on some form of
expert assistance for processing every new patient: some of
them by combining a general classifier, previously trained with
large collections of ECG recordings, with a local one, trained
specifically with an annotated fragment of the ECG record of
the new patient [2], [3], [4]; others by following a clustering
strategy that requires from the expert the final assignment of
a class label to each beat morphology [5], [6], [7].

The present paper aims to return to the challenge of per-
forming an autonomous classification, that is, without requir-
ing expert intervention after the classifier has been designed.
To this end, we take inspiration from human interpretation of
ECG, which is based on the construction of an explanation for
the behavior of the heart that can account for the ECG tracing
of a given recording. Our proposal provides an interpretation
of the ECG recording as a sequence of processes that are
conjectured over time. This requires a new formalism for
representing expert knowledge and a new reasoning paradigm,
under the following principles:
• The knowledge will be explicitly represented, the kind of

knowledge that can be found in an ECG handbook, so
that it can be understood and validated by experts; the
feature set is limited to those used by experts in clinical
practice, such as wave durations, intervals, amplitudes,
etc. Interpretability of the classification model is therefore
a natural consequence.

• Ad-hoc thresholds and values will be avoided, since
they may be suspicious of being overfitted to a training
database. For this reason, all classification features will
be qualitative, and the separation between values will be
performed either by purely electrocardiographic criteria,
or by generic criteria if no quantifiable knowledge is
available.

• Ignorance will be admitted, in case of a beat cannot be
successfully assigned to any predefined class. Ignorance
has the ability to clearly show those weaknesses in
the knowledge base, providing a direction for further
improvement. Moreover, the credibility of the results is
enhanced, as long as it comes together with a good
performance.
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Fig. 1. Overview of the proposed classification method

• Robustness to variability will be demanded, even to the
kind of noise present in the ECG. The interpretation
cannot involve any single piece of evidence in isolation,
but it should take into account contextual information,
combining bottom-up and top-down processing in order
to provide a more informed result.

The present proposal is based on the notion of temporal ab-
straction pattern, representing a set of constraints that must be
satisfied by some evidence from the ECG for being interpreted
as the hypothetical observation of a certain physiological pro-
cess, together with an observation procedure providing a set of
measurements for the features of the conjectured observation.
A set of algorithms is used in order to achieve the best
explanation through a process of successive abstraction from
raw data, by means of a hypothesize-and-test strategy [8]. The
interpretation results in a set of observations describing the
myocardial behavior at the conduction and rhythm abstraction
levels, and providing the same signal features used by cardi-
ologists in ECG analysis [9]. A context-based adaptive QRS
clustering method is then applied to cope with within-patient
variability, obtaining a reduced number of groups representing
the cardiac activity [10]. Finally, a simple knowledge-based
classification procedure assigns a label to each cluster. Figure
1 shows an overview of the present proposal.

The rest of this paper is outlined as follows: Section II
describes the database and methodology used for the vali-
dation of the proposal. Section III introduces the abductive
method for ECG interpretation and the knowledge base used.
Section IV describes the algorithm for clustering the QRS
complexes resulting from the interpretation. Afterwards, sec-
tion V details the feature extraction and classification stages.
Section VI presents the classification results, compared with
other state-of-the-art approaches. Finally, section VII discusses
the advantages and drawbacks of this method, as well as the
future work and evolution perspectives.

II. VALIDATION DATABASE

The validation of the proposed approach was performed
using the MIT-BIH Arrhythmia Database [11] from the Phys-
ionet initiative [12]. This database can be considered the gold
standard for arrhythmia and heartbeat classification, and it has
been used in most of the published research. It contains 48
ECG recordings sampled at 360 Hz for 30 minutes and from 47
different patients. Each recording comprises two ECG leads,
mainly a modification of lead II (electrodes on the chest) and
V1, but in some records they are replaced by V2, V5 or V4.

All beats present in the database were annotated by at
least two expert cardiologists, and assigned a class label
using a 17 label set. This label set was converted to the
five standard beat classes defined by the AAMI, following
the recommendations of the American National Standard for
Ambulatory ECGs (ANSI/AAMI EC38:2007) [13], detailed in
table I. All the comparisons were performed using the bxb
application from Physiotools [12]. It is worth mentioning that
many works in the bibliography, particularly those following
the methodology introduced by de Chazal et al. [14], are not
fully compliant with this standard, since MIT-BIH ’j’ and ’e’
classes are grouped in the AAMI ’N’ class instead of ’S’
class. This incorrect labeling affects 245 beats in the database,
representing 8% of the total supraventricular beats.

TABLE I
EQUIVALENCE BETWEEN BEAT CLASSES IN THE MIT-BIH ARRHYTHMIA

DATABASE AND THE STANDARD AAMI CLASSES

AAMI MIT-BIH equivalent classes

N N, L, R, B
S a, J, A, S, j, e, n
V V, E
F F
Q /, f, Q

III. ABDUCTIVE INTERPRETATION OF THE ECG

The interpretation of the ECG aims to identify and charac-
terize the physiological processes underlying signal behavior
by building a representation of the cardiac phenomena in mul-
tiple abstraction levels. To this end, an abductive framework
for time series interpretation is adopted [8]. This framework
demands the definition of a domain-dependent knowledge base
that is used to build an explanation of what is observed.

Domain entities are represented by observables. Formally,
an observable is a tuple q = 〈ψ,A, T b, T e〉, where ψ is a name
representing the process being observable, A = {A1, ..., Anq}
is a set of attributes, and T b and T e are two temporal variables
representing the beginning and the end of the observable.
An observable may be observed in multiple instances called
observations, that are obtained by assigning a specific value
to each attribute and to the temporal variables.

For example, the observable qTwave = 〈ventricular_re−
covery, {amplitude}, T b, T e〉 represents the T wave result-
ing from the ventricular electrical recovery process, and the
observation oi = 〈qTwave, amplitude = (V 1 : 0.09mV,
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MLII : 0.33mV ), T b = 00:00.403, T e = 00:00.606〉 repre-
sents the first specific T wave that can be observed in the
record 101 of the MIT-BIH arrhythmia database.

The full set of observables Q defined for the ECG inter-
pretation problem is shown in table II. This set is organized
into three abstraction levels: The first one corresponds to
signal deviation phenomena, and includes a set of intervals
or time points labeled as deflections, consistent with the
presence of electrical activity from the cardiac muscle. Ob-
servations from this level can be obtained from any of the
available ECG leads, and constitute the initial evidence for
the abductive interpretation process. The second abstraction
level corresponds to intracardiac conduction phenomena, and
defines the P wave, QRS complex, and T wave observables.
They can be conjectured taking as evidence observations
from the first abstraction level, providing a description of
the ECG as a sequence of waves corresponding to the atrial
activation, ventricular activation and ventricular recovery pro-
cesses, respectively. These observables integrate information
from multiple leads, as the observation oi shows in the above
example. In particular, the observation of a Deflection in a
single channel consistent with the definition of a T wave is
enough to consider that the ventricular recovery process has
been observed, regardless the presence of evidence in other
leads. Finally, the third abstraction level collects the patterns
characterizing the cardiac rhythm under different physiological
conditions [9], including normal rhythm and arrhythmias.

TABLE II
OBSERVABLES FOR THE ECG INTERPRETATION PROBLEM, SPLIT INTO

THE THREE CONSIDERED ABSTRACTION LEVELS

Name Underlying Process

Deflection Signal deviation consistent with the electrical
activity of the cardiac muscle fibers.

R-Deflection Signal deviation consistent with the electrical
activity generated in the ventricular activation.

P wave Atrial electrical activation.
QRS complex Ventricular electrical activation.
T wave Ventricular electrical recovery.

Sinus Rhythm Normal rhythm originated in the sinoatrial node.
Bradycardia Regular rhythm with a low frequency heart rate

(under 60 beats per minute).
Tachycardia Regular rhythm with a high frequency heart rate

(over 100 beats per minute).
Extrasystole Premature contraction of the heart.
Bigeminy Rhythm pattern in which every sinus beat is

followed by a premature beat.
Trigeminy Rhythm pattern in which every second sinus beat

is followed by a premature beat.
Couplet Concurrence of two consecutive extrasystoles.
Rhythm Block One-time elongation of the cardiac rhythm.
Atrial Fibrillation Arrhythmia caused by the independent and erratic

contractions of the atrial muscle fibers, character-
ized by an irregularly irregular heart rhythm.

Ventricular Fibrillation Rapid ventricular activity without discernible
QRS complexes or T waves in the ECG.

Asystole Interval of absence of ventricular activity.

An abstraction relation between the aforementioned observ-
ables is defined by a set of abstraction patterns. An abstraction

pattern is a knowledge representation primitive that allows
us to hypothesize the presence of an observable from a set
of other observables, playing the role of findings, when they
appear with a distinctive temporal arrangement. Formally,
an abstraction pattern is a tuple P = 〈qh,MP , CP , πP 〉,
where qh is the observable being hypothesized, MP =
{m1, . . . ,mn} is the set of findings abstracted by the hy-
pothesis qh, CP (Ah, T

b
h, T

e
h ,A1, T

b
1 , T

e
1 , . . . ,An, T

b
n, T

e
n) is

a set of constraints involving the temporal location and
the attributes of qh, and of the findings from MP , and
πP (A1, T

b
1 , T

e
1 , . . . ,An, T

b
n, T

e
n) ∈ O(qh) is an observation

procedure to compute the specific attribute and temporal
location values of a newly generated observation oh ∈ O(qh),
where we denote by O(q) the set of observations of the
observable q, and we denote by O = O(Q) the full set of
observations for a given recording.

To define the temporal constraints in abstraction patterns
the Simple Temporal Problem (STP) formalism [15] has been
adopted. A STP is a network defining a constraint τc(Ti, Tj)
between every two temporal variables Ti and Tj as a closed
interval τcij = [aij , bij ], where aij and bij are integer numbers
constraining the possible values of the duration of the interval
between both temporal variables, so that aij ≤ Tj − Ti ≤ bij .

As an example, the following abstraction pattern defines the
conditions to conjecture the observation of a QRS complex
(qQRS) from the observation of a R-Deflection (qRDef ):

P = 〈qQRS , {mRDef
1 }, {τc(TRDef , T

b
QRS) = [−80ms, 80ms],

τc(TRDef , T
e
QRS) = [15ms, 400ms]}, qrsdel()〉

R-Deflections are instantaneous observables, so they can be
represented with a single temporal variable TRDef . CP defines
two temporal constraints between the time point of the R-
Deflection and the beginning and the end of the QRS complex,
implicitly limiting its duration. The observation procedure
qrsdel() refers to any QRS delineation method used to find
the specific temporal limits of the complex. The multi-lead
method described in [16] has been used in this work.

In general, the set of findings MP is divided into two sets:
AP and EP , with AP ∩ EP = ∅. AP collects the set of
findings that is abstracted by qh, while EP is the set of findings
comprising the environment of qh, that is, the set of findings
that can condition the hypothesis of qh, but which are not a
constituent part of qh. For example, to conjecture a T wave
from the observation of a signal deviation it is necessary an
earlier observation of a QRS complex, but only the signal
deviation is abstracted by the T wave, being the QRS complex
the contextual evidence.

By definition, an abstraction pattern is built upon a fixed set
of evidence findings MP , but usually the notion of abstraction
involves an undetermined number of evidence observations.
An example is the normal rhythm abstraction, which is built
upon an indefinite number of heartbeats. To support this
type of abstractions, the interpretation framework provides a
method based on the formal language theory for the dynamic
generation of abstraction patterns. This method considers the
set of observables Q as an alphabet, and defines a class
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of grammars Gap for the generation of abstraction patterns.
An abstraction grammar G ∈ Gap is defined as a tuple
(VN , VT , H,R), where the production rules in R take one of
the following general forms:

H = qh → q[c]D

D → q[c]F | q[c] | λ

H = qh is the initial symbol of the grammar, corresponding
to the hypothesis guessed by the patterns generated by G.
Thus, a single grammar describes all the different ways of
abstracting an observable qh. VN is the set of non-terminal
symbols of the grammar (here D and F ). VT is the set of
terminal symbols, including a set of observables QG ⊆ Q
that can be abstracted by the hypothesis, a set of optional
constraint descriptions [c] between the observables, and the
membership of each finding to the set AP or EP . λ stands for
the empty string.

Given a grammar G ∈ Gap, the abstraction patterns that
allow us to hypothesize qh are built iteratively by the applica-
tion of the production rules in R. Thus, each production adds
a new observable as a finding, and a set of constraints among
this finding and those generated previously, according to the
following method:

1) The start symbol H initializes an abstraction pattern with
the hypothesis and no evidence findings:

P := 〈qh,MP = ∅, CP = C(T b
h, T

e
h ,Ah), πP ()〉

2) Productions of the form H = qh → q[c]D include the
first finding of the pattern:

P := 〈qh,MP = {mq
1}, CP ∪ C(T b

1 , T
e
1 ,A1),

πP (A1, T
b
1 , T

e
1 )〉

3) Productions of the form D → q[c]F | q[c] entail:

P := 〈qh,MP ∪ {mq
k}, CP ∪ C(T b

k , T
e
k ,Ak),

πP (A1, T
b
1 , T

e
1 , . . . ,Ak, T

b
k , T

e
k )〉

4) Productions of the form D → λ finish the pattern without
altering it.

This method generates a potentially infinite set of ab-
straction patterns from a single grammar, describing all
the possible ways to conjecture an observable qh from
observations of lower abstraction levels. Moreover, it is
possible to define adaptive observation procedures, since
πP (A1, T

b
1 , T

e
1 , . . . ,Ak, T

b
k , T

e
k ) can be different at each step.

The following example shows an abstraction grammar to
hypothesize a heartbeat (qhb) from P wave, QRS complex,
and T wave observations, by using common knowledge from
an ECG manual[9]:

H = qhb → qPw[c1]A | qQRS [c3, c4]D | qQRS [c3, c4, c5]

A→ qQRS [c2, c4]B

B → qTw[c6, c7]

D → qTw[c7]

hb

[40,250]

[100,300] [0,520]

[1,∞]

[1,∞]

[0,0] [0,0]

[0, 250][1,∞]

[0,600]

[15,400]

Tb
hb Te

hb

Pw

QRS Tw

Tb
Pw

Te
Pw

Tb
QRS Te

QRS
Tb

Tw Te
Tw

Fig. 2. Example of a heartbeat abstraction pattern

with the following constraints (all units are milliseconds):

c1 ={τc(T b
Pw, T

e
Pw) = [40, 250], τc(T b

Pw, T
b
hb) = [0, 0]}

c2 ={τc(T b
Pw, T

b
QRS) = [100, 300], τc(T e

Pw, T
b
QRS) = [1,∞]}

c3 ={τc(T b
hb, T

b
QRS) = [0, 0]}

c4 ={τc(T b
QRS , T

e
QRS) = [15, 400]}

c5 ={τc(T e
hb, T

e
QRS) = [0, 0]}

c6 ={τc(T e
Pw, T

b
Tw) = [0, 600]}

c7 ={τc(T e
QRS , T

b
Tw) = [0, 250], τc(T b

QRS , T
e
Tw) = [0, 520],

τc(T b
Tw, T

e
Tw) = [1,∞], τc(T e

Tw, T
e
hb) = [0, 0]}

This grammar supports the generation of three abstraction
patterns: The first one assembles the common observables of
a normal heartbeat, i.e. a P wave, a subsequent QRS complex,
and a final T wave, completing the full atrial and ventricular
depolarization/repolarization cycle. The second pattern avoids
the observation of a P wave, which may occur if the heartbeat
has an activation focus outside the sinoatrial node. Finally, the
third pattern only requires the observation of a QRS complex,
which might be useful if the quality of the signal makes it
difficult to properly observe the subsequent T wave.

In the set of constraints, c1 represents the P wave duration
limits, and sets the beginning of the heartbeat as the beginning
of the P wave; c2 represents the PR interval limits; c3 sets
the beginning of the heartbeat as the beginning of the QRS
complex in absence of a preceding P wave; c4 represents
the QRS complex duration constraints; c5 sets the end of the
heartbeat as the end of the QRS complex in absence of a
posterior T wave; c6 limits the combined duration of the PR
segment, the QRS complex, and the ST segment; c7 sets the
limits of the ST segment and the QT interval, and sets the end
of the heartbeat as the end of the abstracted T wave. Figure 2
shows the most complete pattern that can be generated by this
grammar.

For the ECG interpretation problem, we have defined an
abstraction grammar for each one of the observables in ta-
ble II, except for the signal deviation phenomena. This set
of grammars G induces an abstraction relation on the set of
observables Q, such that we write qi qj if the observation of
qi allows us to conjecture the presence of qj , that is, if there
exists an abstraction pattern P , generated by some G ∈ G,
such that qj = qhP

and Mqi
P ∩ AP 6= ∅, where Mqi

P is
the set of findings in P corresponding to the observable qi.
Moreover, to ensure the consistency of the knowledge base it
is required that qi +qi, where + is the transitive closure of .
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The abstraction relation organizes the whole set of observables
in a set of abstraction levels, as it is shown in table II. It is
worth noting that, for any pattern P , the abstraction relation
only involves the hypothesis qh and the observables from the
AP set, so we can find in the set EP different observables
from the same or even higher abstraction levels than qh.

Once the presence of a certain observable is hypothesized,
it could provide an explanation for a set of observations
from lower levels. Such a set of observations, behaving as
an evidence set, is a matter of choice from an abductive point
of view; think about deciding on the end of an electrocardio-
graphic wave and the beginning of the next one. The result
of this choice is represented by an abstraction hypothesis,
which is defined as a tuple h = 〈oh, Ph,�h〉, where oh
is an observation hypothesis conjectured by the abstraction
pattern Ph through a matching relation �h. This matching
relation injectively assigns a subset of existing observations
from O to the findings in MPh

. If this assignment is consistent
with the constraints in CPh

, the procedure πPh
calculates

the attribute and temporal location values for oh. Once a
hypothesis is found to be consistent, it may become part of
the evidence for a new hypothesis of a higher abstraction
level. Thus, all observations from a level above the first are
generated as hypotheses, by abstracting a set of observations
satisfying the constraints of an abstraction pattern generated
by the grammar of the hypothesized observable. Finally, an
interpretation is defined as a consistent set of abstraction
hypotheses I = {h1, ..., hm}.

Solving an interpretation problem is posed as a heuristic
search on the space of all consistent interpretations. This space
has a tree structure, being the root the trivial interpretation I0,
containing no hypotheses. The CONSTRUE algorithm explores
this space by expanding the most promising nodes according
to four heuristic principles:

1) A coverage principle, which states the preference for
interpretations explaining more initial observations.

2) A simplicity principle, which states the preference for
interpretations with fewer abstraction hypotheses.

3) An abstraction principle, which states the preference for
interpretations involving higher abstraction levels.

4) A predictability principle, which states the preference for
interpretations that properly predict future evidence.

The expansion of a particular node is performed in the
GET_DESCENDANTS() procedure, reproduced in algorithm 1.
This procedure relies in different reasoning modes guided
by a focus of attention f . Intuitively, the focus of attention
points to the next observation or finding to be processed,
and determines the next step in a hypothesize-and-test cycle.
Lines 4-8 generate the descendants of an interpretation I when
the attention is on an observation. These descendants are the
result of two possible reasoning modes: the deduction of new
findings, performed by the DEDUCE() function provided that
the observation being focused on is an abstraction hypoth-
esis; and the abduction of a new hypothesis explaining the
observation being focused on, performed by the ABDUCE()
function. A last descendant is obtained using the ADVANCE()
function, which simply moves on the interpretation process by

declaring the focused observation as unintelligible according
to the available knowledge.

On the other hand, if the focus points to a finding, then
algorithm 1 obtains the descendants of the interpretation from
the SUBSUME() and PREDICT() functions (line 10). The first
one looks for an existing observation satisfying the constraints
on the finding being focused on, while the second makes pre-
dictions about observables that have not yet been observed. All
these reasoning modes, as long as the CONSTRUE algorithm
implementation are detailed in [8].

Algorithm 1 Method for obtaining the descendants of an
interpretation using different reasoning modes and guided by
a focus of attention.

1: function GET_DESCENDANTS(I)
2: var f = GET_FOCUS(I).TOP()
3: var desc = ∅
4: if IS_OBSERVATION(f ) then
5: if f = oh | h ∈ I then
6: desc = DEDUCE(I, f )
7: end if
8: desc = desc ∪ ABDUCE(I, f ) ∪ ADVANCE(I, f )
9: else if IS_FINDING(f ) then

10: desc = SUBSUME(I, f ) ∪ PREDICT(I, f )
11: end if
12: return desc
13: end function

For the ECG interpretation, the base evidence is a set of
initial Deflection and R-Deflection observations. R-Deflections
can be provided by any QRS detection method, like [17].
Regarding Deflections, the observation procedure operates on
the raw ECG signal, and calculates a set of relevant intervals
by thresholding the energy of the signal resulting from a
multilevel 1-D wavelet decomposition/reconstruction of the
ECG [18] using the ’haar’ wavelet. The wavelet transform
operates on fragments of 256 samples of the original signal,
giving 8 decomposition levels, and performs a reconstruction
by considering only the detail coefficients of levels 2 and
4, calculating the energy signal E by squaring the recon-
structed signal. This energy signal focuses on frequency bands
[11.25Hz, 22.5Hz] and [45Hz, 90Hz], matching the typically
used spectrum for the detection of P waves, T waves, and
QRS complexes [19]. Once the full energy signal has been
calculated, the observation procedure πDef provides a set of
relevant intervals by filtering those time points t such that
E(t) > Thresh = quantile(E, 0.95p), where p ∈ [1, 20] is a
parameter to control the sensitivity of the filter. This param-
eter is automatically modified during the interpretation. For
example, if the PREDICT() procedure predicts an unobserved
Deflection, p is increased until the Deflection is observed,
or p = 20 is reached. If the distance between two time
instants exceeding the threshold is lower than 20 ms, they
are integrated in a single Deflection observation.

Figure 3 shows an example of an ECG fragment, its
corresponding energy signal, the threshold for the selection
of relevant points with p = 2, and the resultant Deflections.
These intervals are the supporting evidence for a predicted
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QRS complex or a P or T wave, but the specific time points
of the beginning and the end of each one of them could be
subsequently corrected along the interpretation procedure.

Thresh

Fig. 3. Observation procedure to generate Deflection observations. At the
bottom, the energy signal is shown, along with the threshold for relevant
points detection with p = 2. [Source: MIT-BIH Arrhythmia DB, record: 101,
between 00:16.000 and 00:19.500]

When the interpretation procedure begins, the first R-
Deflection observation is focused, and the hypothesize-and-
test cycle starts by trying to abduce it in a QRS complex
observation. Eventually, this new hypothesis may lead to a
consistent rhythm hypothesis, which will allow us to deduce
new QRS complexes as long as the P wave and T wave
observations corresponding to each cardiac cycle. The final
target is to obtain a set of rhythm hypotheses explaining all
the initial R-Deflections as QRS complexes, and maximizing
the ECG coverage with the associated P wave and T wave
observations abstracting the observed Deflections.

The reason to focus first on R-Deflections is that it gives
more importance to the interpretation of relevant signal de-
viations. Furthermore, since the reasoning paradigm is non-
monotonic, the initial set of R-Deflections set can be modified
during the interpretation by including new predicted beats
or by discarding the annotations that are considered false
positives as they are declared unintelligible according to the
available knowledge [20]. Hence, QRS detection errors do not
necessarily lead to interpretation errors. Figure 4 shows an ex-
ample of an ECG trace in which the initial set of R-Deflections
has both false positive and false negative detections. The
interpretation at rhythm level concludes that best hypothesis
explaining the fragment is normal sinus rhythm, and therefore
the third annotation is discarded as a false positive, and the
actual third and fourth QRS complexes are predicted from
the smaller signal deviations that appear consistently with the
rhythm temporal constraints.

Figure 5 shows the full interpretation of another ECG
fragment following the procedure described above. At the
rhythm level, the fragment is explained as a Sinus Rhythm
episode interrupted by an Extrasystole in the fourth beat, a
return to Sinus Rhythm during five beats and a final Trigeminy
episode during five beats. At the conduction level, all QRS
complexes and T waves are properly delineated. With respect
to P waves, the detection is accurate in all cases except the
third beat in the trigeminy pattern in which it is missed. As
can be seen, the final result of the interpretation procedure is

oRDef oRDef oRDef oRDef

oSinus Rhythm

oQRS oQRS oQRSoQRSoQRS

abduces subsumes deduces deduces subsumes

?
abduces abduces abduces abduces

Fig. 4. How abductive interpretation can fix errors in the initial evi-
dence [Source: MIT-BIH Arrhythmia DB, record: 121, lead: MLII, between
27:32.500 and 27:36.000. R-Deflections obtained with the wqrs applica-
tion [17]]

an explanation of the physiological processes observed in the
ECG record in the same terms used by experts. An abductive
interpretation in abstraction levels will make it possible to
adapt the sort of knowledge that can be found in any ECG
handbook to a reduced set of classification rules, as described
below.

IV. QRS CLUSTERING

Classification relies on a previous clustering task in order to
exploit the high similarity between large number of beats that
is invariably observed in ECG signals. A clustering algorithm
ψ : O(qQRS) → P(O(qQRS)) should find a partition of
the set of QRS observations O(qQRS) = {oQRS

1 , . . . , oQRS
n },

satisfying the following requirements:
1) Maximum cluster purity. This will be achieved if no beats

from different classes belong to the same cluster. All
purity reductions below 100% will be directly translated
to classification errors.

2) Minimum number of clusters. Ideally, the number of
clusters should be equal to the number of beat classes
present in the ECG recording. A higher number of clus-
ters increase the uncertainty of the classification features
and the number of decisions the classifier has to make.

In this work, we use the clustering method presented in [10],
which performs an adaptive multi-lead context-based cluster-
ing of QRS complexes in real-time. This method creates a
dynamic number of clusters represented by evolving templates
to obtain sets of QRS complexes with similar rhythm and
morphology. A high robustness to noise and morphological
variability is achieved by means of a segment-based QRS
complex characterization inspired by dominant points detec-
tion, a similarity measure that performs non-linear alignment
using Dynamic Time Warping, and a noise-cluster proliferation
control mechanism. As a result, the method provides good
cluster purity while minimizing the number of clusters.

V. BEAT CLASSIFICATION

As a result of a QRS clustering we obtain a set
ψ(O(qQRS)) = {Q1, . . . , Qk} of clusters. In the following
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Rhythm

Deflection

Conduction phenomena

Fig. 5. Result of the abductive interpretation of an ECG fragment. [Source: MIT-BIH Arrhythmia, record: 116, lead: MLII, between 09:24.000 and 09:34.500]

we explain how to assign a label to each Qi, classifying all
the observations oQRS

j ∈ Qi with the information resulting
from the abductive interpretation of the ECG.

Heartbeat classification actually involves the determination
of two different properties of the beat nature: 1) The physio-
logical origin, i.e. the cardiac muscle area where the electrical
activation begins; and 2) the temporal location of the beat
with respect to the underlying cardiac rhythm. Usually, the
origin distinguishes between supraventricular beats (generated
at the atria or the atrioventricular node) and ventricular beats
(generated at the ventricles), and the distinction is made based
on morphological criteria. On the other hand, the temporal lo-
cation distinguishes premature beats, escape beats and regular
beats, that can be identified from rhythm analysis.

In general, practical electrocardiography makes a distinction
between: 1) the interpretation of the “normal” electrocardio-
gram, and 2) the characterization of the possible transient
anomalies [9]. The goal of the first task is to examine the most
common situation observed in the subject’s ECG, identifying
the possible presence of permanent disorders. The goal of the
second task is to study punctual or temporary changes with
respect to the “normality” characterized in the first task.

This proposal reproduces this strategy by splitting the label
assignment procedure in two stages. The first one, detailed in
section V-A, considers a reduced set of individual features of
each cluster Qi and applies a set of general rules to determine
the class of the beats in Qi. But if the value of the individual
features is not significant enough to decide the origin, the set of
features is extended with additional features that are calculated
by comparing the Qi cluster with an already classified cluster
QN that is assumed to represent a “normality” situation. This
second classification stage is described in section V-B.

A. Single cluster classification

The first stage for cluster classification considers a reduced
set of five qualitative features obtained from the interpretation
results: Heart Rate, QRS Duration, Heart Axis, P Wave and
Rhythm. Each QRS observation in the cluster has a specific
value for each feature, and the values for the cluster are
obtained by aggregating the values of all the QRS in the cluster
for rhythm-related and P Wave features, and by taking the
value of a QRS considered the representative of the cluster for
morphological features. This representative is selected as the
QRS observation with minimum distance to the mean duration,
amplitude and heart axis of the cluster. Following we describe
these features individually, and table III details the possible
qualitative values each feature may take.

1) Heart Rate: This feature is calculated from the time dis-
tance of a QRS observation with respect to the previous
QRS observation in the interpretation, what is called the
instantaneous RR interval. For a cluster, this feature is
calculated as the mean heart rate of all beats in the cluster.

2) QRS Duration: Represents the time interval between the
onset and the offset of a QRS observation. If the delineation
information is available in more than one ECG lead, the
duration is taken as the distance between the earliest onset
and the latest offset. For a cluster, the duration is calculated
as the duration of the representative QRS of the cluster.

3) Heart Axis: Represents the mean direction of cardiac
depolarization. To be accurately determined, it is necessary
the information of all limb leads, specially I, II, and AVF.
In this work, since the validation database only has one
limb lead available (lead II), we obtain an approximation
of the heart axis using only that lead, by calculating the
amplitude relation between positive and negative waves in
the QRS. The value of this approximation is in the range
[-90º, +90º]. Fig. 6 shows an example of each possible
qualitative value for this feature, and its corresponding
numerical value. For a cluster, the heart axis is taken as
the axis of the representative QRS. In the absence of lead
II information, a balanced heart axis is assumed.

(a) Normal (+70º) (b) Balanced (+5º) (c) Inverted (-56º)

Fig. 6. Examples of heartbeats with different heart axis

4) P Wave: This feature indicates whether a QRS complex
is preceded by a P wave in the interpretation result, and
therefore has a sinus origin. To determine the presence
or absence of a P wave in a cluster, for each available
lead an amplitude histogram of all P wave observations
is calculated, with the bins set in 0 µV, 50 µV, 100 µV,
500 µV and 1 mV. Then, the peak of the histogram is
taken as the P wave amplitude in the lead, and finally it is
required the mean amplitude of all leads to be higher than
50 µV. For example, consider the interpretation in Fig. 5
and suppose a cluster will all but the 4th, 10th, and 13th
heartbeats. The amplitude of the P waves associated to the
clustered heartbeats are 0µV (absent P wave), 42µV, 58µV,
56µV, 49µV, 54µV, 54µV, 58µV, 58µV, 0µV, 49µV. If we
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calculate the amplitude histogram, the bin [0µV, 50µV] has
5 elements, and the bin [50µV, 100µV] has 6 elements, so
in the absence of another lead the P Wave feature has a
value of 1 for this cluster.

5) Rhythm: This feature is obtained from the highest abstrac-
tion level of the interpretation procedure: the rhythm hy-
pothesis in which a QRS complex is enclosed. The Regular
value is assigned to all beats interpreted in a regular rhythm
(Bradycardia, Sinus rhythm or Tachycardia), to the odd
beats in Bigeminisms, to the first and second beats of each
triple in Trigeminisms, and to the beat after a compensatory
pause in Extrasystoles and Couplets. The Advanced value is
assigned to beats interpreted as Extrasystoles or Couplets,
as long as the even beats in Bigeminisms and the third beat
of each triple in Trigeminisms. The Atrial fibrillation value
is assigned to all beats interpreted in an atrial fibrillation
episode. Finally, the Delayed value is assigned to the beats
interpreted as Asystole or as Rhythm Block. For a cluster,
this feature is calculated as the most repeated rhythm. If the
Advanced or Delayed tags have a significant frequency in
the cluster (over 20%), a correction factor is applied based
on the number of Regular beats with a higher heart rate
(lower in the case of Delayed) than the mean heart rate of
the cluster. By default, it is assumed that 50% of Regular
beats have a higher heart rate than the mean. The number
of beats with higher heart rate exceeding this 50% is then
added to the number of Advanced beats, and if this count
exceeds the number of Regular beats, the cluster is tagged
as Advanced. For example, for the interpretation shown in
Fig. 5 and according to these rules, the 4th, 10th and 13th
heartbeats have the Advanced value for the Rhythm feature,
while the others have the Regular value.

TABLE III
FEATURE VALUES FOR SINGLE CLUSTER CLASSIFICATION

Feature Qualitative Values

Heart Rate

-1: Lower than 60 beats per minute (Bradycardia)
0: Between 60 and 100 bpm (Normal rhythm)
1: Between 100 and 150 bpm (Asymptomatic tachycardia)
2: Over 150 bpm (Symptomatic tachycardia)

QRS Duration

-1: Less than 80 milliseconds (Narrow)
0: Between 80 ms and 100 ms (Normal)
1: Between 100 ms and 120 ms (Abnormal)
2: More than 120 ms (Wide)

Heart Axis
-1: Angle lower than -45º (Inverted axis)
0: Angle between -45º and 45º (Balanced axis)
1: Angle higher than 45º (Normal axis)

P Wave
0: Absent P wave, or mean amplitude lower than 50 µV
1: Mean amplitude over 50 µV

Rhythm

0: Regular
1: Atrial fibrillation
2: Advanced beat
3: Delayed beat

Once these qualitative features have been obtained for each
cluster, a simple set of general rules is applied in order to
decide the physiological origin of the beats in the cluster. To

ensure robustness in this step, which determines the reliability
of the comparative classification, only the clusters with a
significant number of members are considered. In our case,
we require as a rule of thumb a minimum of 30 QRS to
ensure a stable mean value for the classification features.
Table IV shows the four classification rules considering only
the individual features of each cluster. The rules are applied in
order, so if the antecedent of one rule is met no further rules
are evaluated.

TABLE IV
SINGLE CLUSTER CLASSIFICATION RULES

Rhythm = Regular and Pwave → NORMAL

Rhythm = Atrial fib. and Rate ≥ 0 → AFIB

Rhythm = Advanced and Duration = Narrow → SVEB

Pwave and Duration = Narrow → NORMAL

Clusters classified as NORMAL by rules in table IV are fur-
ther analyzed to identify possible intraventricular conduction
abnormalities such as right bundle branch block (RBBB) and
left bundle branch block (LBBB) [9]. These conditions are
detected from the representative QRS morphology, with RBBB
requiring the QRS duration to be higher than 100 ms and the
QRS morphology in lead V1 to finish with a positive wave
with amplitude higher than 0.5 mV. LBBB requires the QRS
duration to be higher than 120 ms, and the QRS morphology
in lead V1 to be tagged as QS or rS, according to [16].

In the MIT-BIH Arrhythmia Database used for the valida-
tion of the proposal, the single cluster classification is able to
provide a label for more than 84% of the heartbeats.

B. Comparative classification
In some records, the variability of the cardiac conduction

and rhythm makes it impossible to distinguish a predomi-
nant “normality” situation satisfying the rules described in
section V-A. But even in such circumstances, establishing
a baseline cardiac behavior will permit to discriminate the
possible transient anomalies by comparison. In our case, if
no clusters were classified by the single cluster classification
rules, the reference cluster QN is selected as follows:
• If there are clusters with more than 30 QRS, with a P

wave, and with a duration lower than 120 ms, then the
largest one is selected as QN .

• If there are clusters with a predominant Regular or Atrial
fibrillation rhythm label, the largest cluster in this set is
selected.

• If no clusters match any of these two criteria, the cluster
with more complexes interpreted as Regular or Atrial
fibrillation is selected.

The comparative classification stage considers an extended
set of features, calculated by comparison between the target
unclassified cluster Qi and the reference cluster QN , which
are described below. The qualitative values for these features
are detailed in table V.
1) Heart rate difference (Heart Rate′): Measures the heart

rate (Rate) difference between the target cluster Qi and
a reference cluster QN .
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2) Duration difference (QRS Duration′): Measures the du-
ration (Dur) difference between the representative QRS
complexes of Qi and QN .

3) Axis difference (Heart Axis′): Measures the heart axis
(Axis) difference between the representative QRS com-
plexes of Qi and QN .

4) Amplitude difference (QRS Amplitude′): This feature mea-
sures the relative amplitude difference between the repre-
sentative QRS of Qi and QN . For this, the lead in which
Qi has a higher amplitude is selected, and the ratio of both
amplitudes is calculated. The amplitude is calculated as
the difference between the maximum and minimum ECG
values inside the region delineated as QRS complex.

5) Morphological Similarity: Provides a measure of the signal
similarity between the QRS onset and offset in all available
leads for the representative QRS of Qi and QN . Similarity
is obtained by cross-correlation (xcorr), and the result is
the average value of the maximum for each lead.

TABLE V
FEATURE VALUES FOR COMPARATIVE CLASSIFICATION

Feature Qualitative Values

Heart Rate′
-1: RateN −Ratei ≥ 20bpm (Slower rate)
0: −20bpm < RateN −Ratei < 20bpm (Equal rate)
1: Ratei −RateN ≥ 20bpm (Faster rate)

QRS Duration′

-1: DurN −Duri ≥ 20ms (Narrower complex)
0: −20ms < Duri−DurN < 20ms (Equal duration)
1: 20ms ≤ Duri −DurN < 40ms (Wider complex)
2: Duri −DurN ≥ 40ms (Much wider complex)

Heart Axis′

0: |AxisN −Axisi| < 45° (Equal axis)
1: 45° ≤ |AxisN −Axisi| < 90° (Deviated axis)
2: 90° ≤ |AxisN −Axisi| < 135° (Far deviated axis)
3: |AxisN −Axisi| ≥ 135° (Opposite axis)

QRS Amplitude′
-1: Ampi/AmpN < 0.75 (Lower amplitude)
0: 0.75 ≤ Ampi/AmpN ≤ 1.25 (Equal amplitude)
1: Ampi/AmpN > 1.25 (Higher amplitude)

Morphological

0: xcorr(QN , Qi) < 0.25 (Very different)
1: 0.25 ≤ xcorr(QN , Qi) < 0.5 (Different)
2: 0.5 ≤ xcorr(QN , Qi) < 0.75 (Similar)
3: 0.75 ≤ xcorr(QN , Qi) < 0.9 (Very similar)

Similarity

4: xcorr(QN , Qi) ≥ 0.9 (Identical)

On the basis of the attributes of the clusters labeled in the
basic classification stage, two contexts requiring some specific
rules for the classification of Qi are identified:

a) Wide QRS context: This context is set on the presence of
an artificial pacemaker or if a bundle branch block (left
or right) was identified in some cluster. The presence of
an artificial pacemaker is set if for some cluster more
than 20% of beats are classified as paced by the QRS
delineation algorithm [16].

b) Atrial fibrillation context: This context is set if some
cluster was classified as Atrial fibrillation.

If none of these specific contexts are recognized, then a
Normal Sinus Rhythm context is assumed, and the reference
cluster QN is selected as the largest cluster classified as
normal.

The comparative classification tries first to account for the
physiological origin of the cluster, considering the morpho-
logical features, and then the temporal location using the
rhythm features. If there is an already classified cluster Qj

with identical similarity and equal amplitude than Qi, then the
supraventricular/ventricular origin of Qi is assumed to be the
same of Qj . If no such Qj exists, then the origin is determined
by considering typical values for the seven morphological
features and checking which type is best matched with the
feature values of Qi through a simple majority vote. In the
unusual case of tie vote, a supraventricular origin is assumed.
Table VI shows these characteristic values for each origin.

TABLE VI
CHARACTERISTIC VALUES FOR SUPRAVENTRICULAR/VENTRICULAR

DISCRIMINATION

S
Axis ≥ 0 Duration < 2 Pwave ≥ 0 Similarity > 2

Axis′ = 0 Duration′ < 2 Amplitude′ ≤ 0

V
Axis ≤ 0 Duration > 0 Pwave = 0 Similarity < 3

Axis′ > 0 Duration′ > 0 Amplitude′ 6= 0

Table VII shows the classification rules used for each
final resulting class, considering the physiological origin and
rhythm-related features. As can be seen, each specific context
modulates the rules according to the special characteristics
of “normality” they represent. For example, in the Atrial
fibrillation context classification rules avoid the use of Rate
and Rate′ features, due to the highly erratic behavior of the
RR interval [9]. On the other hand, in the Wide QRS context,
clusters with regular rhythm and a QRS morphology similar
to QN (high morphological similarity or low axis deviation)
are classified as normal, and clusters with advanced rhythm
and appreciable morphological differences with respect to QN

(in duration or similarity) are classified as ectopic ventricular
beats. Finally, the Normal sinus rhythm context includes a
rule for the classification of fusion beats in clusters with an
identified supraventricular origin. The reason not to include
this rule in the Atrial fibrillation and Wide QRS contexts is its
dependence with the Duration and Rate features, that are not
representative in these contexts.

VI. RESULTS

In the bibliography, the commonly used methodology for
heartbeat classification evaluation is the presented by de
Chazal et al. [14], focused on the MIT-BIH Arrhythmia
database. This methodology excludes the records of patients
using pacemakers and divides the remaining into two datasets,
DS1 (training) and DS2 (test). In our case, a training set is not
necessary and the validation was performed with all records,
including those with paced beats. In this manner, we can eval-
uate the interpretation and classification algorithms without
making any a priori assumptions about the characteristics of
the ECG signal. Like other works following this methodology,
the beat annotations in the .atr files included in the database
were used as the initial evidence for the interpretation stage,
considering them as R-Deflection observations. It should be
noted that these annotations contain perfect knowledge about

Copyright(c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/JBHI.2016.2631247


This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JBHI.2016.2631247

10 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. X, XXXXX 20XX

TABLE VII
RULES FOR COMPARATIVE CLASSIFICATION

Wide QRS and Normal sinus rhythm contexts
Origin = S

Rate = 0 and Duration = 0 and Similarity = 4 → NORMAL

Rhythm = 2 or Rate′ = 1 or Rate = 2 → SVEB

Rhythm = 3 and Rate′ = −1 → SVESC

Default → NORMAL

Origin = V

Rhythm = 2 or Rate′ = 1 or Rate = 2 → VEB

Rhythm = 3 or Rate ≤ 0 → VESC

Rhythm = 0 and Duration = 1 and Rate = 1 → FUSION

Default → VEB

Atrial fibrillation context
Origin = S

Rhythm = 0 and Duration = 0 and Similarity = 4 → NORMAL

Rhythm = 2 → SVEB

Rhythm = 3 → SVESC

Default → NORMAL

Origin = V

Rhythm = 2 → VEB

Rhythm = 3 or Rate ≤ 0 → VESC

Default → VEB

Wide QRS context
Rhythm = 0 and Duration′ = 0 and Similarity > 2 → NORMAL

Rhythm = 0 and Duration′ = 0 and Axis′ < 2 → NORMAL

Rhythm = 2 and Duration > 0 and Duration′ > 0 → VEB

Rhythm = 2 and Duration > 0 and Similarity < 4 → VEB

Normal sinus rhythm context
Origin = S

Rhythm = 0 and Duration = 1 and Rate = 1 → FUSION

QRS locations, but the interpretation algorithm treats them like
any other initial evidence that might be modified during the
hypothesize-and-test cycle. For example, Fig. 7 shows an ECG
fragment that is interpreted as an Atrial fibrillation episode,
and the 4th R-Deflection is incorrectly abstracted in a T wave
instead of a QRS complex, leading to a false negative in the ’V’
class. Even if it is detrimental to the results, we believe this
is the most fair validation strategy, since the main distinctive
feature of the adopted reasoning paradigm is to not assume
any previous conclusion as unfailing.

Table VIII shows the confusion matrices of the classification
results for all the 48 records in the database, for the 44 records
in the DS1 and DS2 sets, and for the records in the DS2 dataset
commonly used in comparison studies. These matrices were
obtained as described in section II, fixing the incorrect label
association for MIT-BIH classes ’j’ and ’e’.

In addition to the five standard beat classes defined by
the AAMI, the O class has been included to represent false
positives and false negatives in QRS detection due to the mod-
ifications introduced by the abductive interpretation process
in the initial set of beat annotations. The Q class represents
beats with unknown origin, but the standard tools also use it
to represent paced beats and the fusion of paced and normal
beats. This is the reason for the great proportional difference

oQRS

oRDef

deduces

oRDef

oAtrial Fibrillation

abduces

abduces

oQRS

oRDef

abduces

subsumes

oQRS

oRDef

abduces

subsumes

oQRS

oRDef

abduces

subsumes

oQRS

oRDef

abduces

subsumes

abduces

oTw oTw oTw oTw oTw

deduces deduces deduces

subsumes

Fig. 7. False negative VEB detection due to an oversimplified interpretation
[Record: 202, lead: MLII, between 27:58.600 and 28:02.100. R-Deflections
are the reference .atr annotations]

TABLE VIII
CONFUSION MATRICES OF THE BEAT CLASSIFICATION RESULTS FOR ALL
48 RECORDS IN THE MIT-BIH ARRHYTHMIA DATABASE (TOP), FOR THE

44 RECORDS IN THE DS1 AND DS2 SETS (MIDDLE), AND FOR THE 22
RECORDS IN THE DS2 TEST SET (BOTTOM)

Classification Result
Ground Truth O N S V F Q

Full database

O 0 19 6 49 0 0
N 115 89459 355 446 9 2
S 15 330 2575 106 0 0
V 85 275 116 6705 41 14
F 1 273 5 80 444 0
Q 2 713 0 143 1 7184

Classification Result
Ground Truth O N S V F Q

DS1+DS2

O 0 19 6 49 0 0
N 115 88960 355 441 9 0
S 15 330 2575 106 0 0
V 73 273 116 6506 41 0
F 1 273 5 80 444 0
Q 0 13 0 1 1 0

Classification Result
Ground Truth O N S V F Q

DS2

O 0 2 0 0 0 0
N 84 43634 277 47 4 0
S 10 199 1787 54 0 0
V 37 50 64 3048 22 0
F 0 140 5 42 201 0
Q 0 7 0 0 0 0

of this class in the first matrix with respect to the other.
Table IX shows a comparison of the classification perfor-

mance with the most relevant algorithms of the state-of-the-art,
using sensitivity and positive predictive value of the ventricular
and supraventricular ectopic beat classes. It is worth noting
that most of the proposals are assisted, meaning that they
require an expert to manually annotate some beats. In this
sense, some of the assisted methods are closer to a clustering
approach rather than a classification approach, since once the
expert has labeled one of the beats in each group the remaining
beats are assigned the same label. In contrast, the present
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TABLE IX
VEB AND SVEB CLASSIFICATION PERFORMANCE AND COMPARISON

WITH THE MOST RELEVANT AUTOMATIC AND ASSISTED METHODS OF THE
STATE-OF-THE-ART

VEB SVEB
Dataset Method Se P+ Se P+

DS1+DS2

This work - Automatic 92.82 92.23 85.10 84.51
Llamedo et al. [5] - Assisted 90±1 97±0 89±2 88±3
Kiranyaz et al. [4] - Assisted 93.9 90.6 60.3 63.5

Ince et al. [21] - Assisted 84.6 87.4 63.5 53.7
Llamedo et al. [5] - Automatic 80±2 82±3 76±2 43±2

DS2

This work - Automatic 94.63 96.79 87.17 83.98
Llamedo et al. [5] - Assisted 93±1 97±1 92±1 90±3
Kiranyaz et al. [4] - Assisted 95.0 89.5 64.6 62.1

Oster et al. [7] - Assisted 92.7 96.2 NA NA
Chazal et al. [6] - Assisted 93.4 97.0 94.0 62.5
Chazal et al. [2] - Assisted 94.3 96.2 87.7 47.0

Zhang et al. [22] - Automatic 85.48 92.75 79.06 35.98
Llamedo et al. [5] - Automatic 89±1 87±1 79±2 46±2
Chazal et al. [14] - Automatic 77.7 81.9 75.9 38.5

proposal provides a method that autonomously assigns a label
to each and every beat in a record.

Results show that this proposal outperforms any other
automatic method in the bibliography, and even most of the
assisted methods. The only algorithm with better performance
is the assisted version of [5], although it would be desirable
to perform a statistical test with the record-by-record results
to determine whether the differences are relevant.

In general, the most remarkable improvement with respect
to the state-of-the-art is the classification of supraventricular
ectopic beats (S class). The main difficulty with this type of
beat is that the morphology is usually very similar to the
normal morphology, so class separation has to be made accord-
ing to rhythm-related features. In this sense, the information
provided by the rhythm level of the abductive interpretation,
and in particular the Rhythm feature detailed in section V-A,
goes far beyond than the classical analysis of the RR intervals
around the beat, which is severely affected by phenomena such
as atrial fibrillation. Also, it should be noted that results of
other approaches in table IX are affected by the incorrect label
association discussed in section II, so the actual sensitivity in
the classification of the S class is expected to be lower.

VII. CONCLUSION

We propose a novel knowledge-based approach to the
heartbeat classification problem, grounded on the abductive
interpretation of the signal. This interpretation produces a
set of observations in multiple abstraction levels, as a result
of conjecturing the set of physiological processes underlying
ECG signal, and expressed in the sort of terms used by
experts, enabling a subsequent classification by mimicking the
common rules from any electrocardiography handbook.

The proposal has been validated following the AAMI rec-
ommendations and compared with the most relevant works
of the state-of-the-art. With respect to automatic approaches,
results show an average improvement of around 10% in the

sensitivity and positive predictive value of ventricular ectopic
beats and in the sensitivity of supraventricular ectopic beats.
This improvement is increased to around 40% in the positive
predictive value of supraventricular ectopic beats. With respect
to assisted approaches, the improvement in the sensitivity
and positive predictive value of ventricular ectopic beats is
around 1%. For supraventricular ectopic beats, the average
improvement in sensitivity and positive predictive value is
around 8% and 20%, respectively. The statistical significance
of these differences cannot be assessed due to the lack of
detailed validation results for the other methods, but the
magnitude of the differences, specially in the specificity of
the supraventricular class, is notable beyond any doubt.

The key factor behind these results is the non-monotonic
nature of the hypothesize-and-test cycle, making it possible
to exploit the complementariness between bottom-up and top-
down processing to find the best explanation consistent with
the evidence. As in perception, ECG interpretation is assumed
to be mostly bottom up, although top-down processing has
proved to be decisive to cope with noise, artifacts or ambi-
guities in the signal. However, as a pure knowledge-based
approach it is highly dependent on the quality of the abstrac-
tion grammars describing the domain knowledge, and in some
cases the heuristic principles guiding the search may lead to
incorrect interpretations. For example, the oversimplified result
shown in Fig. 7 is due to the predominance of the simplicity
principle in a scenario requiring a more complex description.

This work demonstrates that there is still room for im-
provement in automatic ECG heartbeat classification. This is
essential to achieve an effective transfer of these techniques to
the clinical routine, integrated in the bedside instrumentation
or in the emergent home monitoring. To this end, the evolution
of the present work will focus on three main objectives: On
the one hand, beat labeling should be more strongly integrated
in the hypothesize-and-test cycle. In the present proposal,
classification is performed at the end, after the interpretation
makes the necessary features available. A better result could
be expected if every class label for each QRS observation is
considered as a conjecture, enabling to correct it on the basis
of posterior evidence, at the expense of a greater complexity
of reasoning. On the other hand, the scenarios in which a
fully automatic processing of the ECG makes a difference are
mainly related with continuous monitoring. In general, these
scenarios require an online interpretation strategy, capable of
providing results while data acquisition is ongoing. This poses
a deep change in our approach, since notions like “normality
context” for comparative classification are no longer static,
and they have to be updated during the interpretation process.
Finally, we aim to meet real-time constraints in the execution
of the full interpretation cycle. For this, it is necessary to sacri-
fice completeness in the traverse of the search space performed
by the CONSTRUE algorithm, and to improve the computing
performance of the implementation. At this moment we are
exploring a pruning strategy following the principles of the K-
Beam algorithm [23], with promising results. This will allow
us to assess the applicability of the method to more complex
problems, including ECG databases with more than two leads
and multi-modal signal databases.
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IMPLEMENTATION

With the aim of supporting reproducible research, the source
code of the interpretation and classification algorithms pre-
sented in this paper has been published under an open source
license1, along with the ECG knowledge base including the
abstraction grammars for the observables in table II, and all
the necessary files and instructions to reproduce the results.
Also, in this repository there are available some representative
ECG fragments to reproduce the interpretation procedure
interactively, allowing to explore the interpretation tree space
and the reasoning steps leading to the final solution.
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