
Mining Frequent Patterns in Process Models

David Chapela-Campaa,∗, Manuel Mucientesa, Manuel Lamaa

aCentro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS)
Universidade de Santiago de Compostela. Santiago de Compostela, Spain

Abstract

Process mining has emerged as a way to analyze the behavior of an organization by extracting knowledge from event

logs and by offering techniques to discover, monitor and enhance real processes. In the discovery of process models,

retrieving a complex one, i.e., a hardly readable process model, can hinder the extraction of information. Even in well-

structured process models, there is information that cannot be obtained with the current techniques. In this paper, we

present WoMine, an algorithm to retrieve frequent behavioural patterns from the model. Our approach searches in

process models extracting structures with sequences, selections, parallels and loops, which are frequently executed in

the logs. This proposal has been validated with a set of process models, including some from BPI Challenges, and

compared with the state of the art techniques. Experiments have validated that WoMine can find all types of patterns,

extracting information that cannot be mined with the state of the art techniques.

Keywords: Frequent pattern mining, Process mining, Process discovery

1. Introduction

With the explosion of process-related data, the behavioural analysis and study of business processes has become

more popular. Process mining offers techniques to discover, monitor and enhance real processes by extracting knowl-

edge from event logs, allowing to understand what is really happening in a business process, and not what we think

is going on [25]. Nevertheless, there are scenarios —highly complex process models— where process discovery

techniques are not able to provide enough intelligible information to make the process model understandable to users.

The starting point of process discovery is a log, i.e., a set of traces. Each trace contains the sequence of events

which have been executed in an instance of the process. An event corresponds with an execution of an activity of the

process, with information about the execution as the start and end times. With this information, the process discovery

algorithms build a directed graph, or process model, with the relations between the activities based on the log. This

process model represents the execution of the process based in the behavior in the log.

∗Corresponding author
Email addresses: david.chapela@usc.es (David Chapela-Campa), manuel.mucientes@usc.es (Manuel Mucientes),

manuel.lama@usc.es (Manuel Lama)

Preprint submitted to Elsevier June 14, 2018

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

1

https://doi.org/10.1016/j.ins.2018.09.011

There are four quality dimensions to measure how good a process model is: fitness replay, which quantifies

the extent to which the discovered model can accurately reproduce the cases recorded in the log; precision, which

quantifies the fraction of the behavior allowed by the model which is not seen in the event log; generalization, which

assesses the extent to which the resulting model will be able to reproduce future behavior of the process; and simplicity,

which represents the structual complexity of the model [4]. Regarding the latter, discovering a complex process model,

i.e., a hardly readable process model, can totally hinder its quality [7] making difficult the retrieval of behavioural

information. Different techniques have been proposed to tackle this problem: the simplification of already mined

models [7, 9], the search of simpler structures in the logs [17, 19, 24], or the clusterization of the log into smaller

and more homogeneous subsets of traces to discover different models within the same process [12, 13, 22]. Although

these techniques improve the understandability of the process models, for real processes the model structure remains

complex, being difficult to understand by users.

As an alternative to these techniques, there exist some proposals whose aim is to extract structures —or subpro-

cesses— within the model which are relevant to describe the process model. In these approaches, the relevance of

a structure is measured as: i) the total number of executions [17, 24], e.g., a structure executed 1,000 times; or ii)

its high repetition in the traces of the log [3, 11], e.g., a subprocess which appears most of the times the process

is executed. In this paper, we will focus in the search of frequent behavioural patterns of the second type. The

extraction of these frequent structures is useful in both highly complex and well-structured models. In complex

models, it allows to abstract from all the behaviour and focus on relevant structures. Additionally, the application

of these techniques in well-structured process models retrieves frequent subprocesses which can be, for instance, the

objective of optimizations due to its frequent execution within the process. The knowledge obtained by extracting

these frequent patterns is valuable in many fields. For instance, in e-learning, the interactions of the students with the

learning management system can be registered in order to reconstruct their behaviour during the subject [33], i.e., to

reconstruct the learning path followed by the students. The extraction of frequent patterns from these learning paths

—processes— can help teachers to improve the learning design of the subject, enabling its adaptation to the students

behaviour. It can also reveal behavioral patterns that should not be happening. In addition, for other business processes

like, for example, call centers where the objective is to retain the customers, the discovery of frequent behaviours can

be decision-making. In this domain, process models tend to contain numerous choices and loops, where frequent

structures can show a possible behavior which leads to retain customers. This knowledge can be used to plan new

strategies in order to reduce the number of clients who drop out, by exploiting the paths that lead to retain customers,

or avoiding those which end in dropping out.

In this paper we present WoMine, an algorithm to mine frequent patterns from a process model, measuring their

frequency in the instances of the log. The main novelty of WoMine, which is based on the w-find algorithm [11],

is that it can detect frequent patterns with all type of structures —even n-length cycles, very common structures

in real processes. It can also ensure which traces are compliant with the frequent pattern in a percentage over a

threshold. Furthermore, WoMine is robust w.r.t. the quality of the mined models with which it works, i.e., its results

2

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

2

https://doi.org/10.1016/j.ins.2018.09.011

do not depend highly on the fitness replay and precision of the mined models. The algorithm has been tested with 20

synthetic process models ranging from 20 to 30 unique activities, and containing loops, parallelisms, selections, etc.

Experiments have been also run with 12 real complex logs of the Business Process Intelligence Challenges.

The remainder of this paper is structured as follows. Section 2 introduces the algorithms related with the purpose

of this paper. The required background of the paper is introduced in Section 3. Section 4 presents the main structure

of WoMine, followed by detailed explanations in Sections 5 and 6. Finally, Section 7 describes an evaluation of the

approach, and Section 8 summarizes the conclusions of the paper.

2. Related Work

A simple and popular technique to detect frequent structures in a process model is the use of heat maps, which can

be found in applications like DISCO [14]. It provides a simple technique which can retrieve the frequent structures

of a process model considering the individual frequency of each arc. Other techniques check the frequency of each

pattern taking into account all the structure, and not the individual frequency. These approaches, under the frequent

pattern mining field [15], can build frequent patterns based just on the logs, searching in them for frequent sequences

of activities [16, 21, 36]. Improving this search, episode mining techniques focus their search in frequent, and more

complex structures such as parallels [17, 19]. With a different approach, the w-find algorithm [11] uses the process

model to build the patterns, checking their frequency in the logs. Extending these mining techniques, the local process

mining approach of Niek Tax et al. [24] discovers frequent patterns from the logs providing support to loops. Finally,

in [3] tree structured patterns in the XML structure of the XES1 logs are searched. Nevertheless, as we will show

in this section, all these techniques fail to measure the frequency of a pattern in some cases, and specially when the

model presents loops or optional activities2.

The heat maps approach performs a highlight of the arcs and activities of a process model depending on their

individual frequency, i.e., the number of executions. To obtain the frequent patterns of a model using heat maps, the

arcs which frequency exceeds a defined threshold are retrieved. The problem is that the individual frequency does

not consider the causality between activities. A highlighted structure can have all its arcs individually frequent, i.e.,

each arc is executed individually in a percentage of traces considered frequent, but it does not have to be necessarily

frequent, i.e., the highlighted structure is not executed completely in a percentage of traces considered frequent.

As an example, the process model in Fig. 1 is provided. This model represents the behavior performed by the

students in an educational process, e.g. a course. In this course, the students must study a chapter, choose between

two exercises and take an exam. This process is repeated for each chapter. If we prune on 50% —retrieve the arcs with

1XES is an XML-based standard for event logs. Its purpose is to provide a generally-acknowledged format for the interchange of event log data

between tools and application domains (http://www.xes-standard.org/).
2In this paper we will refer as optional activities to the activities of a selection (choice) where one of the branches has no activities, leaving the

other as optional.

3

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

3

https://doi.org/10.1016/j.ins.2018.09.011

6040

6040

100

5545

5545

Study Chapter 1

Exercise 1.1 Exercise 1.2

Exercise 2.1 Exercise 2.2

Study Chapter 2

Exam Chapter 1

Exam Chapter 2

0-25%
25-50%
50-75%
75-100%

(a) Heat Maps example: C-net with the arcs highlighted depending on

their absolute frequency.

Exercise 1.1

Exercise 2.2

Exercise 1.2

Exercise 2.1

Study Chapter 2

Study Chapter 1

Exam Chapter 1

Exam Chapter 2

(b) WoMine example: Model with a frequent pattern (40%) high-

lighted.

Figure 1: Process model of a simple process in the education domain.

a frequency over 50— the model in Fig. 1a, the path (’Study Chapter 1’, ’Exercise 1.2’, ’Exam Chapter 1’, ’Study

Chapter 2’, ’Exercise 2.2’, ’Exam Chapter 2’), is obtained. Conversely, if WoMine searches with a threshold of 40%,

this behavioural structure is not among the results —because the individual arcs are frequent, but the sequence is not,

i.e., the students solving ’Exercise 1.2’ and those doing ’Exercise 2.2’ are not the same. Instead, with WoMine, the

structure of Fig. 1b is obtained, providing the information that in 40 traces of 100, the students select exercises 1.2

and 2.1. Besides, the 88.88% —40 out of 45— of the students who choose the exercise 2.1 came from exercise 1.2.

This behaviour can hint a predilection in the students who solve the exercise 1.2 to choose the exercise 2.1.

As can be seen, heat maps cannot find frequent structures to identify real common behaviour in processes. There

are approaches that retrieve frequent patterns measuring the frequency of the whole structure [2, 3, 21, 17, 19]. Some

of these techniques are based on sequential pattern mining (SPM), and search subsequences of activities with a high

frequency in large sequences [2, 21]. One of the first approaches was proposed by Agrawal et al. [2], preceded

by techniques to retrieve association rules between itemsets [1]. Most of the designed sequential pattern mining

techniques present an expensive candidate generation and testing, which induces a long runtime in complex cases.

To compare the features of SPM against other discussed in this paper, we will use PrefixSpan [21], which performs a

pattern-growth mining with a projection to a database based in frequent prefixes, instead of considering all the possible

occurrences of frequent subsequences. The main drawback of the sequential pattern mining based approaches is the

simplicity of the patterns mined —sequences of activities. Structures like concurrences or selections are treated as

different sequences depending on the order of the activities. Also, in a retrieved frequent sequence, the execution of

the i-th activity is not ensured to be caused by the i− 1-th activity in all the occurrences in the log —SPM only checks

if the activities of the sequence appear in the trace in the same order.

The episode mining based approaches appear to improve the results of SPM. The first reference to episode mining

4

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

4

https://doi.org/10.1016/j.ins.2018.09.011

A

F

B

G H

C E

I

D

(a) Petri net with two parallel branches, one with a loop and

the other one with an optional activity.

B C EPattern:

Topological order: BCE

(b)

Trace det exec

AFBCEHI 3 3

ABCFEHI 3 3

AFGHBCDEI 3 7

(c)

F HPattern:

Topological order: FH

(d)

Trace det exec

ABFHCEI 3 3

AFBCHEI 3 3

AFGBHCEI 3 7

(e)

Figure 2: Model and examples to show the problems with the use of the topological order of a pattern to measure its frequency.

is done by Mannila et al. [19]. An episode is a collection of activities occurring close to each other. Their algorithm

uses windows with a predefined width to extract frequent episodes, being able to detect episodes with sequences and

concurrency. In this approach, an episode is frequent when it appears in many different windows. Based on this,

Leemans et al. have designed an algorithm [17] to extract association rules from frequent episodes measuring their

frequency with the instances of the process, instead of using windows in the activity sequences. For instance, an

episode with a frequency of 50% has been executed in a half of the recorded traces of the process model. One of

the drawbacks of episode mining based techniques, which this paper tries to tackle, is that its search is not based in

the model and, thus, it does not take advantage of the relation among activities presented in it. For the same frequent

behaviour, the algorithm extracts various patterns with the same activities, but with different relations among them,

making difficult the extraction of information.

To take advantage of the knowledge generated by the discovery algorithm, the frequent structures can be built

based on the process model. Greco et al. have developed an algorithm which mines frequent patterns in process

models, w-find [11] —the algorithm on which WoMine is based. This approach uses the model to build patterns

compliant to the model, reducing the search space and measuring their frequency with the set of instances of the log.

Thus, using an a priori approach which grows the frequent patterns, this algorithm retrieves structures from the model,

which are executed in a high percentage of the instances. The drawback of this approach is the simplicity of the mined

structures. The patterns cannot contain selections and, thus, it will never retrieve patterns with loops.

Previous techniques —SPM, episode mining and w-find— measure the frequency of the structures checking for

the topological order of the structure in the traces. But this method is not able to detect correctly the execution of a

pattern when loops or optional activities appear. For a better understanding the example shown in Fig. 2 is presented.

The pattern shown in Fig. 2b represents the bottom branch of the model in Fig. 2a without the loop. In Fig. 2c three

examples of traces are presented. Exec stands for the real execution of the pattern in the trace, while det is positive

when the topological order appears in the trace. A foreign activity in the middle of the topological order does not

5

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

5

https://doi.org/10.1016/j.ins.2018.09.011

invalid the detection because it can be from the execution of the other parallel branch —trace 2—. This pattern is

correctly executed and detected in the two first traces. However, when the loop is executed —third trace— disrupting

the execution of the pattern, its topological order still appears in the trace and, thus, the pattern is detected incorrectly.

The same problem occurs with the pattern shown in Fig. 2d, which is disrupted in the third trace with the execution

of G in the middle.

Another approach, called local process mining, is presented in [24]. In this approach a discovery of simple

process models representing frequent behaviour is performed, instead of a complex process model representing all

the behaviour. In local process mining, tree models are built by performing an iterative growing process, starting with

single activities, and adding different relations with other activities. The evaluation of the frequency is done with an

alignment-based method which, starting with an initial marking, considers that the model is executed when the final

marking is reached. This leads to one of the drawbacks of this technique; when a model contains loops or selections,

the evaluation counts the model as executed even if the loop, or a choice of the selection, has not been executed in that

trace.

Finally, the approach presented by Bui et al. [3] uses logs in a XES format, and performs a search of tree structures

in the XML structure of the log. This approach builds a tree with the characteristics of each trace, and uses tree mining

techniques to search frequent structures. The information retrieved is a frequent subset of activities and common

characteristics of the XES structure. A drawback of this approach, as with SPM algorithms, is that the retrieved

patterns can only ensure the order of the activities, but not the relation between them.

In summary, the extraction of frequent patterns could be done highlighting the frequent elements —heat maps— of

Mine from model

Expl. proc. instances

Mine sequences

Mine parallels

Mine choices

Mine loops

Sequential Pattern Mining - Based Algorithms [21] - - + - - -

Mannila’s Episode mining [19] - - + + - -

Bui’s Tree Mining [3] - + + - - -

Leemans’ Episode discovery [17] - + + + - -

w-find [11] + + + + - -

Tax’s Local Process Model [24] - + + + ± ±
WoMine (this publication) + + + + + +

Table 1: Feature comparison of discussed algorithms. ’Mine from model’ is marked if the algorithm uses the process model to retrieve the patterns,

basing the search on the relations in the model. ’Expl. proc. instances’ indicates if the algorithm uses the traces of the log to measure the frequency

of the patterns being a 100% the apparition in all traces. ’Mine sequences’, ’parallels’, ’choices’ and ’loops’ indicate if the algorithm retrieves

frequent patterns with sequences, parallels, choices or loops, respectively. Finally ’+’ stands for a complete support to the feature, ’-’ stands for a

non support and ’±’ stands for a partial support to the feature for the purpose of this paper.

6

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

6

https://doi.org/10.1016/j.ins.2018.09.011

the process model and pruning them, but without ensuring the real frequency of the results. Sequential pattern mining

could be used to retrieve real frequent patterns but the structures are limited to sequences, and it only ensures the

precedence between the activities. The approaches based on episode mining [17, 19] and frequent pattern mining [11]

retrieves structures that are still simple for real processes, and the measure of the frequency presents problems when

the process model has loops or optional activities. Finally, local process mining provides similar results, with the

addition of loops and choices to the extracted models. Other types of search techniques have also been applied like

mining tree structures but, as sequential pattern mining, the activities of the retrieved patterns have only sequences.

As far as we know, the w-find is the only algorithm that searches substructures in the process model, checking the

frequency in the traces of the log. The algorithm presented in this paper, WoMine, realizes an a priori search based

on the w-find search, being able to get frequent subprocesses in models with loops and optional activities, ensuring

the frequency of each pattern and retrieving structures with sequences, parallels, selections and loops. A comparison

between these algorithms is presented in Table 1.

3. Preliminaries

In this paper, we will represent the examples with place/transition Petri nets [8] due to its higher comprehensibility,

and the easiness to explain the behaviour of the execution. A Petri net is a directed graph composed by two kind of

nodes: places and transitions —circles and boxes, respectively—, and where the arcs connect two nodes of different

type. A transition is said to be enabled when all the places of its inputs —with an arc to it— contain, at least, a token

—represented by a dot. The execution of an enabled transition consumes a token from each place of its inputs, and

generates a token in each place of its outputs —places with an arc from the transition to them. In this way, a Petri net

allows to represent the behaviour in a process showing the relation between its activities. Nevertheless, our algorithm

represents the process with a Causal net (Def. 1).

Definition 1 (Causal net [27]). A Causal net (C-net) is a tuple C = (A, ai, ao, D, I,O) where:

• A is a finite set of activities;

• ai ∈ A is the start activity;

• ao ∈ A is the end activity;

• D ⊆ A × A is the dependency relation,

• AS = {X ⊆ P(A) | X = {∅} ∨ ∅ < X};3

• I ∈ A→ AS defines the set of possible input bindings per activity;

3P(A) = {A′ | A′ ⊆ A} is the powerset of A. Hence, elements of AS are sets of sets of activities.

7

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

7

https://doi.org/10.1016/j.ins.2018.09.011

• O ∈ A→ AS defines the set of possible output bindings per activity,

such that:

• D = {(a1, a2) ∈ A × A | a1 ∈ ⋃as∈I(a2) as};

• D = {(a1, a2) ∈ A × A | a2 ∈ ⋃as∈I(a1) as};

• {ai} = {a ∈ A | I(a) = {∅}};

• {ao} = {a ∈ A | O(a) = {∅}};

• all activities in the graph (A,D) are on a path from ai to ao.

Fig. 3c shows the Causal net of the process model from Fig. 3a.

Definition 2 (Trace). Let A be the set of activities of a process model, and ε an event —the execution of

an activity α ∈ A. A trace is a list (sequence) τ = ε1, ..., εn of events εi occurring at a time index i relative

to the other events in τ. Each trace corresponds to an execution of the process, i.e., a process instance. As

an example, Fig 3b shows a trace that corresponds to an execution of the process model of Fig. 3a.

A

B

C

E

J

D

G

F

H

I

(a) Petri net, with XOR and AND structures.

A C B I C I C F H E J

(b) Trace of the process model in Fig. 3a.

Activity I(Activity) O(Activity)

A {} {{B,C}}
B {{A}} {{F},{G}}
C {{A},{I}} {{D},{E},{I}}
D {{C}} {{J}}
E {{C}} {{J}}
F {{B}} {{H}}
G {{B}} {{H}}
H {{F},{G}} {{J}}
I {{C}} {{C}}
J {{H,D},{H,E}} {}

(c) Causal net connections of the process model in Fig. 3a.

Figure 3: Example to show the internal representation of the process models in WoMine. The inputs of activity J are composed by two paths or

choices. One is the tuple H and D, and the other one is the tuple H and E. As can be seen, each subset in the set of inputs (I(J)) corresponds to a

possible path in the inputs of J.

8

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

8

https://doi.org/10.1016/j.ins.2018.09.011

J

D

G

F

H

(a) Valid pattern with a selection and a par-

allel.

A

B

C
E

D

I

(b) Valid pattern with a parallel, a selection

and a loop.

J
G

F

H

(c) Invalid pattern. Activity J has some

incomplete input combinations.

Figure 4: Examples of valid and invalid patterns of the process model shown in Fig. 3. All activities have as connections a subset of their connections

in the causal net of Table 3c. For instance, I′(J) is equal to {{H,D}}, which is a subset of I(J), {{H,D}, {H,E}}. This makes the structure a

valid pattern. Meanwhile, the structure shown in Fig. 4c is a wrong pattern, because activity J has some incomplete input combinations —{{H}}
* {{H,D}, {H,E}}.

Definition 3 (Log). An event log L = [τ1, ..., τm] is a multiset of traces τi. In this simple definition,

events only specify the name of the activity, but usually, event logs store more information as timestamps,

resources, etc.

Definition 4 (Pattern). Let C = (A, ai, ao,D, I,O) be a C-net representing a process model M. A con-

nected subgraph represented by the C-net P = (A′, A′i , A
′
o,D

′, I′,O′), where A′i ⊆ A′ and A′o ⊆ A′ represent

respectively the start and end activities, is a pattern of M if and only if:

• A′ ⊆ A;

• D′ ⊆ D;

• for any α ∈ A′ : I′(α) ⊆ I(α),O′(α) ⊆ O(α)

A pattern (Def. 4) is a subgraph of the process model that represents the behaviour of a part of the process. For

each activity α in the pattern, its inputs, I′(α), must be a subset of I(α) in the model it belongs to; and the outputs,

O′(α), must be also a subset of O(α) in the model. This ensures that a pattern has not a partial parallel connection.

Fig. 4 shows some examples of valid and invalid patterns.

Definition 5 (Simple pattern). A pattern P = (A′, A′i , A
′
o,D

′, I′,O′) is a simple pattern if and only if, for

all activities α ∈ A′:

• [∃!Φ ∈ I′(α) : Φ * R+
α] ∨ [∀Φ ∈ I′(α) : Φ ⊆ R+(α)];

• [∃!Θ ∈ O′(α) : Θ * R−α] ∨ [∀Θ ∈ O′(α) : Θ ⊆ R−(α)]

9

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

9

https://doi.org/10.1016/j.ins.2018.09.011

C

J
D

H

(a) Valid simple pattern. The pattern is

executed in the instance [C D H J].

A

B

C D

I

(b) Valid simple pattern with a loop. In

the output paths of C ({D} and {I}), the

only non predecessor is the path of {D}.

The same happens in the inputs. The

pattern is executed in the instance [A B

C I C D].

C

E

J
D

H

(c) Invalid simple pattern. Activities D

and E cannot be in an instance of the pat-

tern at the same time.

Figure 5: Examples of valid and invalid simple patterns of the process model shown in Fig. 3.

Being R+
α the set of successors4 of an activity α, and R−α the set of predecessors 5 of an activity α.

The Simple Patterns (Def. 5) are those patterns which behaviour can be executed, entirely, in one instance. If an

activity has a selection, it must be able to execute each path in the same instance. For this, the inputs of each activity

α must have all activities reachable from α except, at most, the activities of one path. The outputs present the same

constraint, but in this case they must reach α, not be reachable by α. Fig. 5 shows two valid simple patterns and an

invalid one.

Definition 6 (Minimal pattern, M-pattern). Each activity of the process model belongs to, at least, one

minimal pattern. The M-pattern of an activity α corresponds to the closure of α, i.e., the structure that

is going to be executed when α is executed. An exception is made with parallel structures: if α has a

parallel in its inputs or outputs, there must be an M-pattern containing each parallel path.

Given a C-net C = (A, ai, ao,D, I,O) representing a process model M and an activity α′ ∈ A, a pattern

P = (A′, A′i , A
′
o,D

′, I′,O′) is a Minimal Pattern of α′ if and only if is a maximum simple pattern containing

α′ and fulfilling the following rules:

• if |I(α′)| > 1 then [I′(α′) = ∅] ∨ [|I′(α′)| = 1, Φ ∈ I′(α′) : |Φ| > 1];

• if |O(α′)| > 1 then [O′(α′) = ∅] ∨ [|O′(α′)| = 1, Θ ∈ O′(α′) : |Θ| > 1];

• ∀α ∈ R+
α′ : if |O(α)| , 1 then O′(α) = ∅;

• ∀α ∈ R−α′ : if |I(α)| , 1 then I′(α) = ∅;
• ∀α ∈ A′, α , α′, α < (R+

α′
⋃

R−α′) : if |I(α)| , 1 then I′(α) = ∅, and if |O(α)| , 1 then O′(α) = ∅

4The successors of an activity α are the activities with a path from α to them, e.g., the successors of B in Fig. 3a are F, G, H and J.
5The predecessors of an activity α are the activities with a path from them to α, e.g., the predecessors of C in Fig. 3a are C, I and A.

10

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

10

https://doi.org/10.1016/j.ins.2018.09.011

A

B

D

E

F

H

I

G J
C

(a) Petri net of the process model.

E

F

J

(b) M-pattern of F.

J

(c) M-pattern of J.

A

B

D

E A

B

C

E

(d) M-patterns of A.

Figure 6: A process model and three examples of M-patterns.

In WoMine each activity α′ is associated, at least, to an M-pattern. The M-patterns of an activity α′ are obtained

through an expansion process that starts in α′ and continues through its inputs and outputs fulfilling the following

rules: i) the process will not expand through the inputs of α′ with size 1 and being part of a selection; ii) the same

stands for the outputs of α′; iii) for all the successors of α′ the expansion stops if the outputs are formed by a selection;

iv) the same stands for the inputs of the predecessors of α′; v) finally, the process does not expand either through the

inputs or outputs of the activities not fitting the previous constraints if those are formed by an XOR structure in the

model.

Fig. 6 shows some M-patterns of a model. Fig. 6b shows the M-pattern of F: the process starts in F and expands

the M-pattern through F inputs and outputs, because both are formed by only one path. The backwards expansion

stops in E because its inputs are part of a selection. Fig. 6c depicts the M-pattern of J. It is formed only by itself,

because its inputs are part of a selection and its outputs are empty. Finally, Fig. 6d presents the two M-patterns of A.

As A is an AND-split with a selection, two M-patterns are created, each one with one of the possible paths.

Definition 7 (Candidate arcs). Let C = (A, ai, ao,D, I,O) be a causal net representing a process model

M. An arc 〈αi → α j〉 : αi, α j ∈ A is part of the A< set, i.e., a candidate arc, if and only if:

• O(αi) = {Θ ∈ AS | Θ = {α j} ∨ α j < Θ}
• I(α j) = {Φ ∈ AS | Φ = {αi} ∨ αi < Φ}

The set of candidate arcs, or A<, is a subset of the arcs in the model which are not part of an AND structure. For

instance, all arcs of Fig. 6a, but those starting in A or ending in E, are included in the A< set.

Definition 8 (Compliance). Given a trace τ ∈ L and a simple pattern SP belonging to the process model,

the trace is compliant with SP, denoted as SP ` τ, when the replay of the trace in the process model

contains the replay of the pattern, i.e., all the arcs and activities of SP are executed in a correct order, and

each activity fires the execution of its output activities in the pattern.

11

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

11

https://doi.org/10.1016/j.ins.2018.09.011

A

B

C
G

E FD Trace:

A B D E G E F

Executed arcs:

〈A→ B〉, 〈B→ D〉,
〈D→ E〉, 〈E → G〉,
〈G → E〉, 〈E → F〉

Figure 7: Process model with a pattern highlighted and a trace that is not compliant with the pattern due to the execution of the loop.

To check the compliance it is important that, while the pattern is being executed, each of its activities triggers only

the execution of its outputs. There are cases where all the arcs and activities of the pattern are executed in a correct

order, but the execution of the pattern is disrupted in the middle of it (Fig. 7). In the trace, the activities and arcs of

the pattern are executed in a proper order, but the trace is not compliant with the pattern because the sequence D-E-F

is disrupted with the execution of G.

Definition 9 (Frequency of pattern and simple pattern). Let L be the set of traces of the process log.

The frequency of a simple pattern SP is the number of traces compliant with SP divided by the size of the

log:

freq(SP) =
|{τ ∈ L : SP ` τ}|

|L| (1)

And the frequency of a pattern P is the minimum frequency of the simple patterns it represents:

freq(P) = min
∀SP∈P

freq(SP) (2)

Definition 10 (Frequent Pattern). Given a frequency threshold σ ∈ R : 0 < σ ≤ 1, a pattern P is a

frequent pattern if and only if f req(P) ≥ σ.

4. WoMine

Given a process model and a set of instances, i.e., executions of the process, the objective is to extract the subgraphs

of the process model that are executed in a percentage of the traces over a threshold. A simple approach might be

a brute-force algorithm, checking the frequency of every existent subgraph inside the process model, and retrieving

the frequent ones. The computational cost of this approach makes it a non-viable option. The algorithm presented

in this paper performs an a priori search6 [11] starting with the frequent minimal patterns (Def. 6) of the model. In

6An a priori search uses the previous knowledge, i.e., the a priori knowledge. It reduces the search space by pruning the exploration of those

paths that will not finish in a valuable result.

12

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

12

https://doi.org/10.1016/j.ins.2018.09.011

EC
arc

A
B

C

M-pattern

D H
J

D

J

D

H
M-pattern

B
A

C

DC
arc

A
B

C

M-pattern

H
J

E

J

D

H

E

J

D

H

E

J

D

H

E

A
B

C

J

D

H

E

Iteration 1
Iteration 2 Iteration 3

Iteration 3
(fix unconnected)Iteration 4

Figure 8: Example of the expansion of a pattern in 4 iterations. The process starts with the M-pattern of D, being expanded with an M-pattern of

J in the first iteration. In the second iteration the new pattern is extended with another M-pattern of J. The third iteration shows an addition of

the M-pattern of A, resulting in a non-connected pattern and, thus, fixed with the addition of an arc (〈C → D〉) which connects the two patterns.

Finally, the last iteration in the example is made with an arc (〈C → E〉), producing a pattern formed by two simple patterns.

this search, there is an expansion stage done in two ways: i) adding frequent M-patterns not contained in the current

pattern, and ii) adding frequent arcs of the A< set (Def. 7). This expansion is followed by a pruning strategy that

verifies the downward-closure property of support [1] —also known as anti-monotonicity. This property ensures that

if a pattern appears in a given number of traces, all patterns containing it will appear, at most, in the same number of

traces. Therefore, a pattern is removed of the expansion stage when it becomes infrequent, because it will never be

contained again in a frequent pattern.

Fig. 8 shows an example with 4 iterations of the expansion of a minimal pattern, assuming that the expanded pat-

terns are frequent. Although the example shows only one path of expansion, in each iteration the algorithm generates

as many patterns as M-patterns and arcs are successfully added.

The pseudocode in Alg. 1 shows the main structure of the search made by WoMine. First, the frequent arcs of A<

and the frequent M-patterns are initialized using the algorithm described in Section 5 to measure the frequency —M is

the set with all M-patterns of the model. These M-patterns will be used to start the iterative stage, and to expand other

patterns with them. Also, the final set is initialized with them because they are valid frequent patterns (Alg. 1:2-7).

Afterwards, the iterative part starts (Alg. 1:8). In this stage, an expansion of each of the current patterns is done,

followed by a filtering of the frequent patterns. The expansion by adding frequent arcs of the A< set (Alg. 1:11) is

done with the function addFrequentArcs (Alg. 1:38-46). The other expansion, the addition of M-patterns that

are not in the current pattern (Alg. 1:12-15), is done with the function addFrequentMPattern (Alg. 1:22-28). If

the joint pattern is unconnected, it generates as many patterns as possible by adding arcs that connect the unconnected

parts with the function addFrequentConnection (Alg. 1:29-37). Once the expansion is completed, the obtained

patterns are filtered to delete the infrequent ones (Alg. 1:17). Finally, once the iterative stage finishes, a simplification

is made to delete the patterns which provide redundant information (Alg. 1:20). This simplification stage is explained

13

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

13

https://doi.org/10.1016/j.ins.2018.09.011

Algorithm 1. Main structure of WoMine.
Input: A process model W, a set T = {T1,T2, . . . ,Tn} of traces of W, and a threshold thr.
Output: A set of maximum frequent patterns of W w.r.t. T .

1 Algorithm WoMine(W, T, thr)
2 M ← {m | m ∈ W,m is an M-pattern } // Def. 6
3 A< ← {a | a ∈ W, a is a Candidate Arc } // Def. 7
4 frequentArcs← {a | a ∈ A<, a is frequent w.r.t. T }
5 frequentM ← {m | m ∈ M, isFrequentPattern(m, T , thr) } // using Alg. 2
6 frequentPatterns← frequentM
7 currentPatterns← frequentM
8 while currentPatterns , ∅ do
9 candidatePatterns← ∅

10 forall p ∈ currentPatterns do
11 candidatePatterns← candidatePatterns ∪ addFrequentArcs(p)
12 complementaryM ← {m | m ∈ M, m < p}
13 forall m ∈ complementaryM do
14 candidatePatterns← candidatePatterns ∪ addFrequentMPattern(p, m)
15 end
16 end
17 currentPatterns← {p | p ∈ candidatePatterns, isFrequentPattern(p, T , thr)} // using Alg. 2
18 frequentPatterns← frequentPatterns ∪ currentPatterns
19 end
20 Delete the redundant patterns of frequentPatterns // Section 6
21 return frequentPatterns
22 Function addFrequentMPattern(p, m)
23 p′ ← add m to p
24 if p′ is connected then
25 return p’
26 else
27 return addFrequentConnection(p’, p, m)
28 end
29 Function addFrequentConnection(p’, p, m)
30 patterns← ∅
31 forall arc ∈ f requentArcs do
32 if (arc.source ∈ p && arc.destination ∈ m) || (arc.source ∈ m && arc.destination ∈ p) then
33 q← add arc to p′
34 patterns← patterns ∪ q
35 end
36 end
37 return patterns
38 Function addFrequentArcs(p)
39 patterns← ∅
40 forall arc ∈ f reqArcs do
41 if arc < p && arc.source ∈ p && arc.destination ∈ p then
42 q← add arc to p
43 patterns← patterns ∪ q
44 end
45 end
46 return patterns

in detail in Section 6.

WoMine is a robust algorithm, even for process models with low fitness, precision or generalization, as it extracts

the patterns from the model, but measures the frequency with the log. If a structure is supported by the log, but it

does not appear in the model (low fitness), it will not be considered as a frequent pattern. Anyway, this situation

is irrelevant because, unless the model has a very low fitness, the unsupported structures will have low frequency.

Moreover, the patterns detected by WoMine are not affected by models with high generalization —models that allow

behaviour not recorded in the log—: the non-existent structures in the log have a frequency of 0 and, thus, will never

be detected by WoMine.

14

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

14

https://doi.org/10.1016/j.ins.2018.09.011

Algorithm 2. Check if a given pattern is executed more times than a threshold.
Input: A set T = T1, ...,TN of traces, a pattern pattern to measure its frequency w.r.t. T and a threshold to establish the bound of frequency.
Output: A Boolean value indicating if the pattern is frequent or not.

1 Algorithm isFrequentPattern(pattern, T, threshold)
2 simplePatterns← generate the simple patterns of pattern
3 frequencies← ∅
4 forall simplePattern ∈ simplePatterns do
5 frequencies← frequencies ∪ getPatternFrequency(simplePattern, T)
6 end
7 minFreq← 0
8 if frequencies.length > 0 then
9 minFreq← minimum of frequencies

10 end
11 realFreq← minFreq/T.length
12 return realFreq ≥ threshold
13 Function getPatternFrequency(pattern, T)
14 executed ← 0
15 forall trace ∈ T do
16 if isTraceCompliant(pattern, trace) then
17 executed ← executed + 1
18 end
19 end
20 return executed
21 Function isTraceCompliant(pattern, trace)
22 forall activity ∈ trace do
23 Execute activity in the process model
24 sources← get the activities that fired the execution of activity
25 simulateExecutionInPattern(sources, activity, pattern)
26 if pattern has been successfully executed then
27 return true
28 end
29 end
30 return false

5. Measuring the Frequency of a Pattern

In each step of the iterative process, WoMine reduces the search space by pruning the infrequent patterns (Alg. 1:17).

For this, an algorithm to check the frequency of a pattern is needed (Alg. 2). Following Defs. 9 and 10, the al-

gorithm generates the simple patterns of a pattern and checks the frequency of each one (Alg. 2:2-6). After cal-

culating the frequency of the simple patterns, the function checks if this is considered frequent w.r.t. the thresh-

old and returns the corresponding value (Alg. 2:12). The frequency of a simple pattern is measured in the function

getPatternFrequency by parsing all the traces and checking how many of them are compliant with it (Alg. 2:15-

19). Finally, to check if a trace is compliant with a simple pattern, the function isTraceCompliant is executed:

it goes over the activities in the trace (Alg. 2:22), simulating its execution in the model, and retrieving the activities

that have fired the current one (Alg. 2:24-25). The simulation (simulateExecutionInPattern) consists in a

replay of the trace, checking if the pattern is executed correctly.

With the current activity —the fired one— and the activities that have fired it —the firing activities, retrieved by

the simulation—, the executed activities and arcs are saved, in order to analyse and to detect if the execution of the

pattern is being disrupted before it is completed (Alg. 2:25). Fig. 9 shows an example of this process. The algorithm

starts (#0) with the sets of the executed arcs and last executed activities empty. The first step (#1) executes A. There

15

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

15

https://doi.org/10.1016/j.ins.2018.09.011

F D

A

BC

E

GH

I

J

(a) Petri net of a process model with

a pattern highlighted in black (the un-

named activity is an invisible activity,

i.e., an activity that is fired automati-

cally to simulate the arc 〈C → H〉).

Trace: A B E G J G C F H I

Initial activities: [A, H] End activities: [C, I]

executed activity executed arcs
last executed

activities

0 - ∅ ∅
1 A ∅ A

2 B 〈A→ B〉 A, B

3 E 〈A→ B〉, 〈B→ E〉 A, E

4 G 〈A→ B〉, 〈B→ E〉, 〈E → G〉 A, G

5 J 〈A→ B〉, 〈B→ E〉, 〈E → G〉, 〈G → J〉 A, J

6 G
〈A→ B〉, 〈B→ E〉, 〈E → G〉, 〈G → J〉,
〈J → G〉

A, G

7 C
〈A→ B〉, 〈B→ E〉, 〈E → G〉, 〈G → J〉,
〈J → G〉, 〈A→ C〉

G, C

8 F
〈A→ B〉, 〈B→ E〉, 〈E → G〉, 〈G → J〉,
〈J → G〉, 〈A→ C〉

G, C

9 H
〈A→ B〉, 〈B→ E〉, 〈E → G〉, 〈G → J〉,
〈J → G〉, 〈A→ C〉

G, C, H

10 I
〈A→ B〉, 〈B→ E〉, 〈E → G〉, 〈G → J〉,
〈J → G〉, 〈A→ C〉, 〈G → I〉, 〈H → I〉

C, I

(b) Check of the execution of a trace for the pattern highlighted in Fig. 9a: ’#’ is the step of the

algorithm; ’executed activity’ is the activity currently executed; ’executed arcs’ is the set with the

arcs belonging to the pattern which execution was correctly saved; ’Last executed activities’ is the

set of activities which have not fired an entire set of their outputs.

Figure 9: An example that shows how the algorithm checks if a trace is compliant with a pattern of the process model.

are no firing activities because A is the initial activity of the process model. As A is also one of the initial activities of

the pattern, it is saved correctly in the last executed activities set.

The following activity (#2) in the trace is B. As there is only one firing activity (A), a single arc is executed

(〈A → B〉). The arc is added to the executed arcs set, and the activity B to the last executed activities set. The A

activity is not deleted because the set of outputs is formed by {B, C}, and C is still pending.

The next four steps, activities E (#3), G (#4), J (#5) and G (#6), will have the same behaviour. They have only

one firing activity, i.e., one executed arc. The arcs are in the pattern and their source activities are in the last executed

activities set, because they were executed before them. Hence, after adding and removing these activities from the

last executed ones, G is the remaining one. After this process, the following activity is C (#7). Its execution has the

16

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

16

https://doi.org/10.1016/j.ins.2018.09.011

same behaviour as the execution of B, but with the deletion of A from the last executed activities, because the set of

outputs {B, C} has been fired.

At step #8, only the source activity of the arc 〈C → F〉 is in the pattern. In this case, the source of the arc is one

of the end activities and, thus, the pattern finishes its execution in that branch. The execution is done with no action

in the sets executed arcs and last executed activities.

In the next iteration (#9) only the target activity of the executed arc 〈F → H〉 is in the pattern. As the target is one

of the initial activities, the pattern starts to be executed in that branch. Thus, in a similar way to A, H is added to the

last executed activities set.

Finally (#10), I has two firing activities and, thus, two arcs are executed. In both cases, the source activity of the

arcs —G and H— is in the last executed activities set, and the arc is in the pattern. Thus, a simple addition of I to the

last executed activities set is done when the last of its branches is executed.

At the end of each step, the algorithm checks if the pattern has been correctly executed (Alg. 2:26), i.e., all its

arcs have been correctly executed and the last executed activities set corresponds with the end activities of the pattern.

Unlike the other steps, this testing has a positive result when I is executed. Thus, the trace is compliant with the

pattern.

The process of saving the executed arcs and activities has to be restarted when the executed arc is disrupting the

execution of the pattern. For instance, in step #3, if the arc 〈B → D〉 was executed instead of 〈B → E〉, this would

cause this saving process to go back by removing the arcs and activities of the failed path and to continue with the

trace in order to check if the execution of the pattern is resumed later. When an arc outside the pattern —for example

of a concurrent branch— is executed, the analysis is not disrupted because the execution does not correspond to the

pattern. This analysis is able to recognize the correct execution of a pattern in 1-safe Petri nets7.

6. Simplifying the Result Set of Patterns

The result set of the a priori search has a high redundancy. This is because there are patterns in the k-th iteration

which are expanded and thus are subpatterns of those in the k + 1-th iteration. A naive approach to reduce the

redundancy generated by the expansion might be to remove the patterns from iteration k-th that are expanded in

iteration k + 1-th. But, with the existence of loops, this naive approach might fail (see Fig. 10 for an example).

In Womine, the simplification process deletes the patterns contained into others, but only when the behaviour of

the contained pattern is also included in the other pattern. For this, each pattern is compared with its previous patterns

in the expansion. If all activities and arcs of a previous pattern are contained into the current one, and there is no

new loops in the current pattern, the previous one is deleted. For this, an algorithm to detect loop arcs (Section 6.1)

is executed for the current pattern. For instance, if both 10b and 10a were in the results set, WoMine would detect

7A Petri net is 1-safe when the value of the places can be binary, i.e., there can be only one mark in a place at the same time.

17

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

17

https://doi.org/10.1016/j.ins.2018.09.011

A B C F

(a) Simple pattern formed by a sequence.

A B C F

E D

(b) Simple pattern with a 2-length loop.

Figure 10: An example where the naive simplification fails. With this naive technique, assuming a scenario where 10a and 10b were frequent

patterns, 10a would be removed from the frequent results —because 10b would be obtained, among others, by an expansion of 10a. Thus, the

apparition of 10b as a frequent pattern would mean that both behaviours, the sequence (A-B-C-F) and the pattern with the loop (A-B-C-D-E-B-C-

F), are frequent. Therefore, with the naive technique, it is impossible to indicate that the pattern with the loop appears frequently in the traces, but

the sequence does not. Because the apparition of pattern 10b in the results indicates both behaviours as frequent.

that 10a is inside 10b, but, as the difference between them begins in the start of a loop and finishes in the end, the

pattern is not deleted. The next section explains the approach designed to identify the arcs starting and closing a loop.

6.1. Identification of the start and end arcs of a loop

Definition 11 (Startloop arc). Given a process model composed by a set of activities A, and a set of arcs

D, a Startloop arc e ∈ D is an arc that starts a loop, i.e., e starts a path that will result, inevitably, in a

return to a previous activity in the process.

Definition 12 (Endloop arc). Given a process model composed by a set of activities A, and a set of arcs

D, an Endloop arc e ∈ D is an arc that ends a loop, i.e., the transition through e implies the immediate

closing of a loop and a return to a previous activity in the process.

An example of a Startloop arc is 〈C → D〉 in Fig. 10b, while 〈E → B〉 is an Endloop arc. Alg. 3 identifies

the Startloop and Endloop arcs of a pattern. The approach is an iterative process with two different phases in each

iteration. First, it searches the Startloop arcs (Alg. 3:4) and then, based on these arcs, it looks for the arcs that close

the loops —Endloop arcs— (Alg. 3:5-12).

Startloop search

The search starts with the initial activities of the pattern and goes forward until it reaches as activity with more

than one output. When this happens, an analysis trying to close a loop —reach the current activity again— is thrown

for each output arc. The analysis goes forward through non-Startloop arcs and finishes when it reaches the current

activity or the end of the pattern. If the analysis reaches the starting activity, the arc is marked as Startloop.

Table 2 shows an example of this search for the pattern of Fig. 10b. It starts at A (Alg. 3:18), and stops at C in

step #3, because it has more than one output (Alg. 3:23). With its output arcs, 〈C → F〉 and 〈C → D〉, a subanalysis

18

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

18

https://doi.org/10.1016/j.ins.2018.09.011

Algorithm 3. Identify the Startloop and Endloop arcs of a pattern or process model.
Input: A pattern p
Output: The pattern p with the Startloop and Endloop arcs identified

1 Algorithm searchLoopArcs(p)
2 startloopArcs← ∅
3 do
4 startloopArcs← searchStartloopArcs(p, startloopArcs)
5 forall arc ∈ startloopArcs do
6 startActivity← arc.target
7 if arriveStartWithoutLoop(startActivity, startloopArcs) then
8 set arc as Endloop
9 else

10 continueWithOutputs(startActivity, startloopArcs)
11 end
12 end
13 while startloopArcs , ∅
14 return p
15 Function searchStartloopArcs(p, previousStartloops)
16 initialActivities← ∅
17 if previousStartloops = ∅ then
18 initialActivities← start activities of p
19 else
20 initialActivities← targets of arcs in previousStartloops
21 end
22 forall activity ∈ initialActivities do
23 Go forward through the outputs while there is only one
24 forall output ∈ sorted activity.outputs do
25 analizeSplit(activity, output)
26 end
27 end
28 return the set of new Startloops
29 Function continueWithOutputs(previousActivity, startloopArcs)
30 forall output ∈ previousActivity.outputs do
31 if arriveStartWithoutLoop(output, startloopArcs) then
32 set 〈previousActivity→ output〉 as Endloop
33 else
34 if output has not been explored then
35 continueWithOutputs(output, startloopArcs)
36 end
37 end
38 end

to detect if any of them is the beginning of a loop starts (Alg. 3:25). This analysis performs a depth-first search going

forward through the arcs that are not detected as Startloop, trying to find the source of the arc that started the analysis,

i.e., trying to close the loop. With 〈C → F〉 it reaches the end of the model and stops the search (#4). But with

〈C → D〉 it closes the loop reaching C, after going through D (#5), E (#6) and B (#7). In this case, the arc under

analysis, 〈C → D〉, is marked as Startloop (#8).

Endloop search

This search starts with the target activity of each Startloop detected in the same iteration. For each activity, it

goes forward through its output arcs by analysing their target activities. The analysis continues until an activity that

can reach, going backwards, the start of the pattern is found. When the start is reached, the current arc is marked as

Endloop. In this backwards search, the algorithm cannot go through a Startloop arc detected in the same iteration.

Table 3 shows an example of this search for the pattern of Fig. 10b. As there is only one Startloop detected in this

iteration (〈C → D〉), the search begins with it. The search tries to go backwards from D (the target of the Startloop

arc) in step #1 (Alg. 3:7), but as the unique input arc is one of the detected Startloop arcs, it stops and goes forward to

19

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

19

https://doi.org/10.1016/j.ins.2018.09.011

#
activity under

analysis
outputs

subanalysis
action

possible Startloop arc current activity outputs

1 A B - - - only one output, continue

2 B C - - - only one output, continue

3 C F, D - - - two outputs, start subanalysis searching for C

4 〈C → F〉 F ∅ reached end of model, C not found

5 〈C → D〉 D E C not found, continue with outputs

6 E B C not found, continue with outputs

7 B C C found, set 〈C → D〉 as Startloop

8 - - - - - No more activities, end of first phase

Table 2: Startloop search for the pattern of Fig. 10b: ’activity under analysis’ is the activity which output arcs are currently examined; ’outputs’

are the outputs of the activity under analysis, i.e., the targets of the arcs; ’possible Startloop arc’ is the arc being analysed; ’current activity’ is the

current activity in the search of the source activity of the arc; ’outputs’ is the set of outputs of the ’current activity’, i.e., the next in the analysis;

’action’ is a description of the action at the end of each iteration.

E in step #2 (Alg. 3:10). From E the same happens: it goes backwards to D (#3) and stops again. Finally, it searches

from B (#4), where the algorithm is able to reach the initial activity going backwards through the 〈A → B〉 arc (#7).

Therefore, the current arc, 〈E → B〉, is marked as Endloop.

The iterative nature of the algorithm allows it to find loops inside other loops, and to detect also multiple Startloop

or Endloop arcs for the same loop, i.e., loops with more than one input or more than one output.

Startloop
possible

Endloop

activity to

reach the

start from

pending

to analyse

input

under

analysis

action

1

〈C → D〉

〈C → D〉 D C C 〈C → D〉 ∈ detected Startloop arcs, cannot go back through this path

2 〈D→ E〉 E D D keep going back

3 D C C 〈C → D〉 ∈ detected Startloop arcs, cannot go back through this path

4 〈E → B〉 B A, E E keep going back

5 E A, D D keep going back

6 D A, C C 〈C → D〉 ∈ detected Startloop arcs, cannot go back through this path

7 A - - Start of model reached, 〈E → B〉 marked as Endloop arc

Table 3: Endloop search for the pattern of Fig. 10b: ’startloop’ is the Startloop, of the detected ones in this iteration, to start the search; ’possible

Endloop’ is the arc considered as Endloop if the start of the pattern is reached from its target activity; ’activity to reach the start from’ is the activity

from which the search is trying to reach the start in that step; ’pending to analyse’ is the set of input activities that have not been analysed in the

search for the start of the pattern; ’input under analysis’ is the activity currently being analysed in the search for the start of the pattern; ’action’ is

a description of the action at the end of each iteration.

20

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

20

https://doi.org/10.1016/j.ins.2018.09.011

Examples

#1 (Fig. 11) #2 (Fig. 12) #3 (Fig. 13) #4 (Fig. 14) #5 (Fig. 15)

WoMine + + + + +

Heat Maps [14] ± - - + -

w-find [11] + ± - - -

Local Process Mining [24] + ± ± - ±
Episode Mining [19] + ± - - -

SPM (PrefixSpan) [21] + - ± - -

Tree Mining [3] + - ± - -

Table 4: Comparison between WoMine and other state of the art techniques for 5 process models: ’+’ stands for a correct frequent pattern extraction;

’-’ stands for a non extraction of the frequent pattern, and ’±’ stands for an incorrect extraction of the frequent pattern (similar but wrong structure

or wrong frequency).

7. Experimentation

The validation of the presented approach has been done with different types of event logs. Subsection 7.1 presents

the results of the comparison between WoMine and the state of the art techniques for 5 process models. Subsection 7.2

discusses, for 20 logs from [6], the extracted frequent patterns and their evolution as the threshold varies. Finally, in

Subsection 7.3, we prove the performance of WoMine over complex real logs and compare the impact of the model

quality in the extraction of patterns using several Business Process Intelligence Challenge’s logs.

These experiments have been executed in a laptop (Lenovo G500) with an Intel i7-3612QM (2.1 GHz) processor

and 8GB of RAM (1600 MHz). Although WoMine has been described for Causal nets, the algorithm8 is able to mine

patterns both from models represented with Causal net [27] and with Causal matrix [28] (Heuristics net).

7.1. Comparison between WoMine and the state of the art approaches

In this comparison, 5 process models with the most common control structures have been used. These models

present scenarios where WoMine is able to retrieve frequent patterns, while any of the other techniques fails. For each

model, two Petri nets will be presented: one with a highlighted frequent pattern extracted by WoMine, and another

one with the frequent structure extracted by heat maps. The structure obtained by heat maps is retrieved establishing

a threshold, and highlighting all the arcs with a frequency over it. The chosen threshold is the one that allows to get

the structure closest to the frequent pattern extracted by WoMine. Table 4 shows the results of these techniques for

the 5 process models.

The first process model (Fig. 11) has several selections. WoMine finds a pattern appearing in the 40% of the traces

(Fig. 11a). On the contrary, the heat maps discovers, as frequent, paths that are not frequent. The other approaches —

8The algorithm can be tested and downloaded from http://tec.citius.usc.es/processmining/womine/

21

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

21

https://doi.org/10.1016/j.ins.2018.09.011

C

D G

HA

B

E F

(a) WoMine pattern (highlighted) for a threshold of 40%.

G

EC

D

HA

B

F

(b) Heat maps pattern (highlighted) for a threshold of 40. The

pattern includes infrequent paths, for instance A-C-D-H-F.

These arcs are frequent individually, but not the sequence itself.

This happens because the executions of 〈A→ C〉 are distributed

in traces through D-G and E.

Figure 11: Results of WoMine and heat maps for a process model with several selections.

w-find, local process mining, episode mining, sequential pattern mining (PrefixSpan), and the tree mining approach—

detect the same pattern as WoMine.

Fig. 12 presents the second process model, which has a loop. WoMine finds a frequent pattern appearing in

the 70% of the traces (Fig. 12a). The heat maps approach, nevertheless, retrieves as frequent the structure with the

execution of the loop (Fig. 12b). w-find gets the same pattern as WoMine, but with a wrong frequency. As has been

explained before, when H is executed in a trace, w-find can not distinguish if it is a loop disrupting the execution of the

pattern, or an activity in other parallel branch of the model. In the local process mining technique, the pattern is also

registered as executed in the traces with H, retrieving the same result as w-find. The episode mining approach also

retrieves, among other patterns with the same activities but different relations, this pattern with a wrong frequency

due to the same reason. PrefixSpan and the tree mining approach cannot get structures with parallels because they

interpret that traces with E before F are different than those with F before E.

In the third scenario, Fig. 13a depicts interesting behaviour found by WoMine. In the 55% of the traces, the

pattern performs the sequence through D, followed by the loop with J and D again, without including neither I nor E.

On the contrary, the heat maps (Fig. 13b) highlights wrongly the pattern with the two loops as frequent. The w-find

approach cannot retrieve the pattern found by WoMine due to the existence of a loop. With the local process mining

H

F

A D

E

G

B

C

(a) WoMine pattern (highlighted) for a threshold of 70%. The

traces compliant to this pattern are those where the loop is not

executed.

H

F

A D

EB

C

G

(b) Heat maps pattern (highlighted) for a threshold of 70. The

parallel structure with the loop is not frequent. The loop is ex-

ecuted several times in the same trace, increasing its absolute

frequency, but not the frequency of the whole pattern.

Figure 12: Results of WoMine and heat maps for a process model with a 1-length loop inside a branch with a parallel structure.

22

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

22

https://doi.org/10.1016/j.ins.2018.09.011

E

I

D

GA

B F

H

J

C

(a) WoMine pattern (highlighted) for a threshold of 55%. This

structure corresponds the instances of the process model where

E and I are not executed, and the loop of J is executed at least

one time.

E

I

D

GA

B F

H

J

C

(b) Heat maps pattern (highlighted) for a threshold of 100. The

arcs of the I loop are individually frequent, but the highlighted

structure is not.

Figure 13: Results of WoMine and heat maps for a process model composed by a sequence with a selection, and two loops sharing the start and

end activities. The loops give the model the ability to execute both branches of the selection in the same trace, and more than once.

approach, the pattern is found, but the frequency is incorrect when the loop (J) is not executed, or when I is executed,

because the final mark is reached in both cases. The episode mining approach cannot find this pattern in a feasible

time, due to the number of combinations among activities that it checks. PrefixSpan gets the pattern retrieved by

WoMine replacing the loop with a sequence with one repetition, i.e., duplicating the activities in the sequence. Also,

PrefixSpan does not ensure that I or E are not executed. The tree mining approach presents the same drawback, but

in a tree structure.

WoMine finds, for the process model in Fig. 14, two frequent patterns composed each one by an arc (Fig. 14a) and

separated by a selection. The knowledge extracted by heat maps (Fig. 14b) agrees with the result of WoMine. All the

other techniques retrieve, among others, the sequence A-B-G-H as frequent with a 65%. This is because they do not

take into account the process model while checking the frequency of the pattern, and they consider that the execution

of F is due to the other parallel branch in the model.

Finally, in the last case (Fig. 15), Fig. 15a shows a frequent structure executed in the 55% of the traces. The

structural complexity of this pattern makes impossible its extraction by the heat maps approach (Fig. 15b). Similar to

the Fig. 13 case, w-find cannot retrieve the pattern, local process mining retrieves it with a wrong frequency, and the

F

D
E

C HA

GB

(a) WoMine pattern (highlighted) for a threshold of 65%.

F

D
E

C HA

GB

(b) Results of the heat maps approach applied with a threshold

of 65. The result is correct and agrees with WoMine’s.

Figure 14: Results of WoMine and heat maps for a process model with a selection of three branches, having one of them an optional activity.

23

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

23

https://doi.org/10.1016/j.ins.2018.09.011

D

GH

A B

C

E

F L

I

J

K

(a) WoMine pattern (highlighted) for a threshold of 55%. The

pattern consists in a parallel structure with C in the upper

branch, the loop of I-J, and passing again through C.

D

GH

A B

C

E

F L

I

J

K

(b) Heat maps pattern (highlighted) for a threshold of 55. The

repetition of the loops increases the frequency of other arcs,

without building a recognizable pattern.

Figure 15: Results of WoMine and heat maps for a process model with two loops sharing the end activity, and one of them starting in a parallel

structure.

episode mining approach fails due to the high number of possible relations between the activities. PrefixSpan and the

tree mining approach cannot detect this pattern due to the parallel structures.

In summary, the state of the art algorithms fail to detect several patterns that can be retrieved with WoMine. The

heat maps approach is very simple, and allows to extract interesting behaviour in a quick way, but with the inability

to detect which activity causes the firing of another activity. The w-find algorithm uses the model to extract frequent

patterns but, the approach to check the compliance of a trace with a pattern fails in some cases. Loops and choices are

also unsupported by this algorithm. The local process mining technique does not ensure that the pattern was entirely

executed, without disruptions in the middle of its execution. Moreover, it does not ensure that the loops of a pattern

were executed when the final marking is reached either. The episode mining approach does not use the process model,

which causes the extraction of a high number of similar patterns varying the relations between the activities. Also, two

sequences separated by infrequent selections are detected as one single sequence by this technique. The sequential

pattern mining search, represented by PrefixSpan, has a similar problem. Moreover, it can only detect sequences.

Finally, the tree mining approach obtains results similar to sequential pattern mining, but searching in a tree structure.

7.2. Characteristics of the patterns and analysis of runtimes

This subsection presents the results obtained by WoMine in a set of process models for different thresholds.

Tables 5 and 6 show the result of WoMine for 20 process models and three different thresholds. For instance, for

process model g25, with a threshold of the 40%, WoMine discovered four patterns. These patterns have a frequency

close to the 50% and, in average, 6.5 activities per pattern, with a standard deviation of 4.43, containing all kind of

structures —sequences, choices, parallels and loops. As explained in Sec. 5, the algorithm needs to execute the trace

in the model to retrieve the executed arcs. This process is independent of the threshold —it only depends on the traces

(log) and on the model. Thus, the runtime is divided in two parts to distinguish this preprocessing time and the time

spent by the algorithm.

The event logs were randomly generated —up to 300 traces— from process models with different complexity

24

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

24

https://doi.org/10.1016/j.ins.2018.09.011

levels, ranging from 20 to 30 unique activities, and containing loops, parallelisms, selections, etc. A more detailed

description of the behavioral structures of these process models can be found in [6, 34]. Furthermore, as WoMine

takes as starting point a process model and an event log, we used ProDiGen [34] over this set of event logs to retrieve

the process model.

As can be seen, WoMine is able to retrieve frequent patterns with all type of structures. When the threshold

increases, WoMine obtains less and simpler patterns. This is because, as the minimum frequency is increased, more

patterns become infrequent and stop belonging to the result set, which also reduces the possibilities for growing the

patterns. Nevertheless, there are some cases where the number of frequent patterns becomes higher when the threshold

increases (g10, g13, g21, etc.). This happens when a large pattern is splitted due to the increase of the threshold, as

some parts of it become infrequent and trigger a disjointed structure. For instance, model g10 has a frequent pattern

with 14 activities for a threshold of 40%, and two patterns for 60% but with an average of 2.5 activities per pattern.

Regarding the runtime of the algorithm, the preprocessing time is always under 60 ms, usually 20 ms. This is the

time to parse the 300 traces, and retrieve the executed arcs. On the other hand, the runtime of the algorithm decreases

when the threshold increases, as more patterns become infrequent and are pruned earlier, saving computational cost.

Threshold : 40%

runtime (secs)
#patt frequency #activities #sequences #choices #parallels #loops

pre alg

g2 0.005 0.011 2 0.48±0.04 4.50±0.71 1.00±0.00 0±0 0±0 0±0

g3 0.060 6.800 4 0.45±0.04 14.25±5.12 1.75±0.96 1.50±1.29 3.00±0.82 0.25±0.50

g4 0.010 0.236 4 0.62±0.25 4.50±2.38 0.75±0.50 0.25±0.50 0±0 0.25±0.50

g5 0.006 0.066 3 0.50±0.03 8.00±5.29 1.00±1.00 0.67±0.58 1.33±1.15 0±0

g6 0.007 0.084 3 0.67±0.29 6.67±3.06 0.67±0.58 0.67±1.15 0.67±1.15 0±0

g7 0.046 6.029 8 0.48±0.04 16.00±2.20 1.75±0.46 1.00±1.20 1.75±0.71 0.25±0.46

g8 0.015 0.082 4 0.72±0.33 4.25±1.26 0.75±0.50 0.25±0.50 0.50±1.00 0±0

g9 0.007 0.039 3 0.50±0.02 6.33±0.58 1.00±0.00 0.33±0.58 0.33±0.58 0±0

g10 0.006 0.043 1 0.49±0.00 14.00±0.00 1.00±0.00 2.00±0.00 2.00±0.00 0±0

g12 0.009 0.061 3 0.67±0.29 6.00±3.00 1.00±0.00 0.33±0.58 0.67±1.15 0±0

g13 0.002 0.025 1 0.48±0.00 13.00±0.00 2.00±0.00 2.00±0.00 0±0 0±0

g14 0.019 0.179 5 0.59±0.23 6.00±1.87 1.20±0.45 0±0 0±0 0.60±0.55

g15 0.013 0.009 3 0.76±0.24 2.67±1.15 0.33±0.58 0±0 0±0 0±0

g19 0.002 0.015 1 0.47±0.00 11.00±0.00 2.00±0.00 1.00±0.00 2.00±0.00 0±0

g20 0.022 0.235 6 0.58±0.21 4.67±2.66 0.83±0.75 0.50±0.55 0±0 0±0

g21 0.001 0.007 2 0.75±0.36 5.00±4.24 0.50±0.71 0.50±0.71 0±0 0±0

g22 0.001 0.006 1 0.44±0.00 8.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0±0

g23 0.052 0.424 6 0.82±0.28 3.00±0.89 0.33±0.52 0±0 0±0 0.33±0.52

g24 0.002 0.014 4 0.65±0.24 3.50±1.91 0±0 0.25±0.50 0.75±0.96 0±0

g25 0.041 0.326 4 0.49±0.04 6.50±4.43 0.50±0.58 0.50±0.58 1.25±2.50 0.25±0.50

Table 5: Behavioral structure of the frequent patterns extracted, for a threshold of 40%, from the process models in [6]. The values show the

runtimes for the preprocessing and for the algorithm; the number of patterns retrieved (#patt); the average and standard deviation of the frequency

(frequency), number of activities (#activities), number of sequences (#sequences), number of choices (#choices), number of parallels (#parallels)

and number of loops (#loops) per extracted pattern.

25

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

25

https://doi.org/10.1016/j.ins.2018.09.011

Threshold : 60%

runtime (secs)
#patt frequency #activities #sequences #choices #parallels #loops

pre alg

g2 0.005 0.006 2 0.87±0.18 3.50±0.71 1.00±0.00 0±0 0±0 0±0

g3 0.060 0.609 4 0.83±0.20 6.75±4.11 1.00±0.00 0.50±1.00 1.25±1.50 0.25±0.50

g4 0.010 0.011 4 1.00±0.00 3.25±1.89 0.50±0.58 0±0 0±0 0±0

g5 0.008 0.012 3 0.89±0.19 4.33±0.58 0.67±0.58 0±0 0.67±1.15 0±0

g6 0.007 0.014 2 1.00±0.00 4.00±2.83 0.50±0.71 0±0 0±0 0±0

g7 0.046 1.228 6 0.83±0.18 10.50±4.85 1.17±0.41 0.33±0.82 1.33±1.03 0.17±0.41

g8 0.015 0.010 2 1.00±0.00 3.50±0.71 1.00±0.00 0±0 0±0 0±0

g9 0.007 0.011 2 1.00±0.00 4.00±1.41 1.00±0.00 0±0 0±0 0±0

g10 0.006 0.004 2 1.00±0.00 2.50±0.71 0.50±0.71 0±0 0±0 0±0

g12 0.009 0.002 1 1.00±0.00 3.00±0.00 1.00±0.00 0±0 0±0 0±0

g13 0.002 0.006 2 1.00±0.00 5.50±0.71 1.00±0.00 0±0 0±0 0±0

g14 0.019 0.156 5 1.00±0.00 5.20±1.10 1.00±0.00 0±0 0±0 0±0

g15 0.013 0.005 3 0.92±0.14 2.33±0.58 0.33±0.58 0±0 0±0 0±0

g19 0.002 0.011 2 0.86±0.19 5.00±1.41 1.00±0.00 0±0 1.00±1.41 0±0

g20 0.022 0.014 3 1.00±0.00 2.67±0.58 0.67±0.58 0±0 0±0 0±0

g21 0.001 0.003 3 0.89±0.18 3.00±1.00 0.67±0.58 0±0 0±0 0±0

g22 0.001 0.001 2 1.00±0.00 2.50±0.71 0.50±0.71 0±0 0±0 0±0

g23 0.052 0.317 6 1.00±0.00 2.67±1.03 0.33±0.52 0±0 0±0 0±0

g24 0.002 0.001 2 1.00±0.00 2.00±0.00 0±0 0±0 0±0 0±0

g25 0.041 0.065 5 1.00±0.00 3.20±1.10 0.20±0.45 0±0 0.80±1.10 0±0

Threshold : 80%

runtime (secs)
#patt frequency #activities #sequences #choices #parallels #loops

pre alg

g2 0.005 0.004 2 1.00±0.00 3.00±1.41 0.50±0.71 0±0 0±0 0±0

g3 0.060 0.073 3 1.00±0.00 5.00±2.65 1.00±0.00 0±0 0.67±1.15 0±0

g4 0.010 0.010 4 1.00±0.00 3.25±1.89 0.50±0.58 0±0 0±0 0±0

g5 0.008 0.007 2 1.00±0.00 4.00±0.00 1.00±0.00 0±0 0±0 0±0

g6 0.007 0.008 2 1.00±0.00 4.00±2.83 0.50±0.71 0±0 0±0 0±0

g7 0.046 0.364 3 1.00±0.00 9.00±7.21 1.33±0.58 0±0 0.67±1.15 0±0

g8 0.015 0.009 2 1.00±0.00 3.50±0.71 1.00±0.00 0±0 0±0 0±0

g9 0.007 0.010 2 1.00±0.00 4.00±1.41 1.00±0.00 0±0 0±0 0±0

g10 0.006 0.004 2 1.00±0.00 2.50±0.71 0.50±0.71 0±0 0±0 0±0

g12 0.009 0.001 1 1.00±0.00 3.00±0.00 1.00±0.00 0±0 0±0 0±0

g13 0.002 0.006 2 1.00±0.00 5.50±0.71 1.00±0.00 0±0 0±0 0±0

g14 0.019 0.151 5 1.00±0.00 5.20±1.10 1.00±0.00 0±0 0±0 0±0

g15 0.013 0.004 2 1.00±0.00 2.50±0.71 0.50±0.71 0±0 0±0 0±0

g19 0.002 0.005 2 1.00±0.00 4.50±2.12 1.00±0.00 0±0 1.00±1.41 0±0

g20 0.022 0.012 3 1.00±0.00 2.67±0.58 0.67±0.58 0±0 0±0 0±0

g21 0.001 0.001 2 1.00±0.00 3.00±1.41 0.50±0.71 0±0 0±0 0±0

g22 0.001 0.001 2 1.00±0.00 2.50±0.71 0.50±0.71 0±0 0±0 0±0

g23 0.052 0.329 6 1.00±0.00 2.67±1.03 0.33±0.52 0±0 0±0 0±0

g24 0.002 0.001 2 1.00±0.00 2.00±0.00 0±0 0±0 0±0 0±0

g25 0.041 0.061 5 1.00±0.00 3.20±1.10 0.20±0.45 0±0 0.80±1.10 0±0

Table 6: Continuation of results in Table 5 for thresholds of 60% and 80%.

26

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

26

https://doi.org/10.1016/j.ins.2018.09.011

The global runtime —preprocessing plus algorithm— is under 500 milliseconds in all cases except the executions of

g3 and g7, both with thresholds of 40% and 60%.

7.3. Frequent patterns for the BPI Challenges

The objective of this subsection is twofold: on the one hand, to test WoMine on complex real logs from the

Business Process Intelligence Challence (BPIC) [29] and, on the other hand, to analyze the influence of the model

in the retrieved patterns. Due to the complexity of the models mined for some BPIC logs, in these experiments the

process models are represented through the Causal matrix formalism.

Table 7a shows some statistics of the BPIC logs [23, 29, 30, 31]. These logs have been mined with two of the most

popular discovery algorithms, the Heuristics Miner (HM) [35] and the Inductive Miner (IM) [18]. Table 7b presents

the characteristics of the mined models, which have been generated using ProM [32]. As can be seen, the models

mined by IM contain many more arcs than the HM models. Also, models from years 2011 and 2015 are far more

complex than models from other years.

A series of experiments have been run for these logs and models with different thresholds. Tables 8, 9 and 10

show the results for thresholds of 20%, 35% and 50%. We do not show higher thresholds because, for such complex

models, the execution of a path many times is very uncommon. This would return a low number of patterns, with few

structures, not allowing to study the differences between models. The results demonstrate the ability of WoMine to

extract patterns with loops, choices, parallels and sequences.

#traces #events
events per trace

min max X̄ ± σ
2011 1143 152577 3 1816 133.5±202.6

20
12

fin 13087 288374 5 177 22.0±19.9

a 4085 21565 5 10 5.3±0.8

o 4038 32384 5 32 8.0±2.8

20
13

inc 7554 80641 3 125 10.7±7.6

clo 1487 9634 3 37 6.5±3.2

op 819 3989 3 24 4.9±2.1

20
15

1 1199 54615 4 103 45.6±17.0

2 832 46018 3 134 55.3±19.9

3 1409 62499 5 126 44.4±16.1

4 1053 49399 3 118 46.9±15.0

5 1156 61395 7 156 53.1±16.0

(a) Statistics of the BPIC logs. The BPIC 2012 logs ’a’ and ’o’ have

been generated after a filtering in the BPIC 2012 raw log (’fin’), main-

taining the traces which contain activities of the categories A and O,

respectively.

Heuristics Miner Inductive Miner

#activities #arcs #activities #arcs

2011 623 1480 626 390614

20
12

fin 38 112 38 1044

a 12 14 12 19

o 9 17 9 28

20
13

inc 15 101 15 171

clo 9 34 9 28

op 7 30 7 16

20
15

1 400 719 400 153677

2 412 747 412 162797

3 383 697 385 142887

4 358 635 358 113266

5 391 733 391 147102

(b) Number of activities and arcs of the mined models, gen-

erated with two discovery algorithms: Heuristics Miner and

Inductive Miner.

Table 7: Statistics about the logs of the BPICs and the mined model.

27

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

27

https://doi.org/10.1016/j.ins.2018.09.011

T
hr

es
ho

ld
:2

0%

H
eu

ri
st

ic
s

M
in

er
In

du
ct

iv
e

M
in

er

ru
nt

im
e

(s
ec

s)
#p

at
t

fr
eq

ue
nc

y
#a

ct
iv

iti
es

#s
eq

ue
nc

es
#c

ho
ic

es
#p

ar
al

le
ls

#l
oo

ps
ru

nt
im

e
(s

ec
s)

#p
at

t
fr

eq
ue

nc
y

#a
ct

iv
iti

es
#s

eq
ue

nc
es

#c
ho

ic
es

#p
ar

al
le

ls
#l

oo
ps

pr
e

al
g

pr
e

al
g

20
11

11
.8

94
11

4.
63

2
21

0.
25
±0

.0
8

5.
57
±4

.0
2

0.
62
±0

.6
7

0.
81
±1

.0
8

0.
29
±0

.4
6

0.
43
±0

.5
1

-
-

-
-

-
-

-
-

-

2012

fin
8.

43
4

12
.8

38
7

0.
29
±0

.0
5

3.
14
±2

.9
1

0.
29
±0

.4
9

0.
14
±0

.3
8

0±
0

0.
29
±0

.4
9

17
.3

39
10

0.
68

3
6

0.
25
±0

.0
7

6.
50
±4

.4
6

0.
33
±0

.5
2

0.
83
±1

.1
7

0.
83
±2

.0
4

0.
67
±0

.5
2

a
2.

21
3

0.
90

2
1

0.
84
±0

.0
0

5.
00
±0

.0
0

1.
00
±0

.0
0

0±
0

0±
0

0±
0

1.
58

1
0.

77
6

1
0.

84
±0

.0
0

5.
00
±0

.0
0

1.
00
±0

.0
0

0±
0

0±
0

0±
0

o
0.

96
2

2.
79

1
2

0.
24
±0

.0
1

5.
50
±0

.7
1

0±
0

1.
00
±1

.4
1

1.
50
±0

.7
1

1.
00
±1

.4
1

1.
09

6
0.

18
6

2
0.

75
±0

.3
5

2.
00
±0

.0
0

0±
0

0±
0

0±
0

0±
0

2013

in
c

2.
81

0
12

3.
81

3
6

0.
25
±0

.0
6

5.
33
±2

.2
5

0±
0

1.
17
±0

.9
8

0±
0

0.
67
±0

.8
2

2.
89

3
12

3.
43

2
6

0.
25
±0

.0
6

5.
33
±2

.2
5

0±
0

1.
17
±0

.9
8

0±
0

0.
67
±0

.8
2

cl
o

0.
56

0
3.

94
1

4
0.

24
±0

.0
1

4.
50
±1

.2
9

0±
0

0.
75
±0

.5
0

0±
0

0.
25
±0

.5
0

0.
36

6
0.

08
1

2
0.

76
±0

.3
4

1.
50
±0

.7
1

0±
0

0±
0

0±
0

0.
50
±0

.7
1

op
0.

15
9

0.
31

0
2

0.
21
±0

.0
0

4.
00
±0

.0
0

0.
50
±0

.7
1

1.
00
±1

.4
1

0±
0

0±
0

0.
13

8
0.

05
6

1
0.

30
±0

.0
0

1.
00
±0

.0
0

0±
0

0±
0

0±
0

1.
00
±0

.0
0

2015

1
2.

82
1

0.
91

0
14

0.
32
±0

.1
2

2.
57
±0

.7
6

0.
21
±0

.4
3

0±
0

0.
21
±0

.4
3

0±
0

41
.4

19
95

.3
67

19
0.

24
±0

.0
5

4.
79
±2

.7
4

0.
32
±0

.4
8

1.
05
±1

.1
8

0.
11
±0

.3
2

0±
0

2
2.

18
5

1.
18

1
15

0.
28
±0

.1
4

3.
27
±1

.5
8

0.
27
±0

.4
6

0.
07
±0

.2
6

0.
47
±0

.6
4

0±
0

39
.4

83
51

.5
23

26
0.

24
±0

.0
4

3.
27
±2

.0
7

0.
31
±0

.4
7

0.
42
±0

.7
6

0±
0

0±
0

3
3.

71
4

1.
62

8
14

0.
31
±0

.1
1

2.
50
±0

.9
4

0.
07
±0

.2
7

0.
07
±0

.2
7

0.
14
±0

.3
6

0±
0

50
.4

66
23

0.
61

5
30

0.
23
±0

.0
4

4.
87
±2

.4
7

0.
37
±0

.4
9

1.
30
±1

.2
9

0.
10
±0

.4
0

0±
0

4
2.

33
4

1.
73

8
13

0.
34
±0

.1
9

3.
77
±2

.3
5

0.
15
±0

.3
8

0.
08
±0

.2
8

0.
46
±0

.6
6

0±
0

35
.8

23
6.

58
0

20
0.

24
±0

.0
3

4.
15
±2

.9
1

0.
55
±0

.6
0

0.
45
±0

.8
3

0±
0

0±
0

5
3.

05
6

2.
09

2
9

0.
27
±0

.0
7

4.
56
±1

.8
1

0.
44
±0

.5
3

0.
22
±0

.4
4

0.
56
±0

.5
3

0±
0

50
.6

37
6.

77
3

21
0.

24
±0

.0
3

3.
86
±2

.3
9

0.
43
±0

.5
1

0.
48
±0

.7
5

0±
0

0±
0

Ta
bl

e
8:

B
eh

av
io

ra
ls

tr
uc

tu
re

of
th

e
fr

eq
ue

nt
pa

tte
rn

s
ex

tr
ac

te
d

w
ith

a
th

re
sh

ol
d

of
20

%
fr

om
th

e
pr

oc
es

s
m

od
el

s
of

th
e

B
PI

C
s.

It
sh

ow
s

th
e

in
fo

rm
at

io
n

fo
rt

he
re

su
lts

w
ith

tw
o

pr
oc

es
s

m
od

el
s

of

ea
ch

lo
g

(H
eu

ri
st

ic
s

an
d

In
du

ct
iv

e)
.

T
he

in
fo

rm
at

io
n

co
nt

ai
ns

th
e

ru
nt

im
e,

th
e

nu
m

be
ro

fp
at

te
rn

s
an

d
th

e
di

st
ri

bu
tio

n
(a

ve
ra

ge
an

d
st

an
da

rd
de

vi
at

io
n)

of
th

e
fr

eq
ue

nc
y,

th
e

nu
m

be
ro

fa
ct

iv
iti

es
,

se
qu

en
ce

s,
ch

oi
ce

s,
pa

ra
lle

ls
an

d
lo

op
s

of
ea

ch
pa

tte
rn

.T
he

m
is

si
ng

re
su

lts
in

th
e

20
11

lo
g

w
ith

th
e

IM
’s

m
od

el
ar

e
du

e
to

a
no

n
co

nv
er

ge
nc

e
of

th
e

al
go

ri
th

m
,t

ak
in

g
m

or
e

th
an

5
ho

ur
s

to
ex

ec
ut

e

a
fe

w
ite

ra
tio

ns
.

28

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

28

https://doi.org/10.1016/j.ins.2018.09.011

T
hr

es
ho

ld
:3

5%

H
eu

ri
st

ic
s

M
in

er
In

du
ct

iv
e

M
in

er

ru
nt

im
e

(s
ec

s)
#p

at
t

fr
eq

ue
nc

y
#a

ct
iv

iti
es

#s
eq

ue
nc

es
#c

ho
ic

es
#p

ar
al

le
ls

#l
oo

ps
ru

nt
im

e
(s

ec
s)

#p
at

t
fr

eq
ue

nc
y

#a
ct

iv
iti

es
#s

eq
ue

nc
es

#c
ho

ic
es

#p
ar

al
le

ls
#l

oo
ps

pr
e

al
g

pr
e

al
g

20
11

11
.5

06
3.

39
5

14
0.

44
±0

.0
7

2.
64
±1

.4
5

0.
36
±0

.5
0

0.
14
±0

.3
6

0.
07
±0

.2
7

0.
36
±0

.5
0

-
-

-
-

-
-

-
-

-

2012

fin
8.

19
2

2.
86

4
4

0.
38
±0

.0
1

4.
00
±2

.4
5

0.
50
±0

.5
8

0.
25
±0

.5
0

0.
25
±0

.5
0

0±
0

17
.0

76
5.

33
0

4
0.

38
±0

.0
1

4.
25
±2

.8
7

0.
50
±1

.0
0

0.
25
±0

.5
0

1.
25
±2

.5
0

0±
0

a
0.

62
1

0.
22

4
1

0.
84
±0

.0
0

5.
00
±0

.0
0

1.
00
±0

.0
0

0±
0

0±
0

0±
0

0.
62

1
0.

23
2

1
0.

84
±0

.0
0

5.
00
±0

.0
0

1.
00
±0

.0
0

0±
0

0±
0

0±
0

o
0.

90
1

0.
39

7
2

0.
75
±0

.3
5

3.
50
±2

.1
2

0.
50
±0

.7
1

0±
0

0±
0

0±
0

1.
06

0
0.

18
7

2
0.

75
±0

.3
5

2.
00
±0

.0
0

0±
0

0±
0

0±
0

0±
0

2013

in
c

2.
75

7
4.

00
5

2
0.

43
±0

.0
9

4.
00
±1

.4
1

0.
50
±0

.7
1

0.
50
±0

.7
1

0±
0

1.
00
±1

.4
1

2.
91

0
3.

93
6

2
0.

43
±0

.0
9

4.
00
±1

.4
1

0.
50
±0

.7
1

0.
50
±0

.7
1

0±
0

1.
00
±1

.4
1

cl
o

0.
30

8
0.

12
3

2
0.

87
±0

.1
0

2.
50
±0

.7
1

0.
50
±0

.7
1

0±
0

0±
0

0±
0

0.
31

9
0.

04
3

2
0.

76
±0

.3
4

1.
50
±0

.7
1

0±
0

0±
0

0±
0

0.
50
±0

.7
1

op
0.

12
0

0.
03

9
2

0.
62
±0

.3
8

2.
50
±0

.7
1

0.
50
±0

.7
1

0±
0

0±
0

0±
0

0.
12

7
0.

00
3

0
0±

0
0±

0
0±

0
0±

0
0±

0
0±

0

2015

1
2.

84
6

0.
39

8
7

0.
49
±0

.1
0

2.
43
±0

.7
9

0.
14
±0

.3
8

0±
0

0.
14
±0

.3
8

0±
0

41
.7

75
0.

54
4

7
0.

49
±0

.1
0

2.
57
±1

.1
3

0.
14
±0

.3
8

0±
0

0.
14
±0

.3
8

0±
0

2
2.

15
0

0.
50

6
6

0.
49
±0

.1
4

3.
67
±1

.8
6

0.
17
±0

.4
1

0±
0

0.
67
±0

.5
2

0±
0

39
.2

64
0.

60
2

8
0.

40
±0

.0
6

2.
75
±1

.0
4

0.
50
±0

.5
3

0.
12
±0

.3
5

0±
0

0±
0

3
3.

19
2

0.
52

0
6

0.
44
±0

.1
0

2.
67
±0

.8
2

0.
33
±0

.5
2

0±
0

0.
17
±0

.4
1

0±
0

45
.5

92
0.

70
6

11
0.

47
±0

.1
1

2.
27
±0

.6
5

0.
09
±0

.3
0

0±
0

0.
09
±0

.3
0

0±
0

4
2.

35
6

0.
61

6
7

0.
53
±0

.1
9

2.
57
±1

.5
1

0±
0

0±
0

0.
14
±0

.3
8

0±
0

35
.3

79
0.

75
1

8
0.

40
±0

.0
6

3.
50
±1

.4
1

0.
62
±0

.5
2

0±
0

0±
0

0±
0

5
2.

92
3

0.
87

5
6

0.
44
±0

.1
5

4.
33
±1

.6
3

0.
33
±0

.5
2

0±
0

0.
83
±0

.4
1

0±
0

50
.7

28
0.

73
7

8
0.

38
±0

.0
3

3.
00
±1

.4
1

0.
38
±0

.5
2

0±
0

0±
0

0±
0

Ta
bl

e
9:

B
eh

av
io

ra
ls

tr
uc

tu
re

of
th

e
fr

eq
ue

nt
pa

tte
rn

s
ex

tr
ac

te
d

w
ith

a
th

re
sh

ol
d

of
35

%
fr

om
th

e
pr

oc
es

s
m

od
el

s
of

th
e

B
PI

C
s.

It
sh

ow
s

th
e

in
fo

rm
at

io
n

fo
rt

he
re

su
lts

w
ith

tw
o

pr
oc

es
s

m
od

el
s

of

ea
ch

lo
g

(H
eu

ri
st

ic
s

an
d

In
du

ct
iv

e)
.

T
he

in
fo

rm
at

io
n

co
nt

ai
ns

th
e

ru
nt

im
e,

th
e

nu
m

be
ro

fp
at

te
rn

s
an

d
th

e
di

st
ri

bu
tio

n
(a

ve
ra

ge
an

d
st

an
da

rd
de

vi
at

io
n)

of
th

e
fr

eq
ue

nc
y,

th
e

nu
m

be
ro

fa
ct

iv
iti

es
,

se
qu

en
ce

s,
ch

oi
ce

s,
pa

ra
lle

ls
an

d
lo

op
s

of
ea

ch
pa

tte
rn

.T
he

m
is

si
ng

re
su

lts
in

th
e

20
11

lo
g

w
ith

th
e

IM
’s

m
od

el
ar

e
du

e
to

a
no

n
co

nv
er

ge
nc

e
of

th
e

al
go

ri
th

m
,t

ak
in

g
m

or
e

th
an

5
ho

ur
s

to
ex

ec
ut

e

a
fe

w
ite

ra
tio

ns
.

29

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

29

https://doi.org/10.1016/j.ins.2018.09.011

T
hr

es
ho

ld
:5

0%

H
eu

ri
st

ic
s

M
in

er
In

du
ct

iv
e

M
in

er

ru
nt

im
e

(s
ec

s)
#p

at
t

fr
eq

ue
nc

y
#a

ct
iv

iti
es

#s
eq

ue
nc

es
#c

ho
ic

es
#p

ar
al

le
ls

#l
oo

ps
ru

nt
im

e
(s

ec
s)

#p
at

t
fr

eq
ue

nc
y

#a
ct

iv
iti

es
#s

eq
ue

nc
es

#c
ho

ic
es

#p
ar

al
le

ls
#l

oo
ps

pr
e

al
g

pr
e

al
g

20
11

11
.0

72
1.

10
1

9
0.

53
±0

.0
3

2.
44
±1

.0
1

0.
33
±0

.5
0

0±
0

0±
0

0.
22
±0

.4
4

-
-

-
-

-
-

-
-

-

2012

fin
7.

94
4

0.
76

1
2

0.
78
±0

.3
1

2.
50
±0

.7
1

0.
50
±0

.7
1

0±
0

0±
0

0±
0

17
.2

58
0.

70
8

2
0.

78
±0

.3
1

2.
50
±0

.7
1

0.
50
±0

.7
1

0±
0

0±
0

0±
0

a
0.

62
1

0.
22

4
1

0.
84
±0

.0
0

5.
00
±0

.0
0

1.
00
±0

.0
0

0±
0

0±
0

0±
0

0.
62

0
0.

22
3

1
0.

84
±0

.0
0

5.
00
±0

.0
0

1.
00
±0

.0
0

0±
0

0±
0

0±
0

o
0.

89
0

0.
41

6
2

0.
75
±0

.3
5

3.
50
±2

.1
2

0.
50
±0

.7
1

0±
0

0±
0

0±
0

1.
06

0
0.

10
3

2
0.

75
±0

.3
5

2.
00
±0

.0
0

0±
0

0±
0

0±
0

0±
0

2013

in
c

2.
77

9
2.

38
6

4
0.

67
±0

.1
5

2.
75
±0

.5
0

0.
25
±0

.5
0

0.
50
±0

.5
8

0±
0

0.
25
±0

.5
0

2.
88

3
2.

47
0

4
0.

67
±0

.1
5

2.
75
±0

.5
0

0.
25
±0

.5
0

0.
50
±0

.5
8

0±
0

0.
25
±0

.5
0

cl
o

0.
30

9
0.

12
5

2
0.

87
±0

.1
0

2.
50
±0

.7
1

0.
50
±0

.7
1

0±
0

0±
0

0±
0

0.
32

5
0.

04
1

2
0.

76
±0

.3
4

1.
50
±0

.7
1

0±
0

0±
0

0±
0

0.
50
±0

.7
1

op
0.

12
0

0.
01

2
1

0.
89
±0

.0
0

2.
00
±0

.0
0

0±
0

0±
0

0±
0

0±
0

0.
12

7
0.

00
3

0
0±

0
0±

0
0±

0
0±

0
0±

0
0±

0

2015

1
2.

90
2

0.
19

5
3

0.
63
±0

.0
3

2.
67
±0

.5
8

0.
33
±0

.5
8

0±
0

0.
33
±0

.5
8

0±
0

41
.5

96
0.

41
0

4
0.

61
±0

.0
6

2.
75
±1

.5
0

0±
0

0±
0

0.
25
±0

.5
0

0±
0

2
2.

13
7

0.
40

8
5

0.
61
±0

.0
9

3.
80
±1

.1
0

0±
0

0±
0

1.
00
±0

.0
0

0±
0

39
.0

35
0.

31
6

5
0.

58
±0

.0
8

2.
20
±0

.4
5

0.
20
±0

.4
5

0±
0

0±
0

0±
0

3
3.

18
9

0.
28

0
3

0.
68
±0

.0
5

2.
67
±0

.5
8

0.
33
±0

.5
8

0±
0

0.
33
±0

.5
8

0±
0

46
.0

86
0.

44
2

6
0.

59
±0

.1
0

2.
33
±0

.8
2

0±
0

0±
0

0.
17
±0

.4
1

0±
0

4
2.

37
2

0.
35

9
4

0.
67
±0

.1
7

3.
25
±1

.8
9

0±
0

0±
0

0.
50
±0

.5
8

0±
0

35
.6

29
0.

34
5

4
0.

53
±0

.0
3

3.
00
±0

.8
2

0.
75
±0

.5
0

0±
0

0±
0

0±
0

5
2.

93
3

0.
48

0
4

0.
62
±0

.1
1

3.
50
±1

.0
0

0.
50
±0

.5
8

0±
0

0.
50
±0

.5
8

0±
0

50
.7

24
0.

51
8

5
0.

53
±0

.0
3

2.
80
±1

.1
0

0.
40
±0

.5
5

0±
0

0±
0

0±
0

Ta
bl

e
10

:B
eh

av
io

ra
ls

tr
uc

tu
re

of
th

e
fr

eq
ue

nt
pa

tte
rn

s
ex

tr
ac

te
d

w
ith

a
th

re
sh

ol
d

of
50

%
fr

om
th

e
pr

oc
es

s
m

od
el

s
of

th
e

B
PI

C
s.

It
sh

ow
s

th
e

in
fo

rm
at

io
n

fo
rt

he
re

su
lts

w
ith

tw
o

pr
oc

es
s

m
od

el
s

of

ea
ch

lo
g

(H
eu

ri
st

ic
s

an
d

In
du

ct
iv

e)
.

T
he

in
fo

rm
at

io
n

co
nt

ai
ns

th
e

ru
nt

im
e,

th
e

nu
m

be
ro

fp
at

te
rn

s
an

d
th

e
di

st
ri

bu
tio

n
(a

ve
ra

ge
an

d
st

an
da

rd
de

vi
at

io
n)

of
th

e
fr

eq
ue

nc
y,

th
e

nu
m

be
ro

fa
ct

iv
iti

es
,

se
qu

en
ce

s,
ch

oi
ce

s,
pa

ra
lle

ls
an

d
lo

op
s

of
ea

ch
pa

tte
rn

.T
he

m
is

si
ng

re
su

lts
in

th
e

20
11

lo
g

w
ith

th
e

IM
’s

m
od

el
ar

e
du

e
to

a
no

n
co

nv
er

ge
nc

e
of

th
e

al
go

ri
th

m
,t

ak
in

g
m

or
e

th
an

5
ho

ur
s

to
ex

ec
ut

e

a
fe

w
ite

ra
tio

ns
.

30

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

30

https://doi.org/10.1016/j.ins.2018.09.011

Regarding the runtime, we can observe that most of the values are close to 5 seconds, with the exception of the

more complex models (BPIC 2011, BPIC 2012-fin, BPIC 2013-inc, IM of all BPIC 2015) ranging from 2 to 6 minutes.

Most of this time is spent on the preprocessing, which can be shared between executions with different thresholds,

reducing the total runtime in real applications. Also, there is a significant difference in the algorithm runtime between

models, specially for a threshold of 20%. These differences are due to the very different grades of complexity of the

mined models. For higher thresholds, the differences weaken, as most of the structures are pruned in the first analysis,

and the expansion step of WoMine does not consider them.

Besides, we have compared the number of patterns discovered for the same threshold for the HM and the IM

models. With logs where the difference between the mined models is higher —2011 and 2015—, the number of

retrieved patterns with more complex models (IM) is significantly higher. The algorithm builds more structures with

these models and, consequently, extracts more patterns. This difference is attenuated when the threshold increases,

because the patterns not represented in the HM models are patterns with low frequency. On the other hand, with

simpler models —2012 and 2013—, the differences are less notable and the number of patterns extracted are almost

the same.

In a more exhaustive comparison, we have analysed how many patterns extracted from one model are contained

in the results of the other one (Fig. 16). With less complex logs —2012 and 2013— almost all of the patterns from the

IM model are retrieved using the HM model. In contrast, with complex models, the set of patterns from the IM model

is more complete than the set of patterns from the HM model. Usually, with a more complex model, more behaviour

is examined and more patterns can be retrieved, with the penalty of a higher runtime. But increasing the complexity

of a model might hide structures in the search of WoMine, causing the lost of frequent behaviour.

(a) Frequent patterns from the IM model contained in the frequent pat-

terns set from the HM model.

(b) Frequent patterns from the HM model contained in the frequent pat-

terns set from the IM model.

Figure 16: Percentage of patterns obtained from the model mined by a discovery algorithm that are contained into patterns from the mined model

of the other algorithm.

31

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

31

https://doi.org/10.1016/j.ins.2018.09.011

0

(a) Frequent pattern (65.44%) ex-

tracted from the 2011 log with the

Heuristics model. The real name of

the activity is ’aanname laborato-

riumonderzoek’ (assumption labora-

tory).

1 2 3 4 5 6

7

8 9

(b) Frequent pattern (22.65%) extracted from the 2011 log with the Heuristics model. The pattern is

formed by two sequences joined by a choice (XOR-join). The real name of the activities are: 1: ’kalium

potentiometrisch’ (potassium potentiometric); 2: ’sgot - asat kinetisch’ (Glutamic-oxalacetic transam-

inase); 3: ’sgpt - alat kinetisch’ (Glutamic-pyruvic transaminase); 4: ’melkzuurdehydrogenase -ldh-

kinetisch’ (Lactic acid dehydrogenase); 5: ’bloedgroep abo en rhesusfactor’ (abo blood group and rhe-

sus factor); 6: ’rhesusfactor d - centrifugeermethode e’ (Rhesus factor d - Centrifuge method); 7:

’differentiele telling automatisch’ (differential count automatically); 8: ’leukocyten tellen elektronisch’

(leukocyte count electronic); 9: ’trombocyten tellen elektronisch’ (platelet count electronic)

Figure 17: Two frequent patterns retrieved from the BPIC tests.

Fig. 17 shows two examples of patterns extracted by WoMine from the HM model of the BPIC 2011 log, which

corresponds to a Dutch Academic Hospital. This model contains more than 623 activities and almost 1,500 arcs.

Fig. 17a presents a pattern extracted from the model which appears in the 65% of the traces. This pattern is formed by

a single activity, with a loop to itself. A frequent structure like this may warn the staff of the hospital about a possible

error that is occurring in the process. It might also be a correct behaviour, and its detection may help the process

manager not to free the resources used after this activity, because is very common to be executed more times. Fig. 17b

shows another pattern formed by two sequences, joined by a choice. WoMine detects this pattern in the 22% of the

traces. With this information, the process manager may try to optimize the subprocess, or schedule the resources to

improve the execution of the process.

8. Conclusion and Future Work

We have presented WoMine, an algorithm designed to search frequent patterns in an already discovered process

model. The proposal, based on a novel a priori algorithm, is able to find patterns with the most common control

structures, including loops. We have compared WoMine with the state of the art approaches, showing that, although

the other proposals fail for some of the models, WoMine always retrieves the correct frequent patterns. Moreover,

we have also tested WoMine with complex real logs from the BPICs. Results show the importance of the frequent

patterns to analyze and optimize the process model.

Regarding possible future work, the frequent behaviour extracted by WoMine might be used for many tasks.

Particularly, the detection of outliers or anomalies might be done by giving a score to the traces depending on how

much frequent behavior is contained in them, as be in [5] and [10]. Rating the traces of the log depending on the

32

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

32

https://doi.org/10.1016/j.ins.2018.09.011

frequent behavior they contain can also be useful for simplification. A more simpler model can be mined from the log

if the traces with less frequent behavior are removed. There are also possible applications in the field of decomposition

using the frequent structures to decompose the process as is done in [20] or in [26].

Acknowledgments.

This research was funded by the Spanish Ministry of Economy and Competitiveness under grant TIN2017-84796-

C2-1-R, and the Galician Ministry of Education, Culture and Universities under grant ED431G/08. These grants are

co-funded by the European Regional Development Fund (ERDF/FEDER program). D. Chapela-Campa is supported

by the Spanish Ministry of Education, under the FPU national plan (FPU16/04428).

References

[1] Agrawal, R., Imielinski, T., Swami, A. N., 1993. Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia,

S. (Eds.), Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD 1993), Washington, D.C.

ACM Press, pp. 207–216.

[2] Agrawal, R., Srikant, R., 1995. Mining sequential patterns. In: Yu, P. S., Chen, A. L. P. (Eds.), Proceedings of the 11th International

Conference on Data Engineering (ICDE 1995), Taipei, Taiwan. IEEE, pp. 3–14.

[3] Bui, D. B., Hadzic, F., Potdar, V., 2012. A framework for application of tree-structured data mining to process log analysis. In: Yin, H., Costa,

J. A. F., Barreto, G. D. A. (Eds.), Proceedings of the 13th International Conference on Intelligent Data Engineering and Automated Learning

(IDEAL 2012), Natal, Brazil. Vol. 7435 of Lecture Notes in Computer Science. Springer, pp. 423–434.

[4] Buijs, J. C. A. M., van Dongen, B. F., van der Aalst, W. M. P., 2012. On the role of fitness, precision, generalization and simplicity in process

discovery. In: Meersman, R., Panetto, H., Dillon, T. S., Rinderle-Ma, S., et al. (Eds.), Proceedings of the On the Move to Meaningful Internet

Systems: Part I (OTM 2012), Rome, Italy. Vol. 7565 of Lecture Notes in Computer Science. Springer, pp. 305–322.

[5] Chiu, C., Yeh, C., Lee, Y., 2013. Frequent pattern based user behavior anomaly detection for cloud system. In: Proceedings of the 2013

Conference on Technologies and Applications of Artificial Intelligence (TAAI 2013), Taipei, Taiwan. IEEE, pp. 61–66.

[6] de Medeiros, A. K. A., 2006. Genetic process mining. Ph.D. thesis, TUE : Department of Industrial Engineering and Innovation Sciences.

[7] de San Pedro, J., Carmona, J., Cortadella, J., 2015. Log-based simplification of process models. In: Motahari-Nezhad, H. R., Recker, J.,

Weidlich, M. (Eds.), Proceedings of the 13th International Conference on Business Process Management (BPM 2015), Innsbruck, Austria.

Vol. 9253 of Lecture Notes in Computer Science. Springer, pp. 457–474.

[8] Desel, J., Reisig, W., 1996. Place or transition petri nets. In: Reisig, W., Rozenberg, G. (Eds.), Lectures on Petri Nets I: Basic Models,

Advances in Petri Nets. Vol. 1491 of Lecture Notes in Computer Science. Springer, pp. 122–173.

[9] Fahland, D., van der Aalst, W. M. P., 2011. Simplifying mined process models: An approach based on unfoldings. In: Rinderle-Ma, S.,

Toumani, F., Wolf, K. (Eds.), Proceedings of the 9th International Conference on Business Process Management (BPM 2011), Clermont-

Ferrand, France. Vol. 6896 of Lecture Notes in Computer Science. Springer, pp. 362–378.

[10] Ghionna, L., Greco, G., Guzzo, A., Pontieri, L., 2008. Outlier detection techniques for process mining applications. In: An, A., Matwin,

S., Ras, Z. W., Slezak, D. (Eds.), Proceedings of the 17th International Symposium on Foundations of Intelligent Systems (ISMIS 2008),

Toronto, Canada. Vol. 4994 of Lecture Notes in Computer Science. Springer, pp. 150–159.

[11] Greco, G., Guzzo, A., Manco, G., Pontieri, L., Saccà, D., 2004. Mining constrained graphs: The case of workflow systems. In: Boulicaut,

J., Raedt, L. D., Mannila, H. (Eds.), Proceedings of the 2004 European Workshop on Inductive Databases and Constraint Based Mining,

Hinterzarten, Germany. Vol. 3848 of Lecture Notes in Computer Science. Springer, pp. 155–171.

33

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

33

https://doi.org/10.1016/j.ins.2018.09.011

[12] Greco, G., Guzzo, A., Pontieri, L., Saccà, D., 2004. Mining expressive process models by clustering workflow traces. In: Dai, H., Srikant, R.,

Zhang, C. (Eds.), Proceedings of the 8th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2004),

Sydney, Australia. Vol. 3056 of Lecture Notes in Computer Science. Springer, pp. 52–62.

[13] Greco, G., Guzzo, A., Pontieri, L., Saccà, D., 2006. Discovering expressive process models by clustering log traces. IEEE Trans. Knowl.

Data Eng. 18, 1010–1027.

[14] Günther, C. W., Rozinat, A., 2012. Disco: Discover your processes. In: Lohmann, N., Moser, S. (Eds.), Proceedings of the Demonstration

Track of the 10th International Conference on Business Process Management (BPM 2012), Tallinn, Estonia. Vol. 940 of CEUR Workshop

Proceedings. CEUR-WS, pp. 40–44.

[15] Han, J., Cheng, H., Xin, D., Yan, X., 2007. Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 15,

55–86.

[16] Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M., 2000. Freespan: frequent pattern-projected sequential pattern mining.

In: Ramakrishnan, R., Stolfo, S. J., Bayardo, R. J., Parsa, I. (Eds.), Proceedings of the 6th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 2000), Boston, MA, USA. ACM, pp. 355–359.

[17] Leemans, M., van der Aalst, W. M. P., 2014. Discovery of frequent episodes in event logs. In: Ceravolo, P., Russo, B., Accorsi, R. (Eds.),

Proceedings of the 4th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA 2014), Milan, Italy. Vol. 237 of

Lecture Notes in Business Information Processing. Springer, pp. 1–31.

[18] Leemans, S. J. J., Fahland, D., van der Aalst, W. M. P., 2013. Discovering block-structured process models from event logs - A constructive

approach. In: Colom, J. M., Desel, J. (Eds.), Proceedings of the 34th International Conference on Application and Theory of Petri Nets and

Concurrency (PETRI NETS 2013), Milan, Italy. Vol. 7927 of Lecture Notes in Computer Science. Springer, pp. 311–329.

[19] Mannila, H., Toivonen, H., Verkamo, A. I., 1997. Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1, 259–289.

[20] Munoz-Gama, J., Carmona, J., van der Aalst, W. M. P., 2014. Single-entry single-exit decomposed conformance checking. Inf. Syst. 46,

102–122.

[21] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M., 2001. Prefixspan: Mining sequential patterns by prefix-projected

growth. In: Georgakopoulos, D., Buchmann, A. (Eds.), Proceedings of the 17th International Conference on Data Engineering (ICDE 2001),

Heidelberg, Germany. IEEE, pp. 215–224.

[22] Song, M., Günther, C. W., van der Aalst, W. M. P., 2008. Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (Eds.),

Proceedings of the 2008 International Workshops on Business Process Management (BPM 2008), Milano, Italy. Vol. 17 of Lecture Notes in

Business Information Processing. Springer, pp. 109–120.

[23] Steeman, W., 2013. BPI Challenge 2013.

URL https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07

[24] Tax, N., Sidorova, N., Haakma, R., van der Aalst, W. M. P., 2016. Mining local process models. J. Innov. Digit. Ecosyst. 3, 183–196.

[25] van der Aalst, W. M. P., 2011. Process Mining - Discovery, Conformance and Enhancement of Business Processes, 1st Edition. Springer.

[26] van der Aalst, W. M. P., 2012. Decomposing process mining problems using passages. In: Haddad, S., Pomello, L. (Eds.), Proceedings of

the 33rd International Conference on Application and Theory of Petri Nets (PETRI NETS 2012), Hamburg, Germany. Vol. 7347 of Lecture

Notes in Computer Science. Springer, pp. 72–91.

[27] van der Aalst, W. M. P., Adriansyah, A., van Dongen, B. F., 2011. Causal nets: A modeling language tailored towards process discovery. In:

Katoen, J., König, B. (Eds.), Proceedings of the 22nd International Conference on Concurrency Theory (CONCUR 2011), Aachen, Germany.

Vol. 6901 of Lecture Notes in Computer Science. Springer, pp. 28–42.

[28] van der Aalst, W. M. P., de Medeiros, A. K. A., Weijters, A. J. M. M., 2005. Genetic process mining. In: Ciardo, G., Darondeau, P. (Eds.),

Proceedings of the 26th International Conference on Applications and Theory of Petri Nets (ICATPN 2005), Miami, USA. Vol. 3536 of

Lecture Notes in Computer Science. Springer, pp. 48–69.

[29] Van Dongen, B., 2011. Real-life event logs - hospital log.

URL https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

34

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

34

https://doi.org/10.1016/j.ins.2018.09.011

[30] Van Dongen, B., 2012. BPI Challenge 2012.

URL https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

[31] Van Dongen, B., 2015. BPI Challenge 2015.

URL https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1

[32] van Dongen, B. F., de Medeiros, A. K. A., Verbeek, H. M. W., Weijters, A. J. M. M., van der Aalst, W. M. P., 2005. The prom framework: A

new era in process mining tool support. In: Ciardo, G., Darondeau, P. (Eds.), Proceedings of the 26th International Conference on Applications

and Theory of Petri Nets (ICATPN 2005), Miami, USA. Vol. 3536 of Lecture Notes in Computer Science. Springer, pp. 444–454.

[33] Vázquez-Barreiros, B., Lama, M., Mucientes, M., Vidal, J. C., 2014. Softlearn: A process mining platform for the discovery of learning paths.

In: Chen, N.-S., Huang, R., Kinshuk, Li, Y., Sampson, D. G. (Eds.), Proceedings of the IEEE 14th International Conference on Advanced

Learning Technologies (ICALT 2014), Athens, Greece. IEEE, pp. 373–375.

[34] Vázquez-Barreiros, B., Mucientes, M., Lama, M., 2015. Prodigen: Mining complete, precise and minimal structure process models with a

genetic algorithm. Inf. Sci. 294, 315–333.

[35] Weijters, A. J. M. M., van der Aalst, W. M. P., de Medeiros, A. K. A., 2006. Process mining with the heuristics miner-algorithm. Technische

Universiteit Eindhoven, Technical Report WP 166, 1–34.

[36] Zaki, M. J., 2001. SPADE: an efficient algorithm for mining frequent sequences. Mach. Learn. 42, 31–60.

35

POST-PRINT
Final publication via https://doi.org/10.1016/j.ins.2018.09.011

35

https://doi.org/10.1016/j.ins.2018.09.011

