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GPU Accelerated FFT-based Registration of
Hyperspectral Scenes

Álvaro Ordóñez, Francisco Argüello, and Dora B. Heras

Abstract—Registration is a fundamental previous task in many
applications of hyperspectrometry. Most of the algorithms de-
veloped are designed to work with RGB images and ignore the
execution time. This paper presents a phase correlation algorithm
on GPU to register two remote sensing hyperspectral images. The
proposed algorithm is based on principal component analysis,
multilayer fractional Fourier transform, combination of log-polar
maps, and peak processing. It is fully developed in CUDA for
NVIDIA GPUs. Different techniques such as the efficient use
of the memory hierarchy, the use of CUDA libraries and the
maximization of the occupancy have been applied to reach the
best performance on GPU. The algorithm is robust achieving
speedups in GPU of up to 240.6×.

Index Terms—Hyperspectral imaging, image registration,
Fourier transforms, GPU, CUDA, remote sensing.

I. INTRODUCTION

AT THE PRESENT, thanks to the recent advances on the
development of image sensor technologies the capture

of hyperspectral images is easier than two decades ago [1].
These images are hundreds of bands taken over a wide
wavelength range. The high spectral resolution that charac-
terizes the hyperspectral images makes it possible to address
many applications such as agriculture [2], medicine [3], target
detection [4], environmental monitoring, change detection and
quality control, among others.

Image registration is a fundamental task in many of these
applications to overlay two or more images taken at different
times, from different viewpoints and possibly under different
lighting conditions [5], [6]. The registration problem that
we study consists in estimating the translation, rotation and
scaling parameters between a reference image and a second
image of the same scene that have been taken at different
times. Several different algorithms to solve automatic image
registration have been proposed [7]–[10]. Fourier algorithms
are very efficient because the fast Fourier transform (FFT)
can be used to compute the cross-correlation (phase correla-
tion) between the two images. Additionally, they are resilient
to noise, occlusions, and other defects typical of medical
or remote-sensing images. In addition, these algorithms are
suitable to be implemented on commodity GPUs because the
operations are mostly point by point and can be computed by
independent threads, i.e., without data dependencies.

A FFT-based registration technique was proposed by Chen
et al. [11] for translation, rotation and scale-invariant im-
age registration using a log-polar grid. This algorithm is
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also known as Fourier-Mellin invariant symmetric phase-only
matched filtering (FMI-SPOMF) [12]–[14]. Different Fourier-
Mellin-based techniques have been proposed: Keller et al.
introduce the pseudopolar Fourier transform (PPFT) [15], Liu
et al. propose the pseudo-log-polar Fourier Transform (PLPFT)
[16], and an octa-log-polar version of the PLPFT was proposed
by Wu et al [17], among others. Recently, a simpler approach
was followed by Pan et al. [18], who proposed an adaptable
multilayer fractional Fourier transform (MLFFT) for image
registration with lower interpolation errors in both polar and
log-polar grids.

However, most of these registration algorithms ignore time
performance. In real-time applications, e.g., detection in a
search and rescue scenario, disaster and damage control,
reconnaissance and surveillance, etc., the execution time be-
comes crucial. GPUs have been demonstrated to be appropriate
in many different problems for a computationally efficient
hyperspectral processing: classification [19], spectral unmix-
ing [20], target detection [21] and segmentation [22]. In the
literature some registration algorithms for two-dimensional
images in GPU have been proposed [23]–[27], but none of
them is applied to hyperspectral images, that contain more
than a hundred times the data of a typical image.

In this paper we extend the algorithm presented in
[28], which is called HYperspectral Fourier-Mellin algorithm
(HYFM), to GPU processing to achieve the best performance
for use in real-time applications. The algorithm exploits the
information contained in the different bands of the images and
is based on principal component analysis, multilayer fractional
Fourier transform and the combination of log-polar maps. The
whole algorithm has been developed in CUDA to get a full
exploitation of the GPU architecture. Execution times in GPU
are also compared to a CPU implementation of the algorithm.

The paper is organized as follows: Section II describes
the algorithm; the GPU implementation of the algorithm is
explained in Section III; the results are discussed in Section
IV; and, finally, in Section V we present the conclusions.

II. HYPERSPECTRAL FOURIER-MELLIN REGISTRATION

In this section we present the algorithm to register two
hyperspectral images (reference and target) on GPU. The
algorithm is based on the computation of Fourier transforms
and log-polar maps and on the processing of the peaks detected
in these maps. When facing the processing of hyperspectral
images a key issue is that they are highly correlated in the
spatial and spectral dimensions. This complicates the design
of new algorithms and increases the processing times.
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Fig. 1. Proposed HYFM scheme for registration of two hyperspectral images.

The registration algorithm that is projected to GPU is
outlined in Fig. 1. The algorithm comprises six main stages. In
order to deal with the high dimensionality of the images and
to perform dimensionality reduction, a Principal Component
Analysis (PCA) [29] is performed in the first stage. The
registration is then applied to pairs of PCA components.

Next, the MLFFT technique is calculated for each PCA
component to obtain a more robust log-polar maps in the third
stage. In order to take into account the hyperspectral character
of the images, the phase correlation maps are computed for
each pair of log-polar maps in the fourth stage. Then these
maps are combined in stage five. Finally, in the last stage, the
highest peaks are examined to determine the scaling, rotation,
and translation parameters.

A. Stage I. Preprocessing

In this first stage, a Blackman window is applied to
each hyperspectral band to remove the high frequencies that
deteriorate the precision of the registration [30]. Then, a
PCA computation starts to reduce the dimensionality of each
hyperspectral image, consisting of a large number of inter-
related variables, while retaining as much as possible of the
variation present in the hyperspectral image. This is achieved
by transforming to a new set of variables, NPCA components
for each image, which are uncorrelated, and which are ordered
so that the first few retain most of the variation present in all
of the original variables [31]. PCA computation is done by
Eigenvalue Decomposition (EVD) of the covariance matrix of
the image.

B. Stage II and III. MLFFT and log-polar

Firstly, in the MLFFT stage, a simple high-pass emphasis
filter transfer function is applied to each PCA component.
Its purpose is to reduce the aliasing effects that degrade the
precision of image registration based on phase correlation and
that are strongest in the low frequencies [12].

A challenge when computing the log-polar maps is to eval-
uate the log-polar Fourier transform efficiently and accurately.
We use the MLFFT [18], since it has lower interpolation
errors in both polar and log-polar grids. The MLFFT uses
a multilevel grid to approximate the log-polar grid. Since the
point spacing in the log-polar map follows a logarithmic law
relative to the radius, MLFFT uses a denser grid in the lower
levels. Each level of the MLFFT can be computed by means

of a fractional Fourier transform (FRFT) with a particular
parameter αl. The FRFT for a complex sequence x of size
m, where m is a power of 2, is defined as

Gk(x, α) = e−πik
2α

2m−1∑
j=0

xje
−πij2αeπi(k−j)

2α (1)

= e−πik
2α

2m−1∑
j=0

xjyjzk−j , (2)

where the 2m-long complex sequences y and z are as follows

yj = e−πij
2α, 0 ≤ j < m, (3)

yj = 0, m ≤ j < 2m, (4)

zj = eπij
2α, 0 ≤ j < m, (5)

zj = eπi(j−2m)2α, m ≤ j < 2m, (6)

and where

xj = 0, m ≤ j < 2m. (7)

To calculate the 2D-FRFT of an image I, first, we apply a
1D fractional Fourier transform (2) to each row and then we
apply a 1D fractional Fourier transform to each column [28].
Thus, the L-level MLFFT grid can be written as

P =

L⋃
l=1

P l (8)

where P l = {Plp; 0 ≤ p < N}, Plp = Gp(x, αl), x is a row
or column of image I, and 0 < α1 < α2 < · · · < αL = 1.
Plp is first calculated for all the N rows of I and then for all
the N columns. Usually, a number of levels L between two
and four is used. Finally, the log-polar grid is generated by
interpolating on the MLFFT grid.

An example of calculation of a 4-level MLFFT over an
image is illustrated in Fig. 2. First, four 2N×2N -long complex
sequences y and z are calculated, one for each α where
each point corresponds to an exponential as indicated in (3)-
(6). Secondly, the size of the image I, in our case a PCA
component of the image, is expanded to 2N × 2N size by
allocating the image in the upper left corner and padding the
rest with zeros as indicated in (7). Finally, the four FRFTs are
computed and the MLFFT grid is calculated using (8).
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PCA component

Fig. 2. Example of 4-level MLFFT grid calculation over a PCA component
of a hyperspectral image.

C. Stage IV. Correlation

Phase correlation is used in the Correlation stage and in
the Peak processing stage. Fourier based automatic registration
relies on the Fourier shift theorem, which states that a circular
shift in the spatial domain is equivalent to a phase ratio in the
frequency domain.

Let I1(x, y) and I2(x, y) be two images, where (x, y) are
the spatial coordinates, being the second image a translated
replica of the first one,

I2(x, y) = I1(x+ x0, y + y0), (9)

the shift theorem states that their Fourier transforms are related
by

F2(u, v) = ei2π(ux0+vy0)F1(u, v), (10)

where (u, v) are the coordinates in the transform space and i
the imaginary unit.

Applying the phase correlation in the frequency domain,

F1(u, v)F
∗
2 (u, v)

|F1(u, v)F ∗
2 (u, v)|

= e−i2π(ux0+vy0), (11)

where ∗ denotes the complex conjugate, and finally, computing
the inverse Fourier transform (IFFT), we obtain a matrix with
approximate zeros everywhere except for a peak at coordinates
(x0, y0), that can be used to register the images. To recover the
rotation and scaling parameters, Chen et al. [11] proposed to
use the log-polar Fourier transform (Fourier-Mellin transform).

D. Stage V. Composition

The registration experiments have revealed that combining
the log-polar maps after phase correlation allows achieving
the best results, registering a higher number of scales. This
combination is computed averaging the different phase cor-
relation maps calculated for each pair of PCA components.
This approach allows each PCA pair to contribute to the cross
correlation independently.

E. Stage VI. Peak processing

Once the phase correlation over the log-polar map and the
combination of maps of the different pairs of PCA components
have been performed, a log-polar map is obtained with approx-
imate zeros everywhere except several peaks. If the images to
register were exactly equal and neither aliasing nor border

effects occur, only one peak should be obtained. In practice,
a great number of peaks in the log-polar map are obtained.

The peak processing stage has two steps: process the peaks
of phase correlation in the log-polar map to detect the scale
factor and the rotation angle, and process the peaks of phase
correlation in the cartesian grid (after correcting the scaling
and rotation of the target image) to determine the translation.

In order to find the best peak, all the highest peaks in
the log-polar map are processed, and the second phase of
correlation in the cartesian grid is used to select the best
peak. The value of the highest peak in the cartesian grid
will determine the correct peak in the log-polar grid. The
coordinates of these peaks determine the scale factor ρ0, the
rotation angle θ0, and the translation parameters (x0, y0).

III. HYPERSPECTRAL FOURIER-MELLIN REGISTRATION
ON GPU

In this section, we introduce some CUDA programming
fundamentals as well as the CUDA implementation of the
HYFM algorithm on GPU for the registration of hyperspectral
images.

A. CUDA GPU Programming Fundamentals

CUDA is a parallel computing platform and programming
model that allows running programs using parallel functions
called kernels [32]. Each kernel executes a set of parallel
threads. Thus, each thread runs an instance of the kernel
following a Single Instruction Multiple Thread (SIMT) pro-
gramming model. A warp is the number of threads that can run
concurrently on a multiprocessor. The programmer organizes
these threads into a grid of blocks. A grid is a set of blocks
that are executed in parallel and which are independent. A
block is a set of threads that work together.

In the new architecture called Pascal, the memory hierarchy
was changed [33]. The Pascal GP104 architecture provides
96 KB/SM of dedicated shared memory and 48 KB/SM
L1/texture cache, i.e., it is not necessary to select a preference
of the shared memory and L1 cache split to get the optimal
performance in contrast to earlier architectures. The shared
memory is only visible by the threads of the block. This unified
L1/texture cache acts as a coalescing buffer for memory
access. Moreover, Pascal GP104 features a unified 2048 KB
L2 cache.

In order to reduce the computational time a set of optimiza-
tion strategies have been applied:

1) Reduce the data transfers between the host and device
memories. Implementing an algorithm that runs entirely
on GPU allows reducing computation times.

2) Minimize the use of memory. Some computations are
performed in-place, i.e., the outputs are stored over the
space previously allocated for the inputs.

3) Use of texture memory whenever possible. The texture
memory is a dedicated read-only cache which includes
hardware filtering. It can also perform linear floating point
interpolation as part of the read process. Compared to a
typical CPU caching scheme, the texture memory cache is
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optimised for accelerating access patterns, for 2D spatial
locality (in the coordinate system of the texture).

4) Avoid divergences. Divergences negatively affect perfor-
mance.

5) Efficient computation using libraries. Use the compu-
ting libraries implemented in the literature in order to get
the best performance.

6) Use of low-level optimized instructions. The use of low-
level optimized functions provides better performance
and better accuracy, especially for repeatedly executed
code [34].

7) Search for the best kernel configurations. To get
the highest possible occupancy is the only way to hide
latencies and keep the hardware busy [34]. To achieve
this, the maximum block size for each kernel is selected
with the requirement that the number of registers and
the shared memory usage do not act as limiters of the
occupancy.

B. CUDA implementation

In this section, we describe the GPU implementation of
the HYFM algorithm. The computational complexity for a d-
dimensional N × N image is O(d3 + d2N2) for the PCA
computation and O(NPCAN

2 logN) for the remaining tasks,
where NPCA is the number of Principal Components (PCs)
retained. The maximum amount of global memory required
is that corresponding to the size of the largest original image
plus the space required to compute their PCA components.

In Fig. 3 the pseudocode for the HYFM registration is
presented. Each process executed in GPU is placed between
<> symbols and involves more than one kernel. The GM
acronym indicates that this process is executed in global
memory, SM in the shared memory and TM in the texture
memory.

The optimization strategies applied globally are the fol-
lowing. The algorithm runs entirely on GPU to reduce the
data transfers between host and device memories (CUDA
optimization strategy 1 explained in Section III-A). Regarding
the data neighborhood required for the computation of each
pixel, two situations have been identified. The first situation
occurs for most of the computations per pixel, which do not
require the values of the neighbors. The other situation occurs
when interpolation is required. In this last case, the texture
memory is used (see Section III-A, strategy 3). Moreover, most
of the computations are in-place, i.e., the input is overwritten
by the output (see Section III-A, strategy 2).

Furthermore, optimization strategy 7 (see Section III-A) has
been applied using the NVIDIA Visual Profiler tool to analyze
each kernel and identify potential performance bottlenecks.
In general, a 256-threads block have been chosen with the
exception of kernels of PCA for which the block size is 512.
Analyzing the resources that each kernel needs, we customize
each kernel configuration. This allows us to obtain the best
performance and optimal hardware occupancy. Moreover, the
chosen block sizes are multiple of the warp size, which is
32 on all current hardware, therefore, this facilitates memory
accesses by warps that are aligned to cache lines. In addition,

HYFM registration (GPU algorithm)

Input: Hyperspectral reference image I1, hyperspectral target image I2.
Output: Scale factor ρ0, rotation angle θ0, and translation (x0, y0).
Parameters: number of PCA componentsNPCA, number of alpha parameters
L, FRFT αl parameters, phase correlation peaks NPeaks.

Preprocessing and initializations
1: < Initialize auxiliary data for high-pass filter, FRFT computation, . GM

and log-polar computation >
2: for each input image do
3: < Apply a Blackman window to each hyperspectral band > . GM
4: < PCA computation > (Detailed in Fig. 4) . GM+SM
5: < Extend each band to N ×N pixels, with N power of 2 > . GM+SM
6: end for

MLFFT, log-polar, and correlation (Detailed in Fig. 5)

Composition
7: < Average the log-polar maps > . GM

Peak processing
8: < Sort the log-polar peaks by magnitude > . GM+SM
9: for peak := 0 (with coordinates ρ′ and θ′) to NPeaks do

10: < Scale and rotate (θ′ and θ′ + π) the first PCA . GM+SM
of target image >

11: < Compute phase correlation in the cartesian grid > . GM+SM
12: < Select the highest peak (with coordinates x′ and y′) > . GM+SM
13: end for
14: Use the highest peak of all cartesian grids to determine (ρ0, θ0, x0, y0)

. GM: Global Memory, SM: Shared Memory, TM: Texture Memory

Fig. 3. Pseudocode for the HYFM registration in CUDA.

the size of the input images is extended to the closest power
of 2 to obtain a more efficient computation of the FFT [35]
which is required many times in the algorithm. Also, it allows
avoiding divergences (see Section III-A, strategy 4) in the
operations performed by the different threads.

1) Stage I. Preprocessing and initializations: This first
stage is mostly computed using global memory. As shown in
Fig. 3, the algorithm begins with both images stored in global
memory.

First, the initialization of some arrays repeatedly required
in the high-pass filter, log-polar and FRFT computations are
executed (Fig. 3, line 1). Due to their large size, these arrays
are stored in global memory. The cosine and sine calculations
with a factor π, which are required in these initializations,
have been replaced by the optimized instructions cospi and
sinpi (see Section III-A, strategy 6).

Then, a Blackman window is applied to each hyperspectral
band of each image (Fig. 3, line 3). It is computed as a
point by point multiplication which is carried out in global
memory. After this, the PCA computation starts to reduce the
dimensionality of a hyperspectral image (Fig. 3, line 4). As
mentioned previously, it is done by Eigenvalue Decomposition
(EVD) of the covariance matrix of the image. Fig. 4 includes
the pseudocode of the PCA algorithm in GPU [36]. The image
must be centered by subtracting the average pixel value of
the band’s pixels (Fig. 4, lines 1-2). This step is performed
using the cuBLAS function cublasSgemv [37] and the shared
memory (see Section III-A, strategies 2 and 5).

The covariance matrix of matrix I is calculated using the
cuBLAS function cublasSgemm (see Section III-A, strategy
5). This function performs the I · IT operation (Fig. 4, line 3).

The PCA stage continues with the computation of
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PCA computation (GPU algorithm)

Input: Hyperspectral image I stored in global memory.
Output: PCA components of image I.

Image centering phase
1: < Obtain the sum of all pixels in each band of image > . SM + GM
2: < Image centering > . SM

PCA phase
3: < Calculate the covariance matrix I · IT of centered image > . SM + GM
4: < Calculate the matrix of eigenvectors V > . SM + GM
5: < Obtain the PCs by IV > . SM + GM

Fig. 4. Pseudocode for PCA computation in CUDA.

MLFFT, log-polar, and correlation (GPU algorithm)

Input: PCA components of image I1 and I2.
Output: NPCA phase correlation maps.
Parameters: number of PCA componentsNPCA, number of alpha parameters
L, FRFT αl parameters.

1: for each PCA component in images I1 and I2 do
2: < Apply a high-pass filter to each component > . GM+SM
3: (1) Compute FFT
4: (2) High-pass kernel
5: (3) Compute IFFT

6: for each αl from l = 1 to L do
7: < Compute FRFT with parameter αl > . GM+SM
8: < Compute module > . GM
9: < Approximate a N/2 ×N/2 log-polar grid > . GM+TM

10: (1) Initialize texture memory
11: (2) Log-polar kernel (interpolation)
12: end for

13: < Compute phase correlation in the log-polar grids > . GM+SM
14: (1) Compute FFT in I1 and I2 log-polar grids
15: (2) Correlation kernel
16: (3) Compute IFFT
17: (4) Compute module
18: end for

. GM: Global Memory, SM: Shared Memory, TM: Texture Memory

Fig. 5. Detail of the pseudocode for the MLFFT, log-polar, and correlation
stages in CUDA.

I · IT = USVT

using the cuSOLVER function cusolverDnSgesvd (see Section
III-A, strategy 5) [38], where the diagonal elements of S are
the singular values of I·IT and the first columns of U and V are
the left and right singular vectors of I · IT (Fig. 4, line 4). The
final step is to compute the PCs using the cuBLAS function
cublasSgemm (see Section III-A, strategy 5), that calculates
the product between I and V (Fig. 4, line 5).

When the PCA computation is finished, each band of the
images (PCA components from now on) is extended to an
N ×N size with N power of 2 adding a border as explained
at the beginning of this section (Fig. 3, line 5).

2) Stage II and III. MLFFT and log-polar: The next stages,
MLFFT, log-polar, and correlation, are illustrated in Fig. 5. It
begins with the application of a high-pass filter to each PCA
component (Fig. 5, lines 1-5) with the objective of allowing to
pass signals with higher frequency and attenuate signals with
lower frequencies. To get the best performance, the cuFFT
library is used in the calculations of the FFT that are required
by the high-pass filter (see Section III-A, strategy 5) [35].

Once the high-pass filter is applied, the process for com-

PCA component

 

 

FRFTs

MLFFT grids

Mapping

4-level MLFFT

Interpolation

Log-polar grid

Global Memory

Fig. 6. Computation of a log-polar grid on GPU using a four-level MLFFT
over a PCA component.

Log-polar peaks

Sorted by
magnitude

Scale and
rotate

Phase
correlation

Cartesian peaks

Fig. 7. Peak processing stage on GPU.

puting the L-level MLFFT grid and the log-polar can begin
(Fig. 5, lines 6-12). Fig. 6 illustrates this computation. First,
four FRFTs with α = {1, 1/4, 1/16, 1/64} are computed
which allows to analyze the image at different resolutions.
The cuFFT library is used to accelerate the computations of the
FFT that are required for the FRFT computations. Besides, the
FRFT computation requires a high number of multiplications
over data in global memory: first matrix multiplications and
then element-wise multiplications. Consequently, this requires
a high number of memory accesses. Secondly, using (8) the
MLFFT grid is calculated.

Lastly, to get the log-polar grid, the different levels of
MLFFT are combined to integrate the information (Fig. 5,
lines 9-11). To compute this process, it is necessary to per-
form a large number of memory accesses and interpolation
calculations, for which the use of texture memory is crucial
(see Section III-A, strategy 3).

3) Stage IV. Correlation: The last process to be executed
in the first loop is the computation of phase correlation in
the log-polar grids (Fig. 5, lines 13-17), and after it the result
is added to a cumulative variable. The cuFFT library is used
to compute the required FFTs in the phase correlation (see
Section III-A, strategy 5).

4) Stage V. Composition: Returning to Fig. 3, when the
Correlation stage is finished, the combination is calculated
averaging log-polar maps after phase correlation (Fig. 3, line
7).

5) Stage VI. Peak processing: Fig. 7 illustrates the compu-
tation of this stage on GPU. First, in order to find the best
peak, all the highest peaks in the log-polar map are processed
(Fig. 3, lines 9-13). For this, this last stage starts sorting the
log-polar peaks by magnitude using the sort by key function
of the Thrust library (see Section III-A, strategy 5) (Fig. 3,
line 8). This library automatically selects the most efficient
implementation for sorting [39].

When the peaks are sorted, the higher ones are processed.
In this processing the first component of the target image
is rotated and scaled several times with the help of the
nppiRotate 32f C1R and nppiResizeSqrPixel 32f C1R func-
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TABLE I
INFORMATION FOR THE TEST HYPERSPECTRAL IMAGES: SENSOR, SIZE,

NUMBER OF SPECTRAL BANDS, AND RESOLUTION (m/pixel)

Image Sensor Size Bands Spatial
Resolution

Pavia University ROSIS-03 610× 340 103 1.3
Pavia Centre ROSIS-03 1096× 715 102 1.3
Indian Pines AVIRIS 145× 145 220 20
Salinas Valley AVIRIS 512× 217 204 3.7
Jasper Ridge 2006 AVIRIS 1286× 588 224 3.3
Jasper Ridge 2007 AVIRIS 1286× 588 224 3.4
Santa Barbara Box 2013 AVIRIS 1024× 769 224 15.2
Santa Barbara Box 2014 AVIRIS 1024× 769 224 15.2
Santa Barbara Front 2009 AVIRIS 900× 470 224 16.4
Santa Barbara Front 2010 AVIRIS 900× 470 224 11.3

tions of the NVIDIA Performance Primitives (NPP) library
(see Section III-A, strategy 5) (Fig. 3, line 10).

Next, to determine the translation parameters and the correct
values for the rotation angle and scale factor, a phase corre-
lation is performed on the cartesian grid (Fig. 3, line 11). To
recover these parameters it is necessary to find the maximum
value in the phase correlation map (Fig. 3, line 12) using the
cublasIcamax function of cuBLAS library (see Section III-A,
strategy 5).

Finally, the highest peak of all phase correlations maps is
selected and its coordinates determine the translation param-
eters. The coordinates of the selected peak in the log-polar
map decide the scale factor and the rotation angle (Fig. 3, line
14). These four values are the output parameters that will be
applied to the target image in order to register it.

IV. RESULTS

This section presents some experimental results obtained by
the HYFM algorithm. First, the experimental conditions and
test images will be described in Section IV-A. Then, the results
in terms of registration and computation time are detailed
(Sections IV-B and IV-C).

A. Experimental conditions and test images

The CPU version of the algorithm has been evaluated on a
PC with a quad-core Intel Core i5-6600 at 3.3 GHz and 32
GB of RAM. The code has been compiled using the gcc 4.8.4
version under Linux. Regarding the GPU implementation, the
CUDA code runs on a Pascal NVIDIA GeForce GTX 1070
with 15 SMs and 128 CUDA cores each. The CUDA code has
been compiled under Linux using nvcc with version 8.0.26 of
the toolkit, as well as the libraries used. All computations
are performed in single-precision arithmetic. Performance
results in terms of registration precision, computation time
and speedup will be presented. In the computation times and
speedup results, we provide the average of ten independent
executions for each experiment.

Seven hyperspectral images were used to evaluate the al-
gorithm proposed in this work. Table I shows detailed infor-
mation for each image (the sensor, size, number of spectral
bands, and spatial resolution).

TABLE II
SUCCESSFULLY REGISTERED CASES FOR EACH SCENE. THE NUMBER IN

PARENTHESES INDICATES THE NUMBER OF SCALINGS THAT WERE
CORRECTLY REGISTERED FOR ALL ANGLES

Scene FMI-SPOMF MLLFT SURF
Pavia University 1/4× to 4.5× (11) 1/4× to 4.5× (11) 1/4× to 3.0× (8)

Pavia Centre 1/5× to 6.0× (15) 1/5× to 6.0× (15) 1/6× to 5.5× (15)
Indian Pines 1/2× to 3.0× (7) 1/2× to 3.0× (7) 1.0× (1)

Salinas 1/2× to 4.0× (8) 1/2× to 4.0× (8) 1/2× to 1.5× (3)
Jasper Ridge 1/3× to 2.5× (6) 1/3× to 2.5× (6) (0)

Santa Barbara Front 1/4× to 2.5× (7) 1/4× to 2.5× (7) 1.0× (1)
Santa Barbara Box 1/2× to 2.0× (4) 1/3× to 2.0× (5) 1.0× (1)

Average number of scalings (8.29) (8.43) (4.14)

Scene SIFT-1 SIFT-2 HYFM on GPU
Pavia University 1/6× to 5.5× (15) 1/2× to 2.0× (4) 1/4× to 5.5× (13)

Pavia Centre 1/8× to 6.5× (19) 1/5× to 2.5× (8) 1/5× to 7.5× (18)
Indian Pine 1/3× to 3.0× (7) 1/2× to 1.0× (2) 1/2× to 4.0× (8)

Salinas 1/4× to 5.5× (13) (0) 1/2× to 4.5× (9)
Jasper Ridge (0) 1/2× to 1.5× (3) 1/5× to 3.0× (9)

Santa Barbara Front 1.0× to 1.5× (2) 1/3× to 8.0× (17) 1/4× to 3.5× (9)
Santa Barbara Box 1/3× to 1.5× (4) 1/2× to 1.0× (2) 1/4× to 6.0× (14)

Average number of scalings (8.57) (5.14) (11.43)

The first four scenes were taken by the AVIRIS (Airbone
Visible/Infrared Imaging Spectometrer) and ROSIS-03 (Re-
flective Optics System Imaging Spectrometer) sensors and they
are commonly used for testing in remote sensing (Fig. 8) [40].
For these images the registration is performed with a rotated
and scaled version of the same image. This way, all the details
can be investigated in a controlled environment.

The remaining scenes are pairs of images taken by the
AVIRIS sensor at different dates (Fig. 9). Each pair of images,
in addition to different scaling and orientation factors, presents
changes in vegetation, differences in the lighting conditions,
and alterations in buildings and infrastructures. These images
were loaded from the AVIRIS database [41] and no additional
processing or band removal was performed. A region from
both images was selected to remove the background. To
increase the range of the study, we have performed these
additional operations of scaling and rotation over the second
real image of each pair.

B. Performance results in terms of registration precision

The algorithm has three parameters to be selected: the
number of the PCA components to be retained (NPCA = 8
in our case), the parameters α in the FRFT and MLFFT
(α = {1, 1/4, 1/16, 1/64}), and the number of the log-polar
peaks to be examined (NPeaks = 50 in our case). Cubic
interpolation is used. The NPCA and α parameters have been
fixed after testing a wide range of values. A high number of
log-polar peaks have been selected in order to maximize the
probability of successful registration.

The procedure used to test the algorithm is as follows. When
working with the first group of images, the original image is
used as a reference while the target image is a rotated and
scaled version of it. In the second group, the first image of each
pair is used as a reference while the second image is used as
a target image. We have performed an exhaustive search with
scale ranging from 1/6× to 8× (20 scale factors) and rotation
angles from 0 to 360 degrees in increments of 5 degrees (72
angles).

Table II summarizes the cases that were correctly regis-
tered for each scene by the proposed scheme on GPU and
others in literature. These results were presented in detail
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(a) (b) (c) (d)

Fig. 8. Hyperspectral images commonly used for testing in remote sensing: (a) Pavia University, (b) Pavia Centre, (c) Indian Pines, (d) Salinas.

(a) (b) (c) (d) (e) (f)

Fig. 9. Jasper Ridge Biological Preserve 1 and Santa Barbara scenes taken for the AVIRIS sensor. (a) Fragment of the first Jasper image of size 588×1286
pixels taken on 5/12/2006, (b) fragment of the second Jasper image taken on 8/13/2007 with the same number of pixels, (c) fragment of the first Santa
Barbara Box Line 8 image of size 769× 1024 pixels taken on 4/11/2013, (d) fragment of the second Santa Barbara Box Line 8 image taken on 4/16/2014
with the same number of pixels, (e) fragment of the first Santa Barbara Front Range A2 image of size 470×900 pixels taken on 3/30/2009, and (f) fragment
of the second Santa Barbara Front Range A2 image taken on 4/30/2010 with the same number of pixels.

in [28]. Two methods based on FFT: the original Fourier-
Mellin algorithm (FMI-SPOMF) [11], and the MLFFT method
[18], and three feature-based methods: the Speeded-Up Robust
Features (SURF) method [42] and two Scale Invariant Feature
Transform (SIFT) implementations, the original (SIFT-1) [43]
and a more recent version (SIFT-2) [44].

The proposed HYFM method provides the best results,
specially in images taken on different dates in which any other
method fails. For example, for the Santa Barbara Box image,
a scaling up to 6.0× has been obtained, while the maximum
scale recovered by the other methods is 2.0×. The accuracy of
the method on GPU is the same as the accuracy of the original
method on CPU. The GPU projection has been developed to
preserve it.

C. Performance results in terms of computation times

The procedure test consists in registering two images. In
the case of the pairs scenes taken by the AVIRIS sensor
at different dates, these two images are registered. In the
remaining images a target image is generated applying a
rotation angle and a scale factor to the original image. All
tables show execution times without times for CPU-GPU

TABLE III
CPU AND GTX 1070 GPU EXECUTION TIMES (IN SECONDS) PER STEP OF

THE HYFM ALGORITHM FOR Jasper Ridge REGISTRATION

Step Pseudocode lines CPU CUDA GPU Speedup
Blackman 3 in Fig. 3 0.047s 0.065s 0.7×
PCA 4 in Fig. 3 0.790s 0.214s 3.7×
Extend 5 in Fig. 3 0.111s 0.005s 22.5×
High-pass 2-5 in Fig. 5 21.803s 0.065s 336.3×
MLFFT 7-8 in Fig. 5 344.637s 0.953s 361.6×
Log-polar 9-11 in Fig. 5 2.781s 0.080s 34.9×
Phase correlation 11 in Fig. 3 and 128.419s 0.444s 289.2×

13-17 in Fig. 5
Composition 7 in Fig. 3 0.007s 0.001s 6.0×
Sort peaks 8 in Fig. 3 0.023s 0.004s 5.2×
Scale and rotate 10 in Fig. 3 8.443s 0.198s 42.7×
Evaluate peaks 12 and 14 in Fig. 3 0.238s 0.018s 13.1×

transfers and image allocation in memory, unless otherwise
is specified.

The CPU and GPU utilizations by each step of the algorithm
are presented in Table III for the registration of Jasper Ridge
images. Most of the computation time is spent to calculate
the MLFFT, the phase correlation and the high-pass filter. The
75% of the computation time is used for processing these
steps because they involve expensive FFT calculations. The
best speedup is obtained for these three processes. The use
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Fig. 10. GTX 1070 GPU utilization (in seconds) per step of the HYFM
algorithm for Jasper Ridge registration

TABLE IV
CPU AND GTX 1070 GPU COMPUTATION TIMES (IN SECONDS) FOR

HYFM FOR EACH SCENE

CPU CUDA GPU Speedup
Pavia University 123.13s 0.54s 228.0×
Pavia Centre 507.01s 1.88s 269.7×
Indian Pines 6.57s 0.19s 34.6×
Salinas 28.62s 0.27s 106.0×
Jasper Ridge 507.30s 2.05s 247.5×
Santa Barbara Box 120.47s 0.77s 156.5×
Santa Barbara Front 120.09s 0.67s 179.2×

TABLE V
CPU AND GTX 1070 GPU EXECUTION TIMES (IN SECONDS) INCLUDING
TIMES FOR CPU-GPU TRANSFERS AND IMAGE ALLOCATION IN MEMORY

(IN CPU AND IN GPU) FOR HYFM FOR EACH SCENE

CPU CUDA GPU Speedup
Pavia University 123.27s 0.61s 203.1×
Pavia Centre 507.59s 2.11s 240.6×
Indian Pines 6.59s 0.21s 31.4×
Salinas 28.79s 0.34s 83.8×
Jasper Ridge 508.71s 2.53s 201.1×
Santa Barbara Box 121.93s 1.28s 95.3×
Santa Barbara Front 120.87s 0.94s 128.1×

of the cuFFT library allows obtaining good performance in
these steps. The scaling and rotation of the images is also
expensive because it requires arithmetic computations and
involves interpolation calculations. In addition, the MLFFT,
the phase correlation, and the process to scale and rotate the
images are executed many more times than the others due to
the nature of the algorithm (see Fig. 3). Fig. 10 allows us to
easily compare the execution times on GPU for each step.

Table IV compares the execution times of the HYFM algo-
rithm for the different scenes on CPU and CUDA GPU. When
the image size is large, better parallelization and speedups
are achieved: speedups of 269.7× and 247.5× are obtained
for the Pavia Centre and Jasper Ridge images, respectively.
The similar computation times obtained for images of different
sizes are associated with the resizing which is applied in the
preprocessing stage (Fig. 3, line 5).

The execution times including times for CPU-GPU transfers
and image allocation in memory are presented in Table V. As
in Table IV, the speedup achieved is better when the image
size is larger.

TABLE VI
ACHIEVED AND THEORETICAL AVERAGE OCCUPANCY IN PERCENTAGE BY

EACH FUNCTION FOR Jasper Ridge REGISTRATION

Achieved occupancy (%) Theoretical occupancy (%)
Blackman 0.74 0.75
PCA 0.77 0.94
Extend 0.90 1.00
High-pass 0.76 0.86
MLFFT 0.63 0.73
Log-polar 0.89 0.99
Phase correlation 0.64 0.69
Composition 0.82 1.00
Sort peaks 0.37 0.42
Scale and rotate 0.64 0.74
Evaluate peaks 0.97 1.00

Table VI presents the achieved and theoretical average
occupancy for each function, each of them consisting of more
than one kernel. We have collected these measures using the
NVIDIA Profiling Tool (NVPROF). It provides the metrics
at kernel level. For this reason, the occupancies at function
level are calculated by weighting each kernel occupancy by
its execution time with respect to the total execution time of
the function. Higher occupancy does not always correspond to
higher performance, there is a point above which additional
occupancy does not improve performance [34]. Low achieved
occupancy for a function indicates that the GPU is not fully
utilized because not enough thread blocks to hide the operation
latency are launched. It is important to note that kernels of
library functions cannot be configurable by the user and their
occupancy is not always the best. Only two of the kernels
not including library calls are limited. These are the kernel
to apply the Blackman window and the kernel to initialize
some constants required to calculate the log-polar grid. Both
kernels are limited by number of registers due to the high use
of mathematical functions (cosine, power, multiple divisions,
etc.).

V. CONCLUSIONS

In this paper, a GPU accelerated algorithm for the registra-
tion of hyperspectral images based on the Fourier transform
(HYFM) is presented. The algorithm was developed for run-
ning entirely in GPU and it exploits the GPU architecture
efficiently. The algorithm is based on principal component
analysis, multilayer fractional Fourier transform, combination
of log-polar maps, and peak processing. The Fourier transform
is computed through the FRFT over a multilayer grid, which
reduces the interpolation errors in the log-polar map.

We have performed several experiments on hyperspectral
images of different sizes and obtained by different sensors,
achieving successful results in both precision of the registra-
tion and execution time compared to other algorithms available
in the literature. The steps that involve FFT computations are
the most expensive in execution time and the most optimized
in GPU: MLFFT, phase correlation and high-pass filter. For all
of them the highest speedups have been reached. A registration
time of 2.11s is achieved in GPU for the Pavia Centre image
with 1096 × 715 pixels and 102 bands, obtaining a speeding
factor of 240.6× when compared to the sequential execution
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in CPU. The results have shown that commodity GPUs are
an adequate platform to perform efficient registration even for
large images.

SUPPLEMENTAL DATA

The underlying research materials for this article can be
accessed at http://wiki.citius.usc.es/hiperespectral:hyfm-gpu.
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