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ABSTRACT

The alignment of images, also known as registration, is a re-
levant task in the processing of hyperspectral images. Among
the feature-based registration methods, Speeded Up Robust
Features (SURF) has been proposed as a computationally ef-
ficient approach. In this paper HSI–SURF is proposed. This
is a method to register hyperspectral remote sensing images
based on SURF that takes advantage of the full spectral in-
formation of the images. In this sense, the proposed method
selects specific bands of the images and adapts the keypoint
descriptor and the matching stages to benefit from the spectral
information, thus increasing the effectiveness of the registra-
tion.

Index Terms— Hyperspectral data, remote sensing, reg-
istration, SURF features, feature extraction.

1. INTRODUCTION

Image registration is a fundamental task in remote sensing hy-
perspectral imaging for different applications. In many cases,
images that were acquired from different viewpoints need to
be jointly analyzed. We consider the registration problem as-
sociated with images where the translation, rotation, and scal-
ing parameters between a reference image and a target image
of the same scene need to be calculated. Among the set of reg-
istration methods [1], feature–based methods extract signifi-
cant features (regions, lines or points) from the images. These
methods are especially robust to illumination changes, inten-
sity changes introduced by noise, and changes introduced by
the use of different sensors, which make them very appropri-
ate for hyperspectral remote sensing images.

The most difficult task for the feature-based matching
methods is to find discriminative feature descriptors that are
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invariant to the possible differences between the images. The
Scale–Invariant Feature Transform (SIFT) [2] is the most
popular feature–based algorithm. It consists of four stages:
scale–space extrema detection, keypoint localization, orienta-
tion assignment, and keypoint description. The Speeded-Up
Robust Registration Features (SURF) algorithm [3] is a more
recent approach based on the same scheme as SIFT, but faster
to compute. The reason is that the Gaussian scale-space is
approximated in the case of SURF by building a pyramid
of filters instead of a pyramid of images. This property re-
moves the dependencies in the calculation of one level of the
pyramid from the others making their parallel computation
possible.

Most of the registration algorithms are designed to regis-
ter greyscale or RGB images. The most direct approach for
multiband images is to apply the algorithms to only one band
of each image. However, the large amount of spectral infor-
mation available in hyperspectral images can be used to im-
prove the registration process [4, 5].

In this paper, we propose a method for registering images
called HSI-SURF based on SURF as keypoint detector and
descriptor, and that considers the spectral information of the
images in the band selection, keypoint description, and key-
point matching stages.

2. REGISTRATION OF REMOTE SENSING
HYPERSPECTRAL IMAGES USING SURF

In this section we present HSI–SURF. SURF [3] is a scale
and in-plane rotation invariant feature detector and descrip-
tor with better performance than SIFT. It is characterized by
building the scale space using integral images, along with the
use of Haar wavelets to build the descriptors. SURF consists
of two stages: detector and descriptor. In the next sections,
the SURF detector and descriptor are explained, the band se-
lection methods are described and, finally, the resulting HSI–
SURF method is presented.

2.1. SURF detector

SURF [3] uses the Hessian matrix to perform the detection.
The maximum of the determinant of the Hessian is used for



the keypoint location and the scale selection. Given a point
x = (x, y) in a image I , the Hessian matrix H(x, σ) in x at
scale σ is defined as follows

H(x, σ) =
[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
, (1)

where Lxx(x, σ), Lxy(x, σ) and Lyy(x, σ) are the convolu-
tions of the Gaussian second order derivative [3]. Due to the
fact that these convolutions induce a high computational cost,
SURF approximates them using integral images instead of
the difference of Gaussians used by SIFT. An integral image
II(x) at a location (x) for a image I(i, j) is defined as

II(x) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j). (2)

This way, the convolution can be efficiently approximated by
Gaussian kernels of arbitrary size.

In the same way as SIFT, SURF builds a scale space or-
ganized into octaves and scales in order to achieve scale in-
variance. The difference lies in that SURF builds a pyramid
of filters instead of a pyramid of images to approximate the
Laplacian-of-Gaussian operator. SURF changes the scale of
box filters rather than reducing the image size as in SIFT. It al-
lows obtaining the different scales by filtering the image with
gradual masks and without any dependence between the com-
putations at consecutive scales, unlike SIFT. The reason is
that SURF directly computes the filtered image at each scale
from the original image.

2.2. SURF descriptor

The SURF descriptors are based on the Haar wavelet and
have only 64 components as compared to SIFT. First, in or-
der to achieve rotational invariance, an unique orientation is
assigned to each keypoint. To this end, the Haar wavelet re-
sponses in the x and y directions, of size 4s being s the key-
point scale, are calculated for the neighboring pixels within a
6s radius. Each wavelet response is weighted using a Gaus-
sian with σ = 2s centered at the keypoint. Afterwards, the
dominant orientation is calculated. All wavelet responses in
the x and y directions within a sliding orientation window are
summed. This window is a sector of angle π

3 . The vector of
wavelet responses with the largest norm defines the dominant
orientation.

The next stage is the descriptor construction. Firstly, a re-
gion of size 20s× 20s centered around each keypoint is con-
structed. Each region is split into 4× 4 subregions. For each
subregion, Haar wavelet responses of size 2s are computed at
5× 5 equally spaced sample points. Next, these Haar wavelet
responses are weighted using a Gaussian with σ = 3.3s cen-
tered at the keypoint in order to increase the robustness to
geometric deformations and localization errors. Finally, the
wavelet responses in both directions are summed up over each

subregion and are concatenated forming a descriptor vector
of length 64. To achieve invariance to contrast, the descriptor
vector is converted into a unit vector.

2.3. Band selection methods

Trying to save computational costs in terms of memory re-
quirements and computational time, dimensionality reduction
methods are applied to the hyperspectral images as a first
stage of the registration process. This reduction could be
achieved using feature extraction or feature selection tech-
niques. In the first case, we obtain a reduced image repre-
senting the transformed initial one, whereas in the last one,
we extract a subset of relevant bands from the image without
modifying them.

In this paper, we apply Principal Component Analysis
(PCA) as a statistical feature extraction technique that pro-
duces transformed bands of the image, that can be ordered in
terms of increasing amount of statistical relevance. Another
feature reduction method considered is BandClust [6]. This
method performs unsupervised clustering of the image bands
according to a mutual information measure. The group of
bands is iteratively clustered minimizing the measure. Each
cluster is finally represented by the average of its bands.

The applied band selection methods are WaluMI [7] and
the Entropy-based Band Selection (EBS) [5] method. Wa-
luMI is also based on clustering as BandClust, but selecting
one band of the image belonging to the cluster as represen-
tative of each cluster. The clustering uses the minimum dis-
similarity difference as a measure for cluster evaluation. This
measure is based on calculating the mutual information be-
tween each pair of bands.

Finally, EBS [5] selects bands based on entropy and inter-
band distance and considers both images unlike the methods
described above. First, the entropy of each band of each im-
age is computed. Next, the minimum entropy of each band
considering the two values (one per image) is selected and
the bands of both images equally ordered in increasing order
of entropy value. Finally, the highest entropy bands are cho-
sen. Each candidate pair of bands to be selected must have, at
least, an inter–band distance greater than or equal to an em-
pirically fixed value with respect to the previous selected pair.

2.4. HSI–SURF

Figure 1 outlines the registration method proposed that con-
sists of the following steps. First, a band selection method is
applied in order to select one or more bands from each im-
age representing the most relevant information and reducing
the computational time. The different methods described in
Section 2.3 are proposed and compared.

Features for each selected band of each image are ex-
tracted and described in the second and third stages. An inter-
polation is applied to the original images in order to highlight



Fig. 1. Proposed HSI–SURF scheme for the registration of two remote sensing hyperspectral images.

details and extract a large number of keypoints in a similar
way as in [2, 5]. HSI–SURF uses a descriptor made up of
a spatial and a spectral part: the SURF descriptor and the
spectral signature. This signature is made up of the spectral
components resulting from the band selection stage.

The fourth stage is the keypoint matching between pairs
of bands. The matching is based on the distance between
the SURF descriptors and the cosine similarity between the
spectral signatures. The spectral information allows refining
the matching process discarding outliers. In the sixth stage,
called band combination, all pairs of matched keypoints for
the different pairs of bands are considered together.

The process finishes with an exhaustive search for the reg-
istration. All the possible pairs of matched keypoints are con-
sidered in a same way as in [5].

3. RESULTS

The experiments were carried out on a PC with a quad-core
Intel i7-4790 CPU at 3.60 GHz and 24 GB of RAM. The code
was written in C and compiled using the gcc and the g++ 5.4.0
versions under Ubuntu 16.04. For WaLuMI the original soft-
ware was used, whereas for BandClust the groups of bands
were provided by its authors1.

The evaluation of the algorithm was performed over a set
of seven hyperspectral scenes. Table 1 provides detailed in-
formation for each scene. The first four scenes are single im-
ages commonly used for testing in the field of remote sensing.
The remaining scenes are pairs of images taken at different
dates. Each pair of images presents changes in spatial struc-
tures and in illumination, as well as different scale factors,
orientation and translation. A false–colour composite of the
Jasper Ridge pair of images is displayed in Figure 2.

The procedure used to test the method is as follows. The
first image of each pair is used as a reference while the tar-
get image is rotated and scaled. We have carried out exhaus-
tive search with scale factors ranging from 1/10× to 11.5×
in increments of 0.5× (31 scale factors) and rotation angles
from 0 to 360 degrees in increments of 5 degrees (72 angles).
Consequently, we have carried out an exhaustive evaluation
of 2232 cases for each scene. In all cases, the target images

1The authors would like to thank Claude Cariou at Université de Rennes
1, France, for providing the band limits of BandClust used in this work.

Table 1. Sensor, size, number of spectral bands, and spatial
resolution (m/pixel) for the test hyperspectral images.

Image Sensor Size Bands Spatial
Resolution

Pavia University ROSIS–03 610× 340 103 1.3
Pavia Centre ROSIS–03 1096× 715 102 1.3
Indian Pines AVIRIS 145× 145 220 20
Salinas Valley AVIRIS 512× 217 204 3.7
Jasper Ridge 2006 AVIRIS 1286× 588 224 3.3
Jasper Ridge 2007 AVIRIS 1286× 588 224 3.4
Santa Barbara Box 2013 AVIRIS 1024× 769 224 15.2
Santa Barbara Box 2014 AVIRIS 1024× 769 224 15.2
Santa Barbara Front 2009 AVIRIS 900× 470 224 16.4
Santa Barbara Front 2010 AVIRIS 900× 470 224 11.3

are trimmed on the central region to keep the same size as the
original images.

For all the methods, 8 bands have been selected in order to
make a fair comparison among proposals, with the exception
of BandClust for which the band limits are different for each
cluster [5]. Table 2 summarizes the cases that were correctly
registered for each scene using HSI–SURF considering dif-
ferent feature reduction methods and band selection methods.
As a baseline for comparison, a random band of each image
was selected, in this case band 28 (first column in the table).
For EBS the band separation is empirically fixed to 20.

As shown in Table 2, feature selection methods (WaLuMI
and EBS) obtain better results than PCA. The reason is that
they have the advantage over feature extraction methods, such
as PCA, of preserving the relevant original information from
the data. In contrast, PCA transforms the data to a differ-
ent domain where the spatial information of the image is dis-
torted, so the relevant structures in the keypoint detection are
degraded. The best results are achieved using WaLuMI, 16.71
cases (scales) are correctly registered on average, and EBS,
that registers 16.57 cases, while in the case of BandClust only
15.86 correct cases are achieved.

Regarding the computational cost, EBS can be consid-
ered the best band selection option in the experiments. For
the largest pair of images (Santa Barbara Line) the execu-
tion time for the registration process using EBS for the case
corresponding to the highest scale and angle that is correctly
registered is 139.98 seconds. 2.26 seconds of this time are
required by band selection. In the case of WaLuMI the time



Table 2. Successfully registered cases for each scene. The number in parentheses summarizes the number of scales that were
correctly registered for all angles. If an angle is incorrectly registered, the whole scale factor is considered incorrect, i.e., this
case is not included in the table.

Scene Band 28 8 PCs BandClust WaLuMI EBS
Pavia University 1/5× to 7.0 × (17) 1/2× to 5.0 × (10) 1/6× to 8.5 × (21) 1/7× to 10.5 × (26) 1/7× to 10.5 × (26)
Pavia Centre 1/6× to 11.0 × (26) 1/6× to 7.5 × (19) 1/7× to 11.5 × (28) 1/10× to 11.5 × (31) 1/9× to 11.5 × (30)
Indian Pines 1/2× to 3.5 × ( 7) 1.0× to 2.0 × ( 3) 1/4× to 6.0 × (14) 1/4× to 6.5 × (15) 1/3× to 5.5 × (12)
Salinas 1/4× to 5.0 × (12) 1.0× to 3.5 × ( 6) 1/6× to 7.0 × (18) 1/6× to 7.0 × (18) 1/6× to 7.5 × (19)
Jasper Ridge 1.0 × ( 1) ( 0) 1/2× to 4.0 × ( 8) 1/2× to 3.5 × ( 7) 1/2× to 4.0 × ( 8)
Santa Barbara Front 1/2× to 2.5 × ( 5) 1.0 × ( 1) 1/5× to 4.5 × (12) 1/4× to 4.0 × (10) 1/6× to 4.0 × (12)
Santa Barbara Box 1/2× to 2.0 × ( 4) 1.0× to 1.5 × ( 2) 1/5× to 3.5 × (10) 1/4× to 4.0 × (10) 1/4× to 3.5 × ( 9)
Number of scalings (average) (10.29) (5.86) (15.86) (16.71) (16.57)
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Fig. 2. Jasper Ridge scene taken by the AVIRIS sensor. (a)
Fragment of the first Jasper image of size 588 × 1286 pixels
taken on 5/12/2006, and (b) fragment of the same size of the
second Jasper image taken on 8/13/2007.

is 269.59 seconds, most of which, 158.91 seconds, are spent
by the band selection stage.

4. CONCLUSIONS

In this paper, a method for registering remote sensing hyper-
spectral images called HSI-SURF is proposed and evaluated
over seven hyperspectral scenes. The method is based on
SURF as keypoint detector and descriptor, and it is especially
adapted to hyperspectral images by incorporating the spec-
tral information in different stages of the method. First, the
algorithm works not only on a band of each image but with
information provided by different bands. The spectral infor-
mation is also included together with the SURF descriptor for
each keypoint. Finally, all the keypoints for the different pairs

of bands are considered in the exhaustive search for the regis-
tration parameters.

The results show that the number of correctly recovered
scales for all angles is high, achieving correct registrations at
scales of 11× for some images. As future work, the effective-
ness of HSI–SURF should be analyzed in detail evaluating
more quality measures such as number of correct matches,
correct match ratio, RMSE or registration error. The compu-
tational cost of this registration method comparing it to other
methods such as SIFT should also be analyzed.
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