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Extreme Learning Machine (ELM) is a supervised learning technique for a class of
feed forward neural networks with random weights that has recently been used with
success for the classification of hyperspectral images. In this work we show that the
morphological techniques can be integrated in this kind of classifiers using several
composite feature mappings which are proposed for ELM. In particular, we present
a spectral-spatial ELM-based classifier for hyperspectral remote sensing images that
integrates the information provided by extended morphological profiles. The proposed
spectral-spatial classifier allows different weights for both (spatial and spectral) fea-
tures outperforming other ELM-based classifiers in terms of accuracy for land cover
applications. The accuracy classification results are also better than those obtained
by equivalent spectral-spatial SVM-based classifiers 1.

1. Introduction

The development of image sensor technology has made it possible to capture hy-
perspectral images composed of hundreds of bands covering a wide range in the
electromagnetic spectrum (Landgrebe 2002). The high dimensionality of hyper-
spectral data offers new opportunities for recognizing and classifying materials.
Applications range from agriculture, mineralogy, medicine, quality control, ma-
terial inspection, and surveillance, among others. Hyperspectral sensors usually
collect two dimensional spatial images comprising hundreds of spectral bands, so
that specific techniques are required to exploit all the information available in the
hyperspectral data (Faubel et al. 2013).
Supervised classification of hyperspectral images is a challenging problem due to

the high dimensionality of the data and the limited availability of training sam-
ples. The most basic method for classifying the pixels of a hyperspectral image is
based on the use of only the spectrum of each pixel. In particular, neural networks
(Heras et al. 2012) and Support Vector Machines (SVM) (Melgani and Bruzzone
2004) are widely used owing to their performance. SVMs use a learning process
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which is known as structural risk minimization. The training algorithm searches for
a hyperplane that separates the dataset into different classes. SVMs are intrinsi-
cally binary classifiers, but different strategies have been developed to allow them to
simultaneously discriminate between multiple classes (Mountrakis, Im, and Ogole
2011).
The accuracy of the results provided by a pixelwise classification can be im-

proved by integrating spatial and spectral information in the classifier (Plaza et al.
2009; Faubel et al. 2013; Mura et al. 2011; Palmason et al. 2005). This means
that the decision to assign a pixel to a specific class is based both on the spectral
feature, which is the pixel value, and on certain information derived from the
pixel’s neighborhood. In the bibliography various methods have been proposed
for the spectral-spatial classification of remote sensing images, usually using
neural networks or SVMs for processing the spectral information and different
techniques for integrating the spatial information. These include the watershed
transform (Zhang, Feng, and Le 2008; Tarabalka, Chanussot, and Benediktsson
2010a), partitional clustering techniques (Tarabalka, Benediktsson, and Chanussot
2009), Markov random fields (Tarabalka et al. 2010), minimum spanning forests
(Tarabalka, Chanussot, and Benediktsson 2010b), hierarchical segmentation
(Plaza et al. 2009), kernel methods (Marconcini, Camps–Valls, and Bruzzone
2009; Faubel, Chanussot, and Benediktsson 2012), and decision fusion
(Benediktsson and I. Kanellopoulos 1999), among others.
The spatial information can be extracted from hyperspectral data using the

tools of mathematical morphology. Two widely used morphological operators are
opening and closing, which are based on the fundamental operations of ero-
sion and dilation. From these basic operations the so-called morphological pro-
file (MP) can be constructed (Pesaresi and Benediktsson 2001; Soille and Pesaresi
2002; Palmason et al. 2005). An MP contains information of the structures of
the image at different resolution sizes. In remote sensing, MPs are usually
computed from hyperspectral data using Principal Component Analysis (PCA)
(Benediktsson, Pesaresi, and Arnason 2003; Faubel et al. 2013; Marpu et al. 2012).
If several components are retained, the MPs can be used all together in one
Extended Morphological Profile (EMP) (Benediktsson, Palmason, and Sveinsson.
2005; Licciardi et al. 2011). This can be further generalized in order to model the
spatial information more accurately. For example, a morphological attribute profile
(MAP) is created in the same way as the MP but considering attribute operators
(Mura et al. 2010). In EMAP (Mura et al. 2011) an extended morphological at-
tribute profile is created using morphological attribute filters. These attributes
extract information related to size, geometry, and homogeneity of regions. On the
other hand, the use of multi-channel morphological profiles for feature extraction
is explored in (Plaza, Plaza, and Barra 2009).
In spectral-spatial classification methods, once the spatial information has

been extracted, it must be taken into account in the classification. In the
approaches based on neural-networks or SVM, spatial information can be
integrated into a pixelwise classifier as a preprocessing stage of the hy-
perspectral data, or as a postprocessing stage on the output of the clas-
sifier. In particular, majority voting (Tarabalka, Chanussot, and Benediktsson
2010a,b) and regularization (Tarabalka et al. 2010) have been widely exploited
as postprocessing stages of pixelwise SVM-based classifiers. For example, in
(Faubel et al. 2013) some techniques based on SVM that use marker selec-
tion followed by MSF (minimum spanning forest) segmentation and majority
voting are presented. Other approaches presented in the work are based on
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marker selection using the MSSC approach (multiple classifications based on
SVM are performed in parallel applying majority voting) followed by MSF.
Alternatively, kernel methods (Marconcini, Camps–Valls, and Bruzzone 2009;
Faubel, Chanussot, and Benediktsson 2012; Camps–Valls and Bruzzone 2005) can
jointly use the spatial and spectral information in the classification. Finally, decision
fusion methods can combine information from several individual classifiers or pre-
processing steps according to a certain criteria (Benediktsson and I. Kanellopoulos
1999).
In the field of neural networks, Extreme Learning Machine (ELM) is a term used

to describe a class of Single-hidden Layer Feedforward Neural Networks (SLFN)
with random weights (Wang and Wan 2008; Huang 2014). The idea of randomness
was introduced in an early paper by Broomhead and Lowe (Broomhead and Lowe
1988), who showed that hidden radial basis function (RBF) neurons randomly
selected are sufficient to allow functional interpolation, and later extended by Lowe
(Lowe 1989). Later, Schmidt et al. (Schmidt, Kraaijveld and Duin 1992) showed
that an SLFN with sigmoid activation function and fixed random values in the
weights of the hidden layer can be trained providing good results. The learning
and generalization characteristics of the Random Vector Funcional-Link (RVFL)
net were explored by Pao et al. (Pao, Park, and Sobajic 1994), while a theoretical
justification of RVFL as universal approximator was developed by Igelnit and Pao
(Igelnik and Pao 1995). Finally, Huang et al. (Huang, Zhu, and Siew 2004, 2006)
stated the universal aproximation of SLFNs for a wide type of activation functions
with random weights and introduced the term ELM.
The use of ELM for hyperspectral images has only recently been explored.

Two datasets, one multispectral and another hyperspectral, were used for clas-
sification in (Pal 2009). Besides, (Pal. Maxwell, Warner 2013) compares a pixel-
wise SVM classifier to a kernel-based ELM one using a RBF function. Results
from the aforesaid work suggest that ELM results are slightly better in terms
of accuracy with significantly lower execution times. ELM has also been used
for temporal-change detection in urban environments (Chang 2011). Two ELM-
based techniques incorporating spatial information of the image were proposed
in (Heras, Argüello, and Quesada–Barriuso 2014). The first scheme uses a major-
ity vote approach in order to combine the results of a pixelwise ELM classifier
with the segmentation map obtained by a watershed algorithm. The second one
uses the information of the neighboring pixels in order to modify the ELM clas-
sifier output. The results are compared to those obtained by similar SVM-based
techniques and show improved classification accuracies and much lower execution
times. More recently (Samat et al. 2014) proposes two new algorithms of ensem-
ble extreme learning machines (bagging-based and AdaBoost-based ELMs) for the
classification task, considering EMPs and principal components and providing im-
provements over previous works.
In this paper, we show that morphological techniques can be successfully ap-

plied to ELM classifiers. In particular, we present a spectral-spatial ELM-based
classifier for hyperspectral images that integrates the spatial information provided
by EMPs. Both features, spectral and spatial, are integrated in the ELM classifier
using composite feature mappings. This scheme allows different weights for both
features and provides significant improvements in the accuracy of the classification
when the results are compared to the state of the art. The rest of this paper is
organized as follows: Section 2 describes the ELM technique and its application to
remote sensing; in Section 3 we present the spectral-spatial ELM-based classifier;
the evaluation of the classifier is performed in Section 4; and finally in Section 5
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Figure 1. A single-hidden layer feedforward network such as that used by ELM.

we present the conclusions.

2. Extreme Learning Machines

Neural networks make it possible to change the network structure or its parameters
by incorporating certain learning algorithms based on internal o external informa-
tion. ELM was originally developed as a training technique for a class of SLFNs
with random weights (Huang, Wang, and Lan 2011; Huang, Chen, and Siew 2006).
The structure of an SLFN is shown in Fig. 1. The output function of an SLFN with
L hidden nodes and input x can be written as

f(x) =

L
∑

i=1

βiG(ai, bi,x), x ∈ Rd, βi ∈ Rm, (1)

where G(ai, bi,x) denotes the output function of the ith hidden node and βi, ai,
and bi are the weights and biases which must be generated in the training phase.
For the case of additive nodes with activation function g, it can be expressed as

G(ai, bi,x) = g(ai · x+ bi), ai ∈ Rd, bi ∈ R, (2)

while for RBF nodes,

G(ai, bi,x) = g(bi||x− ai||), ai ∈ Rd, bi ∈ R+. (3)

An SLFN with L hidden nodes can approximate N arbitrary distinct samples
and targets (xi, ti) ∈ Rd × Rm, if the following equation system can be solved:

Hβ = T, (4)

where
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H is called the hidden layer output matrix of the neural network. An SLFN
with randomly generated additive or RBF nodes in the hidden layer can univer-
sally approximate any continuous target functions over any compact subset χ ⊂
Rd (Igelnik and Pao 1995; Huang, Chen, and Siew 2006; Huang, Wang, and Lan
2011). For the case of additive nodes, the activation function g can be any in-
finitely differentiable function, including sigmoidal functions, and also the radial
basis, sine, cosine and exponential functions among others. Once they are randomly
generated, the hidden node parameters (ai, bi) remain fixed and training an SLFN

is equivalent to finding a least-squares solution β̂ of the linear system Hβ = T,
i.e.,

β̂ = H†T, (7)

where H† is the Moore-Penrose generalized inverse of matrix H (Courrieu
2005). Thus, ELM can be summarized as follows (Huang, Wang, and Lan 2011;
Huang, Chen, and Siew 2006):

Algorithm ELM: Given a training set {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1, . . . , N},
hidden node output function G(ai, bi,x), and hidden node number L,

(1) Randomly generate hidden node parameters (ai, bi), i = 1, . . . , L.

(2) Calculate the hidden layer output matrix H.

(3) Calculate the output weight vector, β = H†T.

Usually, a sigmoid activation function is used, although sine function, hard limit,
triangular basis function, etc., are also possible. ELM has the advantage over SVM
of being inherently a multiclass classifier, so that it does not require the additional
stage of voting the results of multiple binary classifiers. The classification accuracy
of ELM is, as in any other supervised learning method, dependent on the size and
quality of the training set. Additionally, the design of the ELM classifier requires
the setting of a single user-defined parameter: the number of nodes in the hidden
layer. On the other hand, ELM methods can be extended to include kernel learn-
ing (Huang 2012), incremental learning (Huang and Chen 2008), effective ELM
(Wang, Cao, and Yuan 2011; Cao, Liu, and Park 2013), modified ELM with sig-
moidal activation functions (Chen, Zhu, and Wang 2013), and voting (Cao et al.
2012).
ELM presents important differences from other methods of classification of hy-

perspectral images, such as SVM. In general, supervised classification and regres-
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Figure 2. The proposed ELM-EMP spectral-spatial classifier.

sion methods can be categorized as “feature-based” or “geometry-based” methods
(Baldi, Azencott, and Swamidass 2011). Feature-based methods, as ELM and neu-
ral networks, tend to derive a prediction from numerical features extracted from
the input data. On the other hand, geometry-based methods, as exemplified by
kernel methods, derive a prediction by looking at the similarities between the cur-
rent input instance and all the other instances available in the training set, hence
looking at the geometry of the neighborhood of the input instance.
In SVM, the training data are usually first mapped into a higher dimensional

feature space through a nonlinear feature mapping function. A standard optimiza-
tion method is then used to find the solution by maximizing the separating margin
of two different classes. Suppose φ(x) is the mapping from the input vector x to a
higher dimensional feature space. The optimization stage relies on inner products
φ(x1)φ(x2), and the “kernel trick” can be used to compute φ(x1)φ(x2) using the
input vectors directly, i.e., φ(x1)φ(x2) = k(x1,x2), where k(x1,x2) is referred to
as a kernel. As the training of SVMs involves a quadratic programming problem,
the computational complexity of SVM training algorithms is at least quadratic
with respect to the number of training samples.
Different from SVM, in ELM a feature mapping (in this case, a hidden-layer out-

put vector) is usually known to users. Almost all nonlinear piecewise continuous
functions can be used as the hidden-node output functions, and thus, very differ-
ent feature mappings can be used in ELM. For example, we can have a nonlinear
piecewise continuous function G(ai, bi,x) with {ai, bi}

L
i=1 randomly generated ac-

cording to any continuous probability distribution. However, if the feature mapping
is unknown to users, ELM can be generalized to use kernels (Huang 2012).

3. Spectral-spatial ELM-based classification

In this section we present an ELM-based classifier (ELM-EMP) that can jointly
use the spectral and spatial information. Specifically, the input to the classifier
has two components: the spectral feature, which is the value of each pixel, and a
spatial feature, which is obtained from the hyperspectral data using morphological
techniques. The process is outlined in Fig. 2.
Two widely used morphological operators are opening and closing,

which are based on the fundamental operations of erosion and dilation
(Crespo, Serra, and Schafer 1995; Soille 2005). The precise details of the effect
of the operator on the image are determined by a structuring element. Moreover,
it is possible to define morphological operators that satisfy the following property:
if a spatial structure of the image contain the structuring element then it is fully

6



February 4, 2015 International Journal of Remote Sensing manuscriptCITIUS

preserved; otherwise it is fully removed. These operators are called opening and
closing by reconstruction (Faubel et al. 2013). The MP is constructed based on the
repeated use of openings and closings with a structuring element of increasing size
(Pesaresi and Benediktsson 2001; Soille and Pesaresi 2002; Palmason et al. 2005).
In this way, information about the contrast and the size of the structures present in
the image can be extracted. The MP of order n from the image I can be expressed
as,

MP(n)(I) = [φ(n)
r (I), . . . , φ(1)

r (I), I, γ(1)r (I), . . . , γ(n)r (I)], (8)

being φ
(i)
r and γ

(i)
r the closing and opening by reconstruction operators, respectively,

with a structuring element i from 1 to n, whose size increases normally in steps
of 1 or 2. For a single panchromatic image, the MP of order n results in 2n + 1
components.
When the MP approach is applied to hyperspectral data, which can comprise

hundreds of bands, the most significant principal components are usually used
as base images. PCA is an linear transformation defined in such a way that the
principal components are arranged according to their variance (variability in the
data). The result is an EMP, i.e., a profile based on more than one original image
(Benediktsson, Palmason, and Sveinsson. 2005). The EMP computed from the m

principal components of the hyperspectral image using MPs of order n is written
as,

EMP(n)
m (I) = [MP

(n)
1 (I), . . . ,MP(n)

m (I)], (9)

and contains m(2n+ 1) components.
Once the spatial information has been extracted from the image, it must be

integrated into the classifier. When a SVM-based classifier is used, this can be
done by using the so-called kernel methods (Faubel, Chanussot, and Benediktsson
2012; Camps–Valls and Bruzzone 2005). SVM uses kernels to map the data with
a nonlinear transformation to a higher dimensional space, in order to find a lin-
ear separating surface between the two classes. Several types of kernels, such as
linear, polynomial, splines or RBF kernels can be used in SVM. In this case,
the spectral and spatial features lead to two different kernel matrices which
can be easily processed using a suitable kernel function (Scholkopf and Smola
2002; Faubel, Chanussot, and Benediktsson 2006; Mercier and Lennon 2003). In
this approach the composite kernel can be built through four different approaches:
concatenation, direct summation, weighted summation, and cross-information
(Camps–Valls et al. 2006).
ELM, as commented in section 2, does not require such nonlinear transformation

and therefore does not require kernels. Instead, ELM usually uses a feature map-
ping G(ai, bi,x) with {ai, bi}

L
i=1 randomly generated according to any continuous

probability distribution (if feature mappings are unknown to users, kernels can be
applied in ELM as well) (Huang 2012). Almost all nonlinear piecewise continuous
functions can be used as the hidden-node output functions, for example, sigmoid,
hard-limit, Gaussian, and multiquadratic, among others. In particular, in what
follows we will consider the case of a sigmoid function,
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G(a, b,x) =
1

1 + exp(−(a · x+ b))
. (10)

In the following, we present several approaches for the joint consideration of
spectral and spatial information in an ELM-based classifier. Let x ∈ Rn be a
pixel-vector of the hyperspectral image, which by means of certain transformations
can be redefined simultaneously both in the spectral domain, xω ∈ Rnω , and in
the spatial domain, xs ∈ Rns . The possibilities to construct a composite feature
mapping in ELM are the following:

(1) Weighted averaging. In this approach the spectral and spatial features are
just added before being included in the feature mapping,

G(a, b,x) = G(a, b, kωx
ω + ksx

s), (11)

where kω and ks are the weights assigned to each of these two features. In
this case both vectors should have the same size. This approach could be
used, for example, when the pixel-vector is used as spectral feature and the
spatial feature is computed as the vector median value of the neighbors of
the original pixel.

(2) Weighted summation. In this approximation we have two feature mappings,
one for the spectral feature and the other for the spatial one,

G(a, b,x) = kωG(a, b,xω) + ksG(a, b,xs). (12)

(3) Weighted concatenation. The spectral and spatial features are concatenated
into one stacked vector,

G(a, b,x) = G(a, b, [kωx
ω, ksx

s]T ). (13)

The weights kω and ks allow to adjust the influence of each feature in the classi-
fication. Since an ELM classifier discriminates classes according to the magnitude
of the vector components, a smaller weight in one of the components implies it will
have less impact in the classification. For example, consider a sigmoid type feature
mapping and the concatenation approach. In Equation (10) we have the following
operation of multiplication and accumulation (MAC),

MAC = a · x+ b =

dω
∑

j=1

ajkωx
ω
j +

ds
∑

j=1

a′jksx
s
j + b. (14)

Since coefficients of the hidden-layer output vector, (a, b), are randomly assigned
once during the training phase, the terms ajkαx

α
j with greater magnitude in Equa-

tion (14) contribute more to MAC and therefore to the feature mapping. In ELM
the training phase is not an iterative process, and therefore there is no possibility
of changes in the coefficients (a, b).
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In order to speed up the classification, the spatial feature can be computed in
a pre-processing step on the hyperspectral data, just before the application of the
ELM classifier, as it is shown in Fig. 2. The same weights should be applied to
both training and testing stages.

4. Evaluation

The ELM classifier was programmed in C using the OpenBLAS (OpenBLAS 2011)
implementation of the LAPACK linear algebra library. This implementation takes
advantage of multicore CPUs by running multiple threads. Additionally, the com-
putation of the activation functions was parallelized using OpenMP. The SLFN
was configured with additive nodes and sigmoid activation function (10) with
ai ∈ [−1, 1] and bi ∈ [0, 1], and the hyperspectral data was scaled in the range
[0,1]. The drand48 generator from the standard C library was used for the selec-
tion of the random parameters, while the Moore-Penrose generalized inverse was
computed using the method described in (Courrieu 2005). The number of training
samples was selected to be similar to that of other works on which the comparison
was performed, while the number of nodes in the hidden layer was selected to ob-
tain the best results. As the results of the classification depend on the training set
and on the random values generated by the ELM classifier, each measure shown
is the average of 100 runs varying these parameters. For each dataset the samples
are randomly distributed between the training and testing sets. During the testing
stage all the pixels of the image are classified, but the samples used in the training
stage are excluded for calculating the accuracy results.
In the case of the spectral-spatial classifier, the EMP was computed as a pre-

processing step. The best results were obtained for an EMP with m = 7 princi-
pal components and n = 7 openings and closings by reconstruction, using disks
with increasing radius 2 (105 components in total), and a composite feature map-
ping of type “weighted concatenation”. In order to maximize the discriminative
capacity of the classifier, each dataset χ was shifted to the range [0, a], where
a = max(χ) − min(χ). This process was performed independently for the hyper-
spectral data and for each one of the m(2n+1) individual components of the EMP.
Then, the weight of the spectral feature, kω, was set to 1, while the weight of the
spatial feature, ks, was adjusted for each case. Finally, after concatenating both
features, the entire data set was scaled in the range [0,1].
As usual in remote sensing (Faubel et al. 2013), measures of classification accu-

racy are given in terms of overall accuracy (OA), that is the percentage of correctly
classified pixels, average accuracy (AA), that is computed as the mean of the classes
accuracies, and kappa coefficient (κ) (Pontius and Millones 2010), which is the per-
centage of agreement corrected by the amount of agreement that could be expected
due to chance alone. Besides, quantity disagreement (QD) and allocation disagree-
ment (AD) are also given for the ELM classifiers. They measure the disagreement
between classification map and reference data in terms of proportion (QD) and
spatial allocation (AD) of the classes (Pontius and Millones 2010). The execution
times were measured on an Intel Core i7 860 CPU at 2.80 GHz with 8 GB of RAM.
The code was compiled in 64-bit Linux using the GNU compiler with -O3 flag.
Three data sets, commonly used in the field of hyperspectral image classification,

were used to evaluate the method proposed in this work2. The following sections

2Details available in http://wiki.citius.usc.es/software/ELM-EMP
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Figure 3. University of Pavia image: (a) RGB color space composite of the hyperspectral data; (b) refer-
ence data.

describe the characteristics of these images and the results obtained in the clas-
sification. In each case, the results of the proposed classifier are compared with
equivalent spectral-spatial classifiers based on SVM.

4.1. Classification of the University of Pavia image

The first dataset is a 103-band ROSIS (Reflective Optics Sys-
tem Imaging Spectrometer) image of the University of Pavia, Italy
(ROSIS University of Pavia dataset 2002). This image is an urban area sur-
rounding the University of Pavia, with a spatial size of 610 × 340 pixels, and a
spatial resolution of 1.3 m per pixel. The ROSIS-03 sensor captures 115 spectral
bands (the twelve most noisy bands of this image were removed) in the spectral
range from 0.43 to 0.86 µm, corresponding mainly to the visible spectrum. The
number of classes in the reference data is nine: asphalt, meadows, gravel, trees,
metal sheets, bare soil, bitumen, bricks, and shadows. Hyperspectral image and
reference data (ground truth) are displayed in Fig. 3.
The results of classification of this image are shown in Fig. 4. Part (a) of the

figure shows the classification map of the pixelwise ELM, i.e., considering only
the spectral feature, while part (b) shows the classification map obtained with the
proposed ELM-EMP classifier. The false color maps use the same palette as the
ground truth shown in Fig. 3.(b).
The accuracy measures for the classification of the University of Pavia image

are shown in Table 1. The first two columns of the table show the classes available
in the reference data and the number of samples used in the training which is
the same as in the reference works in the literature (the total number of pixels in
the reference data is 42,776). The next column shows the accuracy results for the
proposed spectral-spatial classifier.
These results of the proposed ELM-based classification scheme are compared

with other methods incorporating spatial information. In this case we compare
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(a) (b)

Figure 4. University of Pavia image: (a) classification map for the pixelwise ELM; (b) classification map
for the ELM-EMP.

with EMP-KPCA and MSSC-MSF which are the methods in (Faubel et al. 2013)
that provide the best results for this image, and with EMAP (Mura et al. 2011) and
WT-EMP (Quesada-Barriuso, Argüello, and Heras 2014), that are recent methods
based on morphological profiles. EMP-KPCA uses the first 12 KPCs (an extension
of PCA using kernel methods) and 4 openings and 4 closings for the construction
of the profile (resulting in 108 components). In the case of MSSC-MSF differ-
ent segmentation techniques are applied in order to extract spatial dependencies
through markers. A later minimum spanning forest is used in order to perform
thematic classification from these markers using a SAM dissimilarity measure. In
EMAP an extended morphological attribute profile is created using morphological
attribute filters. These attributes extract information related to size, geometry, and
homogeneity of regions and the main features are not extracted by PCA but using
ICA (independent component analysis). In WT-EMP the extended morphological
profile is created from the features extracted by wavelets. In addition, the hyper-
spectral image is denoised, also using wavelets. All these methods use SVM for
classification.
In (Samat et al. 2014), results of applying techniques based on the use of en-

sembles with ELM classifiers are also shown to the University of Pavia image. The
methods, called Bagging-based and AdaBoost-based ELMs, have not been included
in the table because the best result that they offer is an OA value of 94.3% obtained
by the BoostELMs considering the first 10 PCs with EMPs, which is lower than
the values obtained for the methods included in the table.
Table 1 shows that all the presented results are above 96% of OA values. The

use of classification-derived markers for marker-controlled region growing (MSSC-
MSF) improves the extraction of spatial features by EMP performed by EMP-
KPCA. But all these results are improved if the EMP features are extracted from
a EMP extracted from a previously wavelet-compressed dataset (WT-EMP). The
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Figure 5. Classification of the University of Pavia image depending on the number training samples: (a)
overall accuracies; (b) SLFN execution times.

results are improved further if the results are obtained by the proposed ELM-EMP
method, which considers a composite feature mapping of weighted concatenation
with the same weight for the spatial and the spectral features, achieving the highest
accuracy results per class and considering all the classes (OA value of 99.65%).

Class #train
Proposed
ELM-EMP

EMP-KPCA MSSC-MSF EMAP WT-EMP

1-asphalt 548 99.48 96.0 98.0 - 98.8
2-meadows 540 99.76 97.5 96.7 - 98.8
3-gravel 392 99.76 81.1 97.8 - 98.8
4-trees 524 99.27 99.3 98.8 - 99.2
5-metal sheets 265 99.48 99.4 99.9 - 99.9

6-bare soil 532 99.78 92.2 100 - 98.5
7-bitumen 375 99.52 98.8 99.9 - 99.0
8-bricks 514 99.48 99.4 99.8 - 98.0
9-shadows 231 99.84 98.0 96.5 - 99.9

OA 99.65 ± 0.08 96.3 97.9 94.5 98.8
AA 99.60 ± 0.06 95.7 98.6 96.6 99.0
κ 99.52 ± 0.11 95 97 93 98
QD 0.15 ± 0.07 - - - -
AD 0.19 ± 0.04 - - - -
Time (SLFN) 6.01 s - - - -

Table 1. Information and accuracies in percentage for the University of Pavia image. For ELM-EMP the

parameters used are L = 1000 nodes in the hidden layer and spatial weight ks = 1. The results shown are
the average of 100 runs (± standard deviations).

Fig. 5 shows the graphs of accuracy and computing times as a function of the size
of the training set (number of samples per class) for the University of Pavia image.
The execution times indicate the total time (training plus testing) for all the pixels
of the image (610× 340 pixels), considering only the SLFN. The number of nodes
in the hidden layer was selected to obtain the best results in each case and ranges
between 25 nodes (for 10 samples/class) and 1400 (for 600 samples/class). In all
cases the spatial weight was set to 1. Moreover, these graphs compare the results of
the pixelwise ELM classifier with those of the ELM-EMP one. As expected, in all
cases the accuracy increases with the size of the training set, while at the same time
the runtime increases. Moreover, the ELM-EMP classifier provides accuracies a 10%
higher than the pixelwise one, and requires fewer training samples for achieving the
same accuracy. For example, to achieve 90% accuracy, ELM-EMP requires only 25
training samples/class, while the pixelwise one requires 400.

4.2. Classification of the Pavia Centre image

The second ROSIS data set is the Pavia Centre (ROSIS Pavia Centre dataset
2002). The image was originally of a size of 1096 × 1096 pixels, but a 381-pixel-
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Figure 6. Pavia Centre image: (a) RGB color space composite; (b) reference data.

wide black vertical band in the middle of the image was removed, resulting in a
two-part image of 1096× 715 pixels. Thirteen channels have been removed due to
noise, containing the resulting image 102 spectral channels. Nine classes of inter-
est are considered: water, trees, meadows, bricks, soil, asphalt, bitumen, tiles, and
shadows. The hyperspectral image and the reference data are displayed in Fig. 6.
The classification results for the Pavia Centre image are shown in Fig. 7 and the

accuracy measures in Table 2. The total number of pixels available in the reference
data is 414,815, which is high. Accordingly, a training set of around 800 samples
per class has been selected (the same number per class as in the SVM classifiers
in the literature shown in the table). The rest of the parameters chosen are: 1000
nodes in the hidden layer and a spatial weight of 1. It is interesting to note in the
figure that the “salt-and-pepper” classification noise of the thematic map obtained
with the spectral information alone (pixelwise ELM) is removed or reduced when
the spatial information is added (proposed ELM-EMP).
Regarding Table 2 the accuracy measures of the ELM-based proposed technique

are compared to the best results in (Faubel et al. 2013) for the image, EMP-
KPCA and spec-EMP, and to ICA-EMP (Palmason et al. 2005) and WT-EMP
(Quesada-Barriuso, Argüello, and Heras 2014). All these methods use SVM as clas-
sifier. EMP-KPCA uses the first 10 KPCs (an extension of PCA using kernel meth-
ods) and 4 openings and 4 closings for the construction of the profile (resulting in
108 components). Spec-EMP uses the first three principal components, 4 openings
and 4 closings for the construction of the profile, and a stacked vector. ICA-EMP
denotes the EMP created from the first three principal components extracted by
independent component analysis. Finally for WT-EMP the EMP is created from
the features extracted by wavelets and a stacked vector is built joining the original
denoised image and the EMP. For this last method the WT-EMP is created with
five levels of decomposition by a CDF97 wavelet and the EMP is calculated from
the four approximation bands, thus obtaining a stacked vector of 138 features.
The accuracy results for this image are very good for all the classifiers. The
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(a) (b)

Figure 7. Pavia Centre image: (a) classification map for the pixelwise ELM; (b) classification map for the
proposed ELM-EMP.

Class #train
Proposed
ELM-EMP

EMP-KPCA spec-EMP ICA-EMP WT-EMP

1-water 824 100 98.9 98.7 99.5 99.9
2-trees 820 99.16 92.0 93.5 91.7 97.4
3-meadows 824 99.67 96.3 96.0 85.3 99.1
4-bricks 808 99.76 99.6 98.8 99.2 99.8

5-bare soil 820 99.93 99.8 99.4 98.4 99.9
6-asphalt 816 99.79 99.2 98.4 98.6 99.5
7-bitumen 808 99.01 98.6 98.2 98.1 98.5
8-tiles 1260 99.91 99.9 99.8 99.8 99.9
9-shadows 476 99.88 99.6 99.9 99.2 100

OA 99.86 ± 0.02 98.9 99.7 98.8 99.7
AA 99.68 ± 0.06 98.3 98.1 96.6 99.3
κ 99.80 ± 0.03 98 98 - 99
QD 0.10 ± 0.02 - - - -
AD 0.04 ± 0.01 - - - -
Time (SLFN) 20.66 s - - - -

Table 2. Information and accuracies in percentage for the Pavia Centre image. For ELM-EMP the pa-

rameters used are L = 1000 nodes in the hidden layer and spatial weight ks = 1. The results shown are
the average of 100 runs (± standard deviations).

methods ICA-EMP and WT-EMP, that are based on SVM and differ mainly in
using ICA or wavelets for feature extraction, obtain OA values of 98.8 and 99.7
respectively. The proposed method based in ELM improves them achieving 99.86.
The execution times are higher in this case due to the size of the image (1096×715
pixels).

4.3. Classification of the Indian Pine image

The third dataset is a 220-band AVIRIS (Airborne Visible/Infrared Imaging Spec-
trometer) image taken over the Indian Pine Test Site 3 (2× 2 mile portion of NW
Tippecanoe County, Indiana) (AVIRIS Indian Pine dataset 1992). This image is
a rural area with a size of 145 × 145 pixels and a spatial resolution of 20 m per
pixel. The AVIRIS sensor has a number of spectral bands of 220 and a spectral
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Figure 8. Indian Pine image: (a) RGB color space composite; (b) reference data.
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Figure 9. Indian Pine image: (a) classification map for the pixelwise ELM; (b) classification map for the
ELM-EMP.

range from 0.4 of 2.5 µm, corresponding to the visible and infrared spectrum. The
scene contains two-thirds agriculture and one-third forest or other natural peren-
nial vegetation. Some of the crops present (corn, soybeans, etc) are in early stages
of growth with less than 5% coverage. There are two major dual lane highways,
smaller roads, a rail line, some low density housing and other built structures. Six-
teen classes of interest are considered, which are not all mutually exclusive. This
image is displayed in Fig. 8.
The results for the classification of the Indian Pine image are shown in Fig. 9

and information about the classes and accuracy measures in Table 3. The total
number of pixels available in the reference data is 10,366, but some classes contain
very few samples (only 20 samples in the oats class and 28 samples in the grass-
pasture-mowed one). So, a number of samples of 50 per class (or 15 in the small
classes) has been selected for training. Accordingly, the hidden layer of the ELM
includes 300 nodes, a smaller number that in the previous images.
In the table, the results are compared with those provided by SVM-MSF+MV

and MSSC-MSF, that are the best methods in (Faubel et al. 2013) for this
image, and with other two very accurate methods in the literature, NW-NW
(Marpu et al. 2012) and WT-EMP (Quesada-Barriuso, Argüello, and Heras 2014).
SVM-MSF+MV uses marker selection using SVM followed by MSF (minimum
spanning forest) segmentation and majority voting. For this image the MSF algo-
rithm uses SAM as dissimilarity function. On the other hand, MSSC-MSF in based
on marker selection using the MSSC approach (multiple classifications based on
SVM are performed in parallel) followed by MSF without the majority voting step.
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Class #train
Proposed
ELM-EMP

SVM-MSF
+MV

MSSC-MSF NW-NW WT-EMP

1-corn-no till 50 86.86 93.2 89.7 90.24 91.5
2-corn-min till 50 92.65 96.6 87.0 98.85 83.7
3-corn 50 96.49 95.7 95.1 97.28 85.7
4-soybean-no till 50 90.15 93.9 91.8 95.52 94.6
5-soybean-min till 50 89.60 82.0 89.2 99.56 92.3
6-soybean-clean 50 92.95 97.2 97.4 99.54 97.2
7-alfalfa 15 92.56 94.9 94.9 86.27 100

8-grass-pasture 50 94.34 94.6 94.6 94.58 99.1

9-grass-trees 50 98.32 97.3 97.9 93.61 100

10-grass-past-mowed 15 95.64 100 100 99.38 84.4
11-hay-windrowed 50 99.81 99.8 99.8 92.76 74.9
12-oats 15 100 100 100 99.09 84.6
13-wheat 50 99.5 99.4 99.4 100 99.2
14-woods 50 98.89 99.7 99.4 94.87 87.7
15-bldg-grass-trees-dr 50 97.12 68.8 73.6 100 94.3
16-stone-steel-towers 50 95.49 95.6 97.8 100 96.9
OA 92.81 ± 0.76 91.8 92.3 96.35 86.6
AA 95.02 ± 0.65 94.3 94.2 94.17 92.3
κ 91.77 ± 0.86 91 91 93.33 84.8
QD 2.63 ± 0.65 - - - -
AD 4.55 ± 0.58 - - - -
Time (SLFN) 0.25 s - - - -

Table 3. Information and accuracies in percentage for the Indian Pine image. For ELM-EMP the param-
eters used are L = 300 nodes in the hidden layer and spatial weight ks = 5. The results shown are the
average of 100 runs (± standard deviations).

The best results among these two methods are achieved when the MSSC approach
is used as it happens for the other two images considered. NW-NW consists in a
supervised feature reduction using NWFE, then the EMAP considering 30 features
is built and, finally, other NWFE feature reduction is performed on the EMAP be-
fore the final SVM classification. This technique obtains the best OA result (96.35)
showing, as the authors of the method claim, that NWFE performs better in the
case where there are a limited number of samples. Nevertheless, for this image the
best AA value (95.02) is obtained for the proposed ELM-EMP technique and not
for NW-NW. It is interesting to note that, although in (Marpu et al. 2012) the
computational cost of NW-NW is not analyzed, using SVM and two phases of fea-
ture reduction, NW-NW should be computationally more costly than ELM-EMP.
The WT-EMP method obtain worse results for this image.

5. Conclusions

In this paper we have proposed a spectral-spatial ELM-based classifier and evalu-
ated its accuracy results on several hyperspectral images commonly used in remote
sensing for land-cover applications. The classifier is based on the ELM method,
which is an alternative to the more usual ones based on neural networks or SVM.
The proposed ELM classifier uses jointly the spatial and spectral information

available in the hyperspectral image. In particular, the proposed classifier has as
input the original spectral-vector (the spectral feature) and an extended morpho-
logical profile (the spatial feature). Additionally, we have studied the alternatives
to construct a composite feature mapping that integrates both features in the clas-
sifier. Moreover, the feature mapping makes it possible to assign different weights
to both features in order to give more dominance to the spectral or the spatial part
of the classification.
We have performed several experiments on three hyperspectral images (Univer-

sity of Pavia, Pavia Centre and Indian Pine), commonly used for testing in remote
sensing. These images correspond to rural and urban scenes and contain various
types of crops, forests and other natural vegetation, asphalt, gravel, bricks, bitu-
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men, etc. In these experiments, the proposed spectral-spatial ELM-based classifier
substantially improved the accuracy results compared to equivalent SVM-based
classifiers. The number of training samples was selected to be similar to that of
similar classifiers used for comparison, while the number of nodes in the hidden
layer and the weights of the spatial and the spectral features were selected to
obtain the most accurate classification results. In our experiments, the proposed
classifier provided in most of the cases better accuracy results than equivalent
spectral-spatial SVM-based classifiers.
In general, ELM-based methods are a good choice for the classification of hy-

perspectral images over other methods based on SVM or neural networks, due to
their simplicity and ease of use and because they provide very competitive results.
Furthermore, the possibility of incorporating into them spectral-spatial techniques
such as the one presented in this work, makes them highly suitable for hyperspectral
imaging.
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