
Collective disambiguation in entity linking based on topic coherence in semantic
graphs

Efrén Rama-Maneiroa,∗, Juan C. Vidala, Manuel Lamaa

aCentro Singular de Investigación en Tecnoloxı́as Intelixentes (CiTIUS)
Universidade de Santiago de Compostela, 15782 Santiago de Compostela, SPAIN

Abstract

Entity Linking (EL) consists of determinating the entities that best represent the mentions in a document. Mentions
can be very ambiguous and can refer to different entities in different contexts.

In this paper, we present ABACO, a semantic annotation system for Entity Linking (EL) which addresses name
ambiguity assuming that the entity that annotates a mention should be coherent with the main topics of the document.
ABACO extracts a sub-graph from a knowledge base which interconnects all the candidate entities to annotate each
mention in the document. Candidate entities are scored according to their degree of centrality in the knowledge graph
and their textual similarity with the topics of the document, and worst candidates are pruned from the sub-graph.

The approach has been validated with 13 datasets and compared with other 11 annotation systems using the
GERBIL platform. Results show that ABACO outperforms the other systems for medium/large documents.

Keywords: Entity Linking, semantic annotation, topic coherence, Named Entity Disambiguation

1. Introduction

Annotations are metadata, such as phrases, com-
ments, labels, or other types of external remarks that can
be attached to a document or to a part of a document to
give additional information about an existing piece of
data [1]. Semantic annotation extends this concept and
goes one step further to reduce the gap between natural
language and its computational representation, trying to
match terms of a document with its semantic representa-
tion in a knowledge base (KB) [2]. The main complex-
ity of this process is associating an entity of a knowl-
edge base to a specific term in the document, since the
same term can be ambiguous and have multiple mean-
ings. For example, the term “Oreo” can refer to a type
of cookie, a fish, or a version of the Android operating
system, among other entities. Thus, finding the correct
individual in the knowledge base is essential to provide
an accurate annotation. This problem, known as Entity
Linking (EL) [3], has become more relevant in semantic
annotation with the emergence of large repositories of
Linked Data (LD), such as DBpedia [4] or Freebase [5].

∗Corresponding author
Email addresses: efren.rama.maneiro@usc.es (Efrén

Rama-Maneiro), juan.vidal@usc.es (Juan C. Vidal),
manuel.lama@usc.es (Manuel Lama)

The key idea of EL is to identify the relevant terms
(also called mentions) in the input text and link them to
an individual (also called entity or, in this paper, nodes).
This process usually involves three main steps: (i) parse
the text to find candidate mentions to be linked, (ii) gen-
erate a set of candidate entities for each mention, and
(iii) perform a disambiguation step to find the best can-
didate entity for each mention. The disambiguation step
may be either local, that is, the disambiguation is per-
formed taking into consideration each mention sepa-
rately or global, that is, disambiguating the set mentions
and their corresponding candidate entities conjointly.

Name ambiguity is usually solved by focusing on the
mention context compatibility, on the document topic
coherence, or both. Context compatibility assumes that
the entity of a mention is reflected by its context, usu-
ally the surrounding words. For example, the mention
“Oreo” in Figure 1 will be identified as a version of the
Android operating system and thus rule out other candi-
dates such as the Oreo cookie. On the other hand, topic
coherence assumes that the entity of a mention should
be coherent with the main document topics. For exam-
ple, the mention “Alphabet” in Figure 1 should be linked
to the entity Alphabet Inc. since the main topic of the
document is the release of a new software version cre-
ated by Google (a subsidiary).

Preprint submitted to Elsevier April 22, 2020

Early EL approaches used Wikipedia as its main
knowledge base (KB) [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
However, the development of semantic repositories,
such as DBpedia, changed this scenario and nowa-
days most approaches take advantage of the seman-
tic features of knowledge bases to improve EL [16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26] or combine
DBpedia with other KBs such as Wikipedia, Word-
Net [27], or YAGO [28] (Yet Another Great Ontol-
ogy) [29, 30, 31, 32, 33, 34, 35]. Furthermore, the re-
cent increased popularity of deep learning techniques
has propitiated the appearance of a set of approaches
that use deep neural networks [36, 37, 38, 39, 40]

In this paper, we present ABACO1,2,3 (Annotation
BAsed on COherence), a novel EL approach that imple-
ments a method based on both collective disambigua-
tion and document topic coherence. ABACO is meant
to annotate medium to large documents since collective
disambiguation does not work well with texts with a
small number of mentions or with texts without a the-
matically homogeneous text. For example, the terms
“Oreo”, “Nougat”, and “Donut” may end up mapped to
confectionery-related entities, or three versions of the
Android operating system, if the text is short and only
contains unrelated or weakly related topics.

ABACO differs from state of the art in how it ad-
dresses collective disambiguation. Its objective is ex-
tracting the sub-graph from the DBpedia that best de-
scribes the topics of the document. For this purpose,
it first creates a graph that contains all entities that
are a candidate to annotate each mention and then
looks for paths to interconnect these entities. Although
some recent papers also solve collective disambigua-
tion through graphs [14, 33, 34, 35, 38], in most of
the cases it is based on selected features of Wikipedia
or DBpedia. However, our approach is more suited for
DBpedia since it provides a relation granularity that al-
lows building precise subgraphs when the ontology is
explored to a greater depth.

Candidate entities are scored (i) according to its de-
gree of centrality (a node is relevant if many other nodes
link to it, or if it links to many other nodes). How-
ever, and contrary to other approaches, we also score the
entity (ii) by its semantic similarity with the document
topics. Specifically, we make use of the full Wikipedia
page of an entity as its semantic description.

1A web interface to the annotator is available at https://tec.
citius.usc.es/abaco/

2REST services of the annotator are accessible at https://tec.
citius.usc.es/abacows/

3The NIF webservice used for evaluation is accessible at http:
//tec.citius.usc.es/gerbilendpoint/

Figure 1: An example of Entity Linking

Moreover, ABACO has been designed to deal ef-
ficiently with massive disambiguation graphs. Even
though other state-of-the-art approaches use disam-
biguation graphs [12, 14, 8, 41, 29, 33, 30, 42, 35, 50,
51, 52], the main improvement of ABACO is its ability
of exploring the KB to a higher degree while mitigating
the combinatorial explosion that involves exploring the
KB. ABACO uses more relation types whilst discern-
ing the inherent structure of the KB, mainly by filtering
relations with less information, category relations, from
relations that provide more information. ABACO can
interconnect entities at any distance, although in the ex-
periments, we have configured a maximum of 8 nodes
of distance since that depth is sufficient to capture most
of the significant relations between entities. The dis-
ambiguation depth is a crucial feature since the high
granularity of the DBpedia categories promotes that en-
tities can be at a considerable distance from each other.
Therefore, methods that only explore a few relations
and do not deepen in the DBpedia structure are unable
to connect most entities and result in graphs containing
isolated entities, making the disambiguation more dif-
ficult. Moreover, ABACO uses a bidirectional strategy
and an indexation of DBpedia paths that alleviates the
combinatorial explosion that involves exploring the DB-
pedia for building disambiguation subgraphs. Further-
more, the filtering of entities using the context compat-
ibility between a mention and a candidate entity allows
building graphs that are more coherent with the text to
annotate and also reduces the search space of paths be-
tween candidate entities.

Summarizing, the main contributions of our graph-
based disambiguation approach are as follows:

• A novel candidate generation algorithm that per-
forms a precise early filtering of candidate entities.
This limits the set of candidate entities per men-

2

tion thus reducing the time needed to build a dis-
ambiguation subgraph and enhances the coherence
of the final built subgraph.

• A bidirectional strategy for building disambigua-
tion graphs that drastically reduces the number of
nodes needed to explore to build the graph and al-
lows exploring the KB to depths higher than other
state-of-the-art works.

• A mechanism for indexing KB paths that further
reduces the time needed for building a disambigua-
tion subgraph.

Finally, our approach has been validated with 11
other entity annotation systems, using the baselines de-
fined in GERBIL [43] to compare annotation systems
using 13 different datasets. This validation shows that
ABACO achieves the highest mean F1 score of the
tested datasets. Our approach performs consistently
over a wide variety of texts, does not need any param-
eter tuning nor training and uses classical information
retrieval techniques, showing that these techniques can
have similar or even better performance than probabilis-
tic or machine learning-based approaches.

The rest of the paper is organized as follows. Sec-
tion 2 defines the Entity Linking problem approached
in this paper. Section 3 analyses recent approaches to
performing EL. Section 4 describes our graph-based an-
notation approach. Section 5 details the baselines for
the evaluation of the entity annotation systems. Sec-
tion 6 summarizes the results obtained by the different
approaches. Finally, Section 7 points out the conclu-
sions and future work.

2. Problem formulation

The main task in EL is to map a set of mentions M =

{m1, ...,mn} to a set of unambiguous candidate entities
C = {c1, ..., cn} of a knowledge base (KB) K.

Definition 1. A knowledge base K is a directed graph
GK = (V,R) where V is the set of nodes of K and R is a
set of relations of K. Each node vi ∈ V of K represents
an entity of the knowledge graph K. Each relation ri ∈ R
of K is a tuple (vi, e, v j) where vi, v j ∈ V and e is a
property of the pair of entities vi and v j.

Definition 2. The EL problem can be modeled as a
maximization problem as follows:

λ∗mi
= argmax

ci∈C
[Ψ(mi, ci) · (1 + Φ(ci,Γ))] (1)

where:

• mi is the current mention from the set of mentions
target of the annotation problem M, i.e, mi ∈ M.

• λ∗mi
is an assignment between a mention mi and a

single entity ci, i.e, the solution to the EL problem
for a single mention.

• C is the set of candidate entities that could be a
solution for the assignment λ∗mi

.

• Ψ is a local score function that calculates the con-
text compatibility between a mention and a given
candidate entity.

• Φ is an entity coherence function that calculates
the topic coherence between a candidate entity ci

and a subset of a knowledge base K, Γ, that cap-
tures the relationships between all candidate en-
tities for the set of mentions M (collective disam-
biguation). Thus, Γ ⊆ K.

In [7] is shown that this maximization problem is NP-
hard so approximate solutions are required. In this pa-
per, we will define Ψ and Φ functions to approximately
solve the EL problem. This problem is called Named
Entity Disambiguation (also called D2KB), and it will
be the focus of this paper. D2KB focuses on linking
each mention of an already given set of mentions M to
an entity in the knowledge base or return NIL for that
mention if no entity can be found.

Thus, we tackle the full problem in which the entity
mapping is ci → K∪{NIL}, unlike other state-of-the-art
approximations such as [44, 37, 36].

Note that this formulation is different from the one
in [13] since the score is not a sum of the local score
function and the entity coherence function, but a multi-
plication. This reformulation allows us to compensate
for entities that are very popular in a KB but have in-
compatible contexts, or entities that are isolated in the
knowledge graph but have a compatible context.

Summarizing, the objective of this paper is three-
fold: (i) devise an algorithm that finds a set C that con-
tains the correct candidate entity ci for a given mention,
(ii) find a Γ that allows performing an efficient collec-
tive disambiguation of all mentions M, and (iii) define
the Ψ and Φ functions to find the correct mapping λ∗mi

for a mention mi.

3. Related Work

There exists a wide range of approaches regarding
perform Entity Linking, whether they use Wikipedia or
other KBs like DBpedia or YAGO. These approaches

3

can be classified into three broad categories: probabilis-
tic approaches, graph-based approaches, and unsuper-
vised learning-based approaches.

3.1. Probabilistic approaches
Probabilistic approaches try to find the probability of

an entity c to be linked with a mention m.
The Illinois Wikifier annotation system is presented

in [13]. Wikifier extends semantic relatedness measures
between Wikipedia titles to disambiguate entities using
document topic coherence. An anchor-title index is used
to compute the fraction of times a title is a target page of
another anchor and the fraction of all Wikipedia articles
that link to this title, in addition to other local features
such as a TF-IDF representation of a 100 token window
around a mention. Every feature has a coefficient that
is learned using a Support Vector Machine (SVM) with
training data from Wikipedia.

In [10] authors propose a semantic relatedness score
to measure how much two words are related by encom-
passing a set of features (title words, frequency, cate-
gories, and outgoing links) extracted from Wikipedia
articles. All entities, their features, and relations are
transformed into a graph, and a random walk is then
applied to combine the effects of features and derive the
relatedness score. Following a similar approach, TagMe
2 annotation system is presented in [11]. TagMe scores
candidate entities combining a correlation distance, ob-
tained from a simple graph representation of Wikipedia,
and the probability to link the entity to a mention.

FOX [45] is an ensemble-learning based frame-
work that uses four different NLP algorithms (Stan-
ford Named Entity Recognizer, Illinois Named Entity
Tagger, Ottawa Baseline Information Extraction, and
Apache OpenNLP Name Finder) to search the best en-
semble classifier, allowing to overcome the weakness
that each NLP algorithm has individually. Another ap-
proach based on ensemble of methods is NERD-ML [46]
where a machine learning classifier is trained using
(i) multiple NER extractors (such as AlchemyAPI,
DBpedia Spotlight, Extractiv, Lupedia), (ii) a feature
extraction from mentions to annotate such as prefixes,
suffixes or whether the mentions are at the beginning or
end of the document, and the (iii) Stanford NER system
trained on the MSM training dataset. These components
are then assembled on a single machine learning algo-
rithm.

KEA [47] is based on a fine-granular context model
that uses multiple text sources and automated multime-
dia analysis. Ambiguity is solved in three steps: (i) an
n-gram analysis algorithm, (ii) searching for all poten-
tial DBpedia candidate entities for each n-gram, and

(iii) selecting the best entity according to the proba-
bility calculated using a score cascade. PBOH [44] is
a pure entity disambiguation system that uses a proba-
bilistic graphical model using pairwise Markov Random
Fields to perform collective entity linking. This model
is based on contextual word-entity statistics extracted
from the English Wikipedia corpus, also considering the
anchor text of the hyperlinks. Another approach that
uses Conditional Random Fields is FREME NER [48],
an e-entity service published by the EU project FREME,
which makes a selection of candidate entities based on
a sense of commonness within a KB.

More recently, some approaches try to perform entity
disambiguation using deep learning techniques. These
approaches extract entity embeddings that are used to
train a deep neural network which acts as a classifier
that matches entities to mentions. Yamada et al. [36]
create a convolutional neural network with embeddings
of the positions of the context words to determine the
distance between context words and mentions. Fur-
thermore, they use a low-rank neural tensor network
to model the semantic composition between context
and mention. DeepEd [37] uses deep learning to per-
form joint document-level named entity disambigua-
tion. They extract entity embeddings, use neural atten-
tion mechanisms over local context windows which al-
lows selecting words that are informative for the dis-
ambiguation and perform a differentiable joint infer-
ence stage which executes the disambiguation step col-
lectively. DeepType [40] proposes a 2-step algorithm
that (i) performs a heuristic search or stochastic opti-
mization over discrete variables that define a type sys-
tem informed by an Oracle and a learnability heuristic
(ii) trains a neural network to build a classifier using this
type system. Thus, they restrict the output of the neural
network to conform to the type symbolic system previ-
ously trained.

3.2. Graph-based approaches
Graph-based approaches build a subgraph from a KB

that interconnects candidates associated with mentions.
In [12], the authors exploit the Wikipedia link structure
to model the knowledge as a graph where articles and
categories are nodes. Local subgraphs (up to 2 lev-
els deep) containing the candidate Wikipedia articles
for all entity mentions in the document are scored us-
ing centrality measures (degree centrality and PageRank
[49]). In [14], a graph-based representation which can
capture both the local mention-to-entity compatibility
and the global interdependence between entities is pre-
sented. Mention-to-entity compatibility measures the
likelihood between the context of the mention and the

4

entity. Global interdependence between entities extends
the semantic relatedness proposed in [8]. A third fea-
ture, called evidence, is used to measure the importance
of the entity in the context. OpenTapioca [41] uses a
similar approach as [14] using as a local compatibil-
ity features the popularity of an entity (measured by
means such as its Pagerank or site links) and the prob-
ability of a mention occurring in a text (measured by a
unigram model) and as a semantic similarity measures
a weighted graph over the Wikidata knowledge graph.
Then they train a support vector classifier over the com-
bined Markov chain of these features.

AIDA annotation system [29] is based on the YAGO2
KB. It also disambiguates focusing on context similar-
ity but using an undirected graph that has two kinds of
edges: (i) mention-entity edges which are weighted us-
ing a similarity or/and a popularity measure and, (ii) en-
tity-entity edges weighted using Wikipedia-link over-
lap, type distance or both. Their objective is to find
a graph that contains all mention nodes and exactly
one mention-entity edge per mention. This graph is
computed by maximizing the concept of density of the
graph, which is the minimum sum of the weights of its
incident edges.

Babelfy [33] annotation system combines lexico-
graphic knowledge used in word sense disambiguation
for tackling EL. This approach uses BabelNet [30] (a
KB created from Wikipedia and WordNet) to identify
the candidate entities and creates a graph-based se-
mantic interpretation of the whole text by linking can-
didate meanings using previously-computed semantic
signatures. A dense subgraph of this representation
is extracted to select the best candidate for each text
fragment. AGDISTIS/MAG [42] is an evolution of the
AGDISTIS [35] annotation system which is adapted
to tackle multilingual problems. It generates a dis-
ambiguation graph from candidate entities and uses a
bread-first search to retrieve the context information
from the KB. Then, Hypertext-Induced Topic Search
(HITS) algorithm scores the entities. Cetoli et al. [50]
study the possibilities of incorporating topological in-
formation from a Knowledge Graph into a neural net-
work using various techniques (LSTMs, Graph Con-
volutional Neural Networks, etc.) and representations.
They rely on the Wikidata Knowledge Graph, for build-
ing the entities graph, and in Glove embeddings, for cre-
ating vector representations from the text, nodes, and
edges. Khalife et al. [51] extract a feature vector di-
rectly from the knowledge graph to train a classifier to
rank candidate entities. This feature vector is a concate-
nation of the similarity scores between a given query
and the candidate entity neighbors. The similarity is

measured using a graph kernel over a graph of words
representation of the entity and the query. GEEK [52]
generates a knowledge graph using the Google Knowl-
edge Graph that interconnects a set of candidate enti-
ties. In this case, entities are weighted using three mea-
sures: the score from the query to the Google Knowl-
edge Graph API, the document similarity between the
short descriptions of entities and the input text, and the
Wikipedia Link-based Measure between two entities.

Note that not every graph-based approach needs
training since, like ABACO, they can calculate context
compatibility and topic coherence using static measures
such as string similarity or PageRank. This contrasts
with probabilistic approaches that use supervised learn-
ing methods such as Support Vector Machines [13],
Markov Random Fields [44] or Deep Learning tech-
niques [36, 37, 40].

3.3. Unsupervised learning-based approaches

Unsupervised approaches do not need a manually
labeled corpus to perform the entity disambiguation.
DBpediaSpotlight [18] is one of these approaches. It
represents entities in a vector space model where each
DBpedia entity is a point in a multidimensional space of
words. Entities are disambiguated comparing the men-
tion’s context, e.g., surrounding paragraph, and the en-
tity, a document containing the aggregation of all para-
graphs mentioning that entity in Wikipedia, using co-
sine similarity.

Another example is [9], authors considered a differ-
ent relatedness feature that matches common nouns in
the mention’s context against Wikipedia article names,
and then used hierarchical agglomerative clustering to
select the best candidate entity. In [7], a title relatedness
is proposed, based on the overlap in categories and in-
coming links. They build a vector for each candidate en-
tity by identifying the set of entity references appearing
in the text. Then, a maximization process is performed
between the candidate entity and the entity mention and
between the categories associated with candidate enti-
ties.

3.4. Limitations of current approaches

The previously described methods have some lim-
itations. On the one hand, machine learning-based
approaches [13, 45, 46, 48] perform the disambigua-
tion of each mention of the document separately, so
the semantic coherence between mapped entities is re-
duced. On the other hand, probabilistic and unsu-
pervised approaches [44, 47, 11, 18, 9, 7] often use
Wikipedia statistics regardless of its relation with the

5

document topic, i.e., some statistics, such as incom-
ing link count or the Wikipedia article hyperlinks do
not take into account whether the link that points to
the article or the article hyperlinks are directly related
to the other entities mapped in the document. Fur-
thermore, most of the annotators in this category, such
as PBOH [44], only consider simple statistics such as
entity-mention cooccurrence. Regarding deep learning
approaches [36, 37, 40, 50], they require an expensive
training procedure, often using GPUs, due to the com-
plexity of using a deep learning model. Furthermore,
these approaches use entity embeddings in which its an-
notation accuracy depends on the corpus used to train
those embeddings and, thus, making the neural model
biased towards specific datasets.

Finally, graph-based approaches [12, 14, 8, 29, 33,
30, 42, 35, 50, 51, 52] often explore the KB to a small
degree due to the space of possible paths growing com-
binatorially. For instance, AGDISTIS/MAG is limited
to up to two levels of relations to disambiguate due
to this combinatorial explosion. Therefore, the disam-
biguation of a candidate entity is hard since the graph
only contains a few links between entities or isolates
entities from each other.

Note that other approaches filter entities based on
different criteria such as the types of the entities [35],
since they only disambiguate named entities; the dis-
tance from the mentions to the entity nodes in their
mention-entity graph [29]; the similarity between the
labels of the entities and the mention [42, 51]; dense
subgraphs [33, 42]. Finally, there are approaches that
do not apply any kind of filtering [12, 14, 41, 50, 52].

4. Graph-based collective disambiguation approach

In our approach, EL is based on the assumption that
document topic coherence should be preserved from the
set of mentions to the set of entities used to annotate
the document. ABACO tries to maintain coherence us-
ing a semantic model extracted from the KB, thus ap-
proaching disambiguation globally, and not individu-
ally for each mention. Note that, as we try to find an ap-
proximate solution for equation 1, we define the BM25
ranking function as the Ψ function and a personalized
centrality measure as the Φ function. It is vital to high-
light that the Φ function domain is not the entire KB
since this is not tractable from a practical point of view,
but this domain is a sub-graph that connects all the en-
tity candidates. This property is one of the main dif-
ferences between ABACO and the current graph-based
approaches.

Figure 2 shows the process followed by ABACO to
deal with the entity linking problem. This process has
four main steps that must be executed sequentially. In
the first step, the terms that are present in the text are
extracted, thus configuring the context of the given doc-
ument. We gather every term present in the text since
the given mentions do not have to be the same as the ex-
tracted mentions in this step. In the second step, for each
given mention, we generate a rank of the most probable
candidate entities that could be linked to each mention
target of the annotation process. To perform this rank-
ing, the textual similarity is measured between the con-
text of the document and each candidate entity. In the
third step, the sub-graph associated with the generated
entity candidates in the previous step is built using a
bidirectional strategy. In the fourth and final step, the
best candidate is selected by weighting the sub-graph
using a centrality measure and performing the selection
of the best candidate for each mention.

The relevance of an entity is defined as a combina-
tion of its centrality and its document textual similarity,
calculated as follows:

R(v) = sim(W,Qn) ∗ (1 + C(v)) + α (2)

where:

• R(v) denotes the relevance of a given node.

• sim(W,Qn) denotes the textual similarity of the
Wikipedia page of an entity and the extracted con-
text from the text.

• C(v) is the centrality calculated for the node v.

• α is an adjustment factor.

Note that 1 must be added to the centrality to avoid
canceling the relevance in case a node is not linked to
any candidate, even though it could still be relevant as
far as textual similarity is concerned.

Recalling from equation 1, in which we defined Ψ as
the local score function and Φ as the entity coherence
function, ABACO performs the assignment Ψ func-
tion as sim(W,Qn), that is, the textual similarity of the
Wikipedia page for an entity and the extracted context
is our local score function, and Φ as C(v), that is, the
centrality of a candidate entity is the topic coherence
function.

In the following subsections, we will detail each one
of the parts of this approach and how the different items
of equation 2 are obtained.

6

Candidates

2. Candidate generation

The attack on Pearl
Harbor was a
surprise military
strike upon the
United States
against the naval
base at Pearl
Harbor. The attack is
also called
Operation Z. The
attack led to the
United States' formal
entry into World War
II the next day.

Document

Mentions

Context

e1 e2

e3 e4 e5

e6 e7

e8 e9

Graph expansionContext Extraction Candidate generation Candidate selection

Pearl Harbor

United States

Operation Z

World War II

Pearl Harbor

United States

Operation Z

World War II

military strike

naval base

attack

day

4. Candidate selection

4. Candidate selection

3. Graph expansion

1. Identification of mentions

Figure 2: The 4-part annotation process. This process has as inputs the text document and mentions to annotate from that document. In the first
step, context extraction, a set of terms is extracted from the text document (note that the mentions extracted here are not the same as the mentions
given as input of the process). In the second step, candidate generation, a set of nodes (candidate entities) is generated for each mention given as
a challenge to annotate. In the third step, graph expansion, every set of candidates is interconnected to build a graph that represents the semantic
relations from the KB of the mentions to annotate (note that candidates of the same set, such as e1 and e2, are not interconnected). In the fourth
step, candidate selection, the best candidate for each set of nodes is selected, taking into account the context extracted and the graph previously
built.

4.1. Identification of mentions

Even though the disambiguation problem already
gives the mentions of the text to annotate, often they are
not enough to get the main topic of the document. Thus,
it is imperative the detection of every possible mention
in the given text to build a context which will be used
to compute the semantic similarity between candidate
entities and the text topic.

To perform this detection, we rely on an n-gram al-
gorithm that extracts mentions which are either (i) a
named entity, regardless of its existence on the DBpedia
or (ii) the longest n-gram available in a given window
that exists as a resource on the DBpedia.

Algorithm 1 shows this n-gram approach. Line 1 de-
fines the maximum number of words, forward and back-
ward from the word detected by the POS Tagger. The
POS Tagger assigns to a sequence of tokens a Named
Entity category [53]. In lines 2-3 a NER system is used
to detect possible named entities from the text. Note
that these mentions do not have a matching entity in the
KB. In line 4 the POS Tagger is called to get the sub-
stantives from the text, which will be the base to search
possible n-grams. In lines 5-7 an iteration is performed

over every detected substantive and every combination
of possible windows. In line 8 a possible n-gram is ex-
tracted directly from the text, including stopwords since
some mentions can contain some stopwords in the mid-
dle of two substantives, such as Bank of Spain. If the
n-gram exists in the KB, we stop trying combinations
of windows and a new search is started from a new sub-
stantive. As a NER and POS Tagger system, ABACO
relies on the Stanford CoreNLP [54] toolkit.

To check whether a mention is present in the DBpedia
the following indexes are used:

• Label index. This index has been built from the
rdfs:label property of every entity available in
the DBpedia. Querying this index returns the main
entity associated to the mention or/and its disam-
biguation page (if either of these two resources ex-
ist).

• Synonym index. This index has been built from the
dbo:wikiPageRedirects of every entity avail-
able in the DBpedia. Querying this index allows
getting the canonical name of an entity (its redi-
rect) or its list of possible synonyms.

7

Algorithm 1: N-Gram detection algorithm
Input: t - given text document
Output: L list of mentions

1 const WINDOW← (MAX WINDOW - 1) / 2;
2 named entities← detectNER(t);
3 push(L, named entities);
4 substantives← posTag(t);
5 for name in substantives do
6 for back = WINDOW to 0 do
7 for forward = WINDOW to 0 do
8 ngram← getNgram(name, text, back,

forward);
9 if existsInKB(ngram) then

10 push(L, ngram);
11 break;
12 end
13 end
14 end
15 end
16 return L

Thus, to check the existence of a mention in the
DBpedia we first check whether the mention exists in
the label index and, if it does not exist, we check if it is
a redirect. This checking process is performed by trying
different combinations of surface forms such as exact
matching, heuristic plural removal, and lemmatization
using Stanford NLP. Note that in this algorithm we are
only interested in the existence of mentions that have an
entry in the DBpedia and not in their possible relevance
in the text, since in the D2KB problem, the mentions
to link have all the same relevance, i.e., every mention
must be considered to be linked to a DBpedia entity.

The complexity of Algorithm 1 is O(n), established
by the loop in line 5. This loop is upper bounded by
the number of substantives detected by the POS Tag-
ger. The other nested loops in lines 6 and 7 have a O(1)
complexity, bounded by the constant WINDOW.

The only parameter needed in Algorithm 1 is
MAX WINDOW. This parameter controls the size of
the window of tokens extracted given a mention po-
sition in the text which is applied symetrically around
the mention. Therefore, the value of MAX WINDOW
must be odd. The bigger the window is, the longer n-
grams the algorithm is able to detect, but more time
is spent doing checks in for loops in lines 6 and
7. In our experimentation, we found that a value of
5 for MAX WINDOW has the best ratio precision-
performance.

4.2. Candidate generation
After the detection of every mention in the document,

ABACO identifies a set of candidate nodes suscepti-
ble to be the correct annotation for each given mention.

This set of candidates is coherent, that is, the set of can-
didates is a selection of the best nodes found for a given
mention that are as semantically close as possible. To
perform this task, ABACO uses the indexes aforemen-
tioned in 4.1 plus the following indexes:

1. Disambiguation index. This index has been built
from the dbo:wikiPageRedirects DBpedia
property. Querying this index allows retrieving the
list of possible entities contained in a specific dis-
ambiguation page.

2. Wikipedia index. This index has been built from
the Wikipedia dump from the 01 of January of
2018. It allows retrieving the full Wikipedia page
from a given DBpedia URI, and it is used to cal-
culate the textual similarity between an extracted
context and a possible candidate entity, represented
by its corresponding Wikipedia URI.

3. Type index. This index has been built from the
rdfs:type and allows getting the list of types as-
sociated with a DBpedia entity to perform an early
filtering of non-relevant entities.

4. Contextualization index. This index aids the con-
textualization of every candidate entity associated
with a mention of the text. It contains, among oth-
ers, a list of demonyms created from a Wikipedia
page4, a list of prepositions that may indicate
whether a mention may correspond to, a country
or not, a list of country abbreviations5 or a list of
corporations abbreviations (such as Ltd. or Corp.).

Thus, the candidate generation algorithm has three
main steps annotate each mention: (i) heuristically solve
the coreferences in the text and generate a set of candi-
date entities from different kinds of surface forms of the
mention, (ii) explore the disambiguation pages found in
the previous step recursively in order to expand the can-
didate list as much as possible, and (iii) apply a type
inference system to generate or delete some candidates
and use the textual relations to prune candidates not re-
lated to the text. Algorithm 2 explains in detail these
steps.

The inputs of this algorithm are: (i) the set of
mentions to annotate, (ii) the full-text document, and
(iii) context extracted from Algorithm 1.

4https://en.wikipedia.org/wiki/List_of_

adjectival_and_demonymic_forms_for_countries_and_

nations
5https://en.wikipedia.org/wiki/List_of_U.S.

_state_abbreviations

8

Algorithm 2: Candidate generation algorithm
Input: L - list of mentions to link, t document text, c

extracted context
Output: Map hashtable of candidate entities for each

mention to link
1 Map← [,];
2 const MAX DISAM DEPTH ;
3 for mention in L do
4 candidateUris← [];
5 mention← solveCoreferences(t, mention);
6 exactUris← searchSurfaceForms(mention);
7 push(candidateUris, exactUris);
8 for uri in exactUris do
9 if isDisamPage(uri) then

10 currentDisamDepth← 1;
11 push(candidateUris, disambiguate(uri,

MAX DISAM DEPTH,
currentDisamDepth));

12 end
13 end
14 mainKeywords← contextualizeText(t);
15 for uri in candidateUris do
16 if not isValidType(uri, mainKeywords) then
17 pop(uri, candidateUris);
18 end
19 end
20 if isCombinationPresent(mainKeywords, mention)

then
21 push(generate(mainKeyWords, mention),

candidateuris)
22 end
23 if isEmpty(candiateUris) then
24 push(fuzzySearch(mention), candidateUris)
25 end
26 push(map, {mention,

weightTextRelations(candidateUris, c)});
27 end
28 return Map
29 procedure disambiguate(uri, MAX DISAM DEPTH,

currentDisamDepth)
30 disamList← [];
31 push(disamList, getCandidates(uri));
32 if MAX DISAM DEPTH = currentDisamDepth then
33 return [];
34 end
35 for disam uri in disamList do
36 if isDisamPage(disam uri) then
37 disambiguate(disam uri,

MAX DISAM DEPTH, currentDisamDepth
+ 1);

38 end
39 end
40 return disamList;

The only parameter of the algorithm is
MAX DISAM DEPTH, which controls the depth
to which the disambiguation pages in DBpedia are
explored. The recursive exploration is needed since a
disambiguation page could potentially point to more
disambiguation pages. In our experimentation, we

found that a value of MAX DISAM DEPTH of 2 is
sufficient for retrieving a reasonable number of candi-
dates from the disambiguation pages. Higher values of
MAX DISAM DEPTH give repeated candidates, that
is, given two disambiguation pages, A and B, A could
point to B and B could point to A.

The output of the algorithm is a hashtable where keys
are the mentions to be annotated, i.e, L, and the values
of this hashtable are the most promising set of candidate
nodes found for each mention. This hashtable is initial-
ized empty (line 3). In line 4 the maximum exploration
depth is defined for the DBpedia disambiguation pages,
since a disambiguation page may point to more disam-
biguation pages. Then, in line 5 a coreference resolution
system is applied to find a better surface form in the text
to reduce the ambiguity of the mention to annotate.

The Stanford NLP Statistical Coreference Sys-
tem [55] supports this task and it is applied only if a
coreference that contains the mention trying to annotate
is found and that coreference exists in the DBpedia or is
a named entity bigram. Note that the coreference sys-
tem is not only used to find a better surface form.

The NER system to each promising found coref-
erence, so the number of coreferences needed to ex-
plore is diminished. For example, if coreferences for
the mention Clinton need to be solved and the first
best coreference found is President Bill Clinton,
Bill Clinton would still be extracted as a valid coref-
erence.

In line 6 a surface form generation rule system is
used to find the highest number of candidate nodes
possible given a mention. For that, the contextualiza-
tion index is queried to try as many promising surface
form combinations as possible, in addition to applying
other lemmatization techniques such as plural removal.
Note that the queries performed to all indexes (except
to the Wikipedia index) are all exact queries since par-
tial match queries introduce much noise by generating
candidates that are not directly correlated with the text.

In lines 8 to 13, the set of candidate nodes is enlarged
by exploring the disambiguation pages found in the pre-
vious searching using the procedure disambiguate.
This procedure queries the disambiguation index to re-
trieve the links contained in the disambiguation page
that is being explored. This exploration is recursive
since a disambiguation page may contain links to more
disambiguation pages. This exploration continues until
the threshold MAX DEPTH is reached.

In lines 15 to 22 the type rule system is applied to
prune some candidates based on its type or to generate
some new candidates. First, an analysis is performed
over the possible set of types for each term based on

9

its exact match occurrence in the type index and, then,
they are classified in categories such as “locations” or
“sports”. Furthermore, a lookup for specific words that
may give a hint about the possible topic of the docu-
ment is performed, such as “film”, “movie” or “album”.
Then, ABACO inspects every candidate entity gener-
ated for the current mention and based on the informa-
tion gathered previously, discards URIs that have a low
probability of being the entity associated with the men-
tion. For example, if an entity of type Film is generated,
but no other word in the text makes reference to films,
that URI is discarded. Then, ABACO also checks for
combinations of types that may indicate that a URI is
prone to be the real candidate and thus, to be generated.
For example, if ABACO detects by its type a sport in the
text (e.g., football) and we are evaluating a mention
that is a country (e.g., Spain) ABACO generates candi-
dates by querying the type index and retrieving the set
of nodes of the DBpedia that make reference to Spain
and are FootballTeams (e.g., “Spain national football
team”, “Spain under 21 national football team” and so
on). To reinforce the detection of countries, we use the
contextualization index to check if the mention is, in
fact, a country and avoid generating in that case.

In lines 23 to 25, a check is performed to assure that
the previous generation steps were successful. If no
candidate is found, a less restrictive search for candi-
dates is performed. For that, the Wikipedia search API
is queried since it takes into account not only the text
searched but also statistics about the own Wikipedia
pages such as popularity.

In line 26 the similarity between every candidate
found and the context extracted in the previous process
step is calculated to eliminate candidates that are not
well aligned with the document context. The Wikipedia
index is used, so the document context similarity prob-
lem is reduced to how well the Wikipedia page of the
candidate aligns with the context extracted. In this pa-
per, the Lucene BM25 ranking function is used to cal-
culate the similarity between the Wikipedia page associ-
ated with the candidate entity and the context extracted
from the text. In particular, the similarity is defined as
follows:

sim(W,Qn) =

n∑
i=1

IDF(qi) ·
f (qi,W) · (k1 + 1)

f (qi,W) + k1 · (1 − b + b · |W |avgl)
(3)

where:

• sim(W,Qn) is the similarity between the Wikipedia
page of the candidate entity (W) and the set of men-
tions extracted from the context (Qn). Note that we

index the Wikipedia pages as a whole without any
distinction between the different fields of the page.

• IDF(qi) is the inverse document frequency for
the term qi and is calculated as IDF(qi) =

log N−n(qi)+0.5
n(qi)+0.5 where N is the total number of docu-

ments in the index and n(qi) is the number of doc-
uments containing qi.

• f (qi,W) is the qi term frequency for the Wikipedia
article of the candidate entity.

• k1 and b are constants, 1.2 and 0.75, respectively.

• |W | is the length of the Wikipedia article in words.

• avgl is the average document length in the index
containing the Wikipedia articles.

Thus, the similarity score for each candidate is com-
puted, and every candidate is discarded except the best
N. In our experimentation we found that N = 7 is a rea-
sonable number of candidates that allows preserving co-
herence in the graph building step and prevents discard-
ing nodes that are the correct solution to the mention
linking problem.

The complexity of Algorithm 2 is O(n2), determined
by the loops in lines 3, 8, 15 and 35. The first loop
has O(n) complexity, bounded by the number of men-
tions. Its nested loop has also O(n) complexity, in this
case, bounded by the number of exact matches found
in the index (even though the number of uris is often
very low). The loops from lines 15 and 35 have also
O(n) complexity. These loops are bounded by the total
number of candidate uris and by the number of candi-
date entities found in each step of the disambiguation
procedure. Note that the three nested loops, in lines
3, 8 and 15, have complexity O(n2 + n2 + n2) which,
in practice, is O(n2). The disambiguation procedure in
line 37 has complexity O(1), bounded by the constant
MAX DISAM DEPTH.

4.3. Graph expansion
The next step in the annotation process involves inter-

connecting every candidate entity generated from dif-
ferent mentions of the text. Formally, let c j be the
candidate entity j for a mention m and Cm j the set
of candidate mentions for mention m j, then, for each
(ci, c j) ∈ Cmi×Cm j , mi , m j, ABACO creates a DBpedia
sub-graph that connects ci to c j, that is, every two nodes
of different mentions are linked together if possible. The
result of this linking is a unique graph in which, ide-
ally, all candidate nodes are interconnected, although
the graph may contain several isolated sub-graphs when

10

Figure 3: An example of a graph with two candidate nodes for the
mention “Oreo”.

topics are unrelated or even isolated nodes where there
is no way to link the mention with the main graph.

Figure 3 shows a simplified example in which graphs
that connect different candidate nodes are combined in a
unique graph. As shown in the figure mentioned above,
mentions have one or more candidate nodes, such as the
entities “Oreo” and “Android Oreo” (framed in a dotted
rectangle) for the mention “Oreo”. These two candidate
nodes exemplify the assumption on which this proposal
is built: candidate nodes closely related to the docu-
ment’s topic are more interlinked or at least should be
located closer within the graph. In this case, the candi-
date nodes “Android Oreo” and “Android operating sys-
tem” are directly linked, while “Oreo” is at a distance of
four links.

4.3.1. Explored properties
Table 1 shows some relevant properties between

entities in DBpedia 2016-10. All the relations of
DBpedia has been used to interconnect nodes, except
four of them. Specifically dbo:wikiPageRedirects,
which stores different URIs referring the same en-
tity, dbo:wikiPageDisambiguates, which points out
to other entity in conflict with the current entity be-
cause of name ambiguity, dbo:wikiPageWikilink,
which contains other internal links of an entity in
the Wikipedia page, and rdfs:type, which contains
the type of the entity, were discarded. As afore-
mentioned in section 4.1, dbo:wikiPageRedirects

and dbo:wikiPageDisambiguates are the basis
for creating the index used to identify mentions.
dbo:wikiPageWikilink was not considered be-
cause it has no clear semantical meaning, intro-
ducing unnecessary noise to the annotation process;
and finally, rdfs:type was not considered because

Table 1: Number of instances of the most used relations included in
DBpedia 2016-10.

Property # Instances

dbo:wikiPageWikilink 48,704,874
dcterms:subject 13,610,094
rdfs:type 11,168,302
dbo:wikiPageRedirects 5,074,113
skos:broader 1,463,237
dbo:wikiPageDisambiguates 1,004,742
dbo:birthPlace 979,163
dboprop:subdivisionType 598,602
dbo:country 557,587
Other relations 20,304,358

dcterms:subject provided a more precise classifica-
tion and rdfs:type would allow interconnecting nodes
that are not really related between them just because the
nodes have the same type.

4.3.2. Graph building
Given a source node ns and a target node nt, the ob-

jective is to identify the set of possible paths in the di-
rected graph from ns to nt. The only parameter needed
to perform the exploration is the depth of exploration,
d. The higher the depth of exploration is, the denser is
the sub-graph extracted from the KB, and hence higher
time consumption. However, building graphs at a higher
depth does not have to provide necessarily more infor-
mation. These connections are often more general as the
depth of exploration increases and give less information
than other relations of the KB.

The algorithm implements a bidirectional strategy to
speed up the graph building process. This strategy runs
two simultaneous searches, one forward from the source
node, and one back from the target node, stopping when
the maximum depth of exploration, d, is reached. Thus,
we retrieve every possible path between ns and nt that is
of length d or less. Note that ABACO needs to retrieve
every possible between each pair of nodes for the cal-
culation of the centrality to be accurate. Otherwise, it
would miss relations that are present in the KB but that
are not considered in the calculation of the centrality.

With the aim of improving the performance of the
search process, paths between every two nodes in the
DBpedia have been indexed. Specifically, paths up to
i = 4 were preprocessed. Experimentation showed that
paths with more than i = 3 give too much indirection
in the graph building step, so paths up to i = 2 were
indexed. Table 2 gives an idea of the magnitude of this
indexation. This allows that, in the best case, the graph
is built in a single step when d = 2 ∗ i, where i is the
maximum depth indexed in the path database.

11

Table 2: Number of paths between entities in DBpedia 2016-10.

Size (in bytes)
Depth # Paths Raw Processed

i = 2 3.76 ·1008 8.4 GB 4.3 GB
i = 3 3.11 ·1009 100.0 GB 54.0 GB
i = 4 3.10 ·1010 1.3 TB 710.0 GB

The raw column shows the real size of a file containing all paths for i = 2, 3, 4.
The processed column uses an encoding scheme to reduce the size of URIs.

As shown in table Table 2, there are more than
3.10 · 1010 paths for i = 4. The size (in bytes) also
grows exponentially as the distance between nodes in-
creases. To minimize this issue, we considered imple-
menting a strategy where URIs and paths were encoded
with as much as 4 bytes per URI and as less as 1 byte
per URI. The improvement ratio was around 50%, al-
though size could be further reduced by compressing
URIs and paths using some of the compressors currently
available (such as xz or bzip2) increasing the compu-
tation time. However, this solution was discarded since
it would increase the query time per graph dramatically
since each node to decode would imply, in the worst
case, a database query. Thus, the paths are directly used
without any encoding.

To store the paths as efficiently as possible, a fine-
grained tuned PostgreSQL6 database is used and an B+

indexing is performed over the source and destination
nodes. A relational database is used since: (i) retrieving
data from this database is faster than to use a database
such as Cassandra7 or MongoDB8 that have higher la-
tency; (ii) it is faster to store the data in a single sim-
ple indexed denormalized table than in a distributed
schema; (iii) since PostgreSQL 10 parallel query9 aids
to retrieve data faster; and (iv) a join must be performed
to retrieve the category paths of the graph and this oper-
ation is much more efficient in a relational database.

The bidirectional approach takes advantage of this in-
dexation to reduce the exploration and retrieve in one
step the full graph for a given distance d. Thus, the full
list of preprocessed paths C is retrieved where ci , c j,
that is, paths where the source and destination nodes are
different. Furthermore, two different kinds of paths can
be distinguished:

• Category paths. These paths only involve cat-
egories. The common category is searched be-
tween each pair of nodes. Thus, when indexing

6https://www.postgresql.org/
7http://cassandra.apache.org/
8https://www.mongodb.com/
9https://www.postgresql.org/docs/10/parallel-query.html

paths up to level d/2 of depth, we can build graphs
with paths up to length d after performing the join
between the two source columns of the indexed
paths. This kind of path is the most common
in the graph building since DBpedia categories
may agglutinate lots of relationships (e.g, Cat →
(dcterms:subject)→ Category:Animal).

• Direct paths. These paths involve relationships
without categories. No join is performed be-
tween direct paths since it would increase the in-
direction level of a relationship too much. These
kind of paths are much less common in the graph
and involve much more significant relationships
between candidates (e.g, Stephen Hawking →

(dbo:birthplace)→ Oxford).

Note that, first, paths are retrieved from the database
and, then, the internal representation of the graph is built
over an iteration of these paths. This procedure is much
faster than iterating over each pair of candidates since
many of them would not be connected and, thus, they
would be isolated in the final graph.

4.4. Calculation of topic coherence

The concept of degree of centrality is used to identify
the most important nodes within a graph, defined as the
number of relations incoming and outgoing upon a node
(directed graphs). Incoming relations are interpreted as
the popularity of a node, while outgoing relations pro-
vide information about how much the node is linked to
other nodes. Furthermore, paths that are too indirect or
are too broad are penalized by taking into account the
length of each path and the number of category nodes
that are present in them.

Let G = (V, E) be a graph given by a set of nodes V
and relations E. The degree of centrality of a node v ∈ V
is defined as:

C(v) =

P∑
i=1

deg−i (v) + deg+
i (v)

(Ci + Li)
=

P∑
i=1

1
(Ci + Li)

(4)

Where P denotes the set of paths involving v and other
candidate entities from the graph, deg−i (v) and deg+

i (v)
denote the indegree and the outdegree of the node v
with respect to the path Pi, and Ci and Li denote the
number of category nodes and the length of the path Pi

that involves v respectively. In practice, the numerator
deg−i (v) + deg+

i (v) denotes the incidence of the path Pi

in the node v, independently of the direction of this in-
cidence (incoming or outgoing). Since each path can

12

incide exactly once in a node, either by an outgoing
relation or by an incoming relation, the numerator for
each path is always 1. The denominator of the equa-
tion penalizes nodes that have many relationships with
categories of indirect paths (which would be the case of
popular nodes, such as countries). Note that this cen-
trality is calculated at a path level instead of a relation
level. This means that if the same relation is present in
different paths, it would be counted as many times as
it is present in the different paths, regardless if it is the
same relation.

For example, let A and E, be candidate entities; B, C
and D, be intermediate non-category nodes between A
and C; and R be the set of relations R = {A → E, A →
B, B → C,C → E, B → D,D → E}, then P would be
the set of paths P = {A → E, A → B → C → E, A →
B→ D→ E}. The value of the centrality of A, C(A), is
calculated as follows:

C(A) =
1

LP1

+
1

LP2

+
1

LP3

=
1
1

+
1
3

+
1
3
≈ 1.667 (5)

Other centrality measures, such as PageRank [49] and
HITS [56], were also considered in this paper. How-
ever, they were discarded after the experimentation as
they did not improve the results obtained by the degree
of centrality. In addition, the algorithm complexity to
compute the degree of centrality is O(n), which is lower
than the complexity O(n2) of PageRank or HITS.

4.5. Adjustment factor
We perform two adjustments to the relevance calcu-

lated in equation 2:

• A small fixed amount (α) is added to this relevance
if the candidate matches with a candidate gener-
ated as an exact match of the mention. In this
case, it is assumed that a mention can be usually
linked to the most obvious entity. This value is set
to 25% of the common values of textual similarity
obtained with medium texts when 5-6 nodes are
annotated. Note that this value is estimated empir-
ically and, in practice, an alpha higher or shorter
than this value would have no effect whatsoever
on the annotation results. Furthermore, when more
nodes are annotated, and the texts grow in size, the
effect of α is negligible, relying entirely on the tex-
tual and centrality measures.

• Nodes that were generated by querying the
Wikipedia API are discarded under the examina-
tion of two thresholds: (i) a textual similarity

threshold and an (ii) relation threshold. The rela-
tion threshold is set to a low value to force that the
candidates generated by this way are slightly con-
nected with the main graph. The textual similarity
threshold is set to a low value taking into account
the scoring of textual similarity of medium-sized
texts with, approximately, 10 mentions to anno-
tate. These thresholds are necessary since query-
ing Wikipedia adds much noise for adding nodes
that are not directly related to the text. The combi-
nation of these thresholds avoids discarding nodes
that are not related to the conjoint graph but have a
high degree of textual similarity.

4.6. Combinatorial problem

Recalling from section 3.4, one of the main prob-
lems of the graph-based disambiguation approaches is
the combinatorial explosion that happens when explor-
ing the KB. To alleviate this combinatorial explosion
three main strategies are performed:

(i) The number of possible candidates for each men-
tion is kept limited by a filtering based on the con-
text compatibility. This filtering is performed be-
fore building the disambiguation subgraph. Thus,
the time to retrieve the paths between pairs of can-
didate entities does not depend on the number of
candidate entities retrieved from the disambigua-
tion pages.

(ii) The bidirectional strategy reduces the number of
nodes that ABACO needs to explore to build the
disambiguation sub-graph. In the case of a regular
breadth-first search, the number of nodes needed
to explore in the worst case for each pair of entities
is O(bd), where d is the exploration depth and b is
the branching factor. In the case of a bidirectional
search, the number of nodes needed to explore for
each pair of entities is twice O(bd/2) which is much
less than the breadth-first scenario.

(iii) The indexation of paths allows retrieving paths be-
tween candidate entities faster. Given an explo-
ration depth, d, there are three possible scenarios,
depending on the maximum indexed path length:

– In the first scenario, when the maximum in-
dexed path length is equal or greater than the
maximum exploration depth, d, the paths be-
tween candidate entities can be retrieved in a
single step by directly querying the path in-
dex (O(1)).

13

– In the second scenario, when the indexed
path length is equal or greater than d/2 and
less than d, it is also possible to retrieve the
paths in a single step by joining the index of
paths with itself. This operation is called a
“hash join” since it is a join performed over
the B+ indexed columns of the path index.
The complexity of this is O(N + N), which,
in practice is O(N).

– In the third scenario, when the maximum in-
dexed length is less than d/2, the complexity
for each pair is O(bd/2m), where m denotes
the maximum indexed path length.

Summarizing, in ABACO disambiguation is ad-
dressed as a holistic problem: a DBpedia sub-graph,
containing the candidate nodes of all mentions, is cre-
ated, and the best candidates are selected based both on
their topic coherence and their context similarity. Other
approaches that use graphs to disambiguate, only ex-
plore candidate nodes up to a distance of 2 or 3 relations.
This is usually an issue since nodes in DBpedia are usu-
ally linked at a more profound distance, and thus graphs
can be composed of isolated nodes. Our approach min-
imizes this issue since it accounts for all nodes up to
distance 8, which, in combination with the high branch-
ing factor of DBpedia, ensures the connectivity between
nodes. The combination of paths indexing and a bidirec-
tional search strategy minimizes the cost of exploration.
Finally, a new relevance model for ranking nodes has
been defined that combines the degree of centrality, to
measure the importance of the entity in the graph, and
a similarity measure between the text-based relations of
the entity and the document’s mentions.

5. Evaluation

5.1. Baseline for precision and recall

To perform the evaluation of ABACO, the
GERBIL [43] platform (version 1.2.7) is used with the
D2KB (Disambiguation to KB) experiment in which
the annotator shall link a specific set of mentions from
a given text to their corresponding URI in a known KB
or return NIL if no entry can be found in the target
KB. Let M∗ be the set of annotations consisting of the
ground truth associated with a given set of mentions
Q and let M be the set of annotations returned by an
annotator. Then, the evaluation metrics used in this
paper are computed as follows:

Table 3: Dataset characteristics, where Num docs is the number of
documents in the dataset, Entities is the total number of entities found
in the dataset, Avg. Ent. /Doc. is the average number of entities per
document and Avg. Wd. /Doc. is the average number of words per
document

Dataset Num Entities Avg.Ent./ Avg.Wd./
docs Doc. Doc.

ACE2004 57 253 5.37 373.9
AIDA/CoNLL Test B 231 5616 24.31 176.85
AQUAINT 50 747 14.54 220.5
IITB 103 18308 109.22 639.7
MSNBC 20 747 37.35 543.5
N3-Reuters-128 880 128 4.85 123.8
N3-RSS-500 500 1000 1.00 31.0
OKE 2015 Task 1 Ev. 101 664 6.57 30.34
OKE 2016 Task 1 Ev. 55 340 6.18 30.33
OKE 2018 Task 1 Tr. 60 378 6.3 66.37
OKE 2018 Task 2 Tr. 56 423 7.55 66.5
OKE 2018 Task 4 Tr. 100 305 3.05 23.81
Spotlight 58 330 5.69 28.6

P =
|M ∩ M∗ |
|M|

R =
|M ∩ M∗ |
|M∗ |

F1 =
2 · P · R
P + R

Where P is the precision, R is the recall, and F1 is
the F1 score. Note that, in the GERBIL platform, two
URI sets are matching and, thus, considered a true pos-
itive whether some of the following conditions occurs:
(i) the URIs are classified from a known KB, and both
sets match or (ii) both sets are classified as unknown to
the KB. Furthermore, GERBIL distinguishes between
macro and micro measures. Micro measures make the
average of the sum of all true positives and false posi-
tives to calculate a single metric. Macro measures make
the average of the precision of every document, calcu-
lated individually. In practice, micro measures show the
performance of the annotator over the whole dataset,
whereas macro measures show the average performance
for each document. In this paper, the F1 micro score will
be used as a performance metric.

5.2. Datasets

This evaluation is performed over 13 well-known
datasets crafted from various sources. Datasets com-
posed of short texts are not used since they are not
the target of our annotation solution, more oriented to
medium to large-sized texts from which a better con-
text can be extracted. The main characteristics of these
datasets are shown in Table 5.

14

• In AQUAINT [8] texts are collected from a news
service. Only the first term occurrence of an entity
is annotated, and only relevant entities are consid-
ered.

• In MSNBC [7] texts are collected from the news of
the MSNBC news network. The dataset lists only
the most relevant entities and where they are men-
tioned in the text.

• IITB [57] contains more than one hundred of man-
ually annotated texts, collected from sports, enter-
tainment, science, technology and health websites.
In IITB all the mentions of an entity in the text are
annotated, including entities less relevant.

• ACE2004 [13] is composed of news, where only
named entities are annotated, ignoring common
names.

• AIDA/CoNLL [29] documents are news obtained
from the Reuters Corpus V1, in which a subset of
named entities are annotated and common names
are ignored. The dataset has three subsets: Train-
ing, Test A, and Test B. Since the AIDA system,
proposed in the same publication, has been trained
using the first two and PBOH maximizes its hyper-
parameters using the second dataset (among other
1,000 random Wikipedia pages) only the last set
was considered to carry out the experiments.

• Spotlight [18] contains a set of short news in which
relevant entities are annotated.

• N3-RSS-500 and N3-Reuters-128 [58] consist, on
one hand, in data scraped from 1457 RSS feeds
and, on the other hand, 128 news articles sampled
from the Reuters-21578 news articles dataset. Both
datasets are manually annotated by domain ex-
perts. The news is gathered from all major world-
wide newspapers and comprise a wide range of
topics.

• OKE datasets were used in the OKE chal-
lenges [59, 60, 61]. These datasets contain
medium-sized texts that were curated manually.

All datasets are in English.

5.3. Annotation Systems

Although many annotation systems have been pro-
posed in the literature, only a few of them are pub-
licly available, integrated in the GERBIL platform and

currently working. In addition to ABACO, our ex-
perimentation also included the following annotation
systems aforementioned in Section 310: AIDA [29],
DBpediaSpotlight [18], AGDISTIS/MAG [42], Ba-
belfy [33], FOX [45], FREME NER [48], Kea [47],
PBOH [44], and OpenTapioca [41].

Unfortunately, some of the annotators are not cur-
rently working with the online version of GERBIL even
though they are operating normally 11. Therefore, a lo-
cal version of GERBIL 1.2.5 has been deployed to solve
those issues. The the results of TagMe2 and NERD-
ML correspond with the local deploying of GERBIL
(marked as “*” in the result table).

6. Results

In this section the results of the tests of ABACO
and other eleven entity annotation systems described in
the previous section are detailed. These systems have
been tested over the datasets listed in Table 3 without
any tuning or training. Furthermore, the performance
of ABACO with different graph weighting measures,
HITS [56] and PageRank [49], is also analyzed.

In the following subsections, the effectiveness of
these systems is presented, in terms of F1, and discuss
the performance of ABACO for the D2KB problem.

6.1. Results and discussion
The comparison for the D2KB problem evaluated in

GERBIL is listed in Table 6.1.12The comparison for the
D2KB problem evaluated in GERBIL is shown in Ta-
ble 6.1, where ABACO obtains the best results in 11 of
13 datasets and the best mean score of all annotators that
have been evaluated.

The next best annotators are PBOH and Kea. As far
as the differences with these annotators is concerned,
there are some datasets where PBOH performance is
heavily diminished when it is compared to ABACO in
terms of the F1 score, such as N3-RSS-500 (third-best
annotator with 14.12% difference), OKE 2015 dataset
(second-best annotator with 8.89 % difference), OKE

10Baseline shown in this paper is available in the following link
http://gerbil.aksw.org/gerbil/experiment?id=201903070014.
Baseline for the OpenTapioca annota-
tor is available in the following link
http://gerbil.aksw.org/gerbil/experiment?id=201909120008

(this annotator was added after the main baseline had been per-
formed).

11See issue https://github.com/dice-group/gerbil/

issues/312
12Results are available in the following link:

http://gerbil.aksw.org/gerbil/experiment?id=201903010008

15

A
C

E
20

04

II
T

B

A
Q

U
A

IN
T

Sp
ot

lig
ht

M
SN

B
C

N
3-

R
eu

te
rs

-1
28

N
3-

R
SS

-5
00

O
K

E
20

15
Ta

sk
1

ev
al

ua
tio

n
se

t

O
K

E
20

16
Ta

sk
1

ev
al

ua
tio

n
se

t

A
ID

A
/C

oN
L

L
-T

es
tB

O
K

E
20

18
Ta

sk
1

tr
ai

ni
ng

da
ta

se
t

O
K

E
20

18
Ta

sk
2

tr
ai

ni
ng

da
ta

se
t

O
K

E
20

18
Ta

sk
4

tr
ai

ni
ng

da
ta

se
t

M
ea

n
F1

AGDISTIS/MAG 66.34 30.63 42.50 20.74 73.19 64.66 61.50 56.02 49.12 47.17 70.37 62.41 82.62 55.94
AIDA 70.29 17.74 54.83 24.51 68.33 46.30 45.21 55.56 49.47 68.31 69.03 59.10 73.00 53.97
Babelfy 55.78 36.53 67.79 51.59 70.34 44.85 44.34 57.98 54.33 67.60 62.46 55.72 67.66 56.69
DBpedia Spotlight 40.66 29.26 49.77 67.82 38.38 28.94 18.72 30.78 38.96 48.74 36.26 35.86 42.96 39.00
FOX 65.12 11.46 37.98 14.36 59.62 58.62 59.21 55.11 46.65 53.28 65.01 55.15 75.51 50.54
FREME NER 5.000 24.89 53.49 52.46 43.22 24.62 27.77 31.40 36.18 34.45 30.67 36.90 48.47 38.04
OpenTapioca 56.95 9.080 44.26 17.53 48.60 37.89 31.63 46.94 48.26 43.29 52.65 46.23 62.80 42.01
Kea 70.67 40.26 78.29 71.90 72.70 52.54 45.11 61.92 63.59 59.52 71.63 66.41 80.76 64.25
NERD-ML* 57.37 42.60 59.59 55.16 60.73 40.95 37.39 61.44 63.14 0.320 0.000 0.000 8.180 37.45
TagMe 2* 71.71 36.26 71.85 65.76 63.52 43.84 47.07 57.56 63.48 57.67 59.41 53.62 71.12 58.68
PBOH 77.30 36.46 81.29 78.47 81.53 64.77 53.45 62.80 68.53 74.84 69.44 64.11 81.97 68.84
ABACO 78.10 44.59 76.89 83.03 85.14 69.77 67.57 71.69 73.24 70.46 76.72 70.21 84.59 73.23

Table 4: Micro F1 measures for 13 datasets evalutated against 11 annotation systems and mean F1 score for each annotator. We highlight in bold
the best system in each dataset. Systems marked as “*” were tested on a local deployment of GERBIL 1.2.5

A
C

E
20

04

II
T

B

A
Q

U
A

IN
T

Sp
ot

lig
ht

M
SN

B
C

N
3-

R
eu

te
rs

-1
28

N
3-

R
SS

-5
00

O
K

E
20

15

O
K

E
20

16

A
ID

A
Te

st
B

O
K

E
20

18
Ta

sk
1

O
K

E
20

18
Ta

sk
2

O
K

E
20

18
Ta

sk
4

M
ea

n
F1

ABACO 78.1 44.59 76.89 83.03 85.14 69.77 67.57 71.69 73.24 70.46 76.72 70.21 84.59 73.23
ABACO + PageRank 76.8 39.89 77.03 83.33 84.07 70.27 67.47 69.88 73.53 67.44 72.58 67.93 83.93 71.81
ABACO + HITS 72.88 37.41 74.83 82.42 81.53 69.89 67.67 68.98 69.12 65.85 73.28 67.14 83.28 70.32

Table 5: F1 scores for 13 datasets using different graph weighting strategies in ABACO.

2018 Task 1 dataset (fourth-best annotator with 7.28%
difference) or the IITB dataset (fourth best annota-
tor with 8.13% difference). The differences are even
stronger if we compare ABACO with the Kea annotator,
for instance, the 12.44% difference in MSNBC dataset
or the 22.46% difference in N3-RSS-500 dataset.

It is worth noting ABACO results in the IITB dataset,
which, according to Table 6.1, is the dataset with the
higher number of nodes (or entities) per document, fol-
lowed closely by NERD-ML (1.99% F1 score) and fol-
lowed by KEA (4.33% F1 score). This result proves the
robustness of the graph building algorithm when a high
number of nodes is given, even when common nouns
have to be annotated.

On the other hand, it is also worth noting the case of
the ACE2004 dataset, where, although ABACO obtains
the best result, is closely followed by PBOH (1.2% F1
score) and far from the third-best followed by TagMe 2
(6.39 % F1 score). As aforementioned, the news agency
in the headers of the text is identified as a mention to
annotate. However, it is usually annotated incorrectly
by ABACO due to the lack of contextual information in

the text. Although this problem can be easily solved by
implementing a parser to recognize headers, this solu-
tion was not implemented in ABACO since it would be
very dataset-specific. Even with that handicap, ABACO
manages to get the best score.

As an additional result of our analysis, we have
identified two issues that reduce the effectiveness of
ABACO. First, when the text is short sized and some of
the terms are not directly correlated with the main topic
of the document, ABACO is not able to link the men-
tion to its corresponding entity due to the mismatch be-
tween topic and entity presence. Furthermore, ABACO
does not always find the correct entity when there ex-
ist two or more candidate nodes that are semantically
close such as New York and New York City (state
and city) or Chicago White Sox and Chicago Cubs

(both are baseball teams from Chicago). On the other
hand, in some cases, ABACO struggles to retrieve the
entity linked to some surnames when no proper candi-
date is found neither in the disambiguation pages, nor in
the coreference resolution phase (when the surname is
not mentioned explicitly with its full name). These is-

16

sues prevent ABACO from getting a better result in the
AQUAINT and AIDA datasets.

Table 5 shows the performance of different graph
weighting strategies of ABACO. Centrality weighting is
changed for PageRank or HITS, but BM25 is still used
for calculating the textual similarity between nodes.
As shown in the aforementioned table, HITS underper-
forms the centrality weighting measure in every dataset
except N3-RSS-500 and N3-Reuters-128 (by a low mar-
gin). PageRank shows more promising results by im-
proving the results in datasets AQUAINT, SpotLight,
N3-Reuters-128 and OKE 2016. However, these differ-
ences are negligible in front of the performance loses in
other datasets (2-3% F1 score). These differences are
rooted in the internal structure of DBpedia, in which
a few nodes agglutinate lots of incoming and outgoing
links with category paths. These links make PageRank
and HITS think that these nodes are more important
than they really are, unlike our centrality measure that
penalizes paths with long lengths and containing cate-
gories.

7. Conclusions

In this paper, we presented ABACO, which, con-
trary to most approaches, solves name ambiguity by ex-
tracting from the KB the sub-graph that best describes
the document. This graph is composed of interrelated
nodes, trying to maintain the coherence of the topics of
the document, and thus nodes are collectively disam-
biguated.

ABACO has been developed to deal efficiently with
massive databases and disambiguation graphs. Specif-
ically, a bidirectional algorithm explores the KB look-
ing for relations between candidate nodes. The explo-
ration cost of this algorithm is drastically reduced since
paths between nodes are indexed. Thus, ABACO can
explore more exhaustively the KB, allowing building a
knowledge-subgraph to a depth greater than other ap-
proaches. In addition, a relevance model has been de-
fined to score nodes according to their importance in the
graph (degree of centrality) as well as their relatedness
with the mentions of the document (semantic similar-
ity). Only the best candidate entity of each mention is
maintained in the graph. Unlike other approaches from
the state of the art, ABACO successfully builds graphs
from coherent candidates (given its textual similarity)
and consistently ranks nodes taking into account the in-
ner structure of the DBpedia graphs as well as the tex-
tual similarity between texts and nodes. Furthermore,
this algorithm requires no training nor tuning whatso-
ever.

Finally, a version of ABACO has been compared with
11 other annotators and 13 different datasets. Results
show that ABACO obtains the best results in terms of
F1 score in 11 of the 13 datasets.

For future work we want to research further enhance-
ments of the centrality measure used in the paper. More
specifically, we believe that taking into account the
global popularity of entities in the KB or the direction-
ality of paths in the calculation of the centrality could
give a more precise measurement of the entity topic co-
herence. Furthermore, more distinctions between types
of nodes than just “category” or “non-category” nodes
could be made in the calculation of this centrality.

Acknowledgments

This work was supported by the Spanish Min-
istry of Economy and Competitiveness under the
project TIN2015-73566-JIN and TIN2017-84796-C21-
R, and by the European Regional Development Fund
(ERDF/FEDER), the Consellerı́a de Cultura, Educación
e Ordenación Universitaria (accreditation 2016-2019,
ED431G/08, reference competitive group 2018-2020,
ED431C 2018/29).

References

References

[1] J. Kahan, M.-R. Koivunen, E. Prud’Hommeaux, R. R. Swick,
Annotea: an open RDF infrastructure for shared web annota-
tions, Computer Networks 39 (5) (2002) 589–608.

[2] A. Kiryakov, B. Popov, I. Terziev, D. Manov, D. Ognyanoff, Se-
mantic annotation, indexing, and retrieval, Web Semantics: Sci-
ence, Services and Agents on the World Wide Web 2 (1) (2004)
49–79.

[3] W. Shen, J. Wang, J. Han, Entity linking with a knowledge base:
Issues, techniques, and solutions, IEEE Transactions on Knowl-
edge and Data Engineering 27 (2) (2015) 443–460.

[4] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P. N. Mendes, S. Hellmann, M. Morsey, van Patrick Kleef,
S. Auer, et al., DBpedia–a large-scale, multilingual knowledge
base extracted from Wikipedia, Semantic Web 6 (2) (2015) 167–
195.

[5] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Free-
base: a collaboratively created graph database for structuring
human knowledge, in: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, ACM, 2008,
pp. 1247–1250.

[6] R. C. Bunescu, M. Pasca, Using encyclopedic knowledge for
named entity disambiguation, EACL 6 (2006) 9–16.

[7] S. Cucerzan, Large-scale named entity disambiguation based on
Wikipedia data, EMNLP-CoNLL 7 (2007) 708–716.

[8] D. Milne, I. H. Witten, Learning to link with Wikipedia, Pro-
ceedings of the 17th ACM conference on Information and
Knowledge Management (2008) 509–518.

17

[9] X. Han, J. Zhao, Named entity disambiguation by leveraging
Wikipedia semantic knowledge, Proceedings of the 18th ACM
conference on Information and Knowledge Management (2009)
215–224.

[10] A. L. Gentile, Z. Zhang, L. Xia, J. Iria, Graph-based semantic
relatedness for named entity disambiguation, in: Proceedings of
International Conference on SOFTWARE, SERVICES & SE-
MANTIC TECHNOLOGIES, S3T, 2009, p. 13.

[11] P. Ferragina, U. Scaiella, Tagme: on-the-fly annotation of short
text fragments (by Wikipedia entities), Proceedings of the 19th
ACM international conference on Information and knowledge
management (2010) 1625–1628.

[12] B. Hachey, W. Radford, J. R. Curran, Graph-based named
entity linking with Wikipedia, in: Web Information System
Engineering–WISE 2011, Springer, 2011, pp. 213–226.

[13] L. Ratinov, D. Roth, D. Downey, M. Anderson, Local and global
algorithms for disambiguation to Wikipedia, in: Proceedings of
the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, Associ-
ation for Computational Linguistics, 2011, pp. 1375–1384.

[14] X. Han, L. Sun, J. Zhao, Collective entity linking in web text:
a graph-based method, in: Proceedings of the 34th international
ACM SIGIR conference on Research and development in Infor-
mation Retrieval, ACM, 2011, pp. 765–774.

[15] E. Meij, W. Weerkamp, M. de Rijke, Adding semantics to mi-
croblog posts, in: Proceedings of the fifth ACM international
conference on Web search and data mining, ACM, 2012, pp.
563–572.

[16] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, T. Stegemann,
Relfinder: Revealing relationships in RDF knowledge bases, in:
Semantic Multimedia, Springer, 2009, pp. 182–187.

[17] R. Mirizzi, A. Ragone, T. D. Noia, E. D. Sciascio, Semantic
tag cloud generation via DBpedia, in: E-Commerce and Web
Technologies, Springer, 2010, pp. 36–48.

[18] P. N. Mendes, M. Jakob, A. Garcı́a-Silva, C. Bizer, DBpedia
spotlight: shedding light on the web of documents, in: Proceed-
ings of the 7th International Conference on Semantic Systems
(I- SEMANTICS 2011), ACM, 2011, pp. 1–8.

[19] O. Muñoz-Garcı́a, A. Garcı́a-Silva, Ó. Corcho, M. H.
Hernández, C. Navarro, Identifying topics in social media posts
using DBpedia, in: Proceedings of the Networked and Elec-
tronic Media Summit (NEM summit 2011), 2011, pp. 1–6.

[20] S. Hakimov, S. A. Oto, E. Dogdu, Named entity recognition
and disambiguation using linked data and graph-based centrality
scoring, in: Proceedings of the 4th International Workshop on
Semantic Web Information Management, ACM, 2012, p. 4.

[21] I. Hulpus, C. Hayes, M. Karnstedt, D. Greene, An eigenvalue-
based measure for word-sense disambiguation, in: The Florida
Artificial Intelligence Research Society, FLAIRS Conference,
2012, pp. 226–231.

[22] I. Hulpuş, C. Hayes, M. Karnstedt, D. Greene, M. Jozwow-
icz, Kanopy: Analysing the semantic network around docu-
ment topics, in: Machine Learning and Knowledge Discovery
in Databases, Springer, 2013, pp. 677–680.

[23] D. S. Carvalho, A. Danilo, J. C. da Silva, Graphia: Extracting
contextual relation graphs from text, in: The Semantic Web:
ESWC 2013 Satellite Events, Springer, 2013, pp. 236–241.

[24] B. Fetahu, S. Dietze, B. P. Nunes, M. A. Casanova, D. Taibi,
W. Nejdl, A scalable approach for efficiently generating struc-
tured dataset topic profiles, in: Lecture Notes in Computer Sci-
ence, Springer International Publishing, 2014, pp. 519–534.

[25] A. Varga, A. E. C. Basave, M. Rowe, F. Ciravegna, Y. He,
Linked knowledge sources for topic classification of microp-
osts: A semantic graph-based approach, Web Semantics: Sci-
ence, Services and Agents on the World Wide Web 26 (2014)

36–57.
[26] M. Schuhmacher, S. P. Ponzetto, Knowledge-based graph doc-

ument modeling, in: Proceedings of the 7th ACM international
conference on Web search and data mining, ACM, 2014, pp.
543–552.

[27] C. Fellbaum, WordNet, Wiley Online Library, 1998.
[28] F. M. Suchanek, G. Kasneci, G. Weikum, Yago: A core of se-

mantic knowledge, in: Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, ACM, 2007, pp.
697–706.

[29] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal,
M. Spaniol, B. Taneva, S. Thater, G. Weikum, Robust disam-
biguation of named entities in text, in: Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, 2011, pp. 782–792.

[30] R. Navigli, S. P. Ponzetto, BabelNet: The automatic construc-
tion, evaluation and application of a wide-coverage multilingual
semantic network, Artificial Intelligence 193 (2012) 217–250.

[31] W. Shen, J. Wang, P. Luo, M. Wang, Linden: linking named
entities with knowledge base via semantic knowledge, in: Pro-
ceedings of the 21st international conference on World Wide
Web, ACM, 2012, pp. 449–458.

[32] M. Dojchinovski, T. Kliegr, Entityclassifier. eu: Real-time clas-
sification of entities in text with Wikipedia, in: Machine Learn-
ing and Knowledge Discovery in Databases, Springer, 2013, pp.
654–658.

[33] A. Moro, A. Raganato, R. Navigli, Entity linking meets word
sense disambiguation: A unified approach, Transactions of the
Association for Computational Linguistics 2 (2014) 231–244.

[34] D. B. Nguyen, J. Hoffart, M. Theobald, G. Weikum,
AIDA-light: High-throughput named-entity disambiguation, in:
Linked Data on the Web (LDOW2014), 2014, pp. 1–10.

[35] R. Usbeck, A.-C. N. Ngomo, M. Röder, D. Gerber, S. A. Coelho,
S. Auer, A. Both, AGDISTIS-graph-based disambiguation of
named entities using linked data, in: International Semantic Web
Conference–ISWC 2014, Springer, 2014, pp. 457–471.

[36] I. Yamada, H. Shindo, H. Takeda, Y. Takefuji, Joint learning
of the embedding of words and entities for named entity dis-
ambiguation, in: Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning, Association for
Computational Linguistics, 2016.

[37] O.-E. Ganea, T. Hofmann, Deep joint entity disambiguation
with local neural attention, in: Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, 2017.

[38] P. Radhakrishnan, P. Talukdar, V. Varma, ELDEN: Improved en-
tity linking using densified knowledge graphs, in: Proceedings
of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), Association for Com-
putational Linguistics, 2018.

[39] P. Le, I. Titov, Improving entity linking by modeling latent re-
lations between mentions, in: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Association for Computational Associa-
tion for Computational Linguistics, 2018, p. 1595–1604.

[40] J. Raiman, O. Raiman, Deeptype: Multilingual entity linking by
neural type system evolution, in: Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, 2018, pp. 5406–5413.

[41] A. Delpeuch, OpenTapioca: Lightweight Entity Linking for
Wikidata, arXiv e-prints (2019) 1–6.

[42] D. Moussallem, R. Usbeck, M. Röeder, A.-C. N. Ngomo, MAG:
A Multilingual, Knowledge-base Agnostic and Deterministic
Entity Linking Approach, in: Proceedings of the Knowledge
Capture Conference on - K-CAP 2017, ACM Press, 2017.

18

[43] M. Röder, R. Usbeck, A.-C. N. Ngomo, Gerbil – benchmark-
ing named entity recognition and linking consistently, Semantic
Web 9 (5) (2018) 605–625.

[44] O.-E. Ganea, M. Ganea, A. Lucchi, C. Eickhoff, T. Hofmann,
Probabilistic bag-of-hyperlinks model for entity linking, in: Pro-
ceedings of the 25th International Conference on World Wide
Web - WWW '16, ACM Press, 2016.

[45] R. Speck, A.-C. N. Ngomo, Ensemble learning for named en-
tity recognition, in: The Semantic Web – ISWC 2014, Springer
International Publishing, 2014, pp. 519–534.

[46] M. V. Erp, G. Rizzo, R. Troncy, Learning with the web: Spotting
named entities on the intersection of nerd and machine learning,
in: # MSM, 2013, pp. 27–30.

[47] N. Steinmetz, H. Sack, Semantic multimedia information re-
trieval based on contextual descriptions, in: The Semantic Web:
Semantics and Big Data, Springer Berlin Heidelberg, 2013, pp.
382–396.

[48] FREME NER.
URL :http://www.freme-project.eu/

[49] L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank cita-
tion ranking: Bringing order to the web, in: Proceedings of the
7th International World Wide Web Conference, Elsevier, 1998,
pp. 161–172.

[50] A. Cetoli, M. Akbari, S. Bragaglia, A. D. O’Harney, M. Sloan,
Named Entity Disambiguation using Deep Learning on Graphs,
arXiv e-prints (2018) 1–8.

[51] S. Khalife, M. Vazirgiannis, Scalable graph-based method for
individual named entity identification, in: Proceedings of the
Thirteenth Workshop on Graph-Based Methods for Natural Lan-
guage Processing (TextGraphs-13), Association for Computa-
tional Linguistics, 2019, pp. 17–25.

[52] A. Mandalios, K. Tzamaloukas, A. Chortaras, G. B. Sta-
mou, Geek: Incremental graph-based entity disambiguation, in:
LDOW@WWW, 2018, pp. 51–60.

[53] V. C. Tran, N. T. Nguyen, H. Fujita, D. T. Hoang, D. Hwang,
A combination of active learning and self-learning for named
entity recognition on twitter using conditional random fields,
Knowledge-Based Systems 132 (2017) 179–187.

[54] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard,
D. McClosky, The stanford CoreNLP natural language process-
ing toolkit, in: Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstra-
tions, Association for Computational Linguistics, 2014.

[55] K. Clark, C. D. Manning, Entity-centric coreference resolution
with model stacking, in: Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Association for Computational Lin-
guistics, 2015, pp. 1405–1415.

[56] J. M. Kleinberg, Authoritative sources in a hyperlinked environ-
ment, Journal of the ACM (JACM) 46 (5) (1999) 604–632.

[57] S. Kulkarni, A. Singh, G. Ramakrishnan, S. Chakrabarti, Col-
lective annotation of Wikipedia entities in web text, in: Pro-
ceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2009, pp. 457–
466.

[58] M. Röder, R. Usbeck, S. Hellmann, D. Gerber, A. Both, N3 - a
collection of datasets for named entity recognition and disam-
biguation in the nlp interchange format, in: LREC, 2014.

[59] A. G. Nuzzolese, A. L. Gentile, V. Presutti, A. Gangemi,
D. Garigliotti, R. Navigli, Open knowledge extraction chal-
lenge, in: Semantic Web Evaluation Challenges, Springer In-
ternational Publishing, 2015, pp. 3–15.

[60] A. G. Nuzzolese, A. L. Gentile, V. Presutti, A. Gangemi,
R. Meusel, H. Paulheim, The second open knowledge extraction

challenge, in: Semantic Web Challenges, Springer International
Publishing, 2016, pp. 3–16.

[61] R. Speck, M. Röder, F. Conrads, H. Rebba, C. C. Romiyo,
G. Salakki, R. Suryawanshi, D. Ahmed, N. Srivastava, M. Ma-
hajan, A.-C. N. Ngomo, Open knowledge extraction challenge
2018, in: Semantic Web Challenges, Springer International Pub-
lishing, 2018, pp. 39–51.

19

