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Five-year prediction of glucose changes with
missing data in a Reproducing Kernel Hilbert

Space
M. Matabuena, P. Félix, C. Meijide-Garcı́a and F. Gude

Abstract— It is estimated that approximately 50% of dia-
betes mellitus patients remain undiagnosed. Furthermore,
adherence and effectiveness of treatments are poor across
many patient groups; and disease prevalence is increasing
with contemporary lifestyles. In this context, new predictive
models to understand those risk factors associated with
the evolution of glycemic profiles in the short and long term
are vital for identifying patients at risk of disease develop-
ment, improving early diagnosis, and prescribing effective
treatment. Our main goal is to examine the relationship be-
tween the baseline characteristics of participants in a five-
year study and a primary biomarker for diabetes diagnosis
and monitoring, the glycated hemoglobin (A1c). In addition,
we make use of continuous glucose monitoring (CGM) to
capture individual glucose homeostasis fluctuations at a
high-resolution level. As five-year A1c data are missing for
approximately 40% of patients, we propose a new data-
analysis framework based on Reproducing Kernel Hilbert
Space (RKHS) learning. In particular, we address the sta-
tistical independence testing problem and we do several
adaptions of existing model-free methods of variable selec-
tion, regression and conformal inference. By using these
methods we achieve new clinical findings: i) We identify
some diabetes biomarkers associated with glucose varia-
tions, both marginally and from a multivariate perspective,
ii) We show that CGM provides extra information to predict
long-term changes in glucose metabolism, and iii) We iden-
tify some risk phenotypes for which our predictive capacity
is moderate, and therefore more personalized follow-up is
needed.

Index Terms— Diabetes mellitus, Reproducing Kernel
Hilbert Space, missing data, statistical independence, vari-
able selection, regression modeling.

I. INTRODUCTION

D IABETES mellitus is one of the most critical public
health problems, being the ninth major cause of mortality

worldwide [1]. At present, over 416 and 47 million patients
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have Type 2 and Type 1 diabetes respectively [2]. Importantly,
around 50% of patients with diabetes are undiagnosed [2].
Moreover, several projections forecast a significant increase
in prevalence in the following decades [3]. Considering the
impact of this pandemic among the general population, there
is a need for new health policies and guidelines to enable
early recognition of risk patients and improvement in the
methodology of disease diagnosis in the standard clinical
routine [4].

The availability and rapid adoption of new digital medical
devices have enabled an emerging clinical paradigm based
on precision medicine, which will be called to improve
early diagnosis and subsequent clinical decisions through
the intensive use of statistical models and machine learning
techniques [5]–[8]. In the particular case of diabetes the
latest advances in sensing technology allows for assessing the
glucose metabolism at a high-resolution level, by capturing the
individual differences in the glucose fluctuations at different
time scales via continuous glucose monitoring (CGM) [9].
Recent studies have shown improved glycemic control and
decreased rates of hypoglycemia in Type 1 diabetes (T1D)
patients using CGM, leading both the Endocrine Society
and American Diabetes Association to state that CGM use
represents standard of care in T1D [10], [11].

The first aim of this paper is to provide a method for
predicting glucose homeostasis in the long term, by mainly
using information provided by a CGM device and some
common clinical variables. Among different biomarkers, we
select the glycated hemoglobin (A1c) as response variable.
A1c is a measure of average blood glucose level over the past
3 months, and it is the preferred option because it provides
more reproducible values in laboratory and is subject to less
measurement error [12]. Furthermore, we aim to identify
several variables associated with the evolution of A1c in the
long term, and to assess and discuss the residuals and the
predictive capacity from the clinical point of view, providing
interpretable clinical phenotypes for large uncertainty cases.
The validity of the present approach is tested on a five-year
longitudinal population-based study, including both healthy
and diabetic subjects, where a subsample of participants
underwent continuous glucose monitoring procedures at the
beginning of the study. As expected, an important number of
participants withdrew from the study and therefore an analysis
robust to missing data is demanded [13].

In this paper, we focus our attention to the case where
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the response variable is the only variable with missing data,
a common situation in longitudinal studies. We choose the
Reproducing Kernel Hilbert Space (RKHS) learning paradigm
to tackle our missing data problem, due to its ability to model
complex non-linear relations between study variables [14],
[15]. Furthermore, RKHS paradigm is particularly suitable for
dealing with heterogeneous complex data such as graphs or
curves that take values on a continuum [16], as is the case
with the functional representation of glucose profiles that we
propose in Section II-A. Thus, we introduce new general-
purpose methods for statistical independence testing (Section
III-A), variable selection (Section III-B), and inference on the
uncertainty of new predictions (Section III-C), by adapting
previous kernel methods to the missing data setting.

The rest of this paper is outlined as follows: Section II
describes the AEGIS database used for testing our proposal.
Section III describes in detail those new methods for statistical
independence testing, variable selection, and inference on
the uncertainty of new predictions. Section IV shows the
results from applying these new methods to AEGIS database.
Section V discusses the advantages and drawbacks of this
approach. Finally, some conclusions are provided in Section
VI.

II. AEGIS DATABASE

The AEGIS population study, conducted in the Spanish
town of A Estrada (Galicia), aims to analyze the steady
evolution of different clinical features such as longitudinal
changes in circulating glucose in 1516 patients over 10 years.
In addition, non-routinary medical tests such as continuous
glucose monitoring are performed every five years on a
randomized subset composed of 581 patients. At the beginning
of this study [17], 581 participants were randomly selected for
wearing a CGM device for 3-7 days. Out of the total of 581
participants, 68 were diagnosed with diabetes before the start
of the study, and 22 during the study. Table I shows the basal
characteristics of these 581 patients grouped by sex. After a
five-year follow-up, a significant fraction of those individuals
did not agree to perform a second glucose monitoring, while
some five-year relevant outcomes such as A1c could only be
measured on 349 patients.

Men (n = 220) Women (n = 361)
Age, years 47.8± 14.8 48.2± 14.5
A1c, % 5.6± 0.9 5.5± 0.7
FPG, mg/dL 97± 23 91± 21
HOMA-IR, mg/dL.µUI/m 3.97± 5.56 2.74± 2.47
BMI, kg/m2 28.9± 4.7 27.7± 5.3
CONGA, mg/dL 0.88± 0.40 0.86± 0.36
MAGE, mg/dL 33.6± 22.3 31.2± 14.6
MODD 0.84± 0.58 0.77± 0.33

TABLE I
CHARACTERISTICS OF AEGIS STUDY PARTICIPANTS WITH CGM

MONITORING BY SEX. MEAN AND STANDARD DEVIATION ARE SHOWN.
A1C: GLYCATED HEMOGLOBIN; FPG: FASTING PLASMA GLUCOSE;

HOMA-IR: HOMEOSTASIS MODEL ASSESSMENT-INSULIN RESISTANCE;
BMI: BODY MASS INDEX; CONGA: GLYCEMIC VARIABILITY IN TERMS

OF CONTINUOUS OVERALL NET GLYCEMIC ACTION; MAGE: MEAN

AMPLITUDE OF GLYCEMIC EXCURSIONS; MODD: MEAN OF DAILY

DIFFERENCES.

A. Glucodensity

We adopt a novel functional representation for CGM data,
termed glucodensity, to assess glucose homeostasis in diabetes
patients [18]. Glucodensity is a natural extension of Time in
Range (TIR) metrics, the gold standard measure for repre-
senting CGM data. TIR measures the proportion of time that a
person spends with their blood glucose levels in a target range
[19], [20]. TIR is an intuitive metric, but has the disadvantage
that the range will vary depending on the individual and there
is a loss of information caused by the discretization of the
recorded data in different intervals. Instead, glucodensity effec-
tively measures the proportion of time each individual spends
at each specific glucose concentration, thus providing better
predictions of A1c, HOMA-IR, and the CONGA, MAGE, and
MODD variability measures than TIR does.

Given a series of CGM data {xj}mj=1 the glucodensity can
be modeled as a probability density function f(·) that can be
approached by a kernel density estimation,

f̂(x) =
1

m

m∑
j=1

kh(x− xj), (1)

where h > 0 is the smoothing parameter and kh(s) = 1
hk(

s
h )

is a non-negative real-valued integrable function (Figure 1).
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Fig. 1. Glucodensities estimated from a random sample of the AEGIS
study on diabetic and normoglycemic patients are shown. Left: glucose
representation estimates the proportion of time spent by a patient at
each glucose concentration over a continuum. Right: the representation
of the glucodensities in the space of quantile functions is shown.

III. METHODS

We shall first pose the problem in general terms. Let
(X, Y, R) be a random vector such that X = (X1, . . . , Xp) ∈
X denote the covariates, Y ∈ R the response variable, and
R ∈ {0, 1} a binary random variable that indicates whether
the response is missing or not. X denotes a topological space,
meaning that can be arbitrary, either discrete, continuous or
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structured. Let D = {(xi, yi, ri)}ni=1 be a dataset of inde-
pendently and identically distributed observations. We assume
R to be distributed according to the probability law π(·) =
P (R = 1|X = ·), which only depends on the covariates X.
We may also assume that X is sufficient to explain the possible
dependence between R and Y , or equivalently, R and Y are
conditionally independent given X, R ⊥⊥ Y |X. Let us also
assume the following relation between X and Y :

Y = f(X) + ε, (2)

where ε denotes a random noise with E(ε|X) = 0, and f
is the true regression function that is assumed to be smooth.
Our goal is to predict Y by proposing a new data analysis
framework that is robust to those datasets where some values
for Y are not observed; specifically, yi is missing if ri = 0. To
this aim we provide: 1) a method for univariate analysis based
on testing statistical independence between each covariate and
the response variable; 2) a method for selecting the subset
of covariates that best predict the response variable; and 3)
methods for predicting the response variable and for inferring
the uncertainty in the predictions.

A. Testing statistical independence
We study if there exists a statistical association between

each covariate in the AEGIS study and the response variable
A1c. To keep the notation uncluttered, we remove the subscript
from the covariate unless necessary. In general, we wish to
test whether random variables X and Y are not independent,
i.e., if we can reject the null hypothesis, H0 : X ⊥⊥ Y ,
from n samples {(xi, yi)}ni=1. To do this, we must calibrate
the test under the null hypothesis to determine what results
are expected to happen with a certain probability if the null
hypothesis holds. In our specific case, we have to take into
account the effects of the mechanism of missing data in
the response variable Y . We propose a methodology to deal
with this problem based on kernel mean embeddings, which
is valid when both covariate and response variables live in
a separable Hilbert space. In addition, we introduce a new
bootstrap procedure to perform test calibration, adapted to
kernel mean embeddings.

Hilbert space embeddings of distributions or, in short, kernel
mean embeddings [16], allows us to map distributions into a
Reproducing Kernel Hilbert Space (RKHS) in which kernel
methods can be extended to probability measures. Kernel mean
embeddings can be used to define a metric for distributions, the
maximum mean discrepancy (MMD), that can be applied to
define an independence test, the Hilbert-Schmidt Independence
Criterion (HSIC), a non-parametric test of independence with
the important property that it does not make any assumption
as to the nature of the possible dependence among the two
variables [21]. We shall extend this test to the missing data
setting.

The kernel mean embedding is built upon a positive definite
function known as kernel function kX : X × X → R.
The positive definiteness of kX guarantees the existence of
a dot product space H, and a mapping φ : X → H, such
that kX (x, y) = 〈φ(x), φ(y)〉. H is a Hilbert space of real-
valued functions defined on X . A reproducing kernel of H is

a kernel function that satisfies: 1) ∀x ∈ X , kX (·, x) ∈ H,
and 2) ∀x ∈ X , ∀f ∈ H, 〈f, kX (·, x)〉H = f(x). If H
has a reproducing kernel, it is said to be a RKHS HkX . A
kernel mean embedding results from extending the mapping
φ to the space of probability distributions by representing
each distribution as a mean function φ(P ) =

∫
X k(·,x)dP (x),

resulting in transforming a distribution P into an element of
the RKHS HkX . Given two probability measures, P and Q, a
RKHS distance between their embeddings can be defined as
the MMD [22]:

MMDkX (P,Q) = ‖φ(P )− φ(Q)‖HkX . (3)

For the class of characteristic kernels the embeddings are
injective, i.e., MMDk(P,Q) = 0 if and only if P = Q. MMD
can then be applied to measuring the degree of dependence
between the random variables X ∈ X and Y ∈ Y with
marginal distributions PX and PY , and jointly distributed as
PX,Y . Let us note that testing the null hypothesis H0 : X ⊥⊥ Y
is equivalent to testing H0 : PX,Y = PXPY . We denote by
φX(·), φY (·) and φX,Y (·) the kernel mean embeddings of PX ,
PY and PX,Y , respectively. Assuming HkZ is a RKHS over
X × Y with kernel kZ((x, y), (x′, y′)) = kX (x, x

′)kY(y, y
′),

so that HkZ is a direct product HkX ⊗HkY (with ⊗ being the
tensor product), then a natural way of testing independence is
measuring the MMD distance between the functions φX,Y (·)
and φY (·) ⊗ φX(·), which can be written as the Hilbert-
Schmidt Independence Criterion (HSIC) between X and Y
[22], defined as

HSIC(PX,Y , PXPY ) = ||φX,Y − φX ⊗ φY ||2HkX⊗HkY (4)

and it can be shown that when kX and kY are characteristic
kernels then HSIC(PX,Y , PXPY ) = 0 if and only if X ⊥⊥ Y .
Expanding Equation 4 we have

HSIC(PX,Y , PXPY ) =

= 〈φX,Y − φX ⊗ φY , φX,Y − φX ⊗ φY 〉HkX⊗HkY
= 〈φX,Y , φX,Y 〉+ 〈φX ⊗ φY , φX ⊗ φY 〉−

− 2〈φX,Y , φX ⊗ φY 〉. (5)

where we drop HkX ⊗ HkY in subscript for brevity. By the
reproducing property, EP [f(x)] = 〈f, φ(P )〉H, ∀f ∈ H and
Fubini’s theorem, we get

HSIC(PX,Y , PXPY ) =

= EX,Y,X′ ,Y ′ [kX (X,X
′)kY(Y, Y

′)]+

+ EX,X′ [kX (X,X
′)]EY,Y ′ [kY(Y, Y

′)]−
− 2EX,Y [EX′(kX (X,X ′)]EY ′ [kY(Y, Y ′)]], (6)

where X ′ and Y ′ are independent copies of random variables
X and Y . Ultimately, testing independence involves calculat-
ing the squared distance between two mean functions in the
appropriate RKHS space, resulting from transforming original
data in order to capture all distributional differences between
both random variables.

In practice, a limited number of samples {(xi, yi, ri)}ni=1

are observed. Therefore, we must replace the population mean
by sample mean defined through its empirical distribution.
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Then, the Hilbert-Schmidt independence criterion can be esti-
mated as

ĤSIC(P̂X,Y , P̂X P̂Y ) =

=
1

n2

n∑
i=1

n∑
j=1

kX (xi, xj)kY(yi, yj)+

+
1

n2

n∑
i=1

n∑
j=1

kX (xi, xj)

n∑
i=1

1

n2

n∑
i=1

n∑
j=1

kY(yi, yj)−

− 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

kX (xi, xj)kY(yi, yk). (7)

We assume data are missing not at random (MNAR), and
hence some of the predictor variables can have a certain impact
on the mechanism of missing data; for instance, in our example
older patients are less susceptible to perform a second CGM
monitoring, so that the probability of not observing a patient
increase with age. Under MNAR assumption, we observe
{(xi, yi, ri)}ni=1 and we have to estimate the missing data
mechanism, given by the function π(·) = P(R = 1|X = ·).
Several procedures have been proposed in the literature for
this aim such as logistic regression, lasso, random forest, or
ensemble modeling among others. Afterwards, we re-weight
the dataset, taking into account how difficult it is to observe the
response of the ith datum. In particular, we associate a weight
wi with the ith datum via inverse probability weighting (IPW)
estimator [23], given by

wi =
ri

nπ(xi)
, i = 1, . . . , n. (8)

We define the normalized weight of wi as

w∗i =
wi∑n
i=1 wi

, i = 1, . . . , n. (9)

We denote the estimated ith weight and normalized ith

weight as ŵi and ŵ∗i , respectively, after estimate π̂(·).
To get an estimator of HSIC with missing data, it is enough

to replace the uniform weight 1
n of the empirical distribution

with the normalized weights Ŵ ∗ = (ŵ∗1 , . . . , ŵ
∗
n) in the

Equation 7. Thus, we obtain

ĤSIC(P̂X,Y , P̂X P̂Y ) =

=

n∑
i=1

n∑
j=1

ŵ∗i ŵ
∗
jkX (xi, xj)kY(yi, yj)+

+

n∑
i=1

n∑
j=1

ŵ∗i ŵ
∗
jkX (xi, xj)

n∑
i=1

n∑
j=1

ŵ∗i ŵ
∗
jkY(yi, yj)−

−
n∑
i=1

n∑
j=1

n∑
k=1

ŵ∗i ŵ
∗
j ŵ
∗
kkX (xi, xj)kY(yi, yk). (10)

Calibration under the null hypothesis with the precedent
statistic is not trivial, and the permutation approach is gen-
erally not valid. We propose a novel bootstrap approach,
which properly deals with glucodensities and, in general, with
complex constrained distributional objects that do not live in
vector spaces [24].

Under the null hypothesis H0 : PX,Y = PXPY , it can be
assumed that φX,Y (·)− φX(·)⊗ φY (·) = 0(·). Therefore,

ĤSIC(P̂X,Y , P̂X P̂Y ) =

= 〈φ̂X,Y − φ̂X ⊗ φ̂Y , φ̂X,Y − φ̂X ⊗ φ̂Y 〉HX⊗HY
= 〈φ̂X,Y − φX,Y + φX ⊗ φY − φ̂X ⊗ φ̂Y ,
φ̂X,Y − φX,Y + φX ⊗ φY − φ̂X ⊗ φ̂Y 〉HX⊗HY . (11)

Then, a natural bootstrap procedure that allows to estimate the
p-value for the independence test can be developed as follows:

1) To randomly sample with replacement n elements from
the original dataset D, repeating m times. We denote
by Dj∗ = {(xj

∗

i , y
j∗

i , r
j∗

i )}ni=1, j = 1, . . . ,m, the jth

random sample obtained.

2) To calculate ĤSIC
j∗

(P̂X,Y , P̂X P̂Y ) as

ĤSIC
j∗

(P̂X,Y , P̂X P̂Y ) =

= 〈φ̂X,Y − φ̂j
∗

X,Y + φ̂j
∗

X ⊗ φ̂
j∗

Y − φ̂X ⊗ φ̂Y ,

φ̂X,Y − φ̂j
∗

X,Y + φ̂j
∗

X ⊗ φ̂
j∗

Y − φ̂X ⊗ φ̂Y 〉HX⊗HY ,

where j = 1, . . . ,m and φ̂j
∗

X,Y (·), φ̂
j∗

X (·) and φ̂j
∗

X (·)
are the kernel mean embeddings estimated from the jth

bootstrap sample Dj∗ = {(xj
∗

i , y
j∗

i , r
j∗

i )}ni=1.
3) To estimate the p-value as

p-value =
1

m

m∑
j=1

I
(
ĤSIC

j∗

(P̂X,Y , P̂X P̂Y ) ≥

ĤSIC(P̂X,Y , P̂X P̂Y )
)
. (12)

The bootstrap consistency with missing data can be proved by
using some standard tools of empirical process theory [25],
and it is provided as supplementary material [26].

B. Variable selection
Independence screening methods select predictor variables

based on individual prediction ability, and hence they are
ineffective in selecting a subset of variables that are indi-
vidually weak but in combination strong predictors. Subset
selection aims to overcome this drawback by considering and
evaluating the prediction ability of a subset of variables as
a whole. One popular approach to subset selection is based
on directly optimizing an objective function consisting of two
terms: a data fitting term to attain prediction accuracy, and
a regularization term to penalize a large number of variables
[27].

Subset selection has been recently approached from the
RKHS paradigm with satisfactory results. Two strategies stand
out: first, minimizing the trace of the conditional covariance
operator [28]; and second, identifying those variables with
non-zero gradient function [29]. The first strategy scales badly
with the number of variables. The second strategy can be
formulated in a more compact way, and here it will be
extended to missing data.

Following [29], we propose to identify the relevant predic-
tors by learning the gradient of the true regression function f
directly from samples. Thus, it is assumed that if a variable Xr
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is not relevant for predicting Y then gr = ∂f(X)/∂Xr = 0
for any value of X. Let us denote by g(X) = ∇f(X) =
(g1(X), . . . , gp(X))T the true gradient function. We adopt
the mean squared error as data fitting term. In a small
neighbourhood of xi we can use the Taylor expansion to
approximate f(X) so when xj is close enough to xi then
f(xj) ≈ yi + g(xi)(xj − xi). Then, we can define the
estimation error as a function of g(·):

E(g) = EX,Y,X′,Y ′ [ω(X,X
′)(Y − Y ′ − g(X)T (X−X′))]2,

where ω(X,X′) is an appropriate weight function that de-
creases as ‖X − X′‖ increases and ensures that the local
neighborhood of X contributes more to estimating the gradient
g(X). Typically, ω(X,X′) = e−‖X−X

′‖2/τ2
n , where τ2n is

a positive parameter which should be adjusted to warrant
asymptotic estimation consistency. In addition, with X′, Y ′,
we denote independent and random variables distributed as X
and Y , respectively.

Since only a limited number of samples {(xi, yi, ri)}ni=1

are observed we approximate E(g) by its empirical version

Ê(g) = 1

n2

n∑
i,j=1

ωij(yj − yi − g(xi)
T (xj − xi))

2, (13)

where ωij = ω(xi,xj).
We can add a regularization term for enforcing a sparsity

constraint on the gradient vector, with the aim of shrinking
towards zero the partial derivatives gr with respect to irrelevant
variables. We then add the term J(g) = λn

∑p
r=1 ηrJ(gr)

where ηr are adaptive tuning parameters. On the other hand,
we can define the estimation error in (13) as a functional in the
RKHS Hpk, so g ∈ Hpk and E : Hk×

p
· · ·×Hk → R+, induced

by a pre-specified positive kernel k, which is assumed to be
universal so that, on every compact subset of the input space,
every continuous function can be uniformly approximated
by sections of the kernel. Thus, we propose the following
optimization formula to learn the gradient vector:

argmin
g∈Hpk

1

n2

n∑
i,j=1

ωij(yi−yj−g(xi)T (xi−xj))2+J(g). (14)

When analyzing missing data we propose to substitute ωij
weights by ω̂∗ij = ω̂∗i ω̂

∗
jωij , where ω̂∗i and ω̂∗j denote the

estimated normalized weights associated with data ith and
jth according to (9). The variable selection expression can
be rewritten as

argmin
g∈Hpk

1

n2

n∑
i,j=1

ω̂∗ij(yi−yj−g(xi)T (xi−xj))2+J(g). (15)

The representer theorem states that the minimizer of (15)
can be represented as a finite linear combination of kernel
products evaluated on the samples of the data set [30]:

gr(·) =
n∑
i=1

αri kX (·,xi), r = 1, ..., p, (16)

where αr ∈ Rn. Given this representation, gr(·) = 0 iff αr =
(αr1, ..., α

r
n)
T = (0, ..., 0)T , or more concisely, ‖αr‖2 = 0.

Several regularization terms have been considered in the
bibliography. We adopt the Group Lasso penalty [29], [31]:

J(gr) = inf
{
‖αr‖2 : gr(·) =

n∑
i=1

αri kX (·,xi)
}
, (17)

which encourages the entire αri , i = 1, ..., n to be selected
or shrunk to zero together, achieving the purpose of variable
selection. Thus, our optimization problem can be rewritten as

argmin
α1,...,αp

n∑
i,j=1

ω̂∗ij(yi − f∗(xi,xj))2 + λn

p∑
r=1

ηr‖αr‖2, (18)

where f∗(xi,xj) = yj −
∑p
r=1 k

T
i α

r(xri − xrj), being
ki = (k(xi,x1), . . . , k(xi,xn))

T the ith row of K =
(k(xi,xj))n×n, and λn a tuning parameter. This last expres-
sion simplifies the original optimization framework (14) from
a functional space to a vector space, and it can be solved in
O(|U |2p2) by a block coordinate descent algorithm [29].

C. Prediction and uncertainty inference

Let us recall that the ultimate goal is to predict Y by
explaining its relationship with covariates X. To this aim we
adopt the kernel ridge regression approach proposed by Liu
and Goldberg [32]. However, we draw on linear regression
theory to compute the leave-one-out cross-validation regu-
larization parameter efficiently. This class of regularization
parameters has proven to largely shape the model performance
[33]. Furthermore, estimating the uncertainty of the predic-
tions, by providing robust confidence intervals, is considered
a valuable tool for subsequent decision. Thus, we compute
intervals with good finite sample coverage by using advances
in conformal inference recently exploited in causal theory [34].

Let us assume a linear regression model:

yi = f(xi) + ε = xTi β + ε i = 1, . . . , n, (19)

where β is the vector of coefficients of the linear model.
Given the original dataset D = {(xi, yi, ri)}ni=1, kernel ridge
regression is based on solving the following optimization
problem:

β̂ = arg min
β∈Rp

n∑
i=1

(yi − xTi β)
2 + λ||β||22, (20)

which is solved by β̂ = (xTx + λI)−1xTy, where x =
(x1, . . . ,xn)

T , y = (y1, . . . , yn)
T , and λ > 0 is the smooth-

ing parameter of regularization term.
Let Hk be a RKHS with kernel kX . Then, by replacing ev-

ery xi by φ(xi), and further assuming that β =
∑n
i=1 αiφ(xi),

we obtain an analogue solution to that of Equation (20), but
changing the usual dot product by the inner product of the
selected RKHS. Particularly, we have α̂ = (K + λI)−1y,
where K = (k(xi,xj))n×n.

Authors propose two different estimators for missing data.
In both cases, the solution has the same closed-form expression
given by Representer Theorem [30]. The first one is given
by α̂ = (λI + W)−1Wy, where they handle missing data
mechanism via IPW estimator. The second is obtained through
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doubly robust estimation, combining a preliminary imputation
of the missing response with IPW estimator:

α̂ = (K+ λI)−1(Wy + (I−W)µ(x)), (21)

where W = diag(w1, . . . , wn) denotes a diagonal ma-
trix containing the weights (see Equation 8) and µ(x) =
(µ(xi), . . . , µ(xn))

T denotes the imputation function.
Doubly robust estimators achieve optimal asymptotic vari-

ance when their weights w1, ..., wn and their imputation func-
tion µ(·) are correctly specified, and only one of them needs
to be correctly specified to achieve consistency. However,
when any of them fails the regression model performance can
deteriorate dramatically with finite sample [35], [36].

The impact of the smoothing parameter on model general-
ization is an essential issue for the ensuing performance, and
is strongly connected with the interpolation problem in RKHS
with minimum norm. We propose to select the smoothing
parameter through leave-one-out cross-validation, by adapting
the estimators to missing data [33].

In order to provide a prediction interval for the response
with a confidence level of 1 − α, we introduce a specific
algorithm to perform conformal inference [34], [37], valid to
handle missing responses and heteroscedastic noisy.

We randomly split the dataset D = {(xi, yi, ri)}ni=1 into
training and test sets Dtrain = {(xtraini , ytraini , rtraini )}n1

i=1,
and Dtest = {(xtesti , ytesti , rtesti )}n2

i=1, with n = n1 + n2.
For a given new observation xn+1 we go through the

following steps:
1) Fit the mean regression function f̂(·) from the set

Dtrain, according to Equation 21.
2) Compute the residuals ε̂i = |ytesti − f̂(xtesti )|/σ̂(xtesti ),

for every i = 1, . . . , n2 with rtesti = 1. σ̂(xtesti ) is esti-
mated by a regression function that predicts the absolute
deviation of the residuals, fitted with the training sample.

3) Estimate the empirical distribution F̂ εn2+1 by using the
previous residuals and assuming an infinite value for the
theoretical residual of observation xn+1. For this task,
we use the weights defined in Equations (8) and (9) and
the function π̂train(·), where we must incorporate also
the weight of xn+1, ŵn2+1

.
4) Compute the 1− α quantile, q̂1−α, from F̂ εn2+1.
5) Finally, return [f̂(xn+1) − q̂1−ασ̂(xn+1), f̂(xn+1) +

q̂1−ασ̂(xn+1)] as the required prediction interval.

D. Handling multiple sources with a kernel
RKHS offers a powerful data analysis paradigm that is able

to cope with data of different nature [38]. A crucial issue is to
select a suitable kernel that accurately captures the differences
and specific characteristics of each of the information sources
examined. In our particular case, we take into account a
continuous probability distribution, and certain real-valued and
categorical data, x = (xgluco,xreal,xcateg). A reasonable
choice commonly used in the literature is the Laplacian kernel,
K = (k(xi,xj))n×n, where k(xi,xj) = exp(− ||xi−xj ||σ ).
The Laplacian kernel with the standard Euclidean distance is
a characteristic and universal kernel in a real vector space.
Moreover, it can be shown that the Laplacian kernel retains

these properties considering the set of continuous density
functions endowed with L2−Wasserstein geometry, providing
theoretical guarantees that we can approximate a large variety
of regression functions. Additionally, we want to detect possi-
ble interactions between different data sources. Based on the
connection between positive kernels and negative type metrics
[39], [40], we propose a simple global Laplacian kernel that
integrates the three sources:

kX (xi,xj) =

= e
−(a

||xgluco
i

−xgluco
j

||
σgluco

+b
||xreali −xrealj ||

σreal
+c
||xcateg
i

−x
categ
j

||
σcateg

)
,

(22)

where a, b, c, σgluco, σreal, σcateg > 0 and we assume for the
sake of simplicity that (a, b, c) ∈ R3 such that a+ b+ c = 1
and 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1.

E. Selection parameter in Laplacian kernels
The kernel and the initial values for its parameters should

be selected to model the adequate behavior of the present
approach. Choosing a proper kernel among the family of
characteristic and universal kernels is usually not as crucial
as adequately tuning its parameters [14].

In order to select the bandwidth parameter σ > 0 for the
Laplacian kernel, the median heuristic has been widely used
in kernel methods [41]:

σ =
√
median{||xi − xj ||2 : 1 ≤ i < j ≤ n} (23)

Following [42], we search for the optimal kernel bandwidth
parameter σ∗ in a grid of points of the form σγ with γ ∈ (0, 3].
In the setting of our global Laplacian kernel (Equation 22), we
use the median heuristic for each data type to select σgluco,
σmult and σcateg . Values for a, b, and c are also searched for
in a grid, but in this case in a 3-dimensional simplex.

Finally, to incorporate the missing data mechanism in the
kernel bandwidth selection, we calculate the median through
IPW estimator.

IV. RESULTS

The present framework of predictive tools allows us to
provide an answer to some clinical open questions:

1) Glycated hemoglobin A1c is a hemoglobin-glucose com-
bination formed within the cell, which is a useful
indicator of long-term blood glucose control and is
considered the standard biomarker for diabetes diagnosis
and management. Is there a diagnostic variable that
can be used to predict the future glucose changes in
individuals by predicting A1c levels?

2) Current medical literature assigns a prominent role to all
of the predictor variables listed in Table I for diagnosing
and managing diabetes. It is common knowledge that
glucose metabolism is complex and a multivariate model
is required to capture glucose changes, but is there a
reduced subset of the predictor variables that better
balances complexity and generalization ability?

3) CGM technology may be able to provide a more suitable
assessment of glucose homeostasis by means of an
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appropriate representation in terms of glucodensities.
How do CGM data impact on improving our ability to
predict future A1c changes?

4) An increased uncertainty in the predictive power of
the model focused in a region of the feature space
may suggest a subpopulation that has not been properly
modeled. Can we provide a characterization of those
individuals whose future glucose behavior cannot be
precisely predicted for a more personalized follow-up?

A. Is there a diagnostic variable that can be used to
predict the future glucose changes in individuals by
predicting A1c levels?

To answer this question we study whether there is any ev-
idence of univariate statistical association for normoglycemic
patients (A1c<5.7% and FPG<100 mg/dL) between glucose
variation measured by A1c5years−A1cinitial and those pre-
dictor variables shown in Table I. Let us note that previous
literature have proven a significant statistical association in
diabetes patients, particularly when the outcome is poor.

For this purpose, we use the Hilbert-Schmidt independence
criterion that we propose in the context of missing data
(Section III-A), together with a specific bootstrap approach
designed for this task. The underlying missing data mechanism
is estimated using univariate logistic regression.
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Fig. 2. Marginal dependence relation between examined variables in
the AEGIS database.

Results in Table II show that the only statistically significant
variables with a p-value less than 5% are glucodensity and
basal A1c. Figure 2 illustrates that marginal relations with
other variables, if any, are weak.

B. Is there a reduced subset of the predictors that better
balances complexity and generalization ability?

Multivariate models can exploit higher-order interactions
between the covariates and the response to improve the pre-

Variable p− value
Age 0.32
Sex 0.16
FPG 0.50
HOMA-IR 0.52
BMI 0.42
A1c 0.03
CONGA 0.24
MAGE 0.68
MODD 0.16
Glucodensity < 0.001

TABLE II
ESTIMATED RAW P-VALUES OF A1C TOTAL VARIATION VS EACH

BIOMARKER USING THE ME PROPOSED IN SECTION III-A WITH

NORMOGLYCEMIC PATIENTS.

diction of changes in A1c levels. Assuming glucodensity has
already proven relevance, we adjust the method proposed in
Section III-B for finding the subset of variables most strongly
associated with A1c5years. For this purpose, both diabetic and
non-diabetic patients are analyzed, and we consider all the
variables on Table I except sex. In order to avoid overfitting
and to improve reproducibility of results, we select model
parameters by cross-validation. We estimate the underlying
missing data mechanism via lasso logistic regression.

Finally, the predictor variables selected by the algorithm are:
Age, A1cinitial, FPG, BMI, and MAGE.

C. How do CGM data impact on improving our ability to
predict future A1c changes?

To answer this question, we fit two kernel ridge regression
models (Section III-C) for predicting A1c5years: one that
includes CGM data as a covariate and another which includes
MAGE measure instead. MAGE measure can be considered
embedded in glucodensity. Both of them share Age, A1cinitial,
FPG and BMI as covariates. Information provided by CGM is
represented by glucodensity. Kernel selection and parameter
tuning have been calibrated following Sections III-D and III-
E. The R2 of the first model, according to missing data
mechanism and by using leave-one cross-validation, is 0.70,
whereas in the second case it is 0.65. Figure 3 depicts
the residuals versus A1cinitial values. As can be seen, the
highest residuals are found in diabetic patients, otherwise the
distribution of residuals is heterogeneous. Ultimately, CGM
data represented by glucodensity provides a piece of valuable
extra knowledge in predicting long-term A1c changes.

D. Can we provide a characterization of those
individuals whose future glucose behavior cannot be
precisely predicted for a more personalized follow-up?

Figure 4 depicts prediction intervals at a confidence level
of 90%, after applying conformal inference (Section III-C) to
measure the uncertainty of the predictions performed by the
above regression model (CGM data included as a covariate).

We regard a A1c5year prediction as significantly affected
by uncertainty if the length of the interval is greater than
0.7, since a deviation greater than this threshold can entail
a change in the glycemic state of the patient, for example,
from normoglycemic to diabetes. Hence, we can identify



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●
●●

●

●

● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●
●●

●

●
●

●

●

● ●

●

●
●●

●

●

●●

●

●

●

●
●

●●
●●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
● ●●

●

●

●

●●
●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●●
●

●

●

●●
●

●●●

●

●

●●●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

4 5 6 7 8 9 10

−
2

−
1

0
1

2
3

A1C−initial

R
es

id
ua

ls
 (

cr
os

s−
va

lid
at

io
n)

Fig. 3. Residuals vs. A1cinitial for the model that includes glucoden-
sity as a covariate in the AEGIS database. Red circles correspond to
diabetic patients

certain clinical features that allow us to assign each patient
to high or low variability groups, based on the uncertainty of
future glucose values, and this can be useful to phenotipically
characterize some subpopulations to whom the model provide
an unreliable prediction, and therefore, a more personalized
follow-up is advisable. Particularly, Figure 5 shows that, in
an individual with an elevated FPG, changes in the long term
cannot be adequately predicted. The same holds for individuals
with FPG in the normoglycemic range and overweight. More
refined decision rules can be established but at a higher
measurement cost.
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Fig. 4. Prediction intervals of regression model for each observed
response of A1c5year in the AEGIS database (90% confidence level).
Red circles correspond to diabetic patients.
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Fig. 5. Clinical decision rules that allow us to identify those patients
with a significant uncertainty in their A1c5year predictions.

V. DISCUSSION

The incidence and proliferation of diabetes is one of the
major public health problems in the world. The present work
aims at gaining new insights into the glucose metabolism
and hence at supporting more informed decision-making, by
studying the relationship between patient basal characteristics
at the start of a longitudinal study and A1c values obtained
five years later.

Some previous studies have focused on developing predic-
tive models for patient stratification. Thus, the Finnish FIND-
RISC provides a diabetes score to predict the probability of
developing diabetes in ten years time with a logistic regression
[43]. Also, the German GDRS provides a different score to
predict the time to becoming a diabetic person with a survival
model based on Cox regression [44]. In contrast, some au-
thors argue against using thresholds and categorizing patients
into different ranges of levels of glucose, and hence against
defining diabetes as a homogeneous disease, resulting in an
oversimplistic approximation for a heterogeneous metabolic
disorder [9], [45]. In this sense, some recent contributions has
been made to modeling blood glucose dynamics as a function
of time, with an application in predicting A1c in the short
term [46], [47]. This line of research assigns a key role to the
analysis of glucose excursions from CGM data, in search of a
better phenotyping and a corresponding progress towards the
implementation of a personalized intervention [48], [49].

The present work tries to exploit the potential of CGM data
by using glucodensity as a novel representation of glucose
excursions. The AEGIS study makes it possible to assess the
predictive capacity of glucodensity in the context of well-
known biomarkers for diabetes diagnosis and control. First,
glucodensity is the only one showing a significant association
with A1c changes, by using statistical dependence measures
with normoglycemic patients. Still, the weak marginal asso-
ciation of biomarkers with A1c5years suggests the need for
a multivariate approach to capture the complexity of long-
term glucose changes. The application of a variable selection
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procedure supplies us with a subset of relevant biomarkers
(Age, A1cinitial, FPG, BMI, and MAGE) resulting from the
detection of higher-order interactions with A1c5years. We then
analyze the ability to predict A1c5years from this subset
of biomarkers, with two nonparametric regression models
differing on the inclusion or not of glucodensity as covariate.
The R2 value for a model including glucodensity shows a good
proportion of variance explained by the model, and is similar
to the one reported by other authors for short-term predictions
[46], [47]. Furthermore, glucodensity demonstrates a positive
impact on improving accuracy in predicting A1c5years. Ulti-
mately, these results enforce the prominent role of CGM data
to provide a comprehensive picture of the glucose metabolism
[50], and allows us to envisage new research on further
featuring glucose dynamics, by devising new methods for (1)
measuring the variability of glucose excursion, (2) clustering
different glucose profiles, or (3) discovering temporal patterns
associated to pathophysiological mechanisms, among others.
In this sense, further research is also needed on new glycemic
outcomes, beyond average measures like A1c, in order to
capture a more accurate picture of glycemic dynamics; and
glucodensity can be exploited as a new source of information
for more robust predictions [50].

A careful analysis of those results that exhibit signifi-
cant discrepancies with the model predictions gives us the
opportunity to identify certain patient phenotypes that need
to be followed-up more closely. These discrepancies can be
explained by many different causes (lifestyle, diet, disease,
pharmacological treatments, etc.) along these five years. The
present work shows that these discrepancies can be promptly
recognized by using routine biomarkers of standard clinical
practice. Further research is needed from the interdisciplinary
cooperation between sensor technology, statistical learning,
biology, pharmacology and medicine to provide a better insight
into the complexity of this disorder.

VI. CONCLUSIONS

The present work proposes a data analysis framework well
suited to datasets affected by missing outcome data, which
are particularly common in longitudinal studies. Our approach
is based on the RKHS paradigm, providing proper tools for
testing statistical independence, selecting relevant variables,
predicting, and making inferences about the uncertainty of
predictions. The RKHS paradigm enables a nonparametric
approach to these tasks, thus making few model assumptions
on the relation between the response and the covariates, and
allowing to capture higher-order interactions. Furthermore,
RKHS provides a natural integration of multiple data modal-
ities (functional, real-valued or categorical) into the same
predictive task, supplying a powerful tool for simultaneously
coping with multiple sources of information.

We have illustrated the usefulness of this approach for
predicting long-term changes in the standard biomarker for
glycemic control. Importantly, our analysis includes gluco-
density, a novel representation of CGM data, as a predictor.
Results show that CGM data provide more predictive infor-
mation than previous, widely used diabetes biomarkers. Our

predictive model can support clinical decision-making from
the identification of patients at risk for developing diabetes or
complications, when model uncertainty is low, and provide a
characterization of the phenotype of patients for whom this
uncertainty is significant.

IMPLEMENTATION

With the aim of supporting reproducible research, the source
code of the methods presented in this paper has been published
under an open source license1.
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