
Multi-Armed Bandits for Adjudicating Documents in Pooling-Based Evaluation
of Information Retrieval Systems

David E. Losadaa, Javier Paraparb, Alvaro Barreirob

aCentro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS)
Universidade de Santiago de Compostela, Spain

david.losada@usc.es
bInformation Retrieval Lab

Department of Computer Science
University of A Coruña, Spain

{barreiro,javierparapar}@udc.es

Abstract

Evaluating Information Retrieval systems is crucial to making progress in search technologies. Evaluation is often
based on assembling reference collections consisting of documents, queries and relevance judgments done by humans.
In large-scale environments, exhaustively judging relevance becomes infeasible. Instead, only a pool of documents
is judged for relevance. By selectively choosing documents from the pool we can optimize the number of judgments
required to identify a given number of relevant documents. We argue that this iterative selection process can be natur-
ally modeled as a reinforcement learning problem and propose innovative and formal adjudication methods based on
multi-armed bandits. Casting document judging as a multi-armed bandit problem is not only theoretically appealing,
but also leads to highly effective adjudication methods. Under this bandit allocation framework, we consider station-
ary and non-stationary models and propose seven new document adjudication methods (five stationary methods and
two non-stationary variants). Our paper also reports a series of experiments performed to thoroughly compare our
new methods against current adjudication methods. This comparative study includes existing methods designed for
pooling-based evaluation and existing methods designed for metasearch. Our experiments show that our theoretically
grounded adjudication methods can substantially minimize the assessment effort.

Keywords: Information Retrieval, Evaluation, Pooling, Reinforcement Learning, Multi-armed Bandits

1. Introduction

To measure the effectiveness of Information Retrieval (IR) systems, it is customary to build benchmarks consisting
of a document collection, a series of information needs, and a set of relevance judgments [37, 13]. Standard collec-
tions, like those developed under the Text Retrieval Conference (TREC) [49], are so large that exhaustively judging
every query-document pair becomes infeasible. Furthermore, with complete relevance judgments, human assessors’
time would be mostly dedicated to analyzing non-relevant documents. Such an exhaustive approach would be a waste
of time and effort. The most productive use of human assessors occurs when they judge documents deemed to be
relevant [39]. This is why most assessment processes in IR experimentation are supported by a sampling method
called pooling.

Pooling is a traditional method [43] that has been extensively used in campaigns like TREC, CLEF (Conference
Labs of the Evaluation Forum), NTCIR (NII Testbeds and Community for Information Access Research) and INEX
(Initiative for the Evaluation of XML Research). In pooled test collections, relevance judgments are only done for the
documents that were among the top retrieved for some systems that participated in the evaluation campaign. The top
retrieved documents have the greatest impact on effectiveness and, therefore, estimates made in this way are accurate.

The pooling methodology works as follows: i) given a document collection, the campaign’s organizers define a
search task that tests the ability of systems to retrieve relevant documents in response to a set of queries (often known
as topics), ii) different groups participating in the task submit their system’s results, iii) for each query, the top k
documents from each participating system are pooled into a single set and presented to assessors for judging. Under

Preprint submitted to Information Processing & Management 19th April 2017

this setting, the rankings of documents produced by the participating systems are commonly known as runs; k is the
pool depth; and the resulting set of judgments are known as qrels. Having runs from a sufficient variety of systems
and a reasonable setting for k (typically set to 100), the assessments can be done at an affordable cost and the resulting
benchmark is solid and reusable [49].

If we can afford the cost of judging the whole pool then we can just pass the pooled documents to the assessors
in random or arbitrary order. Instead, if our budget is limited, then we might want to judge a subset of the pool.
This has motivated the emergence of a stream of proposals on how to adjudicate pooled documents for judgment
[15, 29, 14]. An effective adjudication method selects documents from the pool following a given criterion. These
adjudication methods, when compared with random or arbitrary alternatives, can substantially reduce the assessment
effort required to produce a qrel file with a sufficient number of relevant documents [29].

Selection strategies for labeling items from a pool of unlabeled items is of interest well beyond Information Re-
trieval. In many data mining applications, unlabeled data is abundant and manually labeling is expensive. Supervised
learning –e.g. classification– requires a set of labeled examples and it is crucial to reduce the costs associated with
creating the training data. This has motivated the emergence of a large number of studies on pool-based selection for
learning [35]. Here, we are only concerned with the specifics of IR pooling but the lessons learned from our research
are potentially applicable to other areas.

The assessment process needed to create an IR test collection can be seen as a “learning from interaction” process.
The more assessed documents we have, the more we learn about the relative quality of the runs. Here we propose an
innovative and formal adjudication approach based on multi-armed bandits. Research on document adjudication for
IR evaluation has been mostly adhoc and has largely ignored the lessons learned in reinforcement learning.

The multi-armed bandit problem [36], also known as K-armed bandit problem, is a long-established problem
in reinforcement learning. Reinforcement learning is concerned with how an autonomous system interacts with an
uncertain environment so as to maximize a numerical reward over some time period. The system is not explicitly
told which actions to take but, instead, must learn which actions yield the most reward by testing them out. At
any time point, each possible action has an estimated value and the system can opt to exploit its current knowledge
(i.e. try the action whose estimated value is greatest). This exploitative choice is often called the greedy action.
Alternatively, the system can choose to explore non-greedy actions. Exploring the environment in this way enables
the system to improve its estimates for non-greedy actions. Exploitation is the right thing to do to maximize the
short-term expected reward, but exploration may produce better results in the long run. Multi-armed bandits offer
a theoretical framework for analyzing the trade-off between exploration and exploitation. Due to its generality, the
exploration vs exploitation dilemma has been studied in many disciplines [44], including medicine, economics, and
ecology. For instance, balancing between exploration and exploitation has been employed to investigate the effects of
different experimental treatments while minimizing patient losses [33]. We show here that balancing exploration and
exploitation has also a practical application in IR evaluation and, in particular, in how to build qrels from a set of runs
from different systems. Within this process, concentrating only on systems that currently look effective is risky. We
can miss relevant documents that are only supplied by other apparently inferior runs. Multi-armed bandit algorithms
are a natural solution to address this balance formally.

In summary, this paper contributes in the following interrelated aspects:

• We adapt multi-armed bandit models to address the problem of document adjudication in pooling-based evalu-
ation of search algorithms. This innovative use of reinforcement learning leads to seven new effective adjudic-
ation methods that early identify relevant documents in the pools. Furthermore, this is a theoretically-grounded
framework where we can analyze the exploration/exploitation dilemma. In doing so, we show how different
document adjudication methods behave with respect to this dilemma.

• We conduct a thorough comparison of existing adjudication methods and confront their merits against effective
models of metasearch. While a number of isolated studies have analyzed and proposed different adjudication
methods, the literature is lacking a complete picture of their effectiveness. There is little experimental evidence
on the relative merits of existing adjudication methods when compared with effective metasearch models. In
this paper we try to fill this gap by performing a thorough evaluation of existing adjudication methods and a
comparison of these methods against our seven bandit-based solutions. Our study comprises reference methods
specifically designed for pooling-based evaluation and reference methods designed for metasearch. To the best
of our knowledge, this is the first study that evaluates such a highly diversified portfolio of adjudication methods.

2

• We compare the most effective document adjudication methods with respect to their ability to identify relevant
documents and in terms of the induced bias. By judging only a subset of the pooled documents we are inducing
a bias with respect to judging all pooled documents. This bias is reduced as we judge more documents. We
study the biases induced by different methods and their evolution. This complements the evaluation based on
counts of relevant documents found, which is merely focused on finding relevant items at any cost.

• We show that some non-stationary instances of the bandit-based models are regularly superior to all previous
adjudication methods. As a matter of fact, one simple Bayesian model requires fewer human assessments than
any other competing approach and leads to a ranking of retrieval algorithms that highly correlates with the
official system rankings.

• We are strongly committed to making our experiments reproducible. We provide the R code of all our imple-
mentations and we encourage other teams to experiment with them and build new solutions based on our code
and instructions.

This paper is an extended version of work published in [27]. We have extended our previous work in a number of
ways. First, by including metasearch models into the study. In particular, we show here that one of the metasearch
models tested is extremely effective in terms of the early finding of relevant documents. Second, by not only studying
the patterns of relevant documents found but also the evolution of the bias of the different strategies while increas-
ing the number of judgments. Third, by doing a rigorous statistical analysis of the differences found in the counts
of relevant documents. Fourth, by extending the discussion on related work, as well as the set of algorithms and
examples.

The remainder of the paper is organized as follows: section 2 reviews the related work. In section 3, we provide
some definitions to formally characterize the document adjudication problem. Section 4 presents our novel frame-
work to cast document adjudication as a multi-armed bandit problem. Section 5 briefly discusses existing methods to
adjudicate pooled documents for judgment and section 6 sketches two metasearch algorithms that can be used for ad-
judicating judgments. Experiments are reported in section 7 and a bias analysis is provided in section 8. A discussion
of the findings is presented in section 9. The paper concludes a summary of the contributions and hints at possible
lines of future work.

2. Related Work

Pooling is a fundamental technique in IR evaluation and has attracted attention for decades [48, 50, 15, 14, 8, 21].
Pooling strategies are regularly employed in campaigns like TREC [49] or CLEF [17]. Over the years, pooling has
been supporting not only standard search tasks but also other Information Access specialized tasks. For instance,
pooling was recently employed for building an evaluation framework for link discovery [45].

Many research teams have explored ways to efficiently scan pools, with the objective of identifying a sufficient
number of relevant documents as quickly as possible. Subset pooling methods can save substantial costs by reducing
the assessment effort and, thus, they have been adopted in evaluation campaigns like INEX [23]. But cost is not
the only reason to embrace subset pooling methods. Even if you have a large budget for doing judgments, that does
not mean that judging deeply the pools is the best use of your budget. As argued by Sanderson [37], building test
collections with more topics and fewer judgments per topic is an increasing priority. Several studies have shown
that the resulting benchmarks are more powerful and reusable when compared to benchmarks constructed with fewer
queries and more judgments per query [9, 39, 7]. The quality and reusability of collections constructed using subset
pooling strategies has been thoroughly demonstrated in the past. For instance, Moffat et al [29] concluded that a
few hundred judgments per query is sufficient to produce good bounds on the effectiveness of the systems. Similar
conclusions were drawn by Aslam and his colleagues [5], Carterette and his co-authors [10], and Cormack and Lynam
[14]. A recent study on rank fusion based on score distributions also suggested that shallow judgments lead to reliable
test collections [28].

There is therefore substantive evidence to support subset pooling strategies and to employ them to assess a reduced
set of documents per query. In well-known competitions and campaigns, there is an increasing tendency to do fewer
judgments per query by focusing the judgment effort on selected samples from the pool. This strategy has been

3

adopted in the TREC filtering track [42], in Speech Retrieval [32], in the Million Query TREC Track [11] and in
building collections for specific domains [31].

Well-known subset pooling methods, such as Move To Front [15] or the methods proposed by Moffat et al. [29],
have been considered in our study and compared against our bandit-based solutions. Our multi-armed bandit models
address this assessment task in a more formal way and lead to competitive solutions.

Aslam et al. [4] have employed online learning to simultaneously solve the problems of metasearch, pooling and
system evaluation. Their most succesful proposal was the Hedge algorithm –also included in our study– that produces
metasearch lists whose quality equals or exceeds that of benchmark methods such as CombMNZ or Condorcet.

Other authors have opted to build test collections with no system pooling. For instance, Sanderson and Joho
[38] experimented with interactive relevance feedback with no system pooling and also tested a strategy based on
the use of a single manual run to form the qrels. Soboroff et al. [41] proposed an experimental methodology that
replaces human relevance judgments with pseudo-relevance judgments, which are obtained from random sampling
from the pool. Recent work by Jayasinghe et al. [21] proposed a novel methodology to generate diverse judgments.
A valuable source of diversity comes from manual runs, which contribute many unique relevant documents to the
pool. Manual runs are, however, expensive to produce. Jayasinghe and his colleagues combined a voting model and
supervised learning technology –fed by documents supplied by automatic runs– and were able to identify relevant
documents that would normally only be found through manual runs. Instead of building a static collection from a
finite set of systems, Tonon and his colleagues [47] argued recently for a new IR evaluation paradigm where retrieval
approaches are evaluated iteratively on the same collection. This proposal was based on the continuous use of either
crowdsourcing or professional editors to obtain relevance judgments. All of these strategies are complementary to our
own.

Multi-armed bandit models have been applied in multiple application domains. For example, bandit-based solu-
tions have been employed for assigning patients to clinical trials [33]. In IR, multi-armed bandit solutions have
recently been employed in several ways. Hofmann et al. [20] proposed a bandit-based solution to capture interactions
between search engines and users for improving online learning to rank. In this problem, an exploitation versus ex-
ploration tradeoff arises naturally: the search engine wants to exploit what is already known to be a good ranker, but it
also wants to explore by trying out variations of the current ranker. Therefore, two lists of documents are maintained:
an exploitative list (based on the current best ranker) and an exploratory list (based on variations to explore potential
improvements). The user is presented with an interleaved list, and preferences are inferred from his clicks. Similarly,
Yue and Joachims [53] proposed an online learning framework based on bandits for comparing retrieval algorithms.
The method gathered implicit feedback from users in the form of ordinal judgments and also learned by observing in-
terleaved results. Sloan and Wang [40] coupled multi-armed bandits with the Portfolio Theory and defined a dynamic
model that tries to maximize the user’s satisfaction by combining relevance and diversity. Kleinberg and colleagues
[34] were also interested in exploring relevance and diversity and presented a multi-armed bandit algorithm that learns
a diversified ranking of results. Their approach analyses clickthrough data and attempts to minimize user abandon-
ment in interactive experiments. Recently, Li et al. [24] demonstrated the advantage of bandit-based models for
complex information needs composed of multiple aspects. Their method was oriented to rate limited search services
and their approach was based on multiple queries, which are kept active simultaneously, and a bandit algorithm that
chooses among them.

The exploration versus exploitation dilemma can also be handled with learning models not based on bandits.
Karimzadehgan and Zhai [22] followed a machine learning approach for optimizing the utility of relevance feedback
in a session of user interaction. The tradeoff was between presenting search results with the highest immediate utility
and presenting search results with the best potential for collecting useful feedback. For example, judging documents
that all have similar contents is not particularly useful in terms of feedback when compared to judging more diversified
documents.

3. The Document Adjudication Problem

First, let us formally define the document adjudication problem in pooling-based evaluation. For each query, we
have multiple rankings of documents in decreasing order of estimated relevance (multiple runs supplied by different
search systems):

4

(run1) : d1,1, d1,2, . . . , d1,l1 (1)
(run2) : d2,1, d2,2, . . . , d2,l2

...
(runm) : dm,1, dm,2, . . . , d2,lm

where ds,j is the document retrieved at the jth position by runs. Every system run implements a different retrieval
strategy and, therefore, the length of the runs (lis) can have some variance. Only documents ranked above a given
cutoff (pool depth, k ∈ {1, ..,max(l1, ..., lm)}) are candidates for judgment. Given the pool depth k, the documents
contributed to the pool by runs are:

candidates runs =
{
ds,p

}
1≤p≤k

(2)

And the pool is formed by collecting all candidate documents from all runs:

pool =
⋃

1≤s≤m candidates runs (3)

A document adjudication strategy is an algorithm that takes the set of runs {run1, . . . , runm} and the pool
depth (k) as an input and produces a sequence of documents to be judged for relevance (PoolOrder). The output,
PoolOrder, is a permutation of the pool: PoolOrder ∈ Perm(pool).

Some adjudication methods are static: the ordering of the pooled documents is only based on the input runs, and
a full ordering of the pooled documents is done before seeing any relevance assessment. Dynamic methods, instead,
iteratively select documents from the pool, evaluate the relevance of the chosen document and the outcome of this
relevance assessment affects the decision on the next pick. Dynamic methods can quickly adapt to the outcome of the
assessments performed so far. For instance, we can dynamically avoid poor search systems or re-rank the remaining
unjudged documents. This can improve our chances of early finding relevant documents. However, dynamic methods
put an additional burden on building the benchmark [26]. The whole process needs to be coordinated such that the
next relevance assessment cannot start until the previous assessment has finished. However, this does not mean that
all assessments must be done by a single person in a serial approach. Every time we need an assessment we can
send the document for judgment to several human assessors and, given the individual assessments, we can obtain
the relevance outcome by, e.g., majority. This complicates the evaluation exercise (the time for doing an assessment
varies with factors such as the abilities of the assessors, or their workload) but guarantees that assessments are done by
aggregating judgments from multiple humans. Furthermore, other speed-up strategies, based on parallel distribution
across multiple assessors can be implemented. For example, judgments for different queries can be interleaved so that
we make the most of the assessors’ time.

The challenge is to identify relevant documents as early as possible and, therefore, we will prefer adjudication
methods that output sequences of documents with many relevant documents at the beginning. A standard way to com-
pare adjudication methods is to plot recall against the number of judgments done. An optimal adjudication strategy
would choose all relevant documents first, and all non-relevant documents would be at the end of the sequence. In
practice, an effective adjudication method is convenient because we could stop the assessment process after extracting
a sufficient number of relevant documents.

4. A Bandit-Based Approach for Adjudicating Judgments

The multi-armed bandit problem was defined by Robbins [36] as follows. Imagine a gambler at a row of K slot
machines (or bandits). Each machine has an unknown probability of distributing a prize and, when played, provides
a numerical reward. Formally speaking, we have a set of K distributions {R1, . . . , RK}, each distribution being
associated with the rewards delivered by one of the K machines; and µ1, . . . , µK are the mean values associated with

5

these reward distributions. The gambler has to choose one machine per round and his objective is to maximize the
sum of rewards earned over some time period. The regret ρ after T plays is defined as the expected difference between
the sum associated with an optimal strategy and the sum of the obtained rewards:

ρ = µopt · T −
∑

n∈{1..T}

rn (4)

where rn is the reward obtained at round n, and µopt = maxl{µl}.
Through repeated plays the gambler tries to maximize his winnings by picking the best machines. The problem is

complicated, however, by its stochastic nature. A sub-optimal machine can return many winnings, purely by chance;
and an optimal machine can return many losses. So, if the gambler finds a machine that returns reasonably good
results should he keep playing this machine to maintain his current good score or, should he try other machines in
hopes of finding an even-better machine? This is the classical exploration versus exploitation tradeoff. Depending on
factors such as the uncertainty of the current estimates and the number of remaining plays, it might be more profitable
to exploit or to explore. The optimal solution to this problem is difficult to obtain. However, there are many balancing
methods that implement approximately-optimal solutions and scale very well.

4.1. Employing bandit allocation methods in pooling-based evaluation

Linking pooling-based evaluation and multi-armed bandit algorithms is a novel contribution of our research and
permits the application of the lessons learned over many years in this active subarea of reinforcement learning. Our
proposal consists of adapting existing multi-armed bandit solutions for sequentially selecting retrieval systems that
contributed to the pool. This is a natural application of reinforcement learning for pooling-based evaluation of search
algorithms. The resulting formal models iteratively learn about the quality of the runs and react to changes in the ob-
served relevance of the assessed documents. Under this framework, we can therefore define new dynamic adjudication
methods whose decisions are driven by formal models.

Initially, we have no knowledge on the quality of the runs. As we extract and judge documents for relevance, we
learn about the quality of the runs and the assessment process can be directed at the most effective runs. At any given
moment, we can opt for inspecting sub-optimal runs. These currently inferior runs can actually become suppliers of
relevant documents. Playing a machine here means picking a run, extracting the top unjudged document and judging
it for relevance. The outcome of the play –reward– is the relevance degree of the assessed document. We obtain the
judgments from the official TREC qrel file, which contains relevance judgments for all pooled documents. In this
paper, we work with binary relevance and, therefore, constrain our discussion to bandit models with binary rewards.

4.2. Allocation methods

An allocation method, also known as policy or selection strategy, is the core component of any multi-armed bandit
algorithm: it decides which machine to play next. The mechanism to make this selection depends on past plays
and rewards. Each allocation method captures distinct ideas on how to handle the exploration versus exploitation
dilemma. The following sections describe the main features of well-known allocation methods and how to apply them
in pooling-based evaluation.

4.2.1. Random
This naı̈ve allocation method chooses the next machine to play in a random way. It is a baseline commonly used in

experiments with bandits. In our pooling environment, this simply consists of randomly selecting a run and assessing
the next document supplied by the run.

4.2.2. εn-greedy
The greedy choice is to pick the machine with the highest average reward (based on previous plays). In our case,

where each bandit is a run and the associated reward is the binary relevance of the document supplied by the run,

6

the average reward is the mean relevance of the documents assessed from the run1. This greedy approach maximizes
immediate rewards and spends no time at all inspecting apparently inferior actions. However a purely greedy method
often gets stuck performing sub-optimal actions and it offers poor performance in the long run. A natural alternative is
to randomly oscillate between the greedy choice and a random one. The ε-greedy algorithm [44] trades off exploitation
and exploitation in this way.

At each round, the ε-greedy algorithm picks a random machine with probability ε, and picks the machine with the
highest average reward otherwise (probability 1− ε). In such a simple way, the algorithm alternates between a purely
randomized method and the exploitative instinct of maximizing profits. This alternation improves the chances of the
algorithm recognizing optimal actions and makes the ε-greedy superior to a purely greedy approach.

As we see more results, our estimates about the machines become more accurate and we might want to gradually
reduce exploration. The εn-greedy algorithm implements this idea by decreasing the exploration parameter as follows:

εn = min(1,
c ·K
d2 · n

), n = 1, 2, . . . (5)

where n is the round number, K is the number of machines, and c > 0 and 0 < d < 1 are parameters of the
algorithm. The value of d is usually set to the difference (in expected reward) between the best action and the second
best2. Under certain conditions, this setting allows a logarithmic bound on the regret to be proven [6].

In noisy environments it takes more exploration to find the optimal action and ε-greedy methods fare even better
relative to the greedy method. In non-stationary situations, where bandits change over time, exploration is needed to
make sure that a non-greedy action has not changed to become better than the greedy one. Non-stationary is the case
most commonly encountered in reinforcement learning [44]. This is also true in our pooling environment where the
relative quality of the runs varies as we go down in the ranked list of documents.

4.2.3. Upper Confidence Bound (UCB)
UCB methods compute upper confidence bounds for the estimates associated to each machine. After n plays, the

leading machine is the one with the largest empirical mean of obtained rewards. While we could be tempted to pick
this leading machine, we first need to be sure that the other machines have been inspected enough times. Otherwise,
we cannot be sufficiently confident that they are indeed inferior. The UCB allocation methods consider the uncertainty
associated with each estimate, compute upper confidence bounds for all machines and make the selection based on
these bounds. For instance, the UCB1 policy [6] defines an index that is the sum of the current average reward plus a
term related to the size of the one-sided confidence interval for the average reward. This index derives from Agrawal’s
policy [1], which achieves asymptotic logarithmic regret behavior. According to [1], the probability that the true
expected rewards falls within this interval is very high.

UCB1-Tuned [6] is an effective enhancement of UCB1 that takes into account the variances of the average rewards.
We implemented and experimented with both UCB1 and UCB1-Tuned and found that UCB1-Tuned was consistently
better than UCB1. We therefore constrain our discussion to UCB1-Tuned, whose adaptation for pooling is shown in
Algorithm 1. In the algorithm, µs and σ2

s refer to the sample mean and variance of the rewards obtained from run s so
far, ns is the number of times run s has been visited, and n is the overall number of assessments. The quantity added
to the sample average is steadily reduced as the run is visited, and uncertainty about the reward probability is reduced.
As a result, by always selecting the run with the highest bound, UCB1-Tuned gradually moves from exploration to
exploitation.

4.2.4. Bayesian Bandits
The allocation methods outlined in the previous sections are frequentist in nature. The average rewards are re-

garded as unknown deterministic values and the learning algorithm aims to attain the best parameter-dependent per-
formance. Bayesian methods, on the other hand, deal with multiple alternative hypotheses and quantitatively weight

1Initially, all averages are set to 0.5.
2We set d to 0.1 and c to 0.01. In our initial tests we found that performance was insensitive to d and moderately sensitive to c. We tested

c ∈ (0, 0.15] (steps of 0.01); all tested c ∈ (0, 0.1] were optimal and all other c tested were sub-optimal.

7

Algorithm 1: UCB1-Tuned algorithm adapted for pooling

Assess one document from each run;
Loop

Assess one doc from run s that maximizes...

µs +

√
lnn
ns
·min(1/4, σ2

s +
√

2 lnn
ns

)

the evidence supporting these. In this section we describe some Bayesian allocation methods and how we have adapted
them for our relevance assessment task.

A Bayesian perspective allows the uncertainty associated to the probabilities of winning to be dealt with formally.
Each machine is characterized by its probability of winning (probability of supplying a relevant document in our
case). From a Bayesian view, this probability can be regarded as a parameter endowed with a prior distribution. The
process begins by assuming complete ignorance of the probabilities and, thus, assigning a uniform prior, U(0, 1), to
each machine. This is equivalent to starting with Beta(1, 1) for all machines (the Uniform distribution is a particular
case of Beta(α, β) when both α and β are set to 1). Every time that we judge a document we obtain evidence that is
used to revise our beliefs about the probability distribution. In our case, the result of playing the machine is the binary
relevance of the judged document (O ∈ {0, 1}), which can be seen as a Bernoulli random variable or, equivalently,
Binomial with a single trial. This is an algebraic convenience because Beta is the conjugate prior distribution for
Binomial. This gives a closed-form expression for the posterior distribution: Beta(α + O, β + 1 − O). Bayesian
inference therefore supplies a natural and formal framework where the Beta distributions of the machines are updated
as we get judgments from the assessors.

Every time we have a win (Bernoulli trial equals 1) α is increased and β remains unchanged. In practice, this
moves some probability mass to the right end of the interval [0, 1] (i.e. we tend to skew the distribution to the left).
Conversely, a loss (Bernoulli trial equals 0) leaves α unchanged and increases β, moving some probability mass to
the left end of the interval [0, 1] (i.e. we tend to skew the distribution to the right). At any given point, the Beta
distribution is asymmetric when α and β are different. If α > β the distribution is skewed to the left (more probability
mass concentrated on the right). Otherwise, it is skewed to the right (more probability mass concentrated on the left).
At the early stages of the process, both α and β are low and the Beta distribution tends to be flat. As we see more
evidence, α and β tend to grow, making the Beta distribution more peaky. This models how we increasingly reduce
uncertainty about the quality of the machine.

Bayesian Learning Automaton (BLA) [19] is an algorithm that follows this Bayesian approach and does random
sampling from the posterior distributions to choose the next machine. A sample is drawn from each machine’s distri-
bution and the machine supplying the largest sample is the one selected for the next play. Those machines that have
supplied many wins will have their Beta distribution skewed to the left and, at sampling time, they have more chance
of supplying a large value. The idea of sampling from the posterior distribution dates back to Thompson [46] and is
an effective and efficient heuristic for addressing the exploration/exploitation dilemma [12]. Furthermore, Granmo
[19] has shown that BLA is self-correcting –the more the estimate of a machine’s mean falls below the true value, the
higher the probability of selecting machine m– and converges to pulling the optimal machine. A formal analysis and
an empirical evaluation of Thompson Sampling for the multi-armed bandit problem can be found in [12, 2].

The adaptation of BLA for pooling is shown in Algorithm 2. BLA has no parameters and is known to be more
effective than UCB or εn-greedy [19]. We therefore implemented BLA and included it into our comparative study. We
also implemented a further Bayesian method where the next machine is chosen by taking the maximum expectation
of the posterior distributions. This approach will be referred to as MM (MaxMean) and is sketched in Algorithm 3.
Observe that the expectation of a distribution Beta(α, β) is α/(α+ β).

In our assessment task, we can take further advantage from the observed evidence. Given a binary judgment,
we can update not only the Beta distribution of the run from which the document was extracted, but also the Beta
distributions of all runs that retrieved the same document. In this way, evidence about relevance quickly spreads
across all rankings3. Figure 1 shows an example of the process for a case with three runs. The documents marked

3With MM , this often leads to several run having the maximum mean. Ties are resolved by staying at the run from which the document was

8

Algorithm 2: Bayesian Learning Automaton for pooling

foreach s ∈ runs do
αs ←1, βs ←1;

Loop
foreach s ∈ runs do

Draw a sample xs from Beta(αs, βs);

next run← arg max
s

xs ;

Assess one document from next run (Onext run: binary relevance of the asssesed document) ;
αnext run ← αnext run +Onext run ;
βnext run ← βnext run + 1−Onext run ;

Algorithm 3: Maximum Mean for pooling

foreach s ∈ runs do
αs ←1, βs ←1;

Loop
foreach s ∈ runs do

means ← αs/(αs + βs);

next run← arg max
s

means ;

Assess one document from next run (Onext run: binary relevance of the asssesed document) ;
αnext run ← αnext run +Onext run ;
βnext run ← βnext run + 1−Onext run ;

with an asterisk are those deemed as relevant.

5. Existing Pooling-based Methods for Adjudicating Judgments

In the literature of pooling-based evaluation, several methods have been employed to order the documents in the
pool:

DocID. This is the standard sequence of assessments followed by TREC [48]. The set of unique documents in
the pool is sorted by document identifier. This simple approach ignores any existing evidence about the estimated
relevance of the pooled documents.

Rank. Pooled documents are chosen in decreasing order of rank. Top 1 documents (union of top retrieved
documents from all runs) go first, top 2 documents go next, and so forth.

MoveToFront (MTF) [15]. The MTF method maintains a priority score for each run. Initially, all priorities are
uniform. A maximum priority run is randomly selected and its top-ranked document is judged (documents already
judged are skipped). If the judged document is relevant then documents from the same run continue to be judged until
a non-relevant document is found. After seeing a non-relevant document, MTF reduces the priority of the current run
and randomly jumps to another maximum priority run.

Moffat and colleagues [29] proposed several methods for ordering assessments. All their methods depend on
rank-biased precision (RBP) scores. RBP [30] is an effectiveness metric that has been used for comparing search
systems. It approximates user behavior by weighting the utility of a document based on the likelihood that a user
reaches the rank position of the document. The underlying assumption is that users examine documents in order and
there is a likelihood of 50% or so of getting to the 4th-ranked document. Under the standard RBP setting, the top

extracted.

9

run1 run2 run3
d47∗ d53∗ d80
d53∗ d69 d44
d14∗ d48 d56

Sequence of steps:

1. α1, β1, α2, β2, α3, β3 ← 1
2. mean1,mean2,mean3 ← 1/2
3. next machine← 2 (random choice, all means are the same; let us assume that run2 is selected)
4. Onext machine ← 1 (d53 is assessed. It is relevant)
5. α2 ← 2, β2 ← 1; α1 ← 2, β1 ← 1 (updates all runs that retrieved d53)
6. mean1,mean2 ← 2/3 ; mean3 ← 1/2
7. next machine← 2 (tie beween run1 and run2. It is resolved by staying at run2)
8. Onext machine ← 0 (d69 is assessed. It is non-relevant)
9. α2 ← 2, β2 ← 2 (only run2 retrieved d69)

10. mean1 ← 2/3 ; mean2,mean3 ← 1/2
11. next machine← 1
12. Onext machine ← 1 (d47 is assessed. It is relevant)
13. α1 ← 3, β1 ← 1 (only run1 retrieved d47)
14. mean1 ← 3/4 ; mean2,mean3 ← 1/2
15. ...

Figure 1: MaxMean (MM) algorithm adapted for pooling. Example of the sequence of steps taken for a case with three runs and pool depth equal
to 3.

retrieved document is always examined, and the user proceeds from each document to the next with probability p, or
terminates his search with probability 1− p. The overall utility of a ranking is defined as:

RBP = (1− p) ·
∑
i=1

ui · pi−1 (6)

where ui ∈ [0, 1] is the relevance degree of document at rank i. It can be shown that 1/(1− p) is the average number
of documents examined. It is standard practice to set p to 0.8. This leads to 5 documents examined on average, which
is a reasonable model of actual user behavior.

With binary relevance, a relevant document at rank 1 adds 0.2 to the overall ranking score, a relevant document
at rank 2 adds 0.16, and so forth. In [29], these rank-based contributions were used for adjudicating documents for
judgment. The following variants were proposed:

Moffat et al.’s Method (A) [29], “Summing contributions”. Given a document d and a set of runs, the document
is assigned a score (wd) as follows:

wd =
∑

s∈runs
cs,d (7)

cs,d = (1− p) · prd,s−1 (8)

where rd,s is the document’s rank in the run and cs,d is the potential contribution of the document to the RBP score
of the run (if d is relevant it would add cs,d to the RBP of s)4.

The value of wd is computed for all documents in the pool and, next, documents are judged in decreasing order of
wd. This method favors documents that are highly ranked by many runs. This is a static method because the outcome

4If d is not retrieved by s then rd,s = ∞ and, thus, cs,d = 0.

10

of the judgments does not alter the ordering. The sequence of judgments only depends on the ranks of the documents
in the runs.

Moffat et al.’s Method (B) [29], “Weighting by residual”. This is an evolution over the previous method that gives
more importance to documents coming from runs with many unjudged documents. The uncertainty about the quality
of a run with many unjudged documents is high and method B tries to reduce this uncertainty by sampling more
documents from this type of run. This is encoded by promoting runs whose residual RBP is large. At any moment,
the base RBP of a run is the RBP that the run has achieved so far (computed from the documents that have been
judged). The residual RBP of the run is the maximum increment in RBP that the run could achieve (if all remaining
unjudged documents are relevant). As we judge documents from the run, its residual is reduced. Given a document d
and a set of runs S, the document weight is now defined as:

wd =
∑

s∈runs
cs,d · ress (9)

where ress is the run’s residual.
Moffat et al.’s Method (C) [29], “Weighting by predicted score”. By concentrating on runs with large residuals,

method B runs the risk of giving too much weight to ineffective runs. Method C attempts to remedy this by promoting
documents retrieved by effective runs. The document weight is defined as:

wd =
∑

s∈runs
cs,d · ress · (bases + ress/2)

3 (10)

where bases is the RBP obtained by the run so far (computed from the documents that have been judged). The final
RBP will be in the range [bases, bases + ress] and Method C takes this range’s midpoint, bases + ress/2, as an
estimation of the effectiveness of the run. In [29], this estimation was raised to the power of 3 to boost the strength of
this factor.

6. Metasearch Methods for Adjudicating Judgments

This section discusses two methods that were originally designed for metasearch. However, they can be also
employed for adjudicating judgments in the context of a pooling-based evaluation. Given a user query, a metasearch
engine sends it to various search engines, collects their results, and combines them with the aim of improving the
effectiveness of the ranking. These distributed search tools must carry out three main tasks: i) resource representation,
which consists of generating a description of each information resource (search engine), ii) resource selection, which
consists of selecting one or more search engines based on the query and the descriptions of the search engines, and
iii) result merging, which consists of merging the ranked lists of documents from the searches carried out at every
search engine. This last component, result merging, is directly related to the challenge of fusing the ranked lists
(runs) in pooling-based evaluation. We therefore experimented with the following result merging methods, which
were originally designed for metasearch:

Borda Fuse: Borda Fuse [3] is a metasearch model based on Borda Count. Borda Count is a traditional voting
procedure that has been repeatedly applied for data fusion and metasearch problems. Each voter ranks a given set of c
candidates in order of preference. The top ranked candidate gets c points, the 2nd ranked candidate gets c− 1 points,
and so forth5. Each candidate is finally assigned an overall voting score, which is the sum of points obtained from
each voter, and the candidates are ranked in decreasing order of this score.

This voting-based model can be naturally applied for metasearch: the voters are the search engines and the re-
trieved documents are the candidates. The resulting Borda Fuse method is a simple and efficient combination al-
gorithm that requires no relevance scores and no training data [3]. Furthermore, it performs quite well at combining
the ranked lists returned by multiple retrieval algorithms [3]. Other effective combination methods require either re-
trieval scores –e.g. CombMNZ– or training data –e.g. Weighted Borda Fuse, which needs training queries to weight
the candidates– making them unsuitable for adjudicating judgments in a pooling environment.

5Those candidates left unranked by the voter –if any– get an uniform portion of the remaining points.

11

Hedge: Hedge is an online learning algorithm [18] for combining expert advice. It was employed by Aslam
and his colleagues [4] for simultaneously solving the problems of metasearch and pooling. The algorithm works as
follows: Given a set of rankings produced by multiple retrieval algorithms, we start by selecting some document that
is highly ranked by many systems. If the document is relevant we begin to trust systems that returned the document
at a high position in the ranking and to lose faith in systems that did not return the document at a high position in the
ranking. Conversely, if the document is not relevant we begin to lose faith in systems that returned the document at
a high position and start to place trust in systems that did not return the document at a high position. In subsequent
rounds, we would likely choose documents that are ranked at a high position by trusted systems. The specifics of
how to apply Hedge for adjudicating judgments are reported in Algorithm 4. The weight ws encodes our faith in
the performance of run s. In the absence of any prior knowledge, the algorithm begins with uniform weights and
probabilities for each run. Essentially, the algorithm selects likely relevant documents based on the run’s weights
and the documents’ ranks. In each judgment round, the relevance outcome (reldmax) and the position of the assessed
document in each ranking (rdmax,s) determines the loss assigned to each run (losss). After each iteration, the weights
and probabilities are adjusted. The algorithm is parameterized by a learning rate parameter (β ∈ [0, 1])6.

7. Experiments

We planned and performed a thorough series of experiments to evaluate the document adjudication methods dis-
cussed above. The experiments are fully reproducible. The code was developed in R and all instructions and functions
can be accessed through our institutional website7.

7.1. Collections

Table 1 presents the main statistics of the four test collections that we used for experimentation. All of these are
TREC collections associated with the ad-hoc retrieval task. This task has been at the heart of TREC since the early
nineties. It is a standard search task where participants are given a set of queries (created by members of the TREC
document assessment team) and a collection of documents and they are asked to rank documents from the collection
for every query using their systems.

TREC defined two main classes of run: automatic and manual. Automatic runs are those runs produced by the
participating systems where no manual intervention took place between the submission of the topics to the systems
and the outputting of the run. Manual runs are those runs produced by the participating systems where any amount
of human intervention in the generation of the results was allowed. For instance, a manual run can result from
concatenating the best results from multiple (reformulated) queries.

In TREC, it is common to include manual runs in the pool. Such runs, where humans can reformulate queries
and merge results, generally contribute many unique relevant documents to the pool. Combining automatic runs and
manual runs leads to more diversified qrels and the resulting test collection is more robust and reusable.

We obtained from TREC all runs, manual and automatic, which contributed to the pool and ran the assessment
process on a query-by-query basis. A global approach, where ordering is applied across documents from all queries,
has been applied in the past [29]. In a multiple-query evaluation, a global approach consists of building a single
ranked list to prioritize all the required assessments from all queries. Essentially, this means that a ranking of query-
document pairs is built and, next, the top ranked pairs are those that are judged for relevance. Globally managing all
judgments can lead to further improvements in early finding relevant documents. The assessment process can quickly
extract relevant documents by focusing on the most promising query-document pairs. However, different queries
would receive different number of judgments. This approach biases the qrels towards queries that have many relevant
documents. We have opted to apply the document adjudication process individually for each query and, therefore, all
queries receive the same treatment. Applying bandit models for adjudicating judgments in a global way is out of the
scope of this paper and will be the subject of future research.

6Following [4], β was fixed to 0.1 in all our experiments.
7http://tec.citius.usc.es/ir/code/pooling_bandits_ms.html

12

http://tec.citius.usc.es/ir/code/pooling_bandits_ms.html

Algorithm 4: Hedge Algorithm for Pooling

foreach s ∈ runs do
// set uniform weights & probabilities

ws = 1, ps = 1/|runs|;
JudgedDocs = ∅;
D = union of all docs retrieved by all runs;
// D contains pooled and unpooled docs

// In TREC, it is typically the union of the top 1000 docs retrieved

rmax = |D|;
foreach s ∈ runs, d ∈ D do

// Initially, we set all losses assuming that all docs are non-relevant

if d was retrieved by s then
losss,d =

1
2 · log

rmax

rd,s
;

// rd,s is the rank position of doc d in run s

else
ts = # docs retrieved by s ;
losss,d = avg{ 12 · ln

rmax

j }j:ts+1,...,rmax
;

// the doc gets the avg loss it would get if retrieved in positions ts+1, ..., rmax

// Now, the judging process starts

Loop
foreach d ∈ D \ JudgedDocs do

WeightedAvgMixLossd =
∑
s ps · losss,d

dmax = arg max
d∈D\JudgedDocs

WeightedAvgMixLossd ;

// we judge dmax

reldmax
= (binary) relevance of dmax ;

JudgedDocs = JudgedDocs ∪ {dmax};
// next, we compute the loss associated to this doc

foreach s ∈ runs do
if dmax was retrieved by s then

losss =
1
2 · (−1)

reldmax · ln rmax

rdmax,s
;

// rdmax,s is the rank position of doc dmax in run s

else
ts = # docs retrieved by s ;
losss = avg{ 12 · (−1)

reldmax · ln rmax

j }j:ts+1,...,rmax
;

// the doc gets the avg loss it would get if retrieved in positions ts+1, ..., rmax

// update run weights & probabilities

foreach s ∈ runs do
ws = ws · βlosss ;
ps = ws/

∑
j wj ;

13

TREC5 TREC6 TREC7 TREC8
queries 50 50 50 50
pooled runs (automatic+manual) 77+24 31+15 77+7 62+9
assessed docs 133681 72270 80345 86830
avg. # docs judged per query 2673.6 1445.4 1606.9 1736.6
% of relevant docs in the pool 4.1% 6.4% 5.8% 5.4%
avg. # rels per query 110.48 92.22 93.48 94.56

Table 1: Main statistics of the test collections

7.2. Performance metric

We analyze here the adjudication methods described in the previous sections in terms of their ability to early
identify relevant documents. We computed the trends of relevant documents found as follows. For each query, each
adjudication method induces a sequence of judgments of the pooled documents. Recall@n can be computed at any
point (n) in this sequence. The official TREC qrels contain relevance judgments for all documents in the pool and,
therefore, every time we need an assessment we can just go to the qrel file and access the required judgment. In this
way, we can evaluate any subset pooling strategy and analyze the evolution of Recall@n. The main evaluation metric
is therefore Recall@n averaged over the set of queries in the test collection.

First, we experimented with the six adjudication methods discussed in section 5, and the two metasearch methods
discussed in section 6. These experiments, reported next, concluded with the selection of two prominent methods as
our reference baseline methods. The subsequent experiments, reported in section 7.4, evaluated all the bandit-based
methods and compared them against the two reference baselines.

7.3. Pooling Baselines

Figure 2 depicts the evolution –at varying judgment levels– of Recall@n achieved by the six adjudication methods
presented in section 5. MTF is the best performing method. It is remarkably superior to all other baseline methods.
DocID is the worst performing method. This is as expected, since DocID is not concerned about early identifying
relevant documents. Our comparison shows also that method C is superior to both method A and method B. This
confirms the results obtained by Moffat et al. [29]. To the best of our knowledge, MTF was never compared to
the methods A, B and C defined by Moffat et al, and our experimental study demonstrates that MTF is superior to
these three methods. It is important to observe, though, that Moffat et al. aimed at optimizing the uncertainty in the
RBP-based ranking of retrieval algorithms and, thus, their methods are not necessarily optimal at identifying relevant
documents under a fixed budget.

Figure 3 plots the recall achieved by the two metasearch methods. For the sake of comparison, we have also in-
cluded the best performing pooling-based method (MTF) into this plot. These experiments show a consistent ordering
among these three strategies. Hedge is the best performing method; followed by MTF, which is superior to Borda.
Overall, Hedge and MTF are capable of early finding more relevant documents than those found by the six other
methods evaluated. We therefore adopted both Hedge and MTF as our reference baseline methods for our further
experiments and analyses.

14

0.
0

0.
4

0.
8

TREC5

av
g

re
ca

ll

30 1000 2000 3000 4000

0.
0

0.
4

0.
8

TREC6

av
g

re
ca

ll

30 1000

DocID
Rank
MTF

A
B
C

0.
0

0.
4

0.
8

TREC7

av
g

re
ca

ll

30 1000 2000

0.
0

0.
4

0.
8

TREC8

judgments

av
g

re
ca

ll

30 1000 2000 3000

Figure 2: Comparison of methods for adjudicating judgments: DocID, Rank, MoveToFront (MTF), and Moffat et al.’s methods A, B and C. The
graph plots average recall against the number of judgments.

15

0.
0

0.
4

0.
8

TREC5

av
g

re
ca

ll

30 1000 2000 3000 4000

0.
0

0.
4

0.
8

TREC6

av
g

re
ca

ll

30 1000

Borda

Hedge

MTF

0.
0

0.
4

0.
8

TREC7

av
g

re
ca

ll

30 1000 2000

0.
0

0.
4

0.
8

TREC8

judgments

av
g

re
ca

ll

30 1000 2000 3000

Figure 3: Comparison of methods for adjudicating judgments: Borda, Hedge and MoveToFront (MTF). The graph plots average recall against the
number of judgments.

16

7.4. Bandit-based models

TREC5
Number of judgments

30 100 300 500 700 900 1100 2000
MTF .2310 .4033↓ .5761↓ .6945 .7555 .8118↓ .8465↓ .9436↓

HEDGE .2158 .4383 .6228 .6977 .7425↓ .7819↓ .8251 .9411↓

BLA .2312 .3861↓ .5809↓ .6768↓ .7567↓ .8101 .8463 .9502↓

MM .2157 .4116↓ .6170 .7191 .7890 .8326 .8609 .9640
RANDOM .1947↓ .3613↓ .5817 .6803 .7570 .8164↓ .8516↓ .9469↓

UCB .2380 .3674↓ .6067 .6956 .7785 .8292↓ .8616 .9494↓

εn-GREEDY .2136↓ .3616↓ .6084 .7044 .7839 .8389 .8666 .9510↓

TREC6
Number of judgments

30 100 300 500 700 900 1100
MTF .3633↓ .5333↓ .7302↓ .8102↓ .8783↓ .9250↓ .9585↓

HEDGE .3852 .5850 .7629 .8343 .8721↓ .9118↓ .9426↓

BLA .2933↓ .4793↓ .6870↓ .7975↓ .8632↓ .9143↓ .9505↓

MM .3555↓ .5410↓ .7354 .8401 .8960 .9423 .9649
RANDOM .2979↓ .4894↓ .6971↓ .8003↓ .8623↓ .9137↓ .9523↓

UCB .2960↓ .5108↓ .7039↓ .8168↓ .8687↓ .9174↓ .9563↓

εn-GREEDY .3092↓ .5067↓ .7296 .8191↓ .8740↓ .9230↓ .9541↓

TREC7
Number of judgments

30 100 300 500 700 900 1100 2000
MTF .2767↓ .5134↓ .7191↓ .8264↓ .8868 .9265 .9580 .9983
HEDGE .3319 .5826 .7678 .8467 .8923 .9214↓ .9480↓ .9982
BLA .2460↓ .4687↓ .6874↓ .7907↓ .8578↓ .9069↓ .9419 .9915
MM .2930↓ .5062↓ .7272↓ .8270 .8970 .9380 .9574 .9982
RANDOM .2313↓ .4538↓ .6869↓ .7922↓ .8606↓ .9139↓ .9471 .9909
UCB .2403↓ .4703↓ .7035↓ .8039↓ .8675↓ .9187↓ .9446 .9938
εn-GREEDY .2197↓ .4433↓ .7119↓ .8035↓ .8746↓ .9167↓ .9425 .9961

TREC8
Number of judgments

30 100 300 500 700 900 1100 2000
MTF .2978↓ .5041↓ .7220↓ .8166↓ .8763↓ .9172↓ .9460↓ .9944
HEDGE .3894 .6087 .7883 .8450 .8755↓ .9039↓ .9334↓ .9914↓

BLA .2526↓ .4577↓ .6806↓ .7943↓ .8587↓ .9015↓ .9332↓ .9959
MM .3288↓ .5427↓ .7509↓ .8470 .8969 .9380 .9571 .9963
RANDOM .2524↓ .4442↓ .6753↓ .7833↓ .8500↓ .8964↓ .9276↓ .9926
UCB .2545↓ .4931↓ .6943↓ .8030↓ .8618↓ .9037↓ .9332↓ .9937
εn-GREEDY .2547↓ .4680↓ .6968↓ .8036↓ .8610↓ .9023↓ .9263↓ .9907

Table 2: Bandit Allocation Strategies against two baselines (MTF and HEDGE). Average recall at different number of judgments performed. For
each judgment level and collection, the highest average is bolded. The symbol ↓ indicates a significant decrease over the corresponding best average
(one-sided paired t-test, α = .05).

Let us now evaluate the performance of the innovative methods based on multi-armed bandits. Table 2 compares
the recall achieved by MTF and Hedge against the recall achieved by the bandit allocation methods described in
section 4. At the end of the assessment process, all pooled documents are judged and, therefore, all strategies get to
perfect recall (all relevant documents in the pool have been identified). Nonetheless, some methods are much quicker
than others at identifying relevant documents. Extracting relevant documents early permits judgment effort to be
reduced. We can just stop the assessment process when a sufficient number of relevant documents have been judged.

The main conclusions that can be drawn from these experiments are:

• Randomly picking the next run to examine performs poorly. This naı̈ve method ignores the quality of the runs
and, therefore, it slowly extracts relevant documents. However, observe that the average recall achieved by this
random method are not disproportionately low. The reason is that runs are chosen randomly, but documents are
not randomly sampled from the selected run. The order of the documents’ ranks is preserved and, therefore,
the randomly selected run supplies the top ranked unjudged document. The runs are therefore examined in a
top-down fashion, facilitating the early identification of relevant documents.

• BLA, UCB, and εn-GREEDY encode different ways to promote exploration, but their performance in our ex-
periments is roughly the same. BLA and UCB are sophisticated allocation methods that consider the outcomes

17

of past plays and the uncertainty about current estimations. The exploration movements are influenced by the
confidence intervals of the reward averages (UCB) or by how peaky the posterior distributions are (BLA). εn-
GREEDY is simpler than UCB and BLA: when it wants to explore it jumps to a random run. Nevertheless
εn-GREEDY’s performance is not inferior to the performance achieved by UCB and BLA. This suggests that
no form of educated exploration is required. Note also that the quality of the runs varies as we extract documents
from them. By giving too much credit to past rewards we run the risk of always exploring towards runs with a
good track of judged documents. Past performance, however, is not necessarily indicative of future results. In
this respect, random exploration ignores the history and gives equal opportunities to all runs.

• Hedge, MM and MTF are the best performing adjudication methods. Hedge identifies many relevant items at
the beginning of the judgment process (first 300 documents assessed) but it performs worse towards the end. At
30 or 100 judgments, Hedge is usually the best performing method and the improvements over the competing
methods are often statistically significant. However, after 500 judgments, MM is either the best performing
method (TREC5, TREC6 and TREC8) or it is not statistically different from the best (TREC7). Moreover, the
improvements over Hedge achieved by MM are often statistically significant. On the other hand, MTF looks
inferior to MM: in the few cases where MTF yielded a Recall@n value higher than the Recall@n yielded by
MM the difference was not statistically significant.

Overall, we can draw two main conclusions from these experiments. First, if we are interested in judging a small
number of documents then we should definitely go for Hedge. Second, if we can afford a more thorough assessment
process then we should probably prefer MM. When we can judge more than 500 documents, chances are that MM
will be a more profitable model. In such cases, our empirical evidence suggests that MM is at least as effective as the
best model in the literature and, in actual fact, in many cases it is superior to Hedge in a statistically significant way.

7.5. Non-stationary bandit models
Under MTF, the last document judged is the only evidence considered. As long as it is relevant, we remain

extracting and judging documents from the same run. Otherwise, we decrease the priority of the current run and jump
to another run. Forgetting quickly about previously judged documents can be also incorporated into the Bayesian
bandit methods. This is the topic of this section.

In stationary environments, the (unknown) probability of winning does not change, and all previous rewards
should receive the same treatment. In non-stationary environments, a uniform treatment of the history is deficient.
If bandits change over time we need to react by weighting recent and old rewards in a non-uniform way (e.g., by
weighting recent rewards more heavily than long-past ones [44]). In our assessment task, the environment is clearly
non-stationary. The probability of supplying a relevant document changes as we move down in the rankings. Not only
the probabilities associated to the runs change, so do the relative merits of different runs. For instance, a run produced
by a precision-oriented search system may be initially preferable to a run produced by a recall-oriented search system
but, after judging the top retrieved documents, we may be safer moving to the recall-oriented run.

One popular way of reacting to changes in non-stationary problems is to incorporate a rate parameter to tune
the influence of recent rewards and old rewards. The Bayesian methods BLA and MM can be naturally adapted as
follows. At any moment, the parameters of the posterior distribution of a run s are:

αs = 1 + jrels (11)
βs = 1 + jrets − jrels (12)

where jrels is the number of documents retrieved by s and judged as relevant, and jrets is the number of documents
retrieved by s that have been assessed so far. The update of jrels and jrets can be driven by a rate parameter that
motivates the method to learn changing environments [16]. Given the last judgment, reld ∈ {0, 1}, the parameters of
the runs retrieving this document are updated as:

jrels ← rate · jrels + reld (13)
jrets ← rate · jrets + 1 (14)

18

If rate = 1 we get the stationary case, where all rewards count the same. If rate > 1 we give more weight to
early relevant documents. Conversely, if rate < 1 we give more weight to the last judgment. We experimented with
different values of rate and found that rate = 0 was the best performing setting. This particular instance of the non-
stationary case implements a notion of history –only the last judgment counts– that is equivalent to MTF’s. Updating
the distributions in this way leads to new Bayesian methods, which will be referred to as BLA-NS and MM-NS. After
updating the distribution’s parameters, BLA-NS chooses the next run by sampling from the posterior distribution.
MM-NS simply selects the posterior distribution with the largest mean. Note that fixing rate to 0 preserves the
formality of the model. The outcome of every trial is still Bernoulli and the prior/posterior are still Beta distributions.
Setting rate to 0 can be actually seen as a re-initialization of the run’s counts that happens before examining its next
document.

TREC5
Number of judgments

30 100 300 500 700 900 1100 2000
MTF .2310 .4033↓ .5761↓ .6945↓ .7555↓ .8118↓ .8465↓ .9436↓

HEDGE .2158 .4383 .6228 .6977 .7425↓ .7819↓ .8251↓ .9411↓

BLA .2312 .3861↓ .5809↓ .6768↓ .7567↓ .8101↓ .8463↓ .9502↓

BLA-NS .2024 .3769↓ .5747↓ .6848↓ .7631↓ .8358↓ .8745↓ .9526↓

MM .2157 .4116↓ .6170 .7191 .7890 .8326 .8609↓ .9640
MM-NS .2177 .4206 .6401 .7418 .8187 .8621 .8962 .9685

TREC6
Number of judgments

30 100 300 500 700 900 1100
MTF .3633↓ .5333↓ .7302↓ .8102↓ .8783↓ .9250↓ .9585↓

HEDGE .3852 .5850 .7629 .8343 .8721↓ .9118↓ .9426↓

BLA .2933↓ .4793↓ .6870↓ .7975↓ .8632↓ .9143↓ .9505↓

BLA-NS .2890↓ .4859↓ .6944↓ .7965↓ .8575↓ .9006↓ .9324↓

MM .3555↓ .5410↓ .7354 .8401 .8960 .9423 .9649
MM-NS .3573↓ .5358↓ .7515 .8491 .9001 .9419 .9681

TREC7
Number of judgments

30 100 300 500 700 900 1100 2000
MTF .2767↓ .5134↓ .7191↓ .8264↓ .8868↓ .9265↓ .9580↓ .9983
HEDGE .3319 .5826 .7678 .8467 .8923 .9214↓ .9480↓ .9982↓

BLA .2460↓ .4687↓ .6874↓ .7907↓ .8578↓ .9069↓ .9419↓ .9915
BLA-NS .2317↓ .4538↓ .6701↓ .7780↓ .8445↓ .8833↓ .9170↓ .9884↓

MM .2930↓ .5062↓ .7272↓ .8270 .8970↓ .9380 .9574↓ .9982↓

MM-NS .2829↓ .5249↓ .7461 .8467 .9085 .9437 .9671 .9992
TREC8

Number of judgments
30 100 300 500 700 900 1100 2000

MTF .2978↓ .5041↓ .7220↓ .8166↓ .8763↓ .9172↓ .9460↓ .9944
HEDGE .3894 .6087 .7883 .8450 .8755↓ .9039↓ .9334↓ .9914↓

BLA .2526↓ .4577↓ .6806↓ .7943↓ .8587↓ .9015↓ .9332↓ .9959
BLA-NS .2545↓ .4495↓ .6540↓ .7709↓ .8407↓ .8833↓ .9141↓ .9882↓

MM .3288↓ .5427↓ .7509↓ .8470↓ .8969 .9380 .9571 .9963
MM-NS .3120↓ .5474↓ .7645↓ .8591 .9026 .9382 .9608 .9958

Table 3: MoveToFront (MTF), Hedge, Stationary Bayesian Allocation methods (BLA and MM), and Non-Stationary Bayesian Allocation methods
(BLA-NS and MM-NS). Average recall at different number of judgments performed. For each judgment level and collection, the highest average
is bolded. The symbol ↓ indicates a significant decrease over the corresponding best average (one-sided paired t-test, α = .05).

Table 3 reports the results obtained with these two alternatives against those achieved with MTF, Hedge, MM
and BLA. MM-NS is often superior to MM. MM-NS is still inferior to Hedge at low judgment counts but, after
500 judgments, it is always the best performing approach. Furthermore, after 700 judgments, the improvements of
MM-NS over Hedge are often statistical significant.

Both MTF and MM-NS ignore previous rewards but they entail different models of exploration. After a relevant
document, both methods behave the same: they remain in the same run. The difference lies in the movement after
judging a non-relevant document. The priority-based mechanism of MTF makes that all runs are visited once before
we re-visit any run; similarly, a run is visited for the third time only when all other runs have been visited twice, and
so forth. Under MM-NS, the runs that retrieved the judged non-relevant document are assigned α = 1 and β = 2
and, thus, the mean of their posterior distributions goes to 1/3. The runs that did not retrieve the document have their
distributions unchanged, and their means can be either 1/3 (last update of the run had been to account for a non-

19

relevant document), 2/3 (last update of the run had been to account for a relevant document), or 1/2 (the distribution
of the run has no updates so far because all documents ranked by the run are unjudged). MM-NS selects a run with the
highest mean and, therefore, it tends to move towards runs whose last update was to account for a relevant document
(the largest mean is 2/3). This appears to be an advantage of MM-NS over MTF.

8. Bias analysis

The experiments reported above demonstrate that Hedge, MTF and MM-NS are effective at early identifying
relevant documents and, therefore, we may want to employ them to create qrels with reduced human effort. However,
only judging a subset of the pool introduces a bias with respect to judging all pooled documents. It is therefore
necessary to perform a bias analysis of the different subset pooling methods. This is precisely the aim of the analysis
reported in this section.

A standard approach to measure the bias induced by subset pooling methods is to use the official system rankings
as the basis for comparison. The official system rankings are computed from the qrel file created with the whole pool.
This is a good gold standard because it is built from multiple retrieval algorithms explored up to some large depth
(typically 100). By computing Kendall’s τ correlation between the official ranking of the systems and the ranking of
the systems under some subset pooling strategy8 we can measure the bias of the sub-setting method. Furthermore, the
bias can act as a guidance to estimate which number of judgments is required to have a sufficiently high correlation
with respect to the official ranking.

Kendall’s τ consists of computing the minimum number of pairwise adjacent swaps needed to turn one ranking
into the other and normalizing by the number of items being ranked. Two identical rankings have a correlation of
1, the correlation between a ranking and its perfect inverse equals -1, and the expected correlation of two rankings
chosen at random equals 0. Figure 4 plots the correlation between the official ranking of systems and the ranking of
systems under Hedge, MTF and MM-NS (at different cutoffs of documents judged). This correlation analysis, which
goes up to about 1000 documents judged, reveals that all these adjudication methods lead to high levels of correlation.
The correlation is higher than 0.9, even with only 100 documents judged. Initially, Hedge’s correlation is higher
than MM-NS or MTF’s correlation. As more judgments come in, MM-NS gets to higher levels of correlations when
compared to MTF or Hedge (e.g. in TREC5 around 500 documents judged).

Table 4 provides additional data on the subset pooling methods and their biases. In this table we not only analyze
Kendall’s τ , but also AP correlation (τAP). AP correlation is a rank correlation coefficient proposed by Yilmaz
and colleagues [52]. The main idea is that, when comparing two rankings of search systems, discrepancies among
those systems having high positions are more important than those among systems having low positions. Kendall’s τ
equally penalizes errors both at high and low positions. AP correlation, instead, gives more penalties to errors at high
positions. In IR evaluation, we are often concerned about correctly identifying the best search strategies (those at the
top of the system ranking) and, therefore, AP correlation is well suited for evaluating subset pooling strategies. Table
4 shows the number of judgments required by each subset pooling method to achieve a level of correlation above 0.90,
0.95, or 0.99 (the table shows the counts for both correlation metrics). For the sake of comparison, we also report the
number of judgments required by DOCID, which is the standard ordering approach followed by NIST when creating
the official qrels. If we want to produce a highly reliable benchmark (τ, τAP ≥ .99) then MM-NS should be preferred
because it needs a substantially lower number of judgments. This stringent level of correlation (.99) is indicative of
the point in the judgment process after which the influence of having more judgments becomes really negligible. With
a few hundred judgments, MM-NS is able to create a qrel file that ranks systems very much like the full pool does.
The counts of judgments reveal a remarkable gain over judging the entire pool. For instance, in TREC5, where the
average pool size is 2692, MM-NS needs only 595 judgments to get to τAP ≥ .99. This means that we can save up a
substantial fraction of the judgments (78%) and still produce a highly robust benchmark. If we can accept .95 or .90
correlation levels then Hedge and MM-NS require a similar number of judgments (but Hedge looks slightly better).
These results confirm our previous findings: Hedge must be our subset pooling method when building shallow pools
but MM-NS must be our method of choice when building deeper pools.

8Both rankings produced by computing the Mean Average Precision of the systems.

20

0.
85

0.
95

TREC5

K
en

da
ll

co
rr

el
at

io
n

30 500

0.
70

0.
85

1.
00

TREC6

K
en

da
ll

co
rr

el
at

io
n

30 500

MM-NS
Hedge

MTF

0.
80

0.
90

1.
00

TREC7

K
en

da
ll

co
rr

el
at

io
n

30 500

0.
85

0.
95

TREC8

judgments

K
en

da
ll

co
rr

el
at

io
n

30 500

Figure 4: Kendall’s τ correlation between the official ranking of systems and the ranking of systems built from Hedge, MM-NS and MTF at
different number of documents judged.

21

TREC5
τ ≥ .9 τ ≥ .95 τ ≥ .99 τAP ≥ .9 τAP ≥ .95 τAP ≥ .99

DOCID 1181 1442 2503 1181 1406 2563
MTF 45 200 827 33 162 708
HEDGE 55 171 1176 56 155 958
MM-NS 34 158 670 34 132 595

TREC6
τ ≥ .9 τ ≥ .95 τ ≥ .99 τAP ≥ .9 τAP ≥ .95 τAP ≥ .99

DOCID 1054 1399 1726 1069 1396 1702
MTF 168 276 1500 130 260 1500
HEDGE 128 238 1555 136 224 1555
MM-NS 136 252 986 120 209 986

TREC7
τ ≥ .9 τ ≥ .95 τ ≥ .99 τAP ≥ .9 τAP ≥ .95 τAP ≥ .99

DOCID 954 1312 2011 939 1313 2047
MTF 81 197 595 92 203 595
HEDGE 63 175 602 69 176 621
MM-NS 76 176 532 85 180 531

TREC8
τ ≥ .9 τ ≥ .95 τ ≥ .99 τAP ≥ .9 τAP ≥ .95 τAP ≥ .99

DOCID 1194 1441 2815 1114 1362 2587
MTF 46 173 575 46 111 570
HEDGE 36 116 816 31 79 715
MM-NS 51 126 469 35 105 380

Table 4: Number of judgments required to achieve .9, .95 or .99 Kendall’s τ correlation or AP correlation between the ranking of systems
produced by each subset pooling method and the official ranking of systems (done with the full pool). For each correlation metric, correlation level
and collection, the lowest number of judgments is bolded.

Other forms of bias, such as out-of-the-pool bias, which analyzes the effect on systems not contributing to the
pool, can also be studied [25]. However, this form of bias exists even after evaluating the whole pool and we defer
this study to future work.

9. Discussion

Selecting documents for assessment poses an exploration versus exploitation dilemma. Our experiments suggest
that some limited form of exploration is needed, but it should be simple and we should only trigger it under certain
conditions. Methods such as UCB or εn-GREEDY, which explore more at the beginning of the process and gradually
reduce exploration, largely fail to identify relevant documents early. Other simpler models, like MTF, only move away
from a run when it supplies a non-relevant document. The population of non-relevant documents tends to grow as we
move down in the rankings and, thus, MTF tends to increase exploration at later stages. This type of late exploration
looks beneficial. Our empirical comparison also reveals that MM, an exploitative-only strategy, is competitive with
respect to MTF and Hedge. Summing up, the best performing models either do not explore at all or, if they do explore,
they do it later.

Another interesting insight comes from the non-stationary models. The stationary models are slow at reacting to
drops in the quality of the runs. For example, imagine a run that initially supplied five relevant documents but has no
more relevant documents. MM remains extracting documents from this run until rank #10, which is when the mean
of this run goes again to 0.5. The superiority of MM-NS over MM demonstrates the benefits of a strict management
of the exploitation versus exploration tradeoff: forget about the average supply of relevant documents, just look at the
last document extracted and, if non-relevant, go to explore elsewhere.

Furthermore, MM-NS is more effective than MTF, suggesting that the propagation of evidence induced by MM-
NS works better than MTF’s mechanism, based on priorities. Under MTF, the next run is only decided by the number
of previous visits to each run. MM-NS, instead, goes on to explore runs whose last update was for accounting for a
relevant document. This encodes a more intelligent way of exploration.

The Hedge algorithm, which implements a loss-based method to weight runs and select documents, works very
well at identifying relevant items at the beginning of the process. However, our results demonstrate that, after having
assessed several hundred documents, it is inferior to other alternatives. This suggests that, if we want to evaluate more
than 500 documents, simpler exploration methods should be preferred. Hedge effectively selects documents from the
top ranks but, once we have accounted for these initial items, it is inferior to other alternatives that quickly forget
about past successes.

22

A potential criticism about bandit-based methods, MTF and Hedge is that such methods are dynamic and, thus,
the next relevance assessment cannot start until the previous assessment has finished. This serialization complicates
the assessment exercise, but our results suggest that these dynamic methods are worth consideration. The most
effective dynamic methods require far fewer total judgments than the static methods. For example, MM-NS needs
34 judgments while DOCID needs 1181 judgments (see Table 4, TREC5, τ ≥ .9). Although the 1181 judgments
required by DOCID can be evaluated in parallel, the total effort and time-to-task completion are likely lower with
MM-NS. Other static methods, e.g. Borda or Moffat’s A, are more effective than DOCID at early identifying relevant
documents but, still, our experiments show that they are substantially inferior to Hedge, MTF and the bandit-based
methods. Furthermore, dynamic methods could be adapted to allow parallel judgments. For example, the bandit-based
methods could be modified to select the best n bandits, assess n documents in parallel, and update the distributions as
appropriate. The effectiveness of such a hybrid method will be the subject of further research.

Our new formal models and our comparative study has also the potential to be of interest for researchers in other
areas. In many data mining applications, prioritizing items from a pool of unlabeled items is a crucial step in the
process of creating training data. Here, we have been concerned with the specifics of IR pooling but the lessons
learned from our research are potentially applicable to other areas.

10. Conclusions and Future Work

This paper has shown that multi-armed bandits are a formal and effective solution for adjudicating judgments in
pooling-based evaluation. By linking pooling to multi-armed bandits we have been able to define effective adjudica-
tion methods with strong theoretical grounds. For this adjudication task, we have formally analyzed the exploitation
versus exploration tradeoff and we have proposed bandit-based methods that are highly competitive at early identify-
ing relevant documents.

We have also performed a thorough evaluation of existing adjudication methods. Our experimental study gave
novel insights about the relative merits of past methods and showed that our bandit-based methods are superior to
state-of-the-art models.

This formal modeling opens challenging lines of future research. So far, we have not considered query-related
variability. As argued in [29], some queries might require more relevance assessments than others. In this line, it might
be interesting to extend the scope of bandit algorithms and run them globally. This would result in different queries
having different number of assessments; and exploration versus exploitation methods could be employed to trade
among queries. This has the potential of further improving the average count of relevant documents per assessment.
Nevertheless, this has to be done with care because we run the risk of biasing the evaluation towards certain queries
[48].

Another intriguing line of future work is to model some type of structure associated to the bandits. For instance,
high-level bandits on the top of low-level bandits. To meet this aim, we will study models of hierarchical bandits,
where we initially pick a top-level bandit and, next, the chosen bandit makes an internal selection as to which low-
level bandit to play. These models fit well with the characteristics of our task, where many research teams contribute
to the pool with multiple runs. Runs are therefore associated and it makes sense to apply hierarchical methods.

Other possible lines of future research include studying other types of non-stationary allocation methods and
considering the case when rewards are not binary (e.g., handling non-binary relevance). In this work, we have not
considered the scores assigned to the documents by the runs. Document scores have been effectively employed for
search result merging [51]. In the near future, we also want to explore how to inject score-based evidence into our
bandit-based methods.

Under the Bayesian models, the initialization of the assessment process has room for improvement. For example,
we could set non-uniform priors for the runs. These prior distributions could be estimated from post-retrieval query
difficulty predictors or from a score distribution analysis. And the tradeoff between exploration and exploitation can be
further adjusted by reshaping the posterior distributions. This adjustment can be advantageous to tune our uncertainty
about the quality of the runs. These issues might be worth exploring.

23

Acknowledgements

This work has received financial support from the i) “Ministerio de Economı́a y Competitividad” of the Gov-
ernment of Spain and FEDER Funds under the research project TIN2015-64282-R, ii) Xunta de Galicia (project
GPC 2016/035), and iii) Xunta de Galicia – “Consellerı́a de Cultura, Educación e Ordenación Universitaria” and
the European Regional Development Fund (ERDF) through the following 2016-2019 accreditations: ED431G/01
(“Centro singular de investigacion de Galicia”) and ED431G/08.

We would also like to thank David Elsweiler for his useful comments and suggestions, and Aldo Lipani for his
feedback on our implementation of the Hedge Algorithm.

References

[1] R. Agrawal. Sample mean based index policies with O(log n) regret for the multiarmed bandit problem. Advances in Applied Probability,
27:1054–1078, 1995.

[2] S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-armed bandit problem. CoRR, abs/1111.1797, 2011.
[3] J. Aslam and M. Montague. Models for metasearch. In Proc. of the 24th Annual Int. ACM SIGIR Conference on Research and Development

in Information Retrieval, SIGIR ’01, pages 276–284, NY, USA, 2001.
[4] J. Aslam, V. Pavlu, and R. Savell. A unified model for metasearch, pooling, and system evaluation. In Proc. of the 12th Int. Conference on

Information and Knowledge Management, pages 484–491. ACM, 2003.
[5] J. A. Aslam, V. Pavlu, and E. Yilmaz. A statistical method for system evaluation using incomplete judgments. In Proceedings of the 29th

Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’06, pages 541–548, New York,
NY, USA, 2006. ACM.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Mach. Learn., 47(2-3):235–256, May 2002.
[7] D. Bodoff and P. Li. Test theory for assessing ir test collections. In Proceedings of the 30th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR ’07, pages 367–374, New York, NY, USA, 2007. ACM.
[8] C. Buckley, D. Dimmick, I. Soboroff, and E. Voorhees. Bias and the limits of pooling for large collections. Inf. Retr., 10(6):491–508,

December 2007.
[9] B. Carterette. Robust test collections for retrieval evaluation. In Proceedings of the 30th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR ’07, pages 55–62, New York, NY, USA, 2007. ACM.
[10] B. Carterette, J. Allan, and R. Sitaraman. Minimal test collections for retrieval evaluation. In Proc. of the 29th Annual Int. ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR ’06, pages 268–275, New York, NY, USA, 2006. ACM.
[11] B. Carterette, V. Pavlu, E. Kanoulas, J. A. Aslam, and J. Allan. Evaluation over thousands of queries. In Proceedings of the 31st Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’08, pages 651–658, New York, NY,
USA, 2008. ACM.

[12] O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2249–2257. Curran Associates, Inc., 2011.

[13] P. Clough and M. Sanderson. Evaluating the performance of information retrieval systems using test collections. Information Research,
18(2), 2013.

[14] G. Cormack and T. Lynam. Power and bias of subset pooling strategies. In Proc. of the 30th Annual Int. ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’07, pages 837–838, New York, NY, USA, 2007. ACM.

[15] G. Cormack, C. Palmer, and C. Clarke. Efficient construction of large test collections. In Proc. of the 21st Annual Int. ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’98, pages 282–289, NY, USA, 1998. ACM.

[16] C. Davidson-Pilon. Probabilistic Programming & Bayesian Methods for Hackers. Addison-Wesley Data & Analytics Series, 2015.
[17] Nicola Ferro and Gianmaria Silvello. 3.5k runs, 5k topics, 3m assessments and 70m measures: What trends in 10 years of adhoc-ish CLEF?

Information Processing & Management, 2016 (in press).
[18] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer

and System Sciences, 55(1):119–139, 1997.
[19] O.-C. Granmo. A bayesian learning automaton for solving two-armed bernoulli bandit problems. In Proc. of Seventh Int. Conference on

Machine Learning and Applications, ICMLA ’08, pages 23–30, Dec 2008.
[20] K. Hofmann, S. Whiteson, and M. de Rijke. Contextual bandits for information retrieval. In NIPS 2011 Workshop on Bayesian Optimization,

Experimental Design, and Bandits, Granada, 2011.
[21] G. Jayasinghe, W. Webber, M. Sanderson, and J. Culpepper. Extending test collection pools without manual runs. In Proc. of the 37th Int.

ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, pages 915–918, New York, NY, USA, 2014.
ACM.

[22] M. Karimzadehgan and C. Zhai. A learning approach to optimizing exploration-exploitation tradeoff in relevance feedback. Inf. Retr.,
16(3):307–330, 2013.

[23] G. Kazai, N. Gövert, M. Lalmas, and N. Fuhr. The INEX Evaluation Initiative, pages 279–293. Springer Berlin Heidelberg, Berlin, Heidelberg,
2003.

[24] Cheng Li, Paul Resnick, and Qiaozhu Mei. Multiple queries as bandit arms. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, CIKM ’16, pages 1089–1098, New York, NY, USA, 2016. ACM.

[25] A. Lipani, M. Lupu, and A. Hanbury. Splitting water: Precision and anti-precision to reduce pool bias. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 103–112. ACM, 2015.

24

[26] A. Lipani, G. Zuccon, M. Lupu, B. Koopman, and A. Hanbury. The impact of fixed-cost pooling strategies on test collection bias. In
Proceedings of the 2016 ACM on International Conference on the Theory of Information Retrieval, ICTIR 2016, Newark, DE, USA, September
12- 6, 2016, pages 105–108, 2016.

[27] D. Losada, J. Parapar, and A. Barreiro. Feeling lucky? multi-armed bandits for ordering judgements in pooling-based evaluation. In Proc. of
the 31st ACM Symposium on Applied Computing, SAC ’16, pages 1027–1034. ACM, 2016.

[28] D. Losada, J. Parapar, and A. Barreiro. A rank fusion approach based on score distributions for prioritizing relevance assessments in
information retrieval evaluation. Information Fusion, 39:56 – 71, 2018.

[29] A. Moffat, W. Webber, and J. Zobel. Strategic system comparisons via targeted relevance judgments. In Proc. 30th Annual Int. ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 375–382, NY, USA, 2007. ACM.

[30] A. Moffat and J. Zobel. Rank-biased precision for measurement of retrieval effectiveness. ACM Trans. Inf. Syst., 27(1):2:1–2:27, December
2008.

[31] D. Mollá, I. Amini, and D. Martı́nez. Document distance for the automated expansion of relevance judgements for information retrieval
evaluation. CoRR, abs/1501.06380, 2015.

[32] D. Oard, D. Soergel, D. Doermann, X. Huang, G.C. Murray, J. Wang, B. Ramabhadran, M. Franz, S. Gustman, J. Mayfield, L. Kharevych,
and S. Strassel. Building an information retrieval test collection for spontaneous conversational speech. In Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’04, pages 41–48, New York, NY,
USA, 2004. ACM.

[33] W.H. Press. Bandit solutions provide unified ethical models for randomized clinical trials and comparative effectiveness research. In Proc. of
the National Academy of Sciences of the United States of America, pages 22387–22392, 2009.

[34] F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-armed bandits. In Proc. of the 25th Int. Conference on
Machine Learning, ICML ’08, pages 784–791, New York, NY, USA, 2008. ACM.

[35] T. Reitmaier and B. Sick. Let us know your decision: Pool-based active training of a generative classifier with the selection strategy 4ds.
Information Sciences, 230:106 – 131, 2013.

[36] H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society, 58(5):527–535, 1952.
[37] M. Sanderson. Test collection based evaluation of information retrieval systems. Foundations and Trends in Information Retrieval, 4(4):247–

375, 2010.
[38] M. Sanderson and H. Joho. Forming test collections with no system pooling. In Proc. of the 27th Annual Int. ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR ’04, pages 33–40, New York, NY, USA, 2004. ACM.
[39] M. Sanderson and J. Zobel. Information retrieval system evaluation: Effort, sensitivity, and reliability. In Proc. 28th Annual Int. ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 162–169, NY, USA, 2005.
[40] M. Sloan and J. Wang. Dynamical information retrieval modelling: A portfolio-armed bandit machine approach. In Proc. of the 21st Int.

Conference Companion on World Wide Web, WWW ’12 Companion, pages 603–604, NY, USA, 2012. ACM.
[41] I. Soboroff, C. Nicholas, and P. Cahan. Ranking retrieval systems without relevance judgments. In Proc. of the 24th Annual Int. ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR ’01, pages 66–73, NY, USA, 2001. ACM.
[42] I. Soboroff and S. Robertson. Building a filtering test collection for TREC 2002. In Proceedings of the 26th Annual International ACM SIGIR

Conference on Research and Development in Informaion Retrieval, SIGIR ’03, pages 243–250, New York, NY, USA, 2003. ACM.
[43] K. Sparck Jones and C.J. van Rijsbergen. Report on the need for and provision of an “ideal” information retrieval test collection. Technical

report, University of Cambridge, Computer Laboratory, 1975.
[44] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.
[45] Ling-Xiang Tang, Shlomo Geva, Andrew Trotman, Yue Xu, and Kelly Y. Itakura. An evaluation framework for cross-lingual link discovery.

Information Processing & Management, 50(1):1 – 23, 2014.
[46] W. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika,

3-4(25):285–294, 1933.
[47] A. Tonon, G. Demartini, and P. Cudré-Mauroux. Pooling-based continuous evaluation of information retrieval systems. Information Retrieval,

18(5):445–472, October 2015.
[48] E. Voorhees. The philosophy of information retrieval evaluation. In Proc. of 2nd Workshop of the Cross-Language Evaluation Forum on

Evaluation of Cross-Language Information Retrieval Systems, pages 355–370, Berlin, Heidelberg, 2002.
[49] E. Voorhees and D. Harman. TREC: Experiment and Evaluation in Information Retrieval. The MIT Press, 2005.
[50] Ellen M. Voorhees. Variations in relevance judgments and the measurement of retrieval effectiveness. Information Processing & Management,

36(5):697 – 716, 2000.
[51] S. Wu and F. Crestani. A geometric framework for data fusion in information retrieval. Information Systems, 50:20 – 35, 2015.
[52] E. Yilmaz, J. A. Aslam, and S. Robertson. A new rank correlation coefficient for information retrieval. In Proceedings of the 31st Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’08, pages 587–594, New York, NY,
USA, 2008. ACM.

[53] Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling bandits problem. In Proc. of the 26th Annual Int.
Conference on Machine Learning, ICML ’09, pages 1201–1208, NY, USA, 2009. ACM.

25

	Introduction
	Related Work
	The Document Adjudication Problem
	A Bandit-Based Approach for Adjudicating Judgments
	Employing bandit allocation methods in pooling-based evaluation
	Allocation methods
	Random
	n-greedy
	Upper Confidence Bound (UCB)
	Bayesian Bandits

	Existing Pooling-based Methods for Adjudicating Judgments
	Metasearch Methods for Adjudicating Judgments
	Experiments
	Collections
	Performance metric
	Pooling Baselines
	Bandit-based models
	Non-stationary bandit models

	Bias analysis
	Discussion
	Conclusions and Future Work

