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Abstract. In recent years, several stress detection methods have been
proposed, usually based on machine learning techniques relying on ob-
structive sensors, which could be uncomfortable or not suitable in many
daily situations. Although studies on emotions are emerging and rising in
Software Engineering (SE) research, stress has not been yet well investi-
gated in the SE literature despite its negative impact on user satisfaction
and stakeholder performance.
In this paper, we investigate whether we can reliably implement a stress
detector in a single pipeline suitable for real-time processing following an
arousal-based statistical approach. It works with physiological data gath-
ered by the E4-wristband, which registers electrodermal activity (EDA).
We have conducted an experiment to analyze the output of our stress
detector with regard to the self-reported stress in similar conditions to a
quiet office workplace environment when users are exposed to different
emotional triggers.
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1 Introduction

Wearable technology is gaining popularity and the interest to include these de-
vices as useful input for diverse software applications beyond simply gathering
data have awakened the interest of software industry too. Moreover, wearable
sensing technology for emotion recognition is becoming less obtrusive and in-
expensive, what have favored considering biosignals in different sectors such as
e-health, e-commerce, wellness, e-learning, and games. Leading organizations
recognize that social aspects are just as important to long-term success as eco-
nomic aspects. Particular focus is given to the labor conditions for reducing risks
associated with work-related stress. Physiological stress is one of the factors that
are most affecting current modern industries. For instance, Graziotin et al. [19]
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proposed a theory about the impact of the effects on programming performance.
While studies on emotions are emerging and rising in Software Engineering (SE)
research, stress has not been yet well investigated in the SE literature despite
its negative impact not only on stakeholder performance but also on user satis-
faction and acceptance (e.g., [18], [11]).

Currently, most of the stress detection methods are based on Machine Learn-
ing (ML) techniques (e.g., support vector machine [35]). The main disadvantage
of using these methods is the need for big data sets to carry out the training
stage, where the machine learns about the user behavior in relationship with
predefined tasks. To address this issue regarding the training of stress detector,
we use an arousal-based statistical approach for detecting stress in real-time.
This introduces two main advantages for the resulting stress detector: i) reliabil-
ity is independent of a training data set, in contrast to the requirement imposed
by approaches based on machine learning algorithms; ii) higher flexibility is pro-
vided since the detector can be used in different user conditions. In this paper,
we present and evaluate experimentally an automatic stress detector that uses
wearable sensors for gathering physiological data. We targeted office employees
(programmers and junior researchers) working with computers (i.e., desktop,
laptop), who were exposed to several types of emotional triggers.

The paper is organized as follows. Section 2 discusses related works on stress
recognition, and Section 3 presents some scenarios where a real-time stress detec-
tor can be useful in SE. Section 4 presents the theory about emotional triggers.
The description of the algorithms used in our stress detector is presented in Sec-
tion 5. Section 6 provides the experiment design and results. Finally, conclusions
and future work are discussed in Section 7.

2 Related Work

During many years, researchers in several computer science fields have paid at-
tention to developing methods to recognize and understand human emotions. For
instance, based on natural language processing (e.g., [27], [38], [41]); or emotion
recognition through facial expression (e.g., [8], [25], [28]) or using physiological
data (e.g., [17], [16], [9] [20], [21], [31], [36], [15], [35], [5]).

In the strand of works dealing with stress detection relying only on physio-
logical data, Mozos et al. [31] proposed to combine machine learning techniques
using EDA, photoplethysmogram (PPG) and heart rate variability (HRV) sig-
nals to detect stress in social situations using The Trier social stress test (TSST)
as stressful. Garcia et al. [15] used accelerometer (ACC) data of a mobile phone
to recognize stress in real workplace environments of thirteen subjects using two
classification models: naive bayes and decision trees. They obtained an accuracy
of 71% and their study lasted 8 weeks.

Sanno and Picard [35] implemented different machine learning classifiers to
detect stress: Support Vector Machine (SVM) with linear kernel, SVM with
Radial basis function (RBF) kernel, k-nearest neighbors, Principal component
analysis (PCA) and SVM with RBF kernel and k-nearest neighbors. Their work
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is focused on comparing the performance the implemented algorithms using the
collected data of the subjects (skin conductance, ACC and mobile phone usage)
of five days. Kocielnik et al. [23] described a framework to detect stress in the
context of a person’s activities. They use a min-max algorithm and and ACC
as source data. Bogomolov et al. [5] collected mobile phone activity (i.e. call
log, SMS log, Bluetooth interactions) of 117 subjects to recognize stress during
common daily activities. They applied different classifiers: SVM, artificial neural
networks, ensemble of tree classifiers based on a Breiman’s Random Forest (RF)
and Friedmans Generalized Boosted Model (GBM). Similarly, using a range of
machine learning techniques, some other examples can be found in the existing
literature (e.g., [34], [3], [10], [36], [21], [37]).

Table 1. Comparative chart of the most representative related works of stress recog-
nition.

Author Classification
algorithm

Source
data

Evaluation
tools

Context

Mozos et
al. [31]

SVM, AdaBoost,
and k-nearest
neighbor.

EDA, PPG
and HRV.

Accuracy of
89.75%, preci-
sion of 89.5%
and recall of
95%.

Social situations
using the TSST.

Garcia-
Ceja et al.
[15]

Naive bayes and
decision trees.

ACC. Accuracy of
71%.

Real working envi-
ronments.

Sano and
Picard [35]

SVM, RBF, k-
nearest neighbors,
PCA, SVM and
PCA.

SC, ACC
and mobile
phone usage.

Accuracy of
75%.

Stress detection
that subjects are
able to perceive
and report.

Kocielnik
et al. [23]

Min-max algo-
rithm.

SC and
ACC.

No reported Subject’s activi-
ties.

Bogomolov
et al. [5]

SVM, ANNs, tree
classifiers based
on RF and GBM.

Mobile
phone activ-
ity

Accuracy of
72.39%.

Common daily ac-
tivities.

Table 1 summarizes the most representative related work, illustrating the di-
versity of used algorithms to recognize stress. Most of these works use a machine
learning method to implement the classifier; as we indicated previously, there can
be some issues concerning the large training datasets required and their request
to gather data and train new classifiers for every single task/context of use. In
contrast, we use an arousal-based statistical approach that does not need a big
dataset to learn a model for recognizing stress and can work in different tasks.
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Next we envision prospective scenarios of use in the context of SE in which a
real-time stress detector could be useful.

3 Scenarios of Use in the Context of SE

A real-time stress detector could enhance/contribute to the emotional labor
in SE, which refers to the process of managing feelings and expressions to fulfill
the emotional requirements of a software engineer. For instance, in tasks that
demand the collaboration of stakeholders with different perspectives, such as
reviews-based requirements validation [13], analysts could get awareness on their
stress level, which can be helpful not only for regulating their negative emotions
but also for having a better performance in validating requirements.

Another potential scenario is in the development of large and complex soft-
ware projects that require a continuous evolution, and maintenance, where the
history of stress could help human resources managers in their decision-making
processes. For instance, identifying members of a development team, who could
be experiencing long-term stress that might be affecting their productivity. These
members suffering stress could become potential deserters from the company.
Two general worth exploring scenarios where a real-time stress detector can be
useful are:

Usability and software testing based on emotions for quality assur-
ance and user experience: To detect interaction pitfalls or defects in the user
interface and/or software functionality that could cause certain level of stress
on end-users, which can be used to enhance the software quality [11]. It has a
diagnosis purpose of the software developed, and therefore as an additional input
to assure quality in future software versions. The real-time feature is relevant to
determine which variations in the stress detection are associated to the use of
specific parts of the software (e.g., elements of the user interface [32], awareness
elements of a software game [39]) which can facilitate us to discover new quality
requirements from actual user needs (e.g., [12]).

Development of self-adaptive software systems guided by emotion:
As a kind of context-aware system, in which part of the user context is provided
by the emotional states over time while interacting with software systems, self-
adaptation could be guided by emotions ([30],[29]).

4 Emotional Triggers

An emotion is just a response we give to a stimulus or event, whether it is
external, or even internal, such as a memory or an idea [14]. Additionally, in
experimental settings, researchers can generate emotions on users intentionally,
by using specific emotional triggers determined by the emotions to be induced.

In this respect, an emotional trigger is any stimulus that generates a negative
or positive emotion (e.g., uncomfortable or comfortable temperature, environ-
mental noise, etc.). According to Kanjo et al. [22], emotional triggers can be
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classified into seven types: environment, physical movements, memories, percep-
tion, interacting with others, accomplishments and failure.

Nowadays, different kinds of emotional triggers exist. We briefly introduce
existing stress triggers that will be used to evaluate our stress detector: West-
man and Walters [40] and Passchier-Vermeer and Passchier [33] considered an
environmental trigger, where participants are exposed by five minutes to listen
fire alarm sounds. The Sing-a-Song Stress Test [7] is a social trigger, where par-
ticipants are asked to sing a song aloud for 30 seconds with their arms still.An
example of a cognitive trigger is the Stroop Task [24], where participants have
to pay attention and react to the color of a word while ignoring the word itself.
A reduced version of this trigger works with 4 colors, using the words “green”,
“red”, “yellow”, “blue” written in all four different colors. Words are presented
randomly for each participant.

5 Automatic Stress Detector

Figure 1 shows the stress detection process of our approach that has been au-
tomated to detect stress of individuals (e.g., programmers, testers) in real time.
We use wearable sensors (i.e., E4-wristband6) to collect physiological data. In
this first version, we focus only on sensing electrodermal activity (EDA) as a
main input for the implementation of the stress detector. A transient increase
on the EDA signal is proportional to sweat secretion and it is related to stress
[2], [6]. The main functionality of the stress detector is to determine whether

Fig. 1. Overview of a stress detection process.

the user is stressed or not. The detector will mark a label of ”stressed” or ”not
stressed”. We have implemented the preprocessing steps proposed by Bakker et
al. [2] for arousal detection in an integrated pipeline to enable real-time pro-
cessing (see Figure 1 for the involved preprocessing steps). Next, we explain the
methods/algorithms that were used in the stress detection process.

6 https://www.empatica.com/e4-wristband
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5.1 Noise filter

We use EDA to recognize stress changes, then the first stage in the pipeline
of the stress detector is to collect raw signals by the Empatica’s E4-wristband,
Figure 2 (part a) presents a common sample of EDA signals, which is measured
in microSiemens (µS), a unit of electric conductance. Usually for measuring EDA
is required two electrodes that need skin contact to produce a reliable signal,
therefore the quality of the collected EDA signals depends on the continuity of
the contact between user skin and the device’s sensors. However, the contact is
not the same in all users and noise could be introduced in the signal. Hence,
noise filtering is needed to mitigate these issues in the input (e.g., in Figure 2
(part a), we can find some gaps as a consequence of weak skin contact). Before
analyzing EDA signals, it is important to clean raw data, because noise might
be mistaken as genuine peaks. Therefore, the first step of the preprocessing is
to apply a median filter over a moving window of size n = 100 EDA samples, as
suggested in [2]. Figure 2 (b) shows the noise filtering of the collected raw data.

a) b)

Fig. 2. a) Gaps occur when the contact between the user skin and the sensors is not
tight. b) Filtered raw EDA signals.

5.2 Aggregation

The EDA signal acquired by the E4-wristband is sampled at 4Hz (i.e., the device
provides 4 samples or readings per second, which means 240 samples per minute).
Based on [2], we apply an aggregation step of each minute over the filtered input
signal: given y′ is a moving window of size m = 240 (the EDA samples of one
minute), where y1, ..., ym is aggregated to a single value y′′ where y′′ = max(y′).
For instance, Figure 3 (part a) shows the aggregation of approximately 7200
filtered EDA samples to 30 representative points (collected signals of 30 minutes).

5.3 Discretization

In this step, the data is discretized using the symbolic aggregate approximation
(SAX ) method [26]. It is a means for very efficient local discretization of time



Towards Real-time Automatic Stress Detection for Office Workplaces 7

a) b)

Fig. 3. a) Aggregated process over previous filtered data. b) Z-normalization of ag-
gregated data.

series subsequence from 1 to 5 that can be interpreted as levels of stress varia-
tion (1: completely relaxed to 5: maximum arousal). Those levels should not be
understood as absolute levels of arousal, but rather as a local relative measure
of arousal.

The input for SAX is a time-series X of length n and the output is a string of
length w, where w < n typically, the output string is normalized to an alphabet
of size > 2. The algorithm consists of the following two stages:

– Transformation of original time-series into a Piecewise Aggregate Approxi-
mation (PAA) representation. To do this, first it is necessary a Z-normalization
(see Equation 1), where the mean is around 0 and the standard deviation is
close to 1, using the following formula:

x′i =
xi − µ
ρ

(1) xi =
M

n

( n
M )i∑

j= n
M (i−1)+1

xj (2)

Where µ is the mean of the time series and ρ is the standard deviation. After
the Z-normalization, we can apply PPA transform, which approximates the
time-series into vector X = (x1, ..., xM ) of length M ≤ n (See Figure 3
(b)). Where each xi is calculated with the Equation 2. With the objective
to reduce the dimensionality from n to M , first we divide the time-series
to n/M equally sized samples and calculate the mean for each sample (See
Figure 4 (a)).

– Transformation of the PAA data into a string. The method use a breakpoint
or cuts B = β1, β2, ..., βα−1 such that βi−1 < βi and β0 = −∞, βα = ∞
divides the total area in equal subareas. Additionally, it assigns a symbol
alphaj to each interval [βj−1, βj), and the final conversion from PAA coef-

ficients C̄ into a SAX string Ĉ is with the Equation 3. Figure 4 (b) shows
SAX transformation of the previous preprocessing signals.

ĉ ∗ i = alpha ∗ j, iif, c̄ ∗ i ∈ [βj−1, βj) (3)
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a) b)

Fig. 4. a) PAA representation of the preprocessing data. b) SAX representation and
stress detection using ADWIN algorithm.

5.4 Change detection

We use a change detection algorithm based on ADaptive WINdowing (ADWIN)
method [4]. ADWIN computes the mean for each split of a sequence of signals and
analyzes the statistically significant difference between two consecutive splits.
When a statistically significant difference is detected at point pi, ADWIN drops
the data backwards from pi, after it repeats the splitting procedure until no
significant differences be found in the sequence. For instance, given φ1 and φ2
as the means of two splits of a sequence of EDA signals, then |φ1 − φ2| >∈cut is
the condition for a change detection that is computed with the Equation 4.

∈cut=
√

2

m
.σ2
W .ln

2

δ′
+

2

3m
ln

2

δ′
(4)

where σ2
W is the variance of the elements of W. δ is the desired confidence

and δ′ = δ/(ln n) [2]. Figure 4 (b) shows the output the algorithm detecting a
stress change.

6 Experiment

In order to validate the stress detector implemented, we designed an experiment
where participants experienced different stressful situations caused by emotional
triggers introduced in Section 4.

The goal of the experiment is to evaluate the performance of our stress detec-
tor in terms of its accuracy. This evaluation was performed from the viewpoint
of office workers in the context of performing certain tasks that cause stress
(emotion trigger). From this goal, the following research question is derived:

RQ1: How accurately is the stress detector able to recognize subjects stress
under different types of emotional triggers?

Based on the defined research question, we have the independent variables
emotional trigger, originally with 3 levels (environmental: fire alarm; cognitive:
Stroop Task; and social: Sing-a-Song Stress Test). After running a pilot study,



Towards Real-time Automatic Stress Detection for Office Workplaces 9

we decided to remove the social trigger to reduce the length of the experiment
to thirty minutes. This is further explained in the data collection section. Figure
5 (c) shows a screenshot of the instructions for the Stroop Task.

As dependent variables: subject stress status, which is measured in a nom-
inal scale (stressed or not stressed); and perceived stress measured by means of
a self-response questionnaire.

Our hypothesis is that when different types of emotional triggers are delivered,
the stress detector is able to recognize stress with a similar accuracy. Accuracy
refers to the closeness of a measured value to a ”true value”. In our study, the
true value of perceived stress was determined by the subjects of the experiment.

6.1 Subjects

Twelve subjects from University of Twente (The Netherlands), involved in re-
search in computing areas (i.e., Master students, PhD candidates), participated
voluntarily in the experiment, whose ages ranged between 21 and 32 years old.
Seven are women and five men.

6.2 Instrumentation and procedure

The experiment was carried out in a quiet room equipped with a table and a
chair as shown in Figure 5(a). Subjects interacted with a laptop where the Stroop
Task (cognitive trigger implemented with Psychopy7) was installed. Also, sub-
jects wore the E4-wristband and headphones to interact with the environmental
trigger. Figure 5 (b) shows the correct position of the E4-wristband on the non-
dominant hand of the subject.

a) b) c)

Fig. 5. a) A subject in the experiment room interacting with emotional triggers. b)
E4-wristband placed on the non-dominant hand. c) Instructions for interacting with
cognitive trigger (stroop task).

7 http://www.psychopy.org/
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The evaluation followed a within-subjects design, where all subjects were
exposed individually to both cognitive and environmental triggers (treatments).
The order in which the subjects interacted with the treatments were assigned
randomly. Figure 6 shows the procedure of the experiment that consists of two
phases:

Phase 1. Firstly, the subjects were asked to read and sign the informed con-
sent form, which described the purpose and structure of the experiment. Subjects
were informed beforehand about the sensing device and the possibility of expe-
riencing some stress during the experiment. Furthermore, they were informed
that they could pass on the task at any time if they considered stress unbear-
able. After signing the consent form, each subject got put on and adjusted the
E4-Wristband to enable the gathering of physiological data. Then subjects were
asked to complete a demographic questionnaire, and press a button to start the
experimental tasks when they were ready. This phase lasts around five minutes.

Phase 1 (5 min)

Instructions
and

consent form

Relaxing
(10 min) Q1

Trigger1
(5 min) Q2

Recovery
(3 min) Q3

Trigger2
(5 min) Q4

Recovery
(3 min) Q5

Phase 2 (26 min)

Fig. 6. Experiment procedure and timeline.

Phase 2. Each subject was asked to sit on her/his own chair in a comfort-
able position for 10 minutes. We asked them to stay quiet and relaxed during
this period. Then subjects interacted with the corresponding treatments (five
minutes each). Also, subjects had three minutes of recovery after each emotional
trigger. Participants self-reported their stress status before, during the delivery
of the corresponding emotion trigger and after the last trigger, the questions
were answered progressively. The closed questions that were formulated during
the experiment were in a 7-point-ordinal-scale (presented on-screen). For in-
stance, delivering first an environmental trigger and then a cognitive trigger, the
sequence of questions were as follows (see Figure 6):

– Q1: How stressed are you at this moment?
– Q2: How stressed were you WHILE listening the noise?
– Q3: How stressed are you at this moment?
– Q4: How stressed were you WHILE doing the color task?
– Q5: How stressed are you at this moment?

6.3 Data collection

The twelve subjects S01-S12 interacted with two emotional triggers successfully
(i.e. environmental and cognitive). The experiment obtained an ethical approval
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from the Ethics Committee of the Faculty of Electrical Engineering, Mathematics
and Computer Science of the University of Twente. Raw data and questionnaires
answers were encrypted (WinZip AES encryption: 128-bit AES) and stored in a
secured remote location for later analysis.

We validated the experimental design with a pilot study involving two par-
ticipants (who did not take part in the final evaluation), to ensure the task
descriptions were fully understandable, its implementation error-free, and to
check the time and any further issue regarding the experimental design. The
initial experiment was originally designed with three emotional triggers (cogni-
tive, social and environmental), and approximately it lasted forty minutes. The
feedback collected in the pilot suggested that the experiment was going to last
too long and that the social trigger was not causing stress as expected given the
time available. Hence, we changed our design to exclude the social-emotional
trigger in order to prevent issues and reduce the experiment time approximately
to thirty minutes (around 6480 EDA samples).

Table 2. Labeled results of the questionnaires and stress detector.

Subject Trigger Reported
stress

Stress
detector

Trigger Reported
stress

Stress
detector

S01

C
og

n
it

iv
e

Stressed Stressed

E
n
v
ir

on
m

en
ta

l

Not stressed Not stressed
S02 Not stressed Not stressed Not stressed Not stressed
S03 Not stressed Not stressed Stressed Stressed
S04 Not stressed Not stressed Not stressed Not stressed
S05 Stressed Not stressed Stressed Not stressed
S06 Stressed Not stressed Not stressed Not stressed
S07 Not stressed Not stressed Not stressed Not stressed
S08 Not stressed Not stressed Not stressed Not stressed
S09 Not stressed Not stressed Not stressed Not stressed
S10 Stressed Stressed Not stressed Not stressed
S11 Not stressed Not stressed Not stressed Stressed
S12 Not stressed Not stressed Not stressed Stressed

6.4 Threats to validity

Internal validity. As our main objective is to evaluate the performance of our
stress detector, in this study, we decided to use three well-known emotional trig-
gers from the psychology community. However, given that these triggers had not
been used previously in Software Engineering, we acknowledge the fact that the
selected triggers could not always generate stress on the subjects(programmers
and researchers in computer science) due to different other factors (e.g., greater
resilience) that were not investigated in this study.
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Given this interaction with different emotional triggers (treatments), with
the purpose of avoiding that the the first emotional trigger does not affect on
the next one, we set out relaxing and recovery periods.

Another possible threat is the effect of the instrumentation used during the
experiment (i.e., E4-Wristband), which could also have been causing any stress
level. In order to know whether this instrument could be considered as addi-
tional potential triggers, we asked participants to complete a post-questionnaire
regarding this issue for further investigation.

External validity. Given the low number of subjects and the fact they were
researchers working in computing-related areas but not fully working as software
engineers, one potential threat to external validity is regarding the generaliza-
tion of our results. Moreover, as our controlled experiment was conducted in a
lab setting, involving real practitioners would have been harder. We think that
having this lab-setting still allowed us to evaluate the stress detector without
interruption of external factors (i.e., meetings, calls) as a first necessary step to
validate and continue developing the detector.

Construct validity. The use of a single device to measure physiological stress
(a construct) could be considered as main threat to construct validity of this
study.

6.5 Results

The self-reported stress was rated in 7-point ordinal-scale questions that were
gathered before and during the experiment (1 = ”not stressed” to 7 =”ex-
tremely”). We labeled the overall self-reported score as ”stressed” when the
difference led to an increase equal o higher than 3 (threshold) in the perceived
value of self-reported stress; otherwise, it was labeled as ”not stressed” accord-
ing to [5]. Table 2 summarizes the labels for each subject to assess the accuracy
or trueness of our detector, by comparing the computed label with the final
self-reported label; red cells indicate the cases where the stress detector missed
8.

For answering our research question, we use the following (well-known) met-
rics regarding: precision (Equation 5), recall (Equation 6) and accuracy (Equa-
tion 7):

precision =
TP

TP + FP
(5) recall =

TP

TP + FN
(6)

accuracy =
TP + TN

TP + TN + FP + FN
(7)

8 Raw data and details of each subject can be found at https://goo.gl/eQ4KC2
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where TP indicates true positives, TN true negatives, FP false positive and
FN false negatives. In our case, we consider true positive cases the examples
where reported stress and stress detector are labeled as stressed (see Table 2).

We obtained an accuracy of 79.17%, a precision of 60% and a recall of 50%. By
comparing our results with other machine-learning based recognition methods,
we consider that our method has a good accuracy because it oscillates between
70% and 85% [15] [1], values reported in the literature of stress recognition using
physiological data. It is also important to remark that most of these existing
recognition methods do not report precision and recall measures. Overall, a
method that gets a high recall value it is considered as a good detector. In
our study, despite we obtained a 50% of recall, we consider that it can be due
to the threats that were identified after the results analysis.

7 Conclusions and Future Work

In this paper, we present the stress detection process of the arousal-based statis-
tical method. The different algorithms and techniques used for supporting such
detection process were implemented and integrated as part of our real-time au-
tomatic stress detector, in a single processing pipeline. In order to evaluate its
accuracy, an experiment was conducted with 12 subjects using the E4-wristband
device to gather physiological data. Comparing the outcome of our stress detec-
tor with the reported by each subject (perceive stress), the detector obtained an
accuracy of 79.17%.

An interesting observation is that although some subjects did not feel stress
when an emotional trigger was delivered, the outcome of the detector was con-
sistent with the corresponding perceived stress value. However, from this ob-
servation, we can also see that the emotional trigger was not very effective for
generating stress in all cases (subjects). A possible explanation for this might be
due to the different resilience extent of our participants or the need to exposing
them longer to the stimuli. As a future empirical work, beyond checking the ac-
curacy of the detector, more research is needed regarding the role of emotional
triggers and resilience of people working in office workplaces (e.g., developer
facing stress in unexpected situations). To do this, we plan to conduct a field
experiment with practitioners from a Spanish SME involved in software projects
with multi-tenancy characteristics.
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