
The Journal of Supercomputing (2019) 75:1565–1579
https://doi.org/10.1007/s11227-018-2690-1

Extended attribute profiles on GPU applied to
hyperspectral image classification

Pedro G. Bascoy1 · Pablo Quesada-Barriuso1 · Dora B. Heras1 ·
Francisco Argüello1 · Begüm Demir2 · Lorenzo Bruzzone3

Published online: 19 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Extended profiles are an important technique for modelling the spatial information of
hyperspectral images at different levels of detail. They are used extensively as a pre-
processing stage, especially in classification schemes. In particular, attribute profiles,
based on the application of morphological attribute filters to the connected compo-
nents of the image, have been shown to provide very good results. In this paper we
present a parallel implementation of the attribute profiles in CUDA for multispectral
and hyperspectral imagery considering the attributes area and standard deviation. The
profile computation is based on the max-tree approach but without building the tree
itself. Instead, a matrix-based data structure is used along with a recursive flooding
(component merging) and filter process. Additionally, a previous feature extraction
stage based on wavelets is applied to the hyperspectral image in order to extract the
most valuable spectral information, reducing the size of the resulting profile. This
scheme efficiently exploits the thousands of available threads on the GPU, obtain-
ing a considerable reduction in execution time as compared to the OpenMP CPU
implementation.

Keywords Remote sensing · Hyperspectral · Attribute profiles · Supervised
classification · Real-time · GPU

1 Introduction

Classification plays a fundamental role in the analysis of remote sensing images for
a number of applications. Researchers have proved that techniques which exploit not
only spectral but also spatial information of images significantly improve the classifica-
tion results using any spectral-based classifier, producing the so-called spectral–spatial
classifiers. In particular, mathematical morphology-based classifiers have been very
used during the last years [6].
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1566 P. G. Bascoy et al.

Profiles build granulometries in order to get rid of irrelevant spatial details and
simultaneously preserve the relevant characteristics of regions. They provide a multi-
level characterization of the images using sequential morphological filters. Attribute
profiles (APs) [11] consider morphological attribute filters based on one or more
attributes such as area, standard deviation, diagonal of the bounding box and moment
of inertia. The concept of AP was generalized and applied to multi- or hyperspectral
images, known as extended APs (EAPs).

Throughout the literature several works have contributed with efficient algorithms
to achieve a fast computation of attribute profiles. L. Vincent proposed in [18] an
efficient algorithm based on sequential scanning. The general idea is to successively
consider all the regional maxima of the image and process them progressively until its
area becomes larger than a threshold λ. The algorithm is queue-based and performs
in-place transformations, i.e. it modifies the original image proceeding in a sequential
manner after processing each maximum.

Amax-tree representation of the image for attribute filtering is proposed by Salem-
bier et al. [16]. The proposal consists in creating a tree of connected components by
threshold decomposition. So, at each level h, the components contain only those pixels
which present a grey level h. The attribute filters remove the connected components
of each image that do not meet a threshold criteria. An efficient algorithm based on
the max-tree but without building the data structure is proposed for area opening in
[4]. Another approach [19] is based on the union-find method originally proposed by
Tarjan [17] and adapted to attribute openings. This approach allows the simultaneous
processing of peak components, which are created and merged as needed. A com-
parison of the approaches for attribute filtering based on pixel-queues, max-trees and
union-find can be found in [9].

Parallel algorithms on CPU for attribute filtering are focused on the parallelization
of the max-tree data structure [2,8,10,20] on shared-memory architectures. In [20], the
image is partitioned into multiple slices and the max-tree of each slice is computed in
parallel on different processors using any sequential max-tree algorithm.

In [8], the image is partitioned into one-dimensional rows and one-dimensional
trees are processed and merged in parallel. The main bottleneck is represented by the
tree construction, consuming about 80% of the application execution time [8]. A com-
parison of shared-memory parallel implementations of several max-tree algorithms is
presented in [2]. In [10], a shared-memory parallel algorithm combining the strategies
of flooding and merging max-tree algorithms is proposed and applied to 2D and 3D
images. However, even though GPUs provide a cost-efficient solution to carry out
on-board real-time processing of remote sensing hyperspectral data [7,13], no GPU
proposals can be found in the literature for the attribute profiles computation.

In this paper the first GPU algorithm for computing extended attribute profiles over
hyperspectral images based on the max-tree representation is proposed. The proposed
scheme does not build the max-tree structure, reducing the memory requirements of
the algorithm. On the contrary, following the idea proposed in [4], the algorithm relies
on the combination of a flooding and filtering process over a regular matrix structure
produced by a connected component labeling algorithm.

A preliminary version of this work considering multispectral images was presented
in [15]. In the present paper, the scheme is generalized to consider hyperspectral
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images, which implies the need to include a feature reductionmethod and the extended
construction of the attributes. In addition, a detailed study of the GPU implementation
and an analysis of several configurations of the algorithm are included in this paper.

2 Attribute profiles

In this section, the concepts and notations from mathematical morphology that are
required for understanding morphological attribute profiles are introduced. Then, the
attribute opening and attribute filtering are reviewed. Finally, the construction of the
extended attribute profile (EAP) is described.

2.1 Definitions

Attribute filters (AFs), also known as attribute openings, are connected operators
that process an image according to a given criterion such as the area or the standard
deviation of the pixel intensity, removing connected components that do not satisfy
that criterion.

A connected component (CC) is a subgraph of an image f in which pixels are
connected to each other by paths. AFs keep or merge the CCs based on a logical
criterion T if a given attribute is greater/lower than an arbitrary reference, such as
T att

λ (CC) = att(CC) > λ, where att is an attribute, and λ is an arbitrary reference
value [5].

The binary-connected opening �x of an image f at a pixel x preserves only the
connected component X which contains x . The binary trivial opening �T uses an
increasing criterion T to filter X . If the criterion is satisfied, the connected component
is preserved, otherwise it is removed according to

�T (X) =
{
X if T (X) = true,
∅ otherwise.

(1)

The binary attribute opening �T of a binary image f is defined as:

�T ( f ) =
⋃
x∈ f

�T [�x ( f )]. (2)

The attribute opening is the union of all the trivial openings �T ( f ) which meet the
increasing criterion T . The greyscale attribute opening γ T is given by the maximum
grey level of the results of the filtering for each pixel and can be mathematically
presented as [11]:

γ T ( f )(x) = max
{
k : x ∈ �T ( fk)

}
. (3)

The attribute filtering can be applied to an image in a sequence of increasing criteria,
that is, with progressively higher threshold values, building the AP. Considering a
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family of increasing criteria T = {Tλ : λ = 0, . . . , l}, with λ a set of scalar values
used as reference in the filtering procedure, and being T0 true for all the CCs of an
image f , the AP is composed of an attribute opening profile �γ T and an attribute
closing profile �φT , which are defined as follows:

�γ T ( f ) =
{
�γ Tλ : �γ Tλ = γ Tλ( f ),∀λ ∈ [0, . . . , l]

}
, (4)

�φT ( f ) =
{
�φTλ : �φTλ = φTλ( f ),∀λ ∈ [0, . . . , l]

}
, (5)

with γ Tλ and φTλ denoting the morphological attribute opening and closing, respec-
tively. The AP is defined as the concatenation of Eqs. (4) and (5), including the image
itself:

AP( f ) = {
�φT ( f ), f ,�γ T ( f )

}
. (6)

The AP can be extended to multidimensional images by applying Eq. (6) to each
band of the image. This approach is known as EAP, and it is defined as follows:

EAP( f ) = {AP( f )1,AP( f )2, . . . ,AP( f )r } , (7)

being r the number of components (bands) of the multidimensional image f .

3 Attribute profiles on GPU

This section describes the implementation details of the attribute profiles on GPU
based on a flooding and filtering process. In this sense, the proposal does not build
the max-tree and avoids the use of priority queues, such as the direct approaches of
[1,18]. In addition, we used an adapted version of the connected component labeling
(CCL) algorithm on GPU proposed in [12] for greyscale images. The CCL is used for
creating the initial set of connected components used for applying the attribute filters.

Algorithm 1 shows the pseudocode for computing the EAP on GPU proposed in
this paper, which requires a hyperspectral image f and a set of scalar values T as input
parameters. First, a feature extraction (FE) method based on wavelets [14] is carried
out over the input image f , building a feature-reduced image f ′ which contains as
much relevant spectral information as possible concentrated in a reduced number of
bands. Then, the algorithm iterates over the set of bands of the feature-reduced image
f ′ to build the attribute opening profile �γ T (line 5) and the attribute closing profile
�φT (line 7) for each band w. Those profiles are finally concatenated with w (line 9),
as defined in Sect. 2 by Eq. (6), to build the AP. Iteratively, each AP is finally included
in the EAP set conforming the extended attribute profile.

The implementation used for �γ T is also used for computing �φT , simply com-
plementing the input image f and then complementing the result, lines 6 and 8,
respectively.

The pseudocode of the function AttributeOpeningProfile in Algorithm 1 is shown
in detail in Algorithm 2. The kernels, i.e. the pieces of code suitable to run on a GPU,
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Algorithm 1 Extended Attribute Profile on GPU.
Require: Hyperspectral image f and a set of scalar values T = {Tλ : λ = 0, . . . , l}
Ensure: Extended Attribute Profile on GPU: EAP( f )
1: procedure ExtendedAttributeProfile( f , T )
2: f ′ ← FeatureExtraction( f )
3: EAP ← ∅
4: for each band w in f ′ do
5: �γ T ← AttributeOpeningProfile(w, T )

6: wc = 255 − w � Complement the input image
7: �φT ← AttributeOpeningProfile(wc , T )
8: �φT = 255 − �φT � Complement the result
9: EAP = EAP ∪ {�φT , w,�γ T }
10: end for
11: end procedure

Algorithm 2 Attribute Opening Profile on GPU.
Require: Input band w and a set of scalar values T = {Tλ : λ = 0, . . . , l}
Ensure: Attribute opening profile on GPU: �γ T (w) = γ Tλ (w), ∀λ ∈ [0, . . . , l]
1: procedure AttributeOpeningProfile( f , T )
2: �

γ T ← w; Tλ ← T � Initial transfer CPU–GPU
3: H ← <Histogram>(�γ T ) � GM
4: i = H.length() − 1; h = H[i]; root = H[0] � Grey levels
5: CCL ← <ComponentLabeling>(�

γ T , root) � GM,SM
6: att ← <InitializeAtt>(CCL) � GM
7: while h >root do
8: att ← <UpdateAtt>(CCL) � GM
9: �

γ T ← <AttProfile>(�γ T , CCL, att, h, Tλ) � Tex,Con,GM
10: do
11: <MergeRegions>(�

γ T , CCL, h, h − 1) � Tex,GM
12: <FindRoots>(CCL) � GM
13: while (oldRoot 	= newRoot)
14: h ← H[i]; i = i − 1
15: end while
16: end procedure

are placed between <> symbols in the pseudocode. The max-tree traversal procedure
done by a regular algorithm is emulated in our kernelsMergeRegions and FindRoots,
while the attribute profile is built in kernels InitializeAtt, UpdateAtt and AttProfile.
The pseudocode also includes the Tex, Con, GM and SM acronyms to indicate the use
of the texture, constant, global and shared memory spaces on GPU, respectively.

First, the image is copied to the global and to the texture memory, and the scalar
values Tλ are copied to the constant memory of the GPU. The first three kernels (His-
togram, ComponentLabeling and InitializeAtt) are executed only once. The histogram
of the input image is computed in global memory (line 3) for extracting its grey levels.
The minimum and maximum values would correspond respectively the root and the
leaves if the max-tree would have been constructed. We will use this max-tree analogy
in the rest of the paper although such structure is not explicitly built.

In line 5, the image is labelled using the CCL algorithm proposed in [12], adapting it
by using the root grey value (the histogramminimum) as the background and verifying
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that f (p) = f (q) before path compression, instead of assuming that all foreground
pixels have the same value. The result is a CCL array that has the same dimension as
the input data. The attribute of each connected component (line 6 in Algorithm 2) is
computed in an array att, also of the same size as the image, where the root of the
component is used to locate the value of the attribute.

As can be seen in lines 7–15 in Algorithm 2, the CCL array traversal is performed.
The process begins from the maximum grey level (leaves) and continues to the mini-
mum value of the CCL array (root), merging the components at the current grey level
h (lines 10–13), and computing the attribute opening at that level (lines 8 and 9). The
different kernels used in Algorithm 2 for building the attribute profile are described in
the following sections.

3.1 Kernel InitializeAtt

After labelling the connected components, the array to update the attribute of the
components (att) is initialized in this kernel. Each thread, identified by p in the
kernel, adds one to the array att (line 3), initializing the area of each component.
The atomic operation is necessary to avoid race conditions because multiple threads
will update the same global memory location.

Kernel InitializeAtt Initialize the attribute of each connected component.
Require: Connected components CCL and attributes att in global memory
1: root ← CCL[p]
2: if ( root 	= background) then
3: atomicAdd( att[root], 1)
4: end if

3.2 Kernel UpdateAtt

This kernel is executed by each thread on the GPU, updating the attribute of the
components that have been recently merged. This approach assumes an increasing
criterion in the attribute of area and not increasing for the attribute of standard devia-
tion. All threads processing the same component will atomically increase the attribute
in global memory (line 3 in the pseudocode of this kernel), except the thread process-
ing the root of the component, identified by the global position (gid) of that thread
within the image.

3.3 Kernel AttProfile

In order to obtain the attribute opening profile, this kernel uses all the scalar values λ

in the same kernel call, computing �γ T (w) = γ Tλ(w),∀λ ∈ T = {Tλ : [0, . . . , l]}.
The offset at line 5 indicates the global memory location on GPU for each attribute
opening γ Tλ . We apply themin rule for filtering the connected components (CCs) and
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Kernel UpdateAtt Update attributes of connected components recently merged.
Require: Connected components CCL and attributes att in global memory
1: root ← CCL[p]
2: if ( att[p] > 0 and gid 	= root ) then
3: atomicAdd( att[root], att[p] )
4: att[p] ← 0
5: end if

creating the profiles. Each thread filters one pixel of the component at the current level
h (line 5) for each λ value used in the attribute profile. Filtering the CCs using one λ

at level h corresponds with the attribute opening, as indicated by Eq. (3).

Kernel AttProfile Build the attribute opening profile.
Require: Connected components CCL, attributes att and current grey level h in global memory. Input

image f in texture memory, and Tλ in constant memory.
1: root ← CCL[p]
2: v ← att[root]
3: for each λ ∈ Tλ do
4: if ( 0 < v < λ and f[p] ≥ h ) then
5: �

γ T [p + offset] ← h − 1
6: end if
7: end for

3.4 Kernel MergeRegions

This pseudocode shows what each thread looks like for a different root in its neigh-
bourhood (lines 2–6) to merge the CCs at a new level h. This operation is performed
in texture memory, so we take advantage of the spatial location and the texture cache
memory of the GPU. It is unknown if the neighbouring components must be merged
until line 7, where the root of the new connected component is updated by an atomic
operation.

Kernel MergeRegions Merge the border of connected components at levels h.
Require: Connected components CCL and current grey levels h in global memory. Input image f in texture

memory.
1: root ← CCL[p]
2: for each q neighbor of p do
3: if ( f[q] ≥ h and f[p] ≥ h ) then
4: root ← min( root , CCL[q] )
5: end if
6: end for
7: if ( root < CCL[p] ) then
8: atomicMin( CCL[root], root )
9: end if

123



1572 P. G. Bascoy et al.

3.5 Kernel FindRoots

Kernel FindRoots Find the root of the regions that have been merged.
Require: Connected components CCL and a flag in global memory.
1: root ← p
2: oldRoot ← CCL[root]
3: while ( CCL[root] 	= root ) do
4: root ← CCL[root]
5: end while
6: if ( oldRoot 	= root ) then
7: AtomicExchange( CCL[p], root )
8: AtomicOr( f lag, 1) � Update a flag indicating a new call to MergeRegions is required.
9: end if

After merging the borders of adjacent components, they are finally updated by
finding the new root for each pixel, as shown in the pseudocode of this kernel. To
ensure that the regions are merged and the components are represented by compressed
paths, this kernel iterates several times within the GPU (lines 3–5) until the pixel (each
thread processes one pixel) gets the new root of the component. Finally, the pixels of the
component are updated atomically in global memory only if they have a new root, thus
saving write transactions into it. Because the computation is divided by blocks, a flag
in global memory is updated if the merging of components has not finished, indicating
to the CPU that a new call to the MergeRegions and FindRoots kernels is required.

4 Experimental results

This section presents the results for building the extended attribute profile on GPU
using two data sets: a well-known hyperspectral remote sensing image to validate the
constructed profile through classification accuracies and a huge data set to push the
algorithm beyond the GPU memory limits.

The following lines provide a description of the experimental conditions as well as
a discussion of the main results.

4.1 Experimental setup and data sets

The experiments have been executed on a personal computer consisting of a first
generation 2.80 GHz Intel Core i7 microprocessor, 16 GB of RAM and a Pascal
Nvidia GTX 1070 GPU with 8 GB of global memory, 15 SMs and 128 CUDA cores
per SM. The EAPs on GPU are implemented using CUDA C++ and compiled with
nvcc version 9.1.85. The execution times on GPU include memory allocation, data
transformations and data transfers from the host to the device and vice versa.

With reference to the data sets, a commonly used image in the literature, the Pavia
Centre image, and an image capturing the surroundings of the city of Santiago de
Compostela in Spain have been selected for the experiments. The former was obtained
by the ROSIS-03 sensor over the city centre area of Pavia,1 Italy. The dimensions of

1 http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
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Fig. 1 a False colour composition of the Pavia Centre data set. b Shows the Pavia’s reference data used for
assessing the classification accuracy. c Corresponds to a colour composition of the Santiago area data set
(colour figure online)

the image are 1096 × 715 with 102 spectral bands. A colour composition of the data
set is shown in Fig. 1a, along with its reference data (Fig. 1b), where each colour
represents a specific land-cover class.

The data set capturing the Santiago area, Spain, was acquired by theWV110 sensor.
Its spatial dimensions are 10,748×12,288 and 8 spectral bands. The image is available
through ESA’s World-View 2 data access web-page.2 The colour composition can be
seen in Fig. 1c, and there are no reference data associated with it. Due its large size,
it has been selected in order to push the proposed algorithm beyond the limits of the
GPU memory, being impossible to fit both the image and the profile within the global
memory.

It isworth noting that a feature extraction (FE)method based onwavelets is included
in order reduce the number of bands of the Pavia Centre hyperspectral image, as shown
in Algorithm 1. The number of bands that remain after the feature extraction (eight)
allows building a small profile while keeping most of the spectral information. In the
case of the Santiago area data set no FE stage is required. The profile is built over all
the available bands of the image. At the same time, the input data for both data sets
must be scaled between 0 and 255 for the correct operation of the algorithm.

The attribute profiles built for both data sets are based on the area attribute, being
T the following set of scalars: 36, 144, 324, 576, 900, 1296, 1764.

The SVM supervised classification is carried out by the library LIBSVM [3]. Its
input is scaled between − 1 and 1 for improving classification results. The Gaussian
radial basis function (RBF) has been used as the activation function with parameters
(C, γ ) tuned by fivefold cross validation as: C = 256, γ = 1.

4.2 Performance results

Table 1 shows the execution times for the different stages required to compute the EAP
over the Pavia Centre and Santiago area data sets using the area attribute. The column

2 https://earth.esa.int/web/guest/-/worldview-2-european-cities-dataset.
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Table 1 Disaggregated execution times on the computation of the EAP on GPU using the area attribute

T {36, 144, 324, 576, 900, 1296, 1764}

#Bands 8

Profile size 120

Data set Pavia Centre Santiago area

Connectivity 4 4

Attributte Area Area

OA accuracy 99.83% –

SPEC EAP AP per band EAP AP per band

Feature extraction 918.74 114.84 – –

Cuda malloc 7.01 0.88 32.64 4.08

Transfer H2D 3.11 0.39 452.56 56.57

Histogram 12.43 1.55 1,039.73 129.97

CCL 14.92 1.87 1,403.09 175.39

Attribute opening profile 678.44 84.81 84,660.13 10,582.52

Image complement 2.25 0.28 174.82 21.85

Attribute closing profile 637.47 79.68 88,412.92 11,051.62

Transfer D2H 48.50 6.06 8,691.45 1,086.63

Cuda free 8.25 1.03 191.47 23.93

Profile total 1412.37 176.55 185,058.80 23,132.35

Execution total 2331.11 291.39 185,058.80 23,132.35

Memory (GM + TM) per band 17.19 MB + 0.75 MB 2896.92 MB + 125.95 MB

Kernel (block, grid) 32 × 8, 23 × 137 32 × 8, 336 × 1536

Times are displayed in milliseconds
The line highlighted in bold shows the total execution times

labelled as “EAP” displays the times for the computation of the whole EAP. On the
other hand, times belonging to the “AP per band” column correspond to the average of
the computation of each AP (one per band on the feature-reduced image bywavelets in
the case of the Pavia Centre data set). Note that the Santiago area data set (displayed on
the right side of the table) does not need a FE stage due to its reduced number of bands.
The row named as “Profile Total” corresponds to the result of summing the execution
time for all the other rows above it except “Feature Extraction”, which is included
in the “Execution Total” one. In addition, the memory requirements for computing
every single AP are shown in terms of MB for the global (GM) and texture (TM)
memories. The global memory utilization corresponds to WH(2l + 1) + 2WH × 4
and to WH(2l + 1) + 2WH × 4 + 3WH × 4 bytes for the area and the standard
deviation profiles, respectively.W and H stand, respectively, for the width and height
of the input image, while l is the cardinal number of the set T . On the other hand, the
TM utilization corresponds to the size of the whole band in bytes: WH .

The last row of the table indicates the launching configuration of the kernels, being
the first parameter the block size and the second one the grid size, calculated as⌈W
32

⌉ × ⌈ H
8

⌉
.
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Table 2 Pavia Centre data set: comparison between OpenMP CPU and CUDA GPU execution times for
the area attribute profile

#Extracted bands Profile size CPU GPU Speedup

FE EAP Total FE EAP Total

4 60 5.62 31.27 36.89 1.33 0.92 2.25 16.40×
8 120 5.48 66.95 125.48 0.92 1.41 2.33 28.73×
16 240 5.10 129.07 245.10 1.02 2.82 3.84 33.61×
32 480 4.42 258.03 484.42 1.15 5.65 6.80 37.95×
64 960 3.02 515.72 963.02 1.39 11.09 12.47 41.36×
Times are displayed in seconds

Table 3 Santiago area data set: comparison between OpenMP CPU and CUDA GPU execution times and
memory requirements for the area attribute profile

#Bands GPU CPU Speedup

Execution time (s) Memory (MB) Execution time (s) Memory

GM TM (MB)

8 185.06 2896.92 125.95 8899.52 64,488.00 48.09×

It can be observed that the most time-consuming operations correspond to the fea-
ture extraction and the attribute opening profile. Regarding the latter, the InitializeAtt,
UpdateAtt, AttProfile,MergeRegions and FindRoots kernels described in the previous
section are executed inside the attribute opening profile function (See Algorithm 2).
In fact, both opening and closing attribute profile calculations (they are actually the
same function as indicated in Algorithm 1) represent 93.17% of the computation time
of the profile, which includes the transformation and data transfer between host and
device. Although the results for connectivity 8 are not displayed in the table, it is worth
noting that the computational times increase 15% on average.

In Table 2, a comparison between a CPU and the proposed GPU implementations
is presented. The CPU version of the algorithm matches the steps of the GPU version,
i.e. creating the EAP by the usage of the proposed flooding and filtering procedure. In
addition, the CPU code was parallelised using OpenMP directives. The performance
results are expressed in terms of execution time (in seconds) and GPU speedup over
the OpenMP code. The results correspond to the construction of the EAP using the
Pavia Centre data set considering the area attribute, a connectivity of four and the same
thresholds T shown in Table 1. In addition, different configurations of the number of
bands extracted by wavelets are considered, so that the bigger the size of the feature-
reduced image, the bigger the profile size and the computational time required. The
speedups are calculated using the total computation time (FE+EAP).

It can be noticed that the GPU implementation is more efficient for big profiles,
producing high speedups. The biggest speedup, 41.36×, is achieved when the profile
built consists of 960 bands.

A more challenging experiment is shown in Table 3, where the profile is built for
the Santiago area image. Its size makes it impossible to fit both the whole profile and
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the image in the GPU global memory (around 23 GB of global memory would be
required). To address the problem, a band-wise strategy separately computes the AP
of each band on the GPU, moving it to the host once its computation is completed. As
the number of bands of the image is reduced (eight), no FE is needed in the processing
pipeline, being the profile computed directly from the bands of the data set. Therefore,
the execution times shown in the table correspond just to the EAP computation. The
global memory (GM) requirements show the maximum amount of memory needed
for computing the whole EAP, which corresponds to the amount of memory of a
single AP (shown at the beginning of this section) in the case of the developed GPU
algorithm. The GPU speedup reaches 48× as compared to the CPU version. Note that
the computation of the profile is independently done for each band, so the number of
the spectral bands of the input image do not change the GM and TM requirements.

The GPU hardware occupancy of the proposed functions has been analysed using
Nvidia nvprof tool, which provides metrics at kernel level (Table 4). We have col-
lected the measures using the Pavia Centre data set building an EAP using the area
attribute and a connectivity of four. The block sizes correspond to 32 × 8 for all the
kernels presented in Table 4 except for the Histogram kernel, which uses the thrust
C++ STL-style library. Some procedures are not defined at a kernel level but as a set
of kernels. In those cases kernel occupancies are estimated by weighting each kernel
occupancy by its number of invocations.

Occupancies do not reach the maximum in those kernels whose number of blocks
available is not enough in order to hide the memory latency. Accordingly, this
behaviour fits for every kernel except for the histogram computation due to the use of
the thrust library (since it is not possible to configure the launching parameters of it).

5 Conclusions

In this paper aCUDAGPU implementation of the extended attribute profiles for remote
sensing hyperspectral images is presented. The implementation is based on a flooding
and filtering process similar to those proposed by the max-tree-based algorithms.
Nevertheless, the proposal does not build the max-tree explicitly. In fact, the attribute
filters are applied to a connected components structure, which holds the necessary
information to iteratively build the attribute profile. Awavelet-based feature extraction
stage is executed over the hyperspectral image previously to the extended attribute
profile computation. Once the profile is completed, a classification stage carried out
by SVM is performed assessing the correct behaviour of the developed algorithm. The
attributes considered in the experiments are area and standard deviation, although the
approach could be extended to others. The experiments have been carried out over
Pavia Centre and a huge multispectral data set. Good speedups with a reduction from
minutes to a couple of seconds as compared to the corresponding CPU implementation
are obtained. Furthermore, a hardware occupancy study has been included to give
insights of the correct execution behaviour.
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