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ABSTRACT In this paper, we deal with one of the current challenges in process mining enhancement: the
prediction of remaining times in business processes. Accurate predictions of the remaining time, defined as
the required time for an instance process to finish, are critical in many systems for organisations being able
to establish a priori requirements, for optimal management of resources or for improving the quality of the
services organisations provide. Our approach consists of i) extracting and assessing a number of features
on the business logs, that provide a structural characterisation of the traces; ii) extending the well-known
annotated transition system (ATS) model to include these features; iii) proposing a partitioning strategy
for the lists of features associated to each state in the extended ATS; and iv) applying a linear regression
technique to each partition for predicting the remaining time of new traces. Extensive experimentation
using eight attributes and ten real-life datasets show that the proposed approach outperforms in terms of
mean absolute error and accuracy all the other approaches in state of the art, which includes ATS-based,
non-ATS based as well as Deep Learning-based approaches.

INDEX TERMS Business Processes Enhancement, Predictive Business Process monitoring, Business
Processes Management, Business Intelligence.

I. INTRODUCTION

MASSIVE growth of business processes automation as
well as increasing information technology adoption

in business process management is producing a vast amount
of process execution data that are stored in the form of event
logs [1], [2]. By applying process mining techniques to these
logs [3], real hidden processes can be discovered [4], [5]
and/or existing processes can be monitored and improved
[6].

There are three main types of process mining techniques
[7]: process discovery, conformance checking, and process
enhancement. Process discovery takes an event log and
produces a model without using a priori information [3],
[7]. Conformance checking makes a comparison between
a designed process model and the process discovered from
the event log, to show where the real process deviates from
the designed one [7]. Process enhancement aims to extend
or improve an existing process, using information related
to the process which is usually extracted from the recorded

events logs [8].
In process enhancement, temporal information is usually

used to measure the waiting times among process activities,
to check the temporal behaviour during traces replay, to pro-
vide information about relevant issues in the process (e.g.,
bottlenecks, throughout times, frequencies) or to predict the
remaining times from running process instances [7]. In this
sense, predicting the remaining time of process instances
(running cases) has been highlighted in the literature as
one of the most important current challenges in process
mining [9]. Remaining time of a process instance is the
required time for it to be finished from a particular execution
state. Accurately predicting remaining time is a key issue
for all actors around business processes management. For
organisations, having accurate time predictions allows them
to manage the resources efficiently [10], to assess the quality
of the services they provide as well as to take appropriate
managerial decisions in advance. For end-users, it is also
critical to be aware about when the processes they are
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involved in will finish [1], [4]. Some examples of the latter
are bank customers applying for a loan, who need to know
in advance how long will it take for their loan application to
be reviewed, checked, assessed and accepted or declined, or
health treatment processes, where it is crucial to know the
remaining time of each treatment to effectively manage the
next treatments (for preparing in advance all the necessary
resources) or the next patients.

The problem of predicting the remaining time is a part
of a more general problem known as predictive monitoring.
In the last years, several proposals focused on predictive
monitoring and, more specifically, on the prediction of
remaining time have been presented [11]–[13]. Initially,
these proposals have focused on the representation of the
process executions or traces under the hypothesis that traces
with different characteristics have different remaining times.
Several of these approaches are based on Annotated Transi-
tion Systems (ATS), where each (partial) trace is associated
to a state [4]–[6], [14], [15]. Other approaches use a partial
trace-based or index-based representation [1], [10], [16].
More recently, approaches have been proposed for applying
machine learning methods for predicting the remaining
time [2], [17]–[20]. In all these approaches, the problem
encoding includes information about the context of the
process execution state, such as the duration of the activities,
or about domain variables. The main problem with all these
approaches is that their trace representation (or encoding)
does not include all the relevant information related to
the traces execution, such as repetition of activities, the
distance between activities or co-occurrences. Without this
information about the structural features of the traces, it is
difficult to make accurate predictions about the remaining
time.

In this paper, we present a new vector-based extended
ATS-based approach that considers structural features or
attributes related to the process execution. In our approach,
each state in the ATS is annotated with a list of vectors
which contain information related to, for instance, frequency
of activities frequency, repetition of activities (loops), activ-
ities distance, and others. The lists of vectors are partitioned
according to a similarity criteria of the remaining times
of the traces in it. For each partition, a linear regression-
based predictor is built, thus achieving that the prediction
takes structural information of the traces into account.
Our approach has been compared to other approaches and
validated with ten real-life datasets, obtaining more precise
predictions than all the proposals of the state of the art [13].

The paper is structured as follows: in Section II the
main approaches in state of the art for remaining time
prediction are discussed; in Section III the main concepts
of our approach are presented; in Section IV our prediction
model for remaining time estimation is described; in Section
V the experiments for validating our prediction model are
described and the main results are discussed, and, finally,
Section VI summarises the main contributions of the paper.

II. RELATED WORK
As introduced in Section I, the problem of predicting the
remaining time of business processes has been addressed in
several proposals, which have been discussed in very recent
surveys [11]–[13]. The models described in [5], [6], [14],
[15] are state-based representations entitled Annotated Tran-
sition Systems (ATS). In Transition Systems, the process
traces (real executions or instances) are represented as a
sequence of states and a set of transitions between them:
a state models a sequence of activities of the trace and a
transition represents the execution of the next activity in
the trace. Each state of this Transition System is annotated
with temporal information about the process execution, thus
generating an Annotated Transition System (ATS). More
specifically, in [6], [14] authors annotate each state with
the average of the remaining time to complete each trace
execution represented by this state. In this model, this aver-
age time is provided as the remaining time prediction. In [5]
authors build an ATS enriched with both classification and
regression models: for each state, a Naive Bayes classifier
is built for predicting the probability of transition from this
state to the following one, and a support vector regression
approach is used for predicting the remaining time for this
second state. Both machine learning models are trained with
values of data attributes generated during the case execution.
These attributes contain temporal references and domain-
specific information. In [4] authors use a Hidden Markov
Model (HMM) to obtain the transition probability from one
state to the following one. Each state in the ATS is annotated
with a weighted average of the probabilities given by the
HMM where the weights for each state are the average of
the remaining times values of the traces that fit this state. In
[15] an ATS containing only frequent parts of traces is built.
These frequent parts are extracted by means of a sequential
pattern mining algorithm. Therefore, the ATS states do not
model all the sequences of traces, but the frequent parts of
them. Each state of this ATS is annotated with the resource
performing each activity, the cost associated with the activity
and the prefix where the activity appears. Then, for each
state, a regression model based on these attributes is used
to predict the remaining time.

Other works do not follow an ATS-based approach. In
[10] authors present an approach based on query catalogues,
which are groups of partial trace tails from all the traces
available in a log. A partial trace tail is annotated with
the number of its occurrences and the sum of its remain-
ing times. Then, the prediction of the remaining time to
completion for each partial trace is the average time in
the catalogue where the trace is in. In [1] authors present
a prediction method based on non-Markovian Petri Nets,
which are enriched with duration distributions of activities
and the elapsed time since the occurrence of the last activity.
In [16] authors propose a white-box approach to predict the
remaining time of running process instances. The approach
followed is firstly to predict the remaining time at the
level of activities and then to aggregate these predictions
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at the level of a process instance by means of flow analysis
techniques. To encode the process traces an index-based
encoding is considered, where for each position in a trace
the event occurring at that position and the value of each
event attribute are considered.

More recent approaches use machine learning methods to
predict the remaining time [11], [12], [16]. These models, in
general, produce better results than the previously described
approaches. In [2] authors built four estimators based on
regression techniques, each of which makes use of different
parameters: average duration of the traces, duration of
the activities, the occurrence of the activities, and domain
attributes related to parameters or variables obtained during
the execution cases. The best estimator is the attribute-based
estimator, which suggests that the remaining time prediction
depends on the values of the variables generated during the
process execution. In [17] authors present an approach in
two phases: first, prefixes of previous cases are clustered
according to control flow information, mainly related to the
activity frequency; and then a classifier is built for each clus-
ter using event data attributes to discriminate between cases
that lead to a fulfilment of the predicate under examination
and cases that lead to a violation within the cluster. At run-
time, a prediction is made on a running case by mapping
it to a cluster and applying the corresponding classifier.
In [18] authors propose to use LSTM neural networks to
predict the next event of a running case and its time-stamp.
The encoding of the neural network includes the type of
activity and the time between two consecutive events. Based
on this neural network, the remaining time is estimated by
iteratively predicting the next activity and its duration until
a special end of case activity is predicted. In [19] authors
present a context-aware clustering-based approach to the
discovery of predictive models for supporting the forecast of
process performance measures, such as the remaining time,
where major performance-relevant variants of the process
are related to different regression models and discriminated
through context variables. In this approach, each trace is rep-
resented through a vector that includes the activity frequency
and some properties related to the process execution context.
In [20] authors present a method that represents process
instances by considering both intra-instance dependencies
and inter-instance dependencies, where shared information
between process instances is taken into account. Based on
this encoding two different machine learning methods, linear
regression, and random forest, are applied to predict the
remaining time.

The main problem with these techniques is that the coding
they use does not sufficiently represent or characterise all the
information about the traces. Most of these techniques only
take into account the frequency of occurrence of activities
and/or activities that occur in the context of an activity, i.e.,
activities that appear in a window of occurrence around an
activity. Some techniques complete the coding of the traces
with domain attributes related to variables obtained during
the execution of the traces, with the duration of the activities

or with the time remaining to complete the trace execution.
However, in these approaches trace encoding does not ex-
plicitly represent the complex relationships between traces;
in particular, the repetition of the same activity (1-size loop),
the repetition of several activities (n-size loops), the co-
occurrence of any two activities (although this characteristic
is considered in approaches based on deep learning) or the
distance between two activities (i.e., distance between their
indexes in a trace). Thus, in these approaches, for instance,
the encoding of a trace in which activity appears five-times
with different indexes is the same as the encoding of a
trace where the activity appears five-times in a row (1-size
loop). This same encoding for traces that are structurally
different prevents current approaches to make very accurate
predictions of the remaining time. In these cases, which
are very common in real problems, considering structural
information about the traces, is a need which is considered
our model. Experimental results described in Section V
show the appropriateness of our approach.

III. PRELIMINARIES
This section describes the required elements to build our
prediction model, which consists of two parts; firstly, to
build an extended annotated transition system which in-
cludes a number of attributes that comprise relevant struc-
tural information about the traces. Secondly, to apply re-
gression techniques for predicting the remaining time of the
process execution at each time.
Definition 1 (Event) [6]: An event e is described by a unique
identifier and is characterised by its properties, such as its
identifier, time-stamp, and the activity which is executed in
the time-stamp.
Definition 2 (Trace, Event Log) [6]: A trace T is a sequence
of ordered events {e1, e2, . . . , eN}. An event log is a set of
traces.
Definition 3 (Partial trace, State) [6]: A partial trace PT is
any continuous part of a trace T that contains one or more
events in sequence. For each PT , three state representations
are defined [6]: Set, Multi-Set, and Sequence. In this paper,
we focus on the Set representation as the basis for our
model. In Set representation, each partial trace PT has
associated a state S(PT ) which is labelled through the
activities in PT and where no repetition of activities is
considered (no matter its execution order).
Definition 4 (Transition System, TS) [6]: A transition
system TS is a triplet (S, PT , TR), where S is the state
space, PT is a set of partial traces, and TR is a transition
relation which describes how the system moves from one
state to another state. A TS has different forms depending
on the state representation in which it is based on.

In Fig. 1 we show the differences between Sequence
representation and Set representation in a TS, using a simple
example of a process involving only three events with
its corresponding activities (A, B, C). We consider the
representation of two different traces (<ABC> <ACB>)
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Figure 1: Transition System with (a) Sequence Representa-
tion, and (b) Set Representation of traces <ABC>, and <ACB>
(see Section III).

involving the three activities A, B and C in different
order. In Fig. 1a), we show the Sequence representation
of both traces, where the final state is different for each
trace, respectively {ABC} and {ACB}. In Fig. 1b, the final
state for both traces is the same (state {ABC}), since Set
representation does not consider the order of the activities
within the trace. For example, other traces involving the
same activities, like <CBA>, or <BAC> are represented by
the same state {ABC}.
Definition 5 (Annotated Transition System, ATS) [6]: An
Annotated Transition System (ATS) is a duple (TS,MF ),
where TS is a transition system based on the Set rep-
resentation and MF is a measurement function MF (S)
that annotates each state S in the ATS. For instance, in
[6], authors define MF as the remaining time since the
occurrence of the last activity of each partial trace in the
TS until that trace is completed.

In Fig. 2 we show an example of the ATS model defined
in [6], built from the traces described in Table 1. Let us
consider state {AB} and the partial traces it represents:
<A00B06> (from Trace 1), <A15B19> (from Trace 4), and
<A18B22> (from Trace 5). Remaining times are calculated
as the time elapsed since the time-stamp of the last activity
in each partial trace (6, 19, and 22 respectively) until the
end of the corresponding trace (18, 28, and 32, respectively).
Therefore, the annotation attached to the state {AB} is [12,
9, 10].

IV. A NEW PREDICTION MODEL FOR REMAINING TIME
ESTIMATION
In the previous section, we presented the most relevant
elements of an ATS. Based on it, we propose and describe
in detail in this section our extension of the ATS model
that includes structural features which are extracted from
the traces.

Table 1: An example log, showing seven traces, each of
them represented as a sequence of activities A, B, C, D,
E, occurring in different orders. Superscript numbers indicate
time-stamps at which each activity is completed.

# Traces

1 <A00B06C12D18>
2 <A10C14B26D36>
3 <A12E22D56>
4 <A15B19C22D28>
5 <A18B22C26D32>
6 <A19E28D59>
7 <A20C25B36D44>

Figure 2: ATS-based on the log shown in Table 1 and Section
III.

A. TRACE FEATURES
Firstly, we extend the ATS model by considering a number
of features (or attributes) extracted from the analysis of
the event log traces. Each of these features is related to a
measurement with which the ATS model will be extended,
that is, each state of the ATS model will be annotated
with both a set of attributes and the remaining time. A key
difference between our approach and others in the literature
is that the attributes we consider provide specific structural
information about traces, such as the occurrence of the
activities, its elapsed time, or the existence of loops, among
others. This structural information will act as predictor
variables that will be taken into account by a regression
model, aiming to improve the accuracy in the calculation of
the remaining time prediction in a running process.

We define the following eight attributes:
Definition 6 (Occurrence, Occ): Let PT be a par-
tial trace. We define Occ(Ai,PT ) as the number of
times activity Ai occurs in PT . For example, for par-
tial trace PT=<CCABBCAA>, we have Occ(A,PT )=3,
Occ(B,PT )=2, and Occ(C,PT )=3.
Definition 7 (Cycle, Cyc): Let PT be a partial trace, and
LargSeq(Ai) the largest sequence of activity Ai in PT . We
define Cyc(Ai,PT ):= length(LargSeq(Ai))-1 as the num-
ber of times the activity Ai is repeated in sequence in PT .
For example, for partial trace PT=<CCCABCCAA>, we
have Cyc(A,PT )=1, Cyc(B,PT )=0, and Cyc(C,PT )=2.
Definition 8 (Position, Pos): Let PT be a partial trace PT ,
and Pos(Ai) the index set of activity Ai in that partial trace
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PT . We define Position(Ai, PT ):= maximum(Pos(Ai))
as the last happening of Ai in PT . It represents the last
index of an activity happened in the partial trace. For
example, for the partial trace PT= <CCCABCCAA>, we
have Pos(A,PT )=9, Pos(B,PT )=5, and Pos(C,PT )=7.
Definition 9 (Distance, Dis): Let Ai be an activity in a
partial trace PT . Dis(Ai, PT ) (distance) is the number of
activities (different of Ai) between the last occurrence of Ai

and the previous one (backwards) in PT . Dis(Ai, PT )=0
in case Ai is a single activity in PT . For example, for
the partial trace PT=<CCCABCCA>, we have Dis(A)=3,
Dis(B)=0, and Dis(C)=0.
Definition 10 (Duple, Dup): Let PT be a par-
tial trace S its associated state in an ATS. For all
the pairs of activities Ai and Aj in S, we define
Dup(Ai,Aj ,PT ) as the number of times that the se-
quence AiAj happens in PT . For example, for the partial
trace PT=<CACACCAB>, we have Dup(A,A,PT )=0,
Dup(A,B,PT )=1, Dup(A,C,PT )=2, Dup(B,A,PT )=0,
Dup(B,B,PT )=0, Dup(B,C,PT )=0, Dup(C,A,PT )=3,
Dup(C,B,PT )=0 and Dup(C,C,PT )=1.
Definition 11 (Change): Let PT be a partial trace and
LA its last activity. We define Change(PT ) as the num-
ber of times the activities move from one activity to a
different one from the beginning of PT until LA. For
example, for the partial trace PT=<CCCABCCA>, we have
Change(PT )=4, since it represents the move from activity
C to A (first change), then the move from A to B (second
change), then the move from B to C (third change), and
finally the move from C to A (fourth change).
Definition 12 (Single): Let PT be a partial trace. We define
Single(PT ) as the number of single activities that have
no cycle from the beginning of PT . For example, for a
partial trace PT=<CCCABCCA>, we have Single(PT )=1,
this partial trace has only one single activity (B).
Definition 13 (Elapsed Time, Elt): Let LA be the last
activity in a partial trace PT . We define Elt(PT ) as the time
passed since the beginning of PT until LA. For example,
taking the PT=<A10C14B26D36>(the second one in Table
1), we have Elt(PT )=36.

All the attributes we consider are related to structural
features which are of interest for characterising traces and/or
partial traces. For instance, the occurrence of activity is
related to the repetitions in traces; cycle and duple are
related to the existence of loops in traces; whilst changes of
events and their position are related to variety in traces.

In Table 2, we present an illustrative example of the
calculation of the previously defined attributes for the ex-
ample trace <ABBBAABBAB>. We can see in this example
that some of these attributes (e.g., Change, Single, Elt)
produce a single value from each trace. Other attributes
(Occ, Cyc, Pos, Dis) produce a number of different values
which is in linear order with the number of events N in
the trace. In the example, N=2, and therefore we have two
values for each of the attributes, eight in total. Finally,

Table 2: Value of the attributes for the partial trace
PT =<A2B7B13B22A30A37B50B54A60B62>, where super-
scripts of the activities indicate their timestamps.

Attribute Description Representation Att.
Value

Occ(A,PT ) How many times A
occurs.

ABBBAABBAB 4

Occ(B,PT ) How many times B
occurs.

ABBBAABBAB 6

Cyc(A,PT ) The maximum con-
tinuous repeat of A

ABBBAABBAB 1

Cyc(B,PT ) The maximum con-
tinuous repeat of B

ABBBAABBAB 2

Pos(A,PT ) The position of last
occurrence of A

ABBBAABBAB 9

Pos(B,PT ) The position of last
occurrence of B

ABBBAABBAB 10

Dis(A,PT ) The distance be-
tween the last oc-
currence of A and
the previous one

ABBBAABBAB 2

Dis(B,PT ) The distance be-
tween the last oc-
currence of B and
the previous one

ABBBAABBAB 1

Dup(A,A,PT ) Duple of AA ABBBAABBAB 1
Dup(A,B,PT ) Duple of AB ABBBAABBAB 3
Dup(B,A,PT ) Duple of BA ABBBAABBAB 2
Dup(B,B,PT ) Duple of BB ABBBAABBAB 3
Change(PT ) Change of activities ABBBAABBAB 5
Single(PT ) Number of single

activities
ABBBAABBAB 0

Elt(PT ) Timestamp of the
last activity, as an-
notated in the cap-
tion

ABBBAABBAB 62

the last attribute (Duple) produces N2 values (4 in the
example, for all the combination pairs of the activities in
the trace, A and B). According to this number of attributes
values, in case of traces involving a low number of events,
no scalability problems occur. However, if the number of
events is high, also a high number of attributes will be
produced. In order to cope with scalability problem, we
will describe in Section V the use of an attribute selection
method which reduces the number of attributes by keeping
only the attributes that have a real impact on the remaining
time estimation and removing the less relevant ones.

B. EXTENDED ANNOTATED TRANSITION SYSTEM
Previously, we introduced the definition of an Annotated
Transition System (ATS) model, as well as the definitions of
the attributes we consider to be extracted from each trace to
build our model. In this section, we show how we integrate
the previously introduced attributes into an ATS in order to
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define our Extended Annotated Transition System (EATS).
Definition 14 (List): Let S be a state of an annotated
transition system ATS associated to a given set of Partial
Traces PTj , j = 1, ..., P (being P the total number of
Partial Traces associated to S). Let {Atti, i = 1, 2, ..., N}
be the attributes defined in Section IV-A, and element
Ej=[valueOfAtt1, ..., valueOfAttM , RTj ], j = 1, ..., P a
vector made up of the attribute values for each PTj , being
M the total number of attribute values and RTj the remain-
ing time for PTj (time until trace completion, as defined in
Section III). We define List(S) := {E1, E2, ..., EP } as the
set of elements that annotate state S. Note that each state
has an associated list which includes P elements (being P ,
as stated before, the number of partial traces represented by
state S).

Considering definitions 6-13, we have that the element
Ej associated to a given partial trace PTj is made up of
the following components:

• Occurrence: Occ(Ai, PTj),∀ activities Ai in PTj

• Cycle: Cyc(Ai, PTj),∀ activities Ai in PTj

• Position: Pos(Ai, PTj),∀ activities Ai in PTj

• Distance: Dis(Ai, PTj),∀ activities Ai in PTj

• Duple: Dup(Ai, Ak, PTj),∀ pairs of activities Ai, Ak

in PTj

• Change(PTj)
• Single(PTj)
• Elapsed time: Elt(PTj)
• Remaining time: RT (PTj)

As an example, let us consider the following partial trace
PT=<A00B06>, which is extracted from the first trace in
Table 1. Then, we have that the element E associated to
PT is made up of:

• Occurrence: Occ(A,PT ) = 1, Occ(B,PT ) = 1
• Cycle: Cyc(A,PT ) = 0, Cyc(B,PT ) = 0
• Position: Pos(A,PT ) = 1, Pos(B,PT ) = 2
• Distance: Dis(A,PT ) = 0, Dis(B) = 0
• Duple: Dup(A,A) = 0, Dup(A,B) = 1,

Dup(B,A) = 0, Dup(B,B) = 0
• Change=1
• Single=2
• Elapsed time: Elt = 6
• Remaining time: RT (PT ) = 12

Therefore, element E will be the following vector:

[1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 2, 6, 12]

Definition 15 (Extended Annotated Transition System,
EATS): Let L be an event log, and ATS an annotated
transition system obtained based on a Set representation for
L. An Extended Annotated Transition System (EATS) for
L is an extension of ATS which consists in annotating
each state S in ATS through a measurement function
MF (S) = List(S), where List(S) is the List of elements
as defined in Definition 14.

In Algorithm 1, we describe the procedure for formally
building our Extended Annotated Transition System. Lines

Algorithm 1 Construction of an Extended Annotated Tran-
sition System (EATS)

Input: TS = (S, PT, TR): Transition System (Def. 4);
Output EATS: Extended Annotated Transition System

1: for each s ∈ S do
2: List(s) = ∅ . Initialise Lists of Elements
3: end for
4: for each pt ∈ PT do . For each partial trace
5: CS ← S(pt) . State associated to pt (Def. 3)
6: E = ∅ . Initialise Element
7: for i=1,...,M do . Def. 14, M # attr. values of pt
8: E ← E ∪ valueOfAtti(pt) . Add i− th

attribute value
9: end for

10: E ← E ∪RTpt . Add remaining time of pt
11: List(CS)← List(CS) ∪ E
12: end for
13: List← {List(s),∀s ∈ S}
14: EATS ← (TS,List)
15: return EATS

1 to 3 initialise the Lists of Elements that are associated
to each state of the EATS. The loop in (line 4) iterates all
partial traces, whilst in line 5 we obtain the associated state
to each partial trace. Then, we store the attribute values in
the element (lines 7-19), according to Def. 14. The element
is completed by adding the remaining time of the partial
trace (line 10) and stored in the list associated to the current
state (line 11). The procedure is repeated throughout all
the partial traces in the EATS and, finally, the Extended
Annotated Transition System is returned.

Table 3: Sample log with three traces

Trace 1 <A3B10B22C40A45>
Trace 2 <A2A16C19B24B50>
Trace 3 <A7C11C15C24B60>

In Fig. 3, we also show an example of how the EATS
is built from the traces in Table 3. We associate to each
state S a list of elements (vectors), which include the values
of the eight attributes defined in Section IV-A calculated
for each of the partial traces represented by S. For ex-
ample, at state {AB}, we have two partial traces Pt12,
<AB>, and Pt13, <ABB>. Each vector in the list includes
the corresponding 15 attributes values (plus the value to
be predicted, remaining time). Regarding the number of
attributes, it is worthy remembering that it differs among the
states, since it depends on how many activities engage in
that state, as explained before. For instance, in this example,
the partial traces associated to one event (State {A}) has
eight attribute values, one for each of the definitions of
Section IV-A. The partial traces associated to states {AB}
and {AC} (two events each) have 15 attribute values each,
since the existence of two activities doubles the number
of Occurrence, Cycle, Position, and Distance (one for each
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Figure 3: Extended Annotated Transition System with the lists of elements (vectors of attributes values) associated to each
state. The example is built using the traces in Table 3, as indicated in Section IV-B.

activity, 8 in total) and increases to 22 = 4 the number
of Duple values, plus other 3 attributes (Change, Single
and Elapsed Time). Finally, the partial traces associated
to State {ABC} (three events) has 24 attribute values; i)
Occurrence, Cycle, Position, and Distance produce in this
case 4 ∗ 3 = 12 attributes (one for each activity); whilst ii)
Duple produces 32 = 9; and finally iii) Change, Single and
Elapsed Time. These lists are updated when a new case runs.
The new traces are inserted in the list that corresponds to
the state which represents this new trace. Once this is done,
the EATS is endowed with all the information needed by
our remaining time estimation model. As described in the
following sections, estimations will be done with a linear
regression model which, for each state, uses as independent
variables the values of the attributes in the EATS lists of
elements.

C. ESTIMATION OF THE REMAINING TIME: DATASET
PARTITIONING

Before describing the details of the regression model we
use for estimating the remaining time, we should take into
account the following considerations. Let us recall, in the
first place, that according to Definition 15, each state S
in the EATS is annotated with a list of elements (vectors)
List(S) which include the values of the attributes for all the
partial traces represented by S. Each of these lists contains
all the data (predictors or independent variables) needed for
performing the remaining time estimation. Therefore, we
have a single dataset associated to each state.

Applying a linear regression technique to each of these
datasets has proved to produce poor estimations since,
usually, traces in the dataset have great variability in terms
of size, number of activities and execution times. This is
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the usual general scenario for real business process data,
such as administrative procedures or applications, industrial
incidents management or processes in a hospital or other
big organisations/institutions [21], [22]. In many cases, the
remaining time values range is vast (e.g. from a few seconds
to hundred thousand seconds) even for traces that are very
similar or even identical.

Table 4: Accuracy values for the set of partial traces asso-
ciated to some states taken from a real business process
described in [21],following two strategies: Non-partitioned and
Partitioned.

Accuracy

States Non-partitioned Partitioned
{A} 0.53 0.78
{AB} 0.50 0.77
{ABC} 0.23 0.67
{E} 0.37 0.70
{AE} 0.39 0.73
{ABCF} 0.34 0.69

A motivational example of this is presented in the real
case taken from [21], shown in Table 4. In column "Non-
partitioned" we can see the accuracy results after applying
a linear regression method on the whole dataset associated
to each state. We can see that very poor accuracy values are
obtained, ranging from 0.23 to 0.53. Since huge variability is
a usual feature in real cases we have endowed our estimation
method with a dataset partitioning stage, which is described
in what follows. In Section IV-D, we will revisit again this
motivational example to assess the impact of the partitioning
stage on the accuracy results.

Algorithm 2 Threshold-based partitioning (TBP) of the
Partial Traces (List) associated to a state s in the EATS

Input: s, a state of the EATS (Def. 14); th ∈ [0, 1] a
partition threshold

Output PL = {P 1, .., P n}: Partitions List
1: SortedList(s) ← List(s) sorted in ascending order

by the Remaining Time RTp of its elements Ep, p =
1, ..., P (Def. 14)

2: n = 1 . Partition 1
3: Pn = ∅ . Initialise Partition 1
4: for p = 1, ..., P − 1 do . P : List size
5: Pn ← Pn ∪ Ep

6: if RTp/RTp+1 ≤ th then . Abrupt change: new
partition

7: n← n+ 1 . New partition
8: Pn = ∅ . Initialise the new partition
9: end if

10: end for
11: Pn ← Pn ∪ Ep . Last Element in the List
12: return PL : {P1, ..., Pn}

Our partitioning method consists of building partitions
which contain partial traces with similar remaining times.

the similarity is expressed here in terms of a threshold value
in the following way: let us assume we have two partial
traces PT1, PT2, with their corresponding remaining times
RT1, RT2. Without loss of generality, let us consider that
RT1 ≤ RT2. We will consider that PT1 and PT2 belong to
the same partition if RT1/RT2 > th, where th ∈ [0, 1] is a
predefined threshold. This condition states that both partial
traces belong to the same partitions if the remaining time
of the PT1 is above a given percentage (th) of the PT2.
On the contrary, if RT1/RT2 ≤ th, PT1 and PT2 will
belong to different partitions. For example, for two traces
PT1 and PT2 and a threshold value 0.40, this means that
if the remaining time of PT1 is above 40% of PT2 the will
be grouped in the same partition (their remaining times are
considered similar). Otherwise (below or equal 40%), they
will be grouped in different partitions (their remaining times
are considered not similar).

In Algorithm 2, we presented a detailed description of our
Threshold-Based Partitioning (TBP) procedure for a given
state s and a threshold th. In the first place (line 1) the List
associated to s is ordered accordingly to the remaining time
of all the partial traces associated to s. Partition building is
described in the for loop (lines 4-10). In line 6 this condition
is formalised as indicated before. When it holds, a new
partition is started (lines 7-8). When it does not, the for loop
in line 4 continues iterating throughout all the partial traces
and grouping them in the same partition (line 5). Finally, the
last partial trace is assigned (line 11) to its corresponding
partition: a new partition in case the threshold condition was
met and the last partition in case it did not.

One key issue here is the number of intervals (or threshold
points) to be defined (i.e. if we want to create very close
intervals or wide intervals). It is important to define the
number of segments in a balanced way, not to be very
low, since the range values for the estimation time will be
high and lower accuracy, but not to be very high, since this
will increase the computational cost and will produce over-
fitting. In Section V, we will discuss this issue again from a
quantitative pragmatical point of view, in order to provide a
range of threshold values with a right balance between low
accuracy and over-fitting.

In Fig. 4, we show an example of application of the
Threshold-based Partitioning Procedure (Algorithm 2 for
a threshold value th = 0.4. We highlight the quotient
values that fulfil the threshold condition (Algorithm 2, line
6) and therefore, define the limits of each partition. All
these quotients are less than the 0.4 threshold (respectively
790/4,105=0.19 for elements E6 and E7, 9024/44,358=0.20
for elements E13 and E14 and 90,615/232,486=0.39 for el-
ements E16 and E17), indicating that the corresponding re-
maining times are not similar and therefore will be grouped
in different partitions. After partitioning, this dataset splits
into four partitions and, therefore, it is ready for the linear
regression model to be applied to each partition, as described
in the following section.
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Figure 4: Example of application of Algorithm 2 for a thresh-
old value th=0.4 and a state S whose associated list List(S)
is made up by 25 elements. List(S) is divided into four
partitions, which are delimited by elements E6, E13 and E16,
as indicated in the text.

D. LINEAR REGRESSION MODEL
Once the need for partitioning the dataset was established
and our partitioning strategy was described we are now in
conditions to describe our remaining time estimation model.
Basically, it is made up of linear regression functions which
are obtained for each of the partitions of the dataset de-
scribed before. The independent variables of the regression
functions are the values of attributes (elements) in each
partition, being the dependent variable the remaining time.

A simple motivational example showing the impact of
this partitioning stage in the remaining-time estimation is
shown in Table 4 (which was introduced in the previous
section). Now, in column "Partitioned" we present the accu-
racy results after applying the linear regression method to
each of these partitions. Comparing these results with the
ones in column "Non-partitioned" we can see an important
improvement in the accuracy results, which now range from
0.67 to 0.78. On the basis of this example, we present in
the next section a detailed validation of our method.

The details of the remaining time estimation for any new
trace PTNEW are described in Algorithm 3. Once the state
associated to PTNEW is obtained (line 1), its partition list
PL = {P1, ..., Pn} is returned by Algorithm 2 (line 2).
Also, the associated vector of attributes of the new trace
is obtained (as indicated in Def. 14) and stored in the
corresponding Element. The algorithm basically searches

for the Partial Traces in PL, which are the closest ones to
PTNEW in terms of the Manhattan distance of the values
of their attributes, as indicated in Def. 14. Searching for
these Partial Traces and obtaining their associated partitions
is made in lines 5-15. Once the Partitions are obtained, their
indexes are stored in partitionIndex and their correspond-
ing linear regression functions {RLk, k ∈ partitionIndex}
are applied to the values of their attributes of PTNEW . The
average of these results is returned as the estimation of the
remaining time of our model.

Algorithm 3 Time Prediction Model (TPM) of a new trace
Input: PTNEW : new Partial Trace
Output PRT : Predicted Remaining Time for PTNEW .

1: S ← S(PTNEW ) . State which represents PTNEW

2: PL = {P1, ..., Pn}:= Partitions List associated to S, as
returned by Algorithm 2

3: RL = {R1, ..., Rn}:= List of Linear Regression func-
tions associated to PL, as indicated in Section IV-D

4: ENEW := Element associated to PTNEW . (Def. 14)
5: distanceMin← +∞
6: for k = 1, ..., n do . For all partitions in PL
7: for each PT ∈ Pk do
8:

dist =
M∑

m=1

|valueOfAttm(PT )−

valueOfAttm(PTNEW )|
9: if dist < distanceMin then . New min

10: partitionIndex = {k};
11: distanceMin← dist
12: else if dist == distanceMin then
13: partitionIndex = partitionIndex∪{k};
14: end if
15: end for
16: end for
17: PRT ← Average of the estimations obtained with the

regression models {RLk, k ∈ partitionIndex} applied
to ENEW

18: return PRT

V. VALIDATION AND EXPERIMENTS
In this section, we will describe the experiments we have
conducted for validating our proposal. Ten Real-life event
logs were used for validation, as described in Table 5:
BPIC12w [21], BPIC13 [23], BPIC15 [24] (5 logs), BPIC17
[22], Hospital Billing [25] and Road Traffic Fine Manage-
ment Process [26]. Eight of the datasets are taken from the
Business Process Intelligence Challenges (BPIC), a de-facto
standard for testing and validation of business processes
approaches, since these datasets are proposed for the yearly
Business Process Intelligence Contest.

We have performed three types of experiments with the
following aims: i) to compare our method, for different
threshold values, with the baseline ATS-based proposal [6]
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Table 5: Description of the 10 real-life event logs used for validation.

Event logs Description # Cases # Events
BPIC12w [21] Application process for a personal loan or overdraft within a Dutch Financial Institute 8,723 60,780
BPIC13 [23] Handling Incidents Process from Volvo IT of Belgium. 7,554 57,742

BPIC15 [24]
(5 logs) All building permit applications over four years provided by three Dutch municipalities.

1,199
832

1,409
1,053
1,156

52,217
44,354
59,681
47,293
59,083

BPIC17 [22] Application process for a personal loan or overdraft within a Dutch Financial Institute 31,509 41,862
Hospital Billing [25] Billing financial data from the ERP system of a Dutch hospital. 100,000 451,359
Traffic Fine [26] Data from an information system managing road traffic fines. 150,370 561,470

in order to validate it in terms of accuracy and mean
absolute error and also to have experimental evidence about
the influence of the threshold values in the results; ii) to
determine a single threshold value which could be labelled
as the most appropriate choice to use for estimating the
remaining time for new event logs, in terms of precision of
the results and simplicity of the model; and iii) to perform
a comparison between our approach and to the sixteen
state of the art approaches described in [13] in order to
prove the validity of our approach and assess its quality,
confronting it to ATS-based, non-ATS based and machine
learning approaches.

Following the usual validation methodology, each parti-
tion is divided into two parts of 80% training and 20% for
testing. For each of the partitions, the regression model will
produce an estimation for the remaining time following the
procedure previously described in Algorithm 3. For testing,
for each partial trace, we apply, as indicated in Section IV,
the procedure described in Algorithm 3.

A. RESULTS CONSIDERING DIFFERENT THRESHOLD
VALUES
In this section, we present the validation results of our
approach for different threshold values of the partitioning
strategy (TBP) described in Section IV-C. Our method is
compared to the ATS baseline approach described in [6] for
the ten datasets in Table 5. This validation aims to provide a
general overview of the dependence of our remaining time
estimation results with the TBP threshold values. We used
two metrics to compare our results to [6]: the Mean Absolute
Error (MAE) to measure the error between real remaining
and the predicted remaining time and the Accuracy to assess
the regression quality in objective terms. According to [13],
using RMSE as a metric should be avoided in this context,
since it is very sensitive to outliers. For this analysis of
the threshold dependence, datasets were pre-processed for
removing those values that are more/less than twice the
standard deviation from the average.

We also consider here the key issue that was previously
pointed in section IV-A: in general, a business process
could involve a high number of activities, which would also
mean that the number of attributes could also be high. As
a consequence, also the number of operations related to

Table 6: The difference in the number of attributes with and
without the Greedy Forward attribute selection technique [27].

Event log # Activities # Attributes
w/o attribute

selection
with attribute

selection
BPIC12w 60 546 172
BPIC13 12 91 52
BPIC15_1 280 2,335 846
BPIC15_2 256 1,842 485
BPIC15_3 311 2,508 611
BPIC15_4 275 2,104 407
BPIC15_5 263 1,994 862
BPIC17 107 839 219
Hospital Billing 167 1,566 402
Traffic Fine 24 203 41

the partitioning stage would increase. Therefore, in order
to keep our approach general, it is advisable to include
an attribute selection method that reduces the number of
attributes instances initially considered.

In order to do this, we use the well-known Greedy For-
ward attribute selection method [27] to reduce the number of
attributes and, consequently, the complexity of the model as
well as to generally improve the scalability of our method.
This attribute selection method performs a greedy forward
search through the space of attribute subsets, starting with no
attributes and stopping when the addition of any remaining
attributes results in a decrease in the evaluation. Table 6
shows the difference in the number of attributes considered
with and without applying the attribute selection technique.
In average, a 31% reduction is achieved in the number of
attributes.

In Table 7, we show the results of the comparison between
our approach with attributes selection and the base-line
approach [6], for the ten considered real-life event logs and
the Mean Absolute Error (MAE) metric. We provide the
results of our approach for a number of thresholds, in order
to assess the general quality of the results as well as the
dependence of specific thresholds values. In order to have
a general view of the method we also provide (Table 7,
bottom row), for each dataset, the average results of our
method for all the thresholds considered. According to this,
the average value (even including the standard deviation)
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Table 7: Comparison between our approach and [6], using the ten event logs described in Table 5. We show the MAE
measurement values at each threshold point.

Mean Absolute Error (MAE)
Logs BPIC12w BPIC13 BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5 BPIC17 Hospital Bill Traffic Fine
Aalst et al. [6] 5.69 6.45 42.94 89.68 19.76 20.06 46.83 6.28 52.33 148.36
Threshold
0 1.398 1.587 3.850 8.738 6.509 4.558 5.956 5.012 13.194 22.465
0.25 1.486 1.629 3.290 9.248 5.540 4.667 5.502 3.370 12.847 20.958
0.5 1.313 1.497 3.070 8.715 6.148 4.228 5.956 3.661 11.806 20.574
0.7 1.695 1.611 3.560 8.495 5.520 4.194 5.787 3.600 14.931 22.911
0.75 1.256 1.520 3.320 9.676 6.121 4.258 5.394 3.879 13.194 19.335
0.9 1.189 1.442 3.000 8.044 5.910 4.166 5.208 4.687 13.310 24.290
0.925 1.146 1.381 3.150 7.234 4.954 3.492 4.745 5.671 13.194 20.958
0.95 1.154 1.134 3.080 7.778 4.281 3.314 4.271 5.557 11.227 23.842
0.975 1.256 1.846 2.070 6.296 4.471 3.263 3.623 2.863 12.153 18.326

Average
±

STDEV

1.322
±

0.18

1.516
±

0.20

3.154
±

0.49

8.247
±

1.04

5.495
±

0.78

4.016
±

0.53

5.160
±

0.80

4.255
±

1.01

12.873
±

1.07

21.518
±

2.01

Table 8: Comparison between our approach and [6], using the ten event logs described in Table 5. We show the accuracy
measurement values at each threshold point.

Accuracy
Logs BPIC12w BPIC13 BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5 BPIC17 Hospital Bill. Traffic Fine
Aalst et al. [6] 0.39 0.41 0.44 0.48 0.47 0.55 0.56 0.17 0.35 0.50
Threshold
0 0.690 0.785 0.894 0.898 0.893 0.921 0.925 0.563 0.649 0.782
0.25 0.641 0.774 0.896 0.899 0.906 0.921 0.928 0.535 0.682 0.785
0.5 0.690 0.770 0.905 0.897 0.900 0.918 0.925 0.558 0.700 0.797
0.7 0.705 0.790 0.898 0.904 0.899 0.918 0.930 0.549 0.693 0.775
0.75 0.718 0.771 0.899 0.899 0.901 0.924 0.935 0.562 0.710 0.753
0.9 0.691 0.800 0.908 0.902 0.908 0.927 0.936 0.546 0.730 0.784
0.925 0.756 0.791 0.912 0.912 0.907 0.933 0.938 0.491 0.705 0.785
0.95 0.738 0.835 0.909 0.915 0.916 0.936 0.941 0.526 0.723 0.772
0.975 0.694 0.843 0.920 0.929 0.923 0.940 0.950 0.533 0.720 0.806

Average
±

STDEV

0.703
±

0.03

0.795
±

0.03

0.905
±

0.01

0.906
±

0.01

0.906
±

0.01

0.927
±

0.01

0.934
±

0.01

0.540
±

0.02

0.701
±

0.03

0.782
±

0.02

of our method outperforms [6] in all ten datasets. Looking
at all the thresholds values, we can see that for all the 90
cases considered our approach outperforms [6]. The average
MAE of our method is 6.76 days, being the average MAE
of [6] 43.84 days. The differences in MAE between our
approach and [6] range from 2.02 days (in BPIC17) to
126.84 days (in Traffic Fine), being 37.08 days the average
of the differences, in all cases favourable to our method.

In Table 8, we show the same comparison for accuracy.
Again, the average value (also considering the standard
deviation) of our method outperforms [6] in all ten datasets
and for the 90 cases considered. For the datasets considered,
the average accuracy of our method ranges in [0.54, 0.93],
whilst [6] ranges in [0.17, 0.56]. The average accuracy of
our method is 0.81, being the average accuracy of [6] 0.43.

B. THRESHOLD CHOICE
In this section, we discuss how to choose an appropriate
threshold value which could be used, in general, for any
new dataset. We will support the discussion with the experi-
mental analysis and results we describe in what follows. In a
first analysis, it seems straightforward that the best threshold
choice should be the most precise one, i.e., that produces the
highest accuracy or lowest MAE. In order to experimentally
determine which is, in general, the most precise threshold,
we need to consider the results in Tables 7 and 8, rank them,
and calculate the average rank through all the datasets and
thresholds, for both MAE and Accuracy. These results are
summarised in Table 9. According to this, the most precise
threshold (MPT) is the one with the lowest ranks, which is
0.975 for both Accuracy and MAE.

In a second analysis, we can observe looking at the results
in Tables 7 and 8 that, in general, high threshold values
produce better results (lower MAE and higher accuracy).
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Table 9: The average rank, and the standard deviation
through all the real event logs

Accuracy MAE
Threshold Avg rank STDEV Avg rank STDEV
0 6.9 2.4 7.1 1.4
0.25 6.5 1.7 6.0 2.3
0.5 6.3 2.4 5.0 2.1
0.7 5.9 1.5 6.3 2.1
0.75 5.4 2.1 5.6 2.0
0.9 4.0 1.4 4.9 2.0
0.925 3.7 2.2 3.7 2.3
0.95 3.3 2.5 3.1 2.5
0.975 2.2 2.1 2.4 2.5

This means that the granularity of the partitioning intervals
is higher, and as a consequence, the number of operations
involved also increases.

Taking also this consideration into account, it becomes
evident that, in the general case, choosing the most appro-
priate threshold is not necessarily only a matter of choosing
the most precise one, but the one with a good balance
between precision in the results (generally associated to high
thresholds) and the number of operations involved (generally
associated to low thresholds). In order to determine a
threshold value with a good compromise between these
two opposite constraints, we will apply the One-Standard-
Error Rule [28], which is a well-known model selection
technique. Through applying this rule, together with the
attribute selection technique described in Section IV-A, we
will provide experimental support for selecting a threshold
value with a balanced compromise between precision and
number of operations involved and that can, therefore, be
labelled also as an appropriate choice for any new dataset.

The One-Standard-Error Rule is applied to the ranking
described in Table 9 and looks for the lowest threshold
value whose average error is no more than one standard
deviation above the error of the best model. The threshold
value obtained following this procedure (BCT, Best Com-
promise Threshold) will exhibit a good compromise between
precision and the number of operations involved.

Figures 5 and 6 show the application of the One-Standard-
Error Rule for both the accuracy and MAE results in Table 9.
For both figures, the blue line indicates the average ranking
values for each threshold considered. The red line indicates
the rank value that corresponds to the best model in terms of
average rank plus one standard deviation. The intersection
of both lines indicates the Best Compromise Thresholds,
respectively 0.86 for Accuracy (Figure 5) and 0.90 for MAE
(Figure 6) which are the recommended thresholds in terms
of precision and number of operations involved.

C. COMPARISON TO OTHER APPROACHES
In Table 10, we show the comparison results for the MAE
metric between our proposal and other 16 states of the
art methods describe in a very recent survey [13], for the

same ten datasets reported in the previous sections. The
comparison was made under the same conditions as in [13],
in order to obtain comparable results. Such conditions are:
(i) no dataset pre-processing was made, (ii) the prefix length
of the traces was 20 activities (i.e., the last 20 activities
were considered for the remaining time estimation), and
(iii) MAE is the metric used to assess the quality of the
remaining time estimations.

For a fair and more detailed comparison, we provide the
results of our method in two scenarios for the threshold
selection: MPT provides the results obtained for the Most
Precise Threshold (0.975) and BCT for the MAE Best
Compromise Threshold (0.90) as defined in Section V-B.
It can be seen that our approach, even in the worst cases,
produces the lowest error in all the datasets. Compared
with the best model reported in [13] (LSTM [18]), which
is a deep learning based approach, the average MAE of
our MPT method is 7.49 days, being the average MAE
of LSTM 50.02 days. Differences in MAE between our
approach and LSTM range from 3.88 days (BPIC2017) to
145.07 days (Traffic Fine), being 38.28 days the difference
average favourable to our method.

We have also considered the impact of the standard
deviation, which is higher in our method than the others for
most of the datasets considered. Comparing the worst case
(MAE+STDEV), the average of our method is 35.59 days,
being 58.25 days the average of LSTM. Differences between
our approach and LSTM range with this metric from 3.05
days (BPIC2012w) to 175.74 days (Traffic Fine), being
35.59 days the difference average, in all cases favourable
to our method. According to these results, our method still
outperforms LSTM when considering variance.

Apart of these experimental results, interpret-ability is
also a key advantage of our method, when compared to
Deep Learning approaches, which are usually labelled as
black-box approaches. Since our EATS approach is based
on linear regression on attribute values that are related to
the structure and contents of the trace, users can interpret
and understand the variables meaning and their relative
importance (coefficients in the regression expressions). It
should be taken into account that interpret-ability of systems
is an increasing demand in the context of Fairness, Ac-
countability, Transparency, and Ethics (FATE) in Artificial
Intelligence and systems and applications in general.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a new approach for predicting the
remaining time of the running process in business process
management. Our approach consists of two perspectives:
firstly, we define a number of attributes that are evaluated
from the process traces and capture quantitative and struc-
tural information about them. Secondly, a linear regression
model is used for remaining time prediction, using these
attributes. The attributes are added to the well-known anno-
tated transition system (ATS, [6]), thus producing a new Ex-
tended ATS which takes into account structural information
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Figure 5: Model selection using the one-standard-error rule method [28] for the accuracy results in Table 9. The selected model
corresponds to a 0.86 threshold.

Figure 6: Model selection using the one-standard-error rule method [28] for the MAE results in Table 9. The selected model
corresponds to a 0.90 threshold.

of the traces. Furthermore, to deal with the trace variability
in terms of size, the number of activities and execution
times, a threshold-based partitioning method of the dataset
logs is proposed. For each of the partitions, a different
linear regression model is obtained. The evaluation of our
approach was made using ten real-life event logs, showing
that our model outperforms the results in the state of the art

[13], particularly the LSTM Deep Learning approach [18],
in terms of Mean Absolute Error and Accuracy metrics.
The scalability of our approach has been addressed by
considering and validating an attribute selection method and
a model selection method for obtaining a single threshold
value that can be recommended as an appropriate choice for
new estimation problems.
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Table 10: MAE results (in days) of the 16 approaches compiled in [13] compared to our approach in two different scenarios (BCT
and MPT, in the first two rows). Symbol "-" in some cells means this value is not provided by the authors.

Technique BPIC2012w BPIC2013 BPIC2015_1 BPIC2015_2 BPIC2015_3 BPIC2015_4

BCT 2.39±2.81 7.14±6.92 4.00±18.99 6.67±23.47 1.28±7.39 4.37±21.16
MPT 1.90±2.39 7.28+7.78 3.74±13.13 6.02±26.27 1.27±8.53 2.79±14.37

TS 7.505 ± 1.036 - 56.498 ± 8.341 118.293 ± 16.819 26.412 ± 8.082 61.630 ± 5.413
LSTM 6.344 ± 0.994 - 39.457 ± 5.708 61.620 ± 2.061 19.682 ± 2.646 48.902 ± 1.527
SPN 8.538 ± 0.772 - 66.509 ± 17.131 81.114 ± 8.033 26.757 ± 10.378 51.202 ± 5.889
FA 6.946 ± 1.057 - - - - -
cluster_agg 7.180 ± 0.953 - 40.705 ± 1.824 68.185 ± 2.649 23.087 ± 3.226 51.555 ± 2.363
cluster_index 7.074 ± 1.254 - 38.092 ± 2.988 66.957 ± 3.436 24.497 ± 1.887 56.113 ± 6.411
cluster_last 7.061 ± 1.019 - 38.388 ± 3.478 62.781 ± 2.347 22.544 ± 1.656 51.451 ± 4.189
prefix_agg 7.260 ± 0.935 - 46.765 ± 23.581 71.210 ± 8.893 24.152 ± 2.785 53.568 ± 6.413
prefix_index 7.155 ± 0.942 - 37.525 ± 2.746 66.883 ± 3.756 21.861 ± 3.292 50.452 ± 4.605
prefix_last 7.139 ± 0.851 - 37.975 ± 5.903 64.708 ± 5.749 23.574 ± 3.778 53.053 ± 5.665
noBucket_agg 7.082 ± 1.020 - 35.962 ± 3.744 67.914 ± 2.467 24.453 ± 3.577 54.89 ± 1.894
noBucket_index 6.982 ± 1.340 - 35.451 ± 2.499 65.505 ± 3.442 23.025 ± 1.587 52.282 ± 1.182
noBucket_last 7.021 ± 1.099 - 37.442 ± 3.607 64.110 ± 2.332 25.150 ± 1.271 56.818 ± 1.729
state_agg 7.465 ± 0.622 - 42.949 ± 2.725 68.768 ± 4.094 28.427 ± 9.844 49.318 ± 2.699
state_index 7.510 ± 0.585 - - - - -
state_last 7.539 ± 0.554 - 42.946 ± 2.691 68.296 ± 3.762 27.826 ± 8.280 49.038 ± 2.498

Technique BPIC2015_5 BPIC2017 Hospital Bill Traffic Fine

BCT 2.87±15.10 3.42±3.07 13.67±21.82 43.99±62.41
MPT 2.23±12.64 3.27±2.84 12.85±20.69 33.31±58.35

TS 67.699 ± 7.531 8.278 ± 2.468 46.491 ± 21.344 190.949 ± 15.447
LSTM 52.405 ± 3.819 7.150 ± 2.635 36.258 ± 23.870 178.738 ± 89.019
SPN - 10.731 ± 0.370 71.377 ± 29.082 193.807 ± 96.796
FA - - 51.689 ± 14.945 223.808 ± 14.859
cluster_agg 45.825 ± 3.028 7.479 ± 2.282 42.934 ± 26.136 210.322 ± 98.516
cluster_index 44.587 ± 4.378 - - 209.139 ± 98.417
cluster_last 46.433 ± 4.085 7.457 ± 2.359 48.589 ± 26.708 208.599 ± 99.549
prefix_agg 46.396 ± 2.466 7.525 ± 2.306 43.06 ± 25.884 201.614 ± 99.484
prefix_index 44.290 ± 3.669 7.421 ± 2.360 41.698 ± 25.944 209.085 ± 99.708
prefix_last 46.639 ± 3.718 7.482 ± 2.325 48.528 ± 26.714 209.304 ± 102.027
noBucket_agg 49.203 ± 1.833 7.437 ± 2.381 43.483 ± 25.0 211.017 ± 93.198
noBucket_index 50.153 ± 1.097 - - 208.879 ± 92.250
noBucket_last 49.027 ± 1.954 7.525 ± 2.244 50.496 ± 23.961 204.758 ± 93.399
state_agg 49.873 ± 2.658 - 43.835 ± 25.984 211.439 ± 98.351
state_index - - 41.095 ± 26.499 210.408 ± 99.276
state_last 49.556 ± 2.575 7.521 ± 2.341 48.902 ± 27.001 209.206 ± 100.632

The main limitations of our proposal are: (i) the proposed
attributes may not be able to capture all the structural
richness in some scenarios; (ii) the partitioning method
could be further improved for adapting better to other cases;
(iii) linear regression estimators for remaining time will not
capture non-linear behaviours which could exist in some
complex cases; and, finally, (iv) for complex cases involving
a huge number of activities other scalability approaches
could be needed apart of the model selection approach we
have described. In this regard, as current and future work,

we are considering new attributes definitions as well as other
partitioning and regression methods. New model simplifica-
tion approaches will also be proposed and compared with
the current proposal, so that we could further enhance the
good remaining time estimation results we have presented
in this paper.
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