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ABSTRACT In this paper, we deal with one of the current challenges in process mining enhancement: the
prediction of remaining times in business processes. Accurate predictions of the remaining time, defined as
the required time for an instance process to finish, are critical in many systems for organizations being able
to establish a priori requirements, for optimal management of resources or for improving the quality of the
services organizations provide. Our approach consists of i) extracting and assessing a number of features
on the business logs, that provide a structural characterization of the traces; ii) extending the well-known
annotated transition system (ATS) model to include these features; iii) proposing a partitioning strategy
for the lists of features associated to each state in the extended ATS; and iv) applying a linear regression
technique to each partition for predicting the remaining time of new traces. Extensive experimentation using
eight attributes and ten real-life datasets show that the proposed approach outperforms in terms of mean
absolute error and accuracy all the other approaches in state of the art, which includes ATS-based, non-ATS
based as well as Deep Learning-based approaches.

INDEX TERMS Business processes enhancement, predictive business process monitoring, business
processes management, business intelligence.

I. INTRODUCTION
Massive growth of business processes automation as well
as increasing information technology adoption in business
process management is producing a vast amount of process
execution data that are stored in the form of event logs [1], [2].
By applying process mining techniques to these logs [3], real
hidden processes can be discovered [4], [5] and/or existing
processes can be monitored and improved [6].

There are three main types of process mining tech-
niques [7]: process discovery, conformance checking, and
process enhancement. Process discovery takes an event
log and produces a model without using a priori informa-
tion [3], [7]. Conformance checking makes a comparison
between a designed processmodel and the process discovered
from the event log, to show where the real process deviates
from the designed one [7]. Process enhancement aims to
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extend or improve an existing process, using information
related to the process which is usually extracted from the
recorded events logs [8].

In process enhancement, temporal information is usually
used to measure the waiting times among process activi-
ties, to check the temporal behaviour during traces replay,
to provide information about relevant issues in the process
(e.g., bottlenecks, throughout times, frequencies) or to pre-
dict the remaining times from running process instances [7].
In this sense, predicting the remaining time of process
instances (running cases) has been highlighted in the lit-
erature as one of the most important current challenges in
process mining [9]. Remaining time of a process instance
is the required time for it to be finished from a particular
execution state. Accurately predicting remaining time is a
key issue for all actors around business processes manage-
ment. For organisations, having accurate time predictions
allows them tomanage the resources efficiently [10], to assess
the quality of the services they provide as well as to take
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appropriate managerial decisions in advance. For end-users,
it is also critical to be aware about when the processes they
are involved in will finish [1], [4]. Some examples of the latter
are bank customers applying for a loan, who need to know
in advance how long will it take for their loan application
to be reviewed, checked, assessed and accepted or declined,
or health treatment processes, where it is crucial to know the
remaining time of each treatment to effectively manage the
next treatments (for preparing in advance all the necessary
resources) or the next patients.

The problem of predicting the remaining time is a part
of a more general problem known as predictive monitor-
ing. In the last years, several proposals focused on predic-
tive monitoring and, more specifically, on the prediction of
remaining time have been presented [11]–[13]. Initially, these
proposals have focused on the representation of the process
executions or traces under the hypothesis that traces with
different characteristics have different remaining times. Sev-
eral of these approaches are based on Annotated Transition
Systems (ATS), where each (partial) trace is associated to
a state [4]–[6], [14], [15]. Other approaches use a partial
trace-based or index-based representation [1], [10], [16].
More recently, approaches have been proposed for apply-
ing machine learning methods for predicting the remaining
time [2], [17]–[20]. In all these approaches, the problem
encoding includes information about the context of the pro-
cess execution state, such as the duration of the activities,
or about domain variables. The main problem with all these
approaches is that their trace representation (or encoding)
does not include all the relevant information related to the
traces execution, such as repetition of activities, the distance
between activities or co-occurrences. Without this informa-
tion about the structural features of the traces, it is difficult to
make accurate predictions about the remaining time.

In this paper, we present a new vector-based extended
ATS-based approach that considers structural features or
attributes related to the process execution. In our approach,
each state in the ATS is annotated with a list of vectors
which contain information related to, for instance, frequency
of activities frequency, repetition of activities (loops), activ-
ities distance, and others. The lists of vectors are partitioned
according to a similarity criteria of the remaining times of the
traces in it. For each partition, a linear regression-based pre-
dictor is built, thus achieving that the prediction takes struc-
tural information of the traces into account. Our approach has
been compared to other approaches and validated with ten
real-life datasets, obtaining more precise predictions than all
the proposals of the state of the art [13].

The paper is structured as follows: in Section II the main
approaches in state of the art for remaining time predic-
tion are discussed; in Section III the main concepts of our
approach are presented; in Section IV our prediction model
for remaining time estimation is described; in Section V the
experiments for validating our predictionmodel are described
and the main results are discussed, and, finally, Section VI
summarises the main contributions of the paper.

II. RELATED WORK
As introduced in Section I, the problem of predicting the
remaining time of business processes has been addressed in
several proposals, which have been discussed in very recent
surveys [11]–[13]. Themodels described in [5], [6], [14], [15]
are state-based representations entitled Annotated Transition
Systems (ATS). In Transition Systems, the process traces
(real executions or instances) are represented as a sequence
of states and a set of transitions between them: a state models
a sequence of activities of the trace and a transition repre-
sents the execution of the next activity in the trace. Each
state of this Transition System is annotated with temporal
information about the process execution, thus generating
an Annotated Transition System (ATS). More specifically,
in [6], [14] authors annotate each state with the average of the
remaining time to complete each trace execution represented
by this state. In this model, this average time is provided as
the remaining time prediction. In [5] authors build an ATS
enriched with both classification and regression models: for
each state, a Naive Bayes classifier is built for predicting the
probability of transition from this state to the following one,
and a support vector regression approach is used for predict-
ing the remaining time for this second state. Both machine
learning models are trained with values of data attributes
generated during the case execution. These attributes contain
temporal references and domain-specific information. In [4]
authors use a Hidden Markov Model (HMM) to obtain the
transition probability from one state to the following one.
Each state in the ATS is annotated with a weighted average
of the probabilities given by the HMM where the weights
for each state are the average of the remaining times values
of the traces that fit this state. In [15] an ATS containing
only frequent parts of traces is built. These frequent parts are
extracted by means of a sequential pattern mining algorithm.
Therefore, the ATS states do not model all the sequences of
traces, but the frequent parts of them. Each state of this ATS is
annotated with the resource performing each activity, the cost
associated with the activity and the prefix where the activity
appears. Then, for each state, a regression model based on
these attributes is used to predict the remaining time.

Other works do not follow an ATS-based approach. In [10]
authors present an approach based on query catalogues,
which are groups of partial trace tails from all the traces
available in a log. A partial trace tail is annotated with the
number of its occurrences and the sum of its remaining times.
Then, the prediction of the remaining time to completion for
each partial trace is the average time in the catalogue where
the trace is in. In [1] authors present a prediction method
based on non-Markovian Petri Nets, which are enriched with
duration distributions of activities and the elapsed time since
the occurrence of the last activity. In [16] authors propose a
white-box approach to predict the remaining time of running
process instances. The approach followed is firstly to pre-
dict the remaining time at the level of activities and then to
aggregate these predictions at the level of a process instance
by means of flow analysis techniques. To encode the process
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traces an index-based encoding is considered, where for each
position in a trace the event occurring at that position and the
value of each event attribute are considered.

More recent approaches use machine learning methods
to predict the remaining time [11], [12], [16]. These mod-
els, in general, produce better results than the previously
described approaches. In [2] authors built four estimators
based on regression techniques, each of which makes use of
different parameters: average duration of the traces, duration
of the activities, the occurrence of the activities, and domain
attributes related to parameters or variables obtained during
the execution cases. The best estimator is the attribute-based
estimator, which suggests that the remaining time prediction
depends on the values of the variables generated during the
process execution. In [17] authors present an approach in
two phases: first, prefixes of previous cases are clustered
according to control flow information, mainly related to the
activity frequency; and then a classifier is built for each clus-
ter using event data attributes to discriminate between cases
that lead to a fulfilment of the predicate under examination
and cases that lead to a violation within the cluster. At run-
time, a prediction is made on a running case by mapping it to
a cluster and applying the corresponding classifier. In [18]
authors propose to use LSTM neural networks to predict
the next event of a running case and its time-stamp. The
encoding of the neural network includes the type of activity
and the time between two consecutive events. Based on this
neural network, the remaining time is estimated by iteratively
predicting the next activity and its duration until a special
end of case activity is predicted. In [19] authors present
a context-aware clustering-based approach to the discovery
of predictive models for supporting the forecast of process
performance measures, such as the remaining time, where
major performance-relevant variants of the process are related
to different regression models and discriminated through
context variables. In this approach, each trace is represented
through a vector that includes the activity frequency and some
properties related to the process execution context. In [20]
authors present a method that represents process instances
by considering both intra-instance dependencies and inter-
instance dependencies, where shared information between
process instances is taken into account. Based on this encod-
ing two different machine learning methods, linear regres-
sion, and random forest, are applied to predict the remaining
time.

The main problem with these techniques is that the coding
they use does not sufficiently represent or characterise all
the information about the traces. Most of these techniques
only take into account the frequency of occurrence of activ-
ities and/or activities that occur in the context of an activity,
i.e., activities that appear in a window of occurrence around
an activity. Some techniques complete the coding of the
traces with domain attributes related to variables obtained
during the execution of the traces, with the duration of the
activities or with the time remaining to complete the trace

execution. However, in these approaches trace encoding does
not explicitly represent the complex relationships between
traces; in particular, the repetition of the same activity (1-size
loop), the repetition of several activities (n-size loops), the
co-occurrence of any two activities (although this characteris-
tic is considered in approaches based on deep learning) or the
distance between two activities (i.e., distance between their
indexes in a trace). Thus, in these approaches, for instance,
the encoding of a trace in which activity appears five-times
with different indexes is the same as the encoding of a
trace where the activity appears five-times in a row (1-size
loop). This same encoding for traces that are structurally
different prevents current approaches to make very accurate
predictions of the remaining time. In these cases, which are
very common in real problems, considering structural infor-
mation about the traces, is a need which is considered our
model. Experimental results described in Section V show the
appropriateness of our approach.

III. PRELIMINARIES
This section describes the required elements to build our pre-
diction model, which consists of two parts; firstly, to build an
extended annotated transition system which includes a num-
ber of attributes that comprise relevant structural information
about the traces. Secondly, to apply regression techniques for
predicting the remaining time of the process execution at each
time.
Definition 1 (Event) [6]: An event e is described by a

unique identifier and is characterised by its properties, such as
its identifier, time-stamp, and the activity which is executed
in the time-stamp.
Definition 2 (Trace, Event Log) [6]:A trace T is a sequence

of ordered events {e1, e2, . . . , eN }. An event log is a set of
traces.
Definition 3 (Partial trace, State) [6]: A partial trace PT

is any continuous part of a trace T that contains one or more
events in sequence. For each PT , three state representations
are defined [6]: Set, Multi-Set, and Sequence. In this paper,
we focus on the Set representation as the basis for our model.
In Set representation, each partial trace PT has associated a
state S(PT ) which is labelled through the activities in PT and
where no repetition of activities is considered (no matter its
execution order).
Definition 4 (Transition System, TS) [6]: A transition sys-

tem TS is a triplet (S, PT , TR), where S is the state space,
PT is a set of partial traces, and TR is a transition relation
which describes how the system moves from one state to
another state. A TS has different forms depending on the state
representation in which it is based on.

In Fig. 1 we show the differences between Sequence rep-
resentation and Set representation in a TS, using a simple
example of a process involving only three events with its
corresponding activities (A, B, C). We consider the repre-
sentation of two different traces (〈ABC〉 〈ACB〉) involving
the three activities A, B and C in different order. In Fig. 1a),
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FIGURE 1. Transition system with (a) sequence representation, and
(b) set representation of traces 〈ABC〉, and 〈ACB〉 (see Section III).

FIGURE 2. ATS-based on the log shown in Table 1 and Section III.

we show the Sequence representation of both traces, where
the final state is different for each trace, respectively {ABC}
and {ACB}. In Fig. 1b, the final state for both traces is
the same (state {ABC}), since Set representation does not
consider the order of the activities within the trace. For exam-
ple, other traces involving the same activities, like 〈CBA〉,
or 〈BAC〉 are represented by the same state {ABC}.
Definition 5 (Annotated Transition System, ATS) [6]:

An Annotated Transition System (ATS) is a duple (TS,MF),
where TS is a transition system based on the Set representa-
tion andMF is a measurement functionMF(S) that annotates
each state S in the ATS. For instance, in [6], authors define
MF as the remaining time since the occurrence of the last
activity of each partial trace in the TS until that trace is
completed.

In Fig. 2 we show an example of the ATS model defined
in [6], built from the traces described in Table 1. Let us con-
sider state {AB} and the partial traces it represents: 〈A00B06〉
(from Trace 1), 〈A15B19〉 (from Trace 4), and 〈A18B22〉 (from
Trace 5). Remaining times are calculated as the time elapsed
since the time-stamp of the last activity in each partial trace
(6, 19, and 22 respectively) until the end of the corresponding
trace (18, 28, and 32, respectively). Therefore, the annotation
attached to the state {AB} is [12, 9, 10].

TABLE 1. An example log, showing seven traces, each of them
represented as a sequence of activities A, B, C , D, E , occurring in different
orders. Superscript numbers indicate time-stamps at which each activity
is completed.

IV. A NEW PREDICTION MODEL FOR
REMAINING TIME ESTIMATION
In the previous section, we presented the most relevant ele-
ments of an ATS. Based on it, we propose and describe
in detail in this section our extension of the ATS model
that includes structural features which are extracted from the
traces.

A. TRACE FEATURES
Firstly, we extend the ATS model by considering a number of
features (or attributes) extracted from the analysis of the event
log traces. Each of these features is related to a measurement
with which the ATS model will be extended, that is, each
state of the ATS model will be annotated with both a set of
attributes and the remaining time. A key difference between
our approach and others in the literature is that the attributes
we consider provide specific structural information about
traces, such as the occurrence of the activities, its elapsed
time, or the existence of loops, among others. This structural
information will act as predictor variables that will be taken
into account by a regression model, aiming to improve the
accuracy in the calculation of the remaining time prediction
in a running process.

We define the following eight attributes:
Definition 6 (Occurrence, Occ): Let PT be a partial

trace. We define Occ(Ai,PT ) as the number of times activ-
ity Ai occurs in PT . For example, for partial trace PT =
〈CCABBCAA〉, we have Occ(A,PT ) = 3, Occ(B,PT ) = 2,
and Occ(C ,PT ) = 3.
Definition 7 (Cycle, Cyc): Let PT be a partial trace,

and LargSeq(Ai) the largest sequence of activity Ai in PT .
We define Cyc(Ai,PT ) := length(LargSeq(Ai))-1 as the num-
ber of times the activity Ai is repeated in sequence in PT . For
example, for partial trace PT = 〈CCCABCCAA〉, we have
Cyc(A, PT ) = 1, Cyc(B,PT ) = 0, and Cyc(C,PT ) = 2.
Definition 8 (Position, Pos): Let PT be a partial trace PT ,

and Pos(Ai) the index set of activity Ai in that partial trace PT .
We define Position(Ai,PT ) := maximum(Pos(Ai)) as the last
happening of Ai in PT . It represents the last index of an activ-
ity happened in the partial trace. For example, for the partial
trace PT = 〈CCCABCCAA〈, we have Pos(A, PT ) = 9,
Pos(B,PT ) = 5, and Pos(C ,PT ) = 7.
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Definition 9 (Distance, Dis): Let Ai be an activity in a
partial trace PT . Dis(Ai,PT ) (distance) is the number of
activities (different of Ai) between the last occurrence of Ai
and the previous one (backwards) in PT . Dis(Ai,PT ) = 0 in
case Ai is a single activity in PT . For example, for the partial
trace PT = 〈CCCABCCA〉, we haveDis(A)= 3,Dis(B)= 0,
and Dis(C) = 0.
Definition 10 (Duple, Dup): Let PT be a partial trace S its

associated state in an ATS. For all the pairs of activities Ai and
Aj in S, we define Dup(Ai,Aj,PT ) as the number of times that
the sequence AiAj happens in PT . For example, for the partial
trace PT = 〈CACACCAB〉, we have Dup(A,A,PT ) = 0,
Dup(A,B,PT ) = 1, Dup(A,C ,PT ) = 2, Dup(B,A,PT ) = 0,
Dup(B,B,PT ) = 0, Dup(B,C ,PT ) = 0, Dup(C ,A,PT ) = 3,
Dup(C ,B,PT ) = 0 and Dup(C ,C ,PT ) = 1.
Definition 11 (Change):LetPT be a partial trace and LA its

last activity. We define Change(PT ) as the number of times
the activities move from one activity to a different one from
the beginning of PT until LA. For example, for the partial
trace PT = 〈CCCABCCA〉, we have Change(PT ) = 4, since
it represents the move from activityC to A (first change), then
the move from A to B (second change), then the move from B
to C (third change), and finally the move from C to A (fourth
change).
Definition 12 (Single): Let PT be a partial trace. We define

Single(PT ) as the number of single activities that have no
cycle from the beginning of PT . For example, for a partial
trace PT = 〈CCCABCCA〉, we have Single(PT ) = 1, this
partial trace has only one single activity (B).
Definition 13 (Elapsed Time, Elt): Let LA be the last activ-

ity in a partial trace PT . We define Elt(PT ) as the time passed
since the beginning of PT until LA. For example, taking the
PT = 〈A10C14B26D36

〉 (the second one in Table 1), we have
Elt(PT ) = 36.

All the attributes we consider are related to structural fea-
tures which are of interest for characterising traces and/or par-
tial traces. For instance, the occurrence of activity is related
to the repetitions in traces; cycle and duple are related to the
existence of loops in traces; whilst changes of events and their
position are related to variety in traces.

In Table 2, we present an illustrative example of the cal-
culation of the previously defined attributes for the example
trace 〈ABBBAABBAB〉. We can see in this example that
some of these attributes (e.g., Change, Single, Elt) produce
a single value from each trace. Other attributes (Occ, Cyc,
Pos, Dis) produce a number of different values which is in
linear order with the number of events N in the trace. In the
example, N = 2, and therefore we have two values for
each of the attributes, eight in total. Finally, the last attribute
(Duple) produces N 2 values (4 in the example, for all the
combination pairs of the activities in the trace, A and B).
According to this number of attributes values, in case of traces
involving a low number of events, no scalability problems
occur. However, if the number of events is high, also a high
number of attributes will be produced. In order to cope with
scalability problem, we will describe in Section V the use

TABLE 2. Value of the attributes for the partial trace
PT = 〈A2B7B13B22A30A37B50B54A60B62〉, where superscripts of the
activities indicate their timestamps.

of an attribute selection method which reduces the number
of attributes by keeping only the attributes that have a real
impact on the remaining time estimation and removing the
less relevant ones.

B. EXTENDED ANNOTATED TRANSITION SYSTEM
Previously, we introduced the definition of an Annotated
Transition System (ATS) model, as well as the definitions of
the attributes we consider to be extracted from each trace to
build our model. In this section, we show how we integrate
the previously introduced attributes into an ATS in order to
define our Extended Annotated Transition System (EATS).
Definition 14 (List): Let S be a state of an annotated

transition system ATS associated to a given set of Partial
Traces PTj, j = 1, . . . ,P (being P the total number of
Partial Traces associated to S). Let {Atti, i = 1, 2, . . . ,N}
be the attributes defined in Section IV-A, and element Ej =
[valueOfAtt1, . . . , valueOfAttM ,RTj], j = 1, . . . ,P a vector
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made up of the attribute values for each PTj, being M the
total number of attribute values and RTj the remaining time
forPTj (time until trace completion, as defined in Section III).
We define List(S) := {E1,E2, . . . ,EP} as the set of elements
that annotate state S. Note that each state has an associated
list which includes P elements (being P, as stated before,
the number of partial traces represented by state S).
Considering definitions 6-13, we have that the element

Ej associated to a given partial trace PTj is made up of the
following components:
• Occurrence: Occ(Ai,PTj),∀ activities Ai in PTj
• Cycle: Cyc(Ai,PTj),∀ activities Ai in PTj
• Position: Pos(Ai,PTj),∀ activities Ai in PTj
• Distance: Dis(Ai,PTj),∀ activities Ai in PTj
• Duple: Dup(Ai,Ak ,PTj),∀ pairs of activities Ai,Ak
in PTj

• Change(PTj)
• Single(PTj)
• Elapsed time: Elt(PTj)
• Remaining time: RT (PTj)
As an example, let us consider the following partial trace

PT = 〈A00B06〉, which is extracted from the first trace
in Table 1. Then, we have that the element E associated to
PT is made up of:
• Occurrence: Occ(A,PT ) = 1, Occ(B,PT ) = 1
• Cycle: Cyc(A,PT ) = 0, Cyc(B,PT ) = 0
• Position: Pos(A,PT ) = 1, Pos(B,PT ) = 2
• Distance: Dis(A,PT ) = 0, Dis(B) = 0
• Duple: Dup(A,A) = 0, Dup(A,B) = 1, Dup(B,A) = 0,
Dup(B,B) = 0

• Change = 1
• Single = 2
• Elapsed time: Elt = 6
• Remaining time: RT (PT ) = 12
Therefore, element E will be the following vector:

[1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 2, 6, 12]

Definition 15 (Extended Annotated Transition System,
EATS): Let L be an event log, and ATS an annotated tran-
sition system obtained based on a Set representation for L.
An Extended Annotated Transition System (EATS) for L
is an extension of ATS which consists in annotating each
state S in ATS through a measurement function MF(S) =
List(S), where List(S) is the List of elements as defined in
Definition 14.

In Algorithm 1, we describe the procedure for for-
mally building our Extended Annotated Transition System.
Lines 1 to 3 initialise the Lists of Elements that are associated
to each state of the EATS. The loop in (line 4) iterates all
partial traces, whilst in line 5 we obtain the associated state
to each partial trace. Then, we store the attribute values in
the element (lines 7-19), according to Def. 14. The element
is completed by adding the remaining time of the partial trace
(line 10) and stored in the list associated to the current state
(line 11). The procedure is repeated throughout all the partial

Algorithm 1 Construction of an Extended Annotated
Transition System (EATS)

Input: TS = (S, PT, TR): Transition System (Def. 4);
Output EATS: Extended Annotated Transition System

1: for each s ∈ S do
2: List(s) = ∅ F Initialise Lists of Elements
3: end for
4: for each pt ∈ PT do F For each partial trace
5: CS ← S(pt) F State associated to pt (Def. 3)
6: E = ∅ F Initialise Element
7: for i = 1, . . . ,M do F Def. 14, M # attr. values of pt
8: E ← E ∪ valueOfAtti(pt) F Add i− th attribute

value
9: end for
10: E ← E ∪ RTpt F Add remaining time of pt
11: List(CS)← List(CS) ∪ E
12: end for
13: List ← {List(s),∀s ∈ S}
14: EATS ← (TS,List)
15: return EATS

TABLE 3. Sample log with three traces.

traces in the EATS and, finally, the Extended Annotated
Transition System is returned.

In Fig. 3, we also show an example of how the EATS is built
from the traces in Table 3. We associate to each state S a list
of elements (vectors), which include the values of the eight
attributes defined in Section IV-A calculated for each of the
partial traces represented by S. For example, at state {AB},
we have two partial traces Pt12, 〈AB〉, and Pt13, 〈ABB〉.
Each vector in the list includes the corresponding 15 attributes
values (plus the value to be predicted, remaining time).
Regarding the number of attributes, it is worthy remembering
that it differs among the states, since it depends on how
many activities engage in that state, as explained before. For
instance, in this example, the partial traces associated to one
event (State {A}) has eight attribute values, one for each of
the definitions of Section IV-A. The partial traces associated
to states {AB} and {AC} (two events each) have 15 attribute
values each, since the existence of two activities doubles the
number of Occurrence, Cycle, Position, and Distance (one for
each activity, 8 in total) and increases to 22 = 4 the number
of Duple values, plus other 3 attributes (Change, Single and
Elapsed Time). Finally, the partial traces associated to State
{ABC} (three events) has 24 attribute values; i) Occurrence,
Cycle, Position, and Distance produce in this case 4 ∗ 3 = 12
attributes (one for each activity); whilst ii) Duple produces
32 = 9; and finally iii) Change, Single and Elapsed Time.
These lists are updated when a new case runs. The new traces
are inserted in the list that corresponds to the state which
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FIGURE 3. Extended annotated transition system with the lists of elements (vectors of attributes values) associated to
each state. The example is built using the traces in Table 3, as indicated in Section IV-B.

represents this new trace. Once this is done, the EATS is
endowed with all the information needed by our remaining
time estimation model. As described in the following sec-
tions, estimations will be done with a linear regression model
which, for each state, uses as independent variables the values
of the attributes in the EATS lists of elements.

C. ESTIMATION OF THE REMAINING TIME:
DATASET PARTITIONING
Before describing the details of the regression model we
use for estimating the remaining time, we should take into
account the following considerations. Let us recall, in the
first place, that according to Definition 15, each state S
in the EATS is annotated with a list of elements (vectors)
List(S) which include the values of the attributes for all the
partial traces represented by S. Each of these lists contains
all the data (predictors or independent variables) needed

for performing the remaining time estimation. Therefore,
we have a single dataset associated to each state.

Applying a linear regression technique to each of these
datasets has proved to produce poor estimations since, usu-
ally, traces in the dataset have great variability in terms
of size, number of activities and execution times. This is
the usual general scenario for real business process data,
such as administrative procedures or applications, indus-
trial incidents management or processes in a hospital or
other big organisations/institutions [21], [22]. In many cases,
the remaining time values range is vast (e.g. from a few sec-
onds to hundred thousand seconds) even for traces that are
very similar or even identical.

A motivational example of this is presented in the real
case taken from [21], shown in Table 4. In column ‘‘Non-
partitioned’’ we can see the accuracy results after applying
a linear regression method on the whole dataset associated
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TABLE 4. Accuracy values for the set of partial traces associated to some
states taken from a real business process described in [21], following two
strategies: Non-partitioned and partitioned.

to each state. We can see that very poor accuracy values are
obtained, ranging from 0.23 to 0.53. Since huge variability is
a usual feature in real cases we have endowed our estimation
method with a dataset partitioning stage, which is described
in what follows. In Section IV-D, we will revisit again this
motivational example to assess the impact of the partitioning
stage on the accuracy results.

Our partitioning method consists of building partitions
which contain partial traces with similar remaining times.
the similarity is expressed here in terms of a threshold value
in the following way: let us assume we have two partial
traces PT1,PT2, with their corresponding remaining times
RT1,RT2. Without loss of generality, let us consider that
RT1 ≤ RT2. We will consider that PT1 and PT2 belong to
the same partition if RT1/RT2 > th, where th ∈ [0, 1] is a
predefined threshold. This condition states that both partial
traces belong to the same partitions if the remaining time of
the PT1 is above a given percentage (th) of the PT2. On the
contrary, if RT1/RT2 ≤ th, PT1 and PT2 will belong to
different partitions. For example, for two traces PT1 and PT2
and a threshold value 0.40, this means that if the remaining
time of PT1 is above 40% of PT2 the will be grouped in the
same partition (their remaining times are considered similar).
Otherwise (below or equal 40%), they will be grouped in
different partitions (their remaining times are considered not
similar).

In Algorithm 2, we presented a detailed description of our
Threshold-Based Partitioning (TBP) procedure for a given
state s and a threshold th. In the first place (line 1) the List
associated to s is ordered accordingly to the remaining time
of all the partial traces associated to s. Partition building is
described in the for loop (lines 4-10). In line 6 this condi-
tion is formalised as indicated before. When it holds, a new
partition is started (lines 7-8). When it does not, the for loop
in line 4 continues iterating throughout all the partial traces
and grouping them in the same partition (line 5). Finally,
the last partial trace is assigned (line 11) to its corresponding
partition: a new partition in case the threshold condition was
met and the last partition in case it did not.

One key issue here is the number of intervals (or thresh-
old points) to be defined (i.e. if we want to create very
close intervals or wide intervals). It is important to define
the number of segments in a balanced way, not to be very

Algorithm 2 Threshold-Based Partitioning (TBP) of the
Partial Traces (List) Associated to a State s in the EATS

Input: s, a state of the EATS (Def. 14); th ∈ [0, 1] a
partition threshold

Output PL = {P1, ..,Pn}: Partitions List
1: SortedList(s)← List(s) sorted in ascending order by the

Remaining Time RTp of its elements Ep, p = 1, . . . ,P
(Def. 14)

2: n = 1 F Partition 1
3: Pn = ∅ F Initialise Partition 1
4: for p = 1, . . . ,P− 1 do F P: List size
5: Pn← Pn ∪ Ep
6: if RTp/RTp+1 ≤ th then F Abrupt change: new

partition
7: n← n+ 1 F New partition
8: Pn = ∅ F Initialise the new partition
9: end if
10: end for
11: Pn← Pn ∪ Ep F Last Element in the List
12: return PL : {P1, . . . ,Pn}

low, since the range values for the estimation time will be
high and lower accuracy, but not to be very high, since this
will increase the computational cost and will produce over-
fitting. In Section V, we will discuss this issue again from a
quantitative pragmatical point of view, in order to provide a
range of threshold values with a right balance between low
accuracy and over-fitting.

In Fig. 4, we show an example of application of the
Threshold-based Partitioning Procedure (Algorithm 2 for
a threshold value th = 0.4. We highlight the quotient
values that fulfil the threshold condition (Algorithm 2,
line 6) and therefore, define the limits of each partition. All
these quotients are less than the 0.4 threshold (respectively
790/4,105 = 0.19 for elements E6 and E7, 9024/44,358 =
0.20 for elements E13 and E14 and 90,615/232,486 = 0.39
for elements E16 and E17), indicating that the corresponding
remaining times are not similar and therefore will be grouped
in different partitions. After partitioning, this dataset splits
into four partitions and, therefore, it is ready for the linear
regression model to be applied to each partition, as described
in the following section.

D. LINEAR REGRESSION MODEL
Once the need for partitioning the dataset was established
and our partitioning strategy was described we are now in
conditions to describe our remaining time estimation model.
Basically, it is made up of linear regression functions which
are obtained for each of the partitions of the dataset described
before. The independent variables of the regression functions
are the values of attributes (elements) in each partition, being
the dependent variable the remaining time.

A simple motivational example showing the impact of this
partitioning stage in the remaining-time estimation is shown
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FIGURE 4. Example of application of Algorithm 2 for a threshold value
th=0.4 and a state S whose associated list List(S) is made up by
25 elements. List(S) is divided into four partitions, which are delimited by
elements E6, E13 and E16, as indicated in the text.

in Table 4 (which was introduced in the previous section).
Now, in column ‘‘Partitioned’’ we present the accuracy results
after applying the linear regression method to each of these
partitions. Comparing these results with the ones in column
‘‘Non-partitioned’’ we can see an important improvement in
the accuracy results, which now range from 0.67 to 0.78.
On the basis of this example, we present in the next section a
detailed validation of our method.

The details of the remaining time estimation for any new
trace PTNEW are described in Algorithm 3. Once the state
associated to PTNEW is obtained (line 1), its partition list
PL = {P1, . . . ,Pn} is returned by Algorithm 2 (line 2). Also,
the associated vector of attributes of the new trace is obtained
(as indicated in Def. 14) and stored in the corresponding
Element. The algorithm basically searches for the Partial
Traces in PL, which are the closest ones to PTNEW in terms
of the Manhattan distance of the values of their attributes,
as indicated in Def. 14. Searching for these Partial Traces
and obtaining their associated partitions is made in lines 5-15.
Once the Partitions are obtained, their indexes are stored
in partitionIndex and their corresponding linear regression
functions {RLk , k ∈ partitionIndex} are applied to the values
of their attributes of PTNEW . The average of these results is
returned as the estimation of the remaining time of our model.

V. VALIDATION AND EXPERIMENTS
In this section, we will describe the experiments we have
conducted for validating our proposal. Ten Real-life event

Algorithm 3 Time Prediction Model (TPM) of a new trace
Input: PTNEW : new Partial Trace
Output PRT : Predicted Remaining Time for PTNEW .

1: S ← S(PTNEW ) F State which represents PTNEW
2: PL = {P1, . . . ,Pn}:= Partitions List associated to S,

as returned by Algorithm 2
3: RL = {R1, . . . ,Rn}:= List of Linear Regression func-

tions associated to PL, as indicated in Section IV-D
4: ENEW := Element associated to PTNEW F (Def. 14)
5: distanceMin←+∞
6: for k = 1, . . . , n do F For all partitions in PL
7: for each PT ∈ Pk do
8:

dist =
M∑
m=1

|valueOfAttm(PT )−

valueOfAttm(PTNEW )|
9: if dist < distanceMin then F New min
10: partitionIndex = {k};
11: distanceMin← dist
12: else if dist == distanceMin then
13: partitionIndex = partitionIndex ∪ {k};
14: end if
15: end for
16: end for
17: PRT ← Average of the estimations obtained with the

regression models {RLk , k ∈ partitionIndex} applied to
ENEW

18: return PRT

logs were used for validation, as described in Table 5:
BPIC12w [21], BPIC13 [23], BPIC15 [24] (5 logs),
BPIC17 [22], Hospital Billing [25] and Road Traffic Fine
Management Process [26]. Eight of the datasets are taken
from the Business Process Intelligence Challenges (BPIC),
a de-facto standard for testing and validation of business
processes approaches, since these datasets are proposed for
the yearly Business Process Intelligence Contest.

We have performed three types of experiments with the fol-
lowing aims: i) to compare ourmethod, for different threshold
values, with the baseline ATS-based proposal [6] in order to
validate it in terms of accuracy and mean absolute error and
also to have experimental evidence about the influence of
the threshold values in the results; ii) to determine a single
threshold value which could be labelled as the most appro-
priate choice to use for estimating the remaining time for new
event logs, in terms of precision of the results and simplicity
of the model; and iii) to perform a comparison between
our approach and to the sixteen state of the art approaches
described in [13] in order to prove the validity of our approach
and assess its quality, confronting it to ATS-based, non-ATS
based and machine learning approaches.

Following the usual validation methodology, each partition
is divided into two parts of 80% training and 20% for testing.
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TABLE 5. Description of the 10 real-life event logs used for validation.

For each of the partitions, the regression model will produce
an estimation for the remaining time following the procedure
previously described in Algorithm 3. For testing, for each par-
tial trace, we apply, as indicated in Section IV, the procedure
described in Algorithm 3.

A. RESULTS CONSIDERING DIFFERENT
THRESHOLD VALUES
In this section, we present the validation results of our
approach for different threshold values of the partitioning
strategy (TBP) described in Section IV-C. Our method is
compared to the ATS baseline approach described in [6] for
the ten datasets in Table 5. This validation aims to provide
a general overview of the dependence of our remaining time
estimation results with the TBP threshold values. We used
two metrics to compare our results to [6]: the Mean Absolute
Error (MAE) tomeasure the error between real remaining and
the predicted remaining time and the Accuracy to assess the
regression quality in objective terms. According to [13], using
RMSE as a metric should be avoided in this context, since it
is very sensitive to outliers. For this analysis of the threshold
dependence, datasets were pre-processed for removing those
values that are more/less than twice the standard deviation
from the average.

We also consider here the key issue that was previously
pointed in section IV-A: in general, a business process could
involve a high number of activities, which would also mean
that the number of attributes could also be high. As a con-
sequence, also the number of operations related to the parti-
tioning stage would increase. Therefore, in order to keep our
approach general, it is advisable to include an attribute selec-
tion method that reduces the number of attributes instances
initially considered.

In order to do this, we use the well-known Greedy For-
ward attribute selection method [27] to reduce the number of
attributes and, consequently, the complexity of the model as
well as to generally improve the scalability of our method.
This attribute selection method performs a greedy forward
search through the space of attribute subsets, starting with no
attributes and stopping when the addition of any remaining
attributes results in a decrease in the evaluation. Table 6 shows
the difference in the number of attributes considered with and

TABLE 6. The difference in the number of attributes with and without the
Greedy Forward attribute selection technique [27].

without applying the attribute selection technique. In average,
a 31% reduction is achieved in the number of attributes.

In Table 7, we show the results of the comparison between
our approach with attributes selection and the base-line
approach [6], for the ten considered real-life event logs and
the Mean Absolute Error (MAE) metric. We provide the
results of our approach for a number of thresholds, in order
to assess the general quality of the results as well as the
dependence of specific thresholds values. In order to have a
general view of the method we also provide (Table 7, bottom
row), for each dataset, the average results of our method for
all the thresholds considered. According to this, the average
value (even including the standard deviation) of our method
outperforms [6] in all ten datasets. Looking at all the thresh-
olds values, we can see that for all the 90 cases considered our
approach outperforms [6]. The average MAE of our method
is 6.76 days, being the average MAE of [6] 43.84 days. The
differences in MAE between our approach and [6] range
from 2.02 days (in BPIC17) to 126.84 days (in Traffic Fine),
being 37.08 days the average of the differences, in all cases
favourable to our method.

In Table 8, we show the same comparison for accuracy.
Again, the average value (also considering the standard devi-
ation) of our method outperforms [6] in all ten datasets and
for the 90 cases considered. For the datasets considered,
the average accuracy of our method ranges in [0.54, 0.93],
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TABLE 7. Comparison between our approach and [6], using the ten event logs described in Table 5. We show the MAE measurement values at each
threshold point.

TABLE 8. Comparison between our approach and [6], using the ten event logs described in Table 5. We show the accuracy measurement values at each
threshold point.

whilst [6] ranges in [0.17, 0.56]. The average accuracy of our
method is 0.81, being the average accuracy of [6] 0.43.

B. THRESHOLD CHOICE
In this section, we discuss how to choose an appropriate
threshold value which could be used, in general, for any new
dataset. We will support the discussion with the experimen-
tal analysis and results we describe in what follows. In a
first analysis, it seems straightforward that the best threshold
choice should be the most precise one, i.e., that produces the
highest accuracy or lowest MAE. In order to experimentally
determine which is, in general, the most precise threshold,
we need to consider the results in Tables 7 and 8, rank them,
and calculate the average rank through all the datasets and
thresholds, for both MAE and Accuracy. These results are
summarised in Table 9. According to this, the most precise
threshold (MPT) is the one with the lowest ranks, which is
0.975 for both Accuracy and MAE.

TABLE 9. The average rank, and the standard deviation through all the
real event logs.

In a second analysis, we can observe looking at the results
in Tables 7 and 8 that, in general, high threshold values
produce better results (lower MAE and higher accuracy).
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FIGURE 5. Model selection using the one-standard-error rule method [28] for the accuracy results in Table 9. The
selected model corresponds to a 0.86 threshold.

FIGURE 6. Model selection using the one-standard-error rule method [28] for the MAE results in Table 9. The
selected model corresponds to a 0.90 threshold.

This means that the granularity of the partitioning intervals
is higher, and as a consequence, the number of operations
involved also increases.

Taking also this consideration into account, it becomes
evident that, in the general case, choosing the most appro-
priate threshold is not necessarily only a matter of choos-
ing the most precise one, but the one with a good balance

between precision in the results (generally associated to high
thresholds) and the number of operations involved (gener-
ally associated to low thresholds). In order to determine
a threshold value with a good compromise between these
two opposite constraints, we will apply the One-Standard-
Error Rule [28], which is a well-known model selection tech-
nique. Through applying this rule, together with the attribute

VOLUME 7, 2019 128209



A. Aburomman et al.: Vector-Based Classification Approach for Remaining Time Prediction in Business Processes

TABLE 10. MAE results (in days) of the 16 approaches compiled in [13] compared to our approach in two different scenarios (BCT and MPT, in the first
two rows). Symbol ‘‘-’’ Xin some cells means this value is not provided by the authors.

selection technique described in Section IV-A, we will pro-
vide experimental support for selecting a threshold value with
a balanced compromise between precision and number of
operations involved and that can, therefore, be labelled also
as an appropriate choice for any new dataset.

The One-Standard-Error Rule is applied to the ranking
described in Table 9 and looks for the lowest threshold
value whose average error is no more than one standard
deviation above the error of the best model. The thresh-
old value obtained following this procedure (BCT, Best

Compromise Threshold) will exhibit a good compromise
between precision and the number of operations involved.

Figures 5 and 6 show the application of the One-Standard-
Error Rule for both the accuracy and MAE results in Table 9.
For both figures, the blue line indicates the average ranking
values for each threshold considered. The red line indicates
the rank value that corresponds to the best model in terms
of average rank plus one standard deviation. The intersection
of both lines indicates the Best Compromise Thresholds,
respectively 0.86 for Accuracy (Figure 5) and 0.90 for MAE
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(Figure 6) which are the recommended thresholds in terms of
precision and number of operations involved.

C. COMPARISON TO OTHER APPROACHES
In Table 10, we show the comparison results for the MAE
metric between our proposal and other 16 states of the art
methods describe in a very recent survey [13], for the same
ten datasets reported in the previous sections. The comparison
was made under the same conditions as in [13], in order to
obtain comparable results. Such conditions are: (i) no dataset
pre-processing was made, (ii) the prefix length of the traces
was 20 activities (i.e., the last 20 activities were consid-
ered for the remaining time estimation), and (iii) MAE is
the metric used to assess the quality of the remaining time
estimations.

For a fair and more detailed comparison, we provide the
results of our method in two scenarios for the threshold selec-
tion: MPT provides the results obtained for the Most Precise
Threshold (0.975) and BCT for the MAE Best Compromise
Threshold (0.90) as defined in Section V-B. It can be seen
that our approach, even in the worst cases, produces the
lowest error in all the datasets. Compared with the best model
reported in [13] (LSTM [18]), which is a deep learning based
approach, the average MAE of our MPTmethod is 7.49 days,
being the average MAE of LSTM 50.02 days. Differences in
MAE between our approach and LSTM range from 3.88 days
(BPIC2017) to 145.07 days (Traffic Fine), being 38.28 days
the difference average favourable to our method.

We have also considered the impact of the standard
deviation, which is higher in our method than the oth-
ers for most of the datasets considered. Comparing the
worst case (MAE+STDEV), the average of our method is
35.59 days, being 58.25 days the average of LSTM. Dif-
ferences between our approach and LSTM range with this
metric from 3.05 days (BPIC2012w) to 175.74 days (Traf-
fic Fine), being 35.59 days the difference average, in all
cases favourable to our method. According to these results,
our method still outperforms LSTM when considering
variance.

Apart of these experimental results, interpret-ability is also
a key advantage of our method, when compared to Deep
Learning approaches, which are usually labelled as black-
box approaches. Since our EATS approach is based on linear
regression on attribute values that are related to the structure
and contents of the trace, users can interpret and understand
the variables meaning and their relative importance (coef-
ficients in the regression expressions). It should be taken
into account that interpret-ability of systems is an increasing
demand in the context of Fairness, Accountability, Trans-
parency, and Ethics (FATE) in Artificial Intelligence and
systems and applications in general.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new approach for predicting the
remaining time of the running process in business process
management. Our approach consists of two perspectives:

firstly, we define a number of attributes that are evaluated
from the process traces and capture quantitative and structural
information about them. Secondly, a linear regression model
is used for remaining time prediction, using these attributes.
The attributes are added to the well-known annotated transi-
tion system (ATS, [6]), thus producing a new Extended ATS
which takes into account structural information of the traces.
Furthermore, to deal with the trace variability in terms of size,
the number of activities and execution times, a threshold-
based partitioning method of the dataset logs is proposed. For
each of the partitions, a different linear regression model is
obtained. The evaluation of our approach was made using ten
real-life event logs, showing that our model outperforms the
results in the state of the art [13], particularly the LSTMDeep
Learning approach [18], in terms ofMean Absolute Error and
Accuracy metrics. The scalability of our approach has been
addressed by considering and validating an attribute selection
method and a model selection method for obtaining a single
threshold value that can be recommended as an appropriate
choice for new estimation problems.

The main limitations of our proposal are: (i) the proposed
attributes may not be able to capture all the structural rich-
ness in some scenarios; (ii) the partitioning method could be
further improved for adapting better to other cases; (iii) linear
regression estimators for remaining timewill not capture non-
linear behaviours which could exist in some complex cases;
and, finally, (iv) for complex cases involving a huge number
of activities other scalability approaches could be needed
apart of the model selection approach we have described.
In this regard, as current and future work, we are considering
new attributes definitions as well as other partitioning and
regression methods. New model simplification approaches
will also be proposed and comparedwith the current proposal,
so that we could further enhance the good remaining time
estimation results we have presented in this paper.
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