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Abstract. A graph-based segmentation technique has been tailored to segment airborne LiDAR
points which, unlike images, are irregularly distributed. In our method, every LiDAR point is
labeled as a node and interconnected as a graph extended to its neighborhood, defined in a 4-D
feature space: the spatial coordinates (x; y; z) and the reflection intensity. The interconnections
between pairs of neighboring nodes are weighted based on the distance in the feature space.
The segmentation consists of an iterative process of classification of nodes into homogeneous
groups based on their similarity. This approach is intended to be part of a complete system for
the classification of structures from LiDAR point clouds in applications needing fast response
times. In this sense, a study of the performance/accuracy trade-off has been performed,
extracting some conclusions about the benefits of the proposed solution. In addition, an
interlaced graph-based approach is proposed to increase the reliability in general purpose seg-
mentations. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS
.11.015020]
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1 Introduction

Light detection and ranging (LiDAR) is one of the most popular technologies for airborne remote
sensing. Like image processing domain, segmentation of LiDAR point clouds is an important
stage in a processing chain for registration, classification, or reconstruction of different
objects and structures. Fast and accurate segmentation methods are keys in an overall system.
The aim is to group points with similar attributes, groups that can be identified as structures or
part of structures in subsequent processing stages. This abstraction layer makes the object
identification in high-level processing easier and significantly reduces the amount of data when
compared to the original data set and, consequently, the computational cost of subsequent
processing stages.

In the literature, different strategies to approach this task can be found. Most of them are
adapted from methods formerly introduced for image segmentation. General-purpose methods
are usually data-driven strategies. Some examples of data-driven image segmentation techniques
successfully adapted to 3-D point cloud processing are clustering,1 region growing,2,3 or graph-
based segmentation.4,5 When the geometric characteristics of the objects under interest are
known, model-based segmentation techniques are often preferred. Some examples are those
approaches based on the Hough transform or the RANSAC fitting.6–8

Segmentation techniques perform in a feature space, instead of the image plane, fit to air-
borne laser scanned data because of their unstructured nature. In this work, a graph-based tech-
nique originally intended for image processing has been tailored for the segmentation of airborne
LiDAR points. Particularly, the segmentation algorithm of Felzenswalb and Huttenlocher9 was

*Address all correspondence to: David L. Vilariño, E-mail: david.vilarino@usc.es

1931-3195/2017/$25.00 © 2017 SPIE

Journal of Applied Remote Sensing 015020-1 Jan–Mar 2017 • Vol. 11(1)

© 2017 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. 

http://dx.doi.org/10.1117/1.JRS.11.015020
http://dx.doi.org/10.1117/1.JRS.11.015020
http://dx.doi.org/10.1117/1.JRS.11.015020
http://dx.doi.org/10.1117/1.JRS.11.015020
http://dx.doi.org/10.1117/1.JRS.11.015020
mailto:david.vilarino@usc.es
mailto:david.vilarino@usc.es
mailto:david.vilarino@usc.es


adapted. In this algorithm, every single LiDAR point is labeled as a node, and these nodes are
interconnected as an undirected graph extended to the neighborhood defined in a 4-D feature
space (x; y; z, and intensity). The edges that characterize the interconnections between two nodes
are weighted based on their distance in this feature space. Therefore, pairs of nodes for which
their LiDAR points present high similarity in the 4-D feature space are connected by an edge
with low weight. Both neighborhood structure and distance between nodes are computed by
using a k-d tree partitioning strategy. Figure 1 shows the idea behind the graph-based segmen-
tation. Nodes are initially connected to their neighboring nodes. Then, these edges are cutoff or
kept in their places based on the relation between the groups containing the nodes associated to
the edges. The result is a set of disjoint groups representing the final segmentation.

This paper is based on the ideas introduced in Ref. 10 including a variation which we name
“interlaced graph-based segmentation.” This new technique, suitable for multicore processing,
improves the robustness and accuracy when the size of the structures of interest is not a con-
straint, or the characteristics of the dataset are not known a priori.

The rest of the paper is organized as follows: In Sec. 2, a detailed description of the seg-
mentation algorithm is carried out. Then, in Sec. 3, an evaluation of the algorithm’s performance
is presented. In Sec. 4, the interlaced scheme suitable for multicore processing is analyzed.
Finally, the conclusions are given in Sec. 5.

2 Graph-Based Segmentation

The segmentation algorithm starts from a graph composed of nodes and edges. The nodes cor-
respond to LiDAR points in the original 3-D point cloud. The edges are links between nodes
according with the neighborhood model (see Sec. 2.1), and the weights are determined from
the features of the points.

Figure 2 shows the block diagram of the algorithm. The input of the algorithm is the LiDAR
points file, and the output is the segmentation. The algorithm consists of three main steps, which
are described in the following sections. A number of parameters are also used: the neighbor
count, the weight of each of the features under consideration (x; y; z, and intensity), and
a calibration parameter K.

Fig. 1 Illustration of graph-based segmentation. (a) Lidar points are nodes of the graph. (b) The
initial graph is created from the relation between neighboring nodes. (c) The graph is rearranged in
disjoint groups which represent the final segmentation (d).
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2.1 Neighborhood Model

For the graph construction, it is necessary to define a neighborhood model and the weights
assigned to the links between nodes. Unlike the image domain, LiDAR data sets present irregular
distributions, which make the neighborhood representation critical for subsequent data
processing.11 Different neighborhood models can be used in the LiDAR data processing.
Among the most common approaches are the Delaunay triangulation12 and the K-nearest neigh-
bors (KNN).4,13 Other popular approaches define neighbors as points within a bounding box
(usually a cylinder or a sphere). These methods are very sensitive to the parameter selection
(number of neighbors, radii, and orientation of bounding box, etc.), which greatly depends
on the data characteristics, and, in particular, on the point density. The accuracy of some
tasks, such as the computation of normal vectors or some segmentation techniques like region
growing, are highly dependent on the neighborhood definition. However, for the graph-based
segmentation, the set of connections produces indirect links between nodes providing robustness
with suboptimal neighborhood definitions.

In this work, we have used a KNN search based on the k-d tree partitioning,14 a very efficient
nearest neighbor algorithm in low dimensionality spaces. Particularly, we have used the imple-
mentation included in the open source library FLANN fast library for approximate nearest
neighbors optimized for fast processing.15 This library is broadly used in the computer vision
community as it provides different techniques to determine the neighborhood in feature spaces.
In our experiments, we have considered the squared Euclidean distance in a feature space defined
by the 3-D spatial coordinates (x; y, and z) and the intensity. Therefore, the links between nodes
and their weights can be defined by the relative importance of any of these features. For example,
high weights for x- and y-coordinates will lead to compact connected groups in the final seg-
mentation, whereas high weights for intensity might lead to sparse distributed groups in which
the key feature is the type of terrain.

2.2 Graph Definition

The segmentation consists of an iterative process of classification of nodes into homogeneous
groups (also called components) based on their similarity in the feature space. Initially, we define
as many components as nodes in the graph. Then, the edges connecting these LiDAR points are

Fig. 2 Block diagram of the segmentation algorithm. The small labels indicate user-configurable
parameters.
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arranged and evaluated in ascending order. For a given edge, the minimum spanning tree (MST)
of the components associated with the nodes connected by the edge under analysis is obtained.
If the weight of the edge is smaller than the lowest weight in the previously calculated MSTs,
the components are merged (strong edge). Otherwise, the edge is broken (weak edge). This
decision can be formalized as

EQ-TARGET;temp:intralink-;e001;116;675edgeðCi; CjÞ ¼
!
strong if wedge < min½IntðCiÞ; IntðCjÞ%
weak otherwise

; (1)

where edgeðCi; CjÞ is the edge between component i and j, wedge is the weight associated with
that edge, and IntðCiÞ represents the internal weight of component Ci defined as the largest edge
of the MST connecting the nodes of Ci. Note that the internal weight of the initial components is
zero as they contain only one node.

To encourage the merge between components in the first iterations, an offset is added to
the internal weight of the components. This offset represents a powerful tool to configure
the segmentation according to the application. It can be associated with the shape or the size
of the components. In our experiments, this parameter is used to control the strength of the
edges and the size of the final components (as explained in Sec. 3). The proposed default of
this offset is

EQ-TARGET;temp:intralink-;e002;116;510offsetðCiÞ ¼ K∕sizeðCiÞ; (2)

where K is the component calibration parameter shown in Fig. 2, and sizeðCiÞ represents
the number of nodes assigned to component Ci. An important issue is that the MST of any
new component should be recalculated to obtain the new internal weight (the highest weight
in the MST), which would produce a high computational cost. Nevertheless, this is not neces-
sary, as the internal weight can be updated by just comparing the internal weights of the
components that have been merged to produce the new one and the weight of the considered
edge. The highest of these three values will correspond to the internal weight of the new
component.

3 Algorithm Evaluation

In this section, results of our proposal for the segmentation of LiDAR point clouds are discussed.
As a case study, we have used a point cloud subset of 686,103 points with a density of
9 points∕m2 (Fig. 3). This set provides a high variability of landscape relief as well as different
regions and structures, including small and regular constructions, extensive forest, large roads,
and others.

Fig. 3 Data set for validation: (a) orthophoto, (b) intensity map, (c) elevation map (from blue to
red).
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In order to perform the segmentation, it is needed to configure the input parameters
(see Fig. 2): weights for x; y; z, and intensity, neighbors’ count, and component calibration.
For the experiments, we have used wx ¼ 0.5, wy ¼ 0.5, wz ¼ 1 and wI ¼ 0.1. Concerning
the component calibration, we have considered the following equation:

EQ-TARGET;temp:intralink-;e003;116;687offsetðCiÞ ¼
!
K∕sizeðCiÞ if sizeðCiÞ < ξ
K∕½10 × sizeðCiÞ% if sizeðCiÞ > ξ

; (3)

where ξ ¼ 20;000, K ¼ 100 for edges under the average weight, and K ¼ 50 for edges over the
average weight. This strategy facilitates the merge of small components in the initial steps and
prevents undersegmentation. ξ represents a powerful tool if the sizes of structures of interest are
known a priori. For example, if we are interested in small buildings ξ can be calibrated accord-
ingly. However, this parameter might be a limitation for general purpose segmentation since it is
obtained experimentally and depends on the dataset. To deal with this issue, a variation of
the graph-based segmentation which does not require this parameter is proposed in Sec. 4.

In order to illustrate the capabilities of this segmentation technique, Fig. 4 shows the result of
the segmentation considering 50 neighbors (connecting every point in the initial graph). Note
that the road with a “4” shape is correctly segmented in only one group and, at the same time,
small buildings are well segmented, too. Furthermore, it can also be observed that extensive tree
areas are segmented in large groups with some parts disconnected each other in the spatial
domain.

Some applications require fast segmentation even at the expense of accuracy. However, loss
of accuracy might be hard to manage in subsequent classification steps. In these situations, it is
necessary to achieve a trade-off between computation speed and reliability. The main parameter
related with both speed and accuracy is the neighbor count to construct the graph. The higher
the number of neighbors, the higher the number of edges to be processed, which leads to slow

Fig. 4 Example of automatic segmentation using the graph-based approach.
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computations in the graph organization. Figure 5 shows the influence of the neighbor count on
the computation speed. The impact of the neighbor count is more noticeable in the KNN com-
putation. The experiments have been carried out on an Intel Core i7-2600 at 3.4 GHz.

In Fig. 6, the relation between the resulting segmentation and the number of neighbors is
illustrated. In this case, only groups with more than 15 points have been taken into account.
Note that the number of groups quickly stabilizes with a neighbor count over five.

Table 1 includes numerical data for segmentation results with different neighbor counts.
Percentage of segmented points refers to points included in groups with more than 15 points.
For this dataset, smaller groups are considered irrelevant.

In our experiments, neighbor counts between 10 and 20 provide the best trade-off between
computation cost and accuracy. Higher neighbor counts produce a rapid increase of the
computation time with no significant improvement in the segmentation quality.

Fig. 6 Number of groups from data segmentation with different neighbor counts.

Fig. 5 Computation time of KNN estimation and graph partitioning.
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4 Interlaced Graph

In practical situations, a valid segmentation should be as close as possible to the optimal solution.
However, it is difficult, if not impossible, to identify the optimal segmentation. The segmentation
quality is usually tested implicitly in subsequent classification steps where it is easier to measure
the accuracy to classify objects of interest. For example, a road split in several segments can be
easily reconstructed, or some parts of objects, like roofs or trees might be dealt in subsequent
steps to recognize a building or a forest. In this sense, it is usually better to have an overseg-
mentation than an undersegmentation. Subsequent classification stages can deal with overseg-
mented areas, but it is rather more difficult to identify different objects within the same region
from segmentation. The graph-based segmentation appears to be efficient to manage nonuni-
formly distributed point clouds. However, the final graph arrangement tends to undersegmen-
tation. If two nodes (LiDAR points) are joined in the same group, all the nodes in the original
groups of these nodes are also included in that group. The granularity of the segmentation can be
controlled with the ξ parameter [see Eq. (3)]. This parameter constrains the size of the groups in
terms of number of nodes. However, ξ might have to be experimentally determined or tuned
relying on the previous knowledge of the input data.

With the purpose of providing robustness to the segmentation, we propose an interlaced
scheme for the graph arrangement. The procedure of this new scheme is depicted in Fig. 7,
and it is as follows: after the edges are ordered in increased order of weight, P graphs are con-
structed using all the nodes, but only with the P’th part of edges for each graph. These graphs are
then arranged following the same procedure as with the single-graph approach.

As a result, P partial segmentations are available after the processing. The regions from all
those segmentations are then combined to produce the final segmentation. This combination is
performed by a hash on the group labels of the LiDAR points (one label per segmentation).

Fig. 7 Block diagram of the interlaced graph approach. The wi are the ordered edge weights.

Table 1 Segmentation results versus computation time for different neighbor counts in a dataset
with 686,103 points.

Neighbor count 2 5 10 25 50 100 150

KNN processing time (s) 1.88 2.71 4.26 8.83 14.19 29.15 47.34

Graph processing time (s) 1.23 2.12 2.84 5.32 9.82 19.83 25.57

Number of groups 23,667 9344 6621 4499 3385 2665 2444

Number of large groups (>15 points) 3954 1197 1016 1011 974 945 968

Percentage of segmented points (%) 83.93 96.67 97.68 98.45 98.80 99.00 99.10
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This way, points with coincidence in all labels are put together in the same group in the final
segmentation. A schematic description is shown in Algorithm 1.

The higher the number of partial segmentations, the higher the granularity of the final seg-
mentation will be. In our experiments, we have found that P ¼ 4 represents a good trade-off
between accuracy and performance. Figures 8 and 9 show an example of processing a LiDAR
point cloud with this interlaced graph-based approach. The point cloud has a million points
with a average density of 9 points∕m2. Figure 8 shows the partial segmentations assuming a
partitioning of the edge array in four parts in a round-robin fashion. Figure 9 shows the result
of the combination of the four partial segmentations. Finally, Fig. 10 shows the result of the
segmentation by using the single graph. In both interlaced and single-graph cases, Eq. (2) instead
of Eq. (3) has been considered. Therefore, no additional constraint is imposed to the groups’ size.
For the other parameters, we have considered wx ¼ 0.5, wy ¼ 0.5, wz ¼ 1 and wI ¼ 0.1, as in
the experiments shown in Sec. 3 and a neighboring count of 50.

Figures 11 and 12 show the results of the segmentation of a LiDAR point cloud correspond-
ing to an urban area different from the previous dataset. Particularly, it corresponds to the
German city of Vaihingen.16 The point cloud contains 2.5 million points with a density of
4 points∕m2. In this segmentation, we have used the same parameters as in the previous rural
area. Without external control of the group size [Eq. (3)], the single-graph approach tends to
produce undersegmentation. However, the interlaced approach provides a valid segmentation
under the same conditions.

Concerning execution times, the algorithm of the interlaced graph approach has been coded
in such a way that the external “for” loop in Algorithm 1 can be fully executed in parallel.
Segmentation results in Figs. 9 and 10 require 43 s on an Intel Core i7-2600 at 3.4 GHz
using OpenMP17 with four processing threads. In the case of the dataset in Figs. 11 and 12,
the computation time is 88 s for the single-graph segmentation and 73 s for the interlaced
approach. The computing overhead associated with the fusion step represents <0.01% of the
overall execution time. The computing time strongly depends on the number of edges that
are not broken in the graph as they produce the merger of groups and the subsequent computation

Algorithm 1 Interlaced graph (assuming N nodes, M edges, and P threads).

Data: N Lidar points

Result: P partial segmentations (Si ) and a final segmentation (SF )

begin

Search neighbors and assign weights for edges;

Sort edges from low to high weights ðw1; w2; : : : ; wM Þ;

for i←1 to P do

Init graph Gi with N nodes and M/P edges ðwi ; wiþP ; wiþ2P ; : : : ; wM−ðP−iÞÞ;

for wedge←wi to wM−ðP−iÞ do

if wedge ¼ strong (see Eq.1) then

Merge components of nodes connected with the edge;

Calculate the internal weight of the new component;

end

end

end

Final segmentation ←SF ¼⋂P
i¼1 Si ;

end
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Fig. 9 Example of automatic segmentation using the interlaced graph-based approach (5108
groups).

Fig. 8 Partial segmentations considering four graphs in the interlaced approach.
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of the internal weight of the new groups. The probability of keeping an edge is inversely propor-
tional to its position in the ordered array of weights. Therefore, the interlaced scheme for the
parallel approach represents the most balanced workload distribution among threads. Table 2
shows the number of edges that produce a merger between groups (components) in the partial
segmentation graphs of the examples mentioned in this section. Furthermore, the edge count for
the single-graph approach is included. The higher degree of groups mergers in the single-graph
approach penalizes the computing time with respect to the interlaced graph technique.

In order to illustrate the robustness of the segmentation algorithm, Fig. 13 shows the
segmentation of a point cloud with only 0.5 points∕m2 density. The proposed segmentation
technique produces good segmentations even with very low density of points. The dataset,
provided by the Spanish Geography Institute through the National Plan of Aerial
Ortophotography, corresponds to the City of Santiago de Compostela.

Fig. 11 Example of automatic segmentation using the interlaced graph-based approach (10,500
groups).

Fig. 10 Example of automatic segmentation using the single-graph-based approach (851 groups).
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Table 2 Number of edges that produce the merge of groups for the partial segmentations of the
interlaced graph (inter 1, inter 2, inter 3, and inter 4) and the single graph (single) for the segmen-
tations in Figs. 9 and 10 (dataset A) and Figs. 11 and 12 (dataset B).

Segmentation Inter 1 Inter 2 Inter 3 Inter 4 Single

Dataset A 986,572 986,492 986,484 986,400 996,637

Dataset B 3,636,396 3,637,068 3,635,591 3,636,565 3,749,662

Fig. 13 Example of automatic segmentation on a dataset with very low-point density
(0.5 points∕m2) using the interlaced-graph-based scheme.

Fig. 12 Example of automatic segmentation using the single-graph-based approach (1645
groups).
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5 Conclusions

In this paper, we describe a graph-based technique for the segmentation of airborne LiDAR point
clouds. This approach can be situated in the middle between data and model-driven strategies, as
it is possible to infer information about the structures to be segmented in the graph computation.
The method provides fast and accurate results to be used in subsequent steps of classification and
object recognition. However, one disadvantage of the graph methodology is the tendency toward
undersegmentation which might be controlled by an external parameter that is dependent of the
datasets. To avoid this, an interlaced segmentation technique is introduced. This strategy consists
of the intersection of the groups from the partial segmentations, which reduces the probability of
undersegmentation. Results of processing datasets with very different point densities show the
robustness of the proposed segmentation technique.
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