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ABSTRACT

In this paper the problem of studying the presence of different vegetation species and artificial structures in the
riversides by using multispectral remote sensing information is studied. The information provided contributes to
control the water resources in a region in northern Spain called Galicia. The problem is solved as a supervised
classification computed over five-band multispectral images obtained by an Unmanned Aerial Vehicle (UAV). A
classification scheme based on the extraction of spatial, spectral and textural features previous to a hierarchical
classification by Support Vector Machine (SVM) is proposed. The scheme extracts the spatial-spectral informa-
tion by means of a segmentation algorithm based on superpixels and by computing morphological operations
over the bands of the image in order to generate an Extended Morphological Profile (EMP). The texture features
extracted help in the classification of vegetation classes as the spatial-spectral features for these classes are not
discriminant enough. The classification is computed over segments instead of pixels, thus reducing the compu-
tational cost. The experimental results over four real multispectral datasets from Galician riversides show that
the proposed scheme improves over a standard classification method achieving very high accuracy results.

Keywords: vegetation, unmanned aerial vehicles, multispectral, classification, textures, superpixel, support
vector machine.

1. INTRODUCTION

Monitoring vegetation changes is essential in the context of current climatic change conditions and rapid human
interventions. Remotely sensed information of the vegetation species present in a region, and the dynamic
behavior of that vegetation provides very useful insights for environmental monitoring, biodiversity conservation,
agriculture, forestry, and many other fields. Satellite based remote sensing is, in some cases, a cost effective
solution as long time data series of consistent and comparable data are usually provided by the sensors placed
on these platforms.1 Nevertheless, UAVs provide a much more flexible platform with a revisiting time of the
same region that can be tuned, and a higher spatial resolution at lower costs.

Vegetation information from remotely sensed images is mainly interpreted by differences and changes in the
green color of the leaves. Very simple methods such as the calculation of vegetation indices, e.g. Normalized
Difference Vegetation Index (NDVI),1 are calculated by combining two or three bands obtained by multispectral
or hiperspectral sensors. But these indices are not suitable for the separation of vegetation species. Neural
networks have become popular in the analysis of remote sensing data showing their efficiency for a variety of
problems.2 For the particular case of vegetation identification from UAV remote sensing images, Senthilnath et
al.3 propose a classification method for tree crown classification based on a spectral-spatial method, in particular,
a hierachical clusterisation method based on k-means and expectation maximization. In the case of Feng et al.,4

random forest is used for urban vegetation mapping together with texture analysis, showing that using texture
features improves the classification accuracy significantly.
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The overall objective of this paper is to detect the presence not only of different vegetation species but also
non-vegetation elements along the riverside and a region of around 100 meters on both sides of the river, as a first
step in visualizing changing vegetation dynamics over time. With this aim, a supervised classfication methods
based on spatial-spectral and textural features is proposed.

2. SPATIAL-SPECTRAL TEXTURE-BASED CLASSIFICATION SCHEME

The problem of identifying different vegetal species and non-vegetal structures is posed in this paper as a
supervised classification problem. In order to address it, a spectral-spatial texture-based classification scheme is
proposed. As it is well-known in the remote sensing field, the classification results are improved when information
on the spatial structures present in the input image is added to the different spectral features available for each
pixel of the image.5 In the case case of identifying different vegetation species, the textural information helps to
discriminate among different species with very similar spectral signatures, i.e., similar reflectance values.6

Figure 1 shows the classification scheme proposed in this paper. The steps involved in the scheme are the
following:

X

Morphological
Profiles

SLIC
Superpixels

k-means

Spectral-Spatial
Data Extraction

Texture Data
Extraction

Reference Data SVM Training SVM Classification

Classification Map

Figure 1: Spatial-spectral and texture-based classification scheme.

1. Morphological Profiles: First, extended morphological profiles (EMPs)7,8 are generated. As a re-
sult,from the bands of the image new bands including spatial information at different sizes are created
through mathematic morphology operations. In this particular approach, the transformations performed
are morphological openings and closings with an structuring element (SE) of increasing size. As a result, for
each band of the image the different dim and bright structures in the band are highlighted. The classifiers
take advantage of two side effects of the spatial enhancing produced by the EMPs: the reduction of noise
and the homogeneity increase in the neighborhood of each pixel.

Figure 2 shows the effect that the EMP calculation produces over a portion of a river bank image when
the radius of the SE is increased. As the radius increases, the influence of the small spatial structures is
also decreased. In Figure 2, rocks and tree crowns in the river bank are simplified into larger structures.

2. SLIC Superpixels: its objective is the identification and delimitation of uniform regions. Superpixel
segmentation algorithms such as SLIC9 are able to split the image into segments of similar size, adapting
its shape to the natural borders of spatial structures in the image. Some advantages of SLIC over other
segmentation algorithms include the possibility to tune the parameters that influence the characteristics
of the segments (allowing to tune segment sizes, change the regularisation factor and set minimum size
constraints), and its low execution time.

In the scheme, SLIC plays two key roles: a data downsizer and a spectral-spatial structure enhancer. Some
algorithms in the scheme that are executed after SLIC, such as SVM, are computed over segments instead
of over separate pixels. An example of a segmented scene can be seen in Figure 3.

3. k-means: a clusterisation algorithm such as k-means10,11 is actually an unsupervised classifier that sepa-
rates pixels into a number of classes based on the criteria selected by the user. The k-means algorithm uses
the Euclidean distance between the centroids (as many as the number of clusters) as separation criterion.
These are iteratively updated as the average of all the nearest pixels to its current position. In the proposed
solution, pixels of the training images are assigned a membership to a cluster of a total decided by the
user.
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(a) Original color composition. (b) Disk of radius 5 as SE. (c) Disk of radius 10 as SE.
Figure 2: Example of the effect of morphological transformations with different sizes of the SE in a river bank.

Figure 3: Resulting SLIC segmentation with a selected average segment size of 100 pixels.

In Figure 4 the resulting unsupervised classification of an oak canopy is shown. As can be seen, the
membership distribution is helpful to determine the vegetation species, since different types of tree crowns
often provide unique membership layouts.

(a) Oak canopy color composite. (b) Example of k-means application.
Different colors represent member-
ships to different clusters.

Figure 4: k -means clusterisation of an oak crown into 6 clusters.

4. Spectral-Spatial Data Extraction: the goal of this stage is to combine the EMP and the superpixel
segmentation map. For each segment and each band of the image calculated from the EMP, the average
and standard deviation values for the pixels in the segment are calculated. This approach of fusing spectral
and spatial information makes the scheme highly reliable against misregistrated and noisy regions while
reducing the computational requirements by one to two orders of magnitude, depending on the segment
average size.
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5. Texture Data Extraction: the purpose of this stage is to extract the variation of individual pixels inside
segments, i.e. texture features, to distinguish among vegetation canopies. In the proposed scheme k-means
plays the role of a simplified version of the Fisher Vector (FV)13 approach achieving similar performance
and allowing the characterisation of superpixels by membership statistics that are not sensible to scale and
rotation.

Figure 5 shows an example of application to an image (Figure 5a) made up of oak (on the left) and
eucalyptus (on the right) canopies. The clusterisation map of Figure 5b shows that, as expected, the
membership distribution among the eucalyptus and oak crowns is remarkable different.

(a) Color composite. (b) k-meansclusterisation.
Figure 5: A color composition scene of oak and eucalyptus canopies and its clusterisation with k-means using 10 classes.

6. SVM Classification: the spectral-spatial and texture features extracted in the previous stages feed four
SVM classifiers that are hierarchically arranged. The objective of this hierarchy, shown in Figure 6, is
to discriminate first into large groups that are easier to classify because their spectral signatures are very
different. Figure 6a shows the different classification models created by the different SVMs after the
training step. The operation of the classification hierarchy is shown in 6b. The inputs to SVM 1, SVM 2,
and SVM 3 that perform the identification of vegetation, water and non-vegetation classes, respectively,
are the spectral-spatial features. Due to the fact that the separation among vegetation species is a more
challenging task, the inputs to SVM 4 are the texture features.

Reference
data
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SVM 3

SVM 4Texture
features

vegetation model

water model

non-vegetation classes model

vegetation species model

(a) SVM training structure.
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(b) SVM classification structure.
Figure 6: SVM training and classification hierarchies.
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Figure 7: Average spectrum of classes of one of the real datasets.

Figure 7 shows the variability of the spectral signatures for the different classes for the Eiras Dam dataset.
In particular, Figures 7a and 7b show the average spectrum of non-vegetation and vegetation classes
respectively, evidencing that a separation between non-vegetation and vegetation classes is a straight-
forward task as compared to the separation of the eleven classes altogether.

3. DATASET DESCRIPTION

In this section the four multispectral datasets used in the experiments are described as well as other relevant
technical information.

3.1 Locations and sensor

With the objective of monitorizing the interaction of the masses of native vegetation (N. Vegetation) with
artificial structures and river beds, four locations in the Galician province of Pontevedra were selected. These
are located in an area comprised between the “Embalse do Eiras” (Eiras dam) location and the local village
of “Pizargos”, with a distance of approximately 13 kilometers end-to-end. They were selected based on the
presence of native vegetation, Eucalyptus (Eucalyptus globulus), and maritime pine (Pinus pinaster). The
native vegetation, that populates areas near the water streams due to its ability to survive under unstable
water conditions, includes oaks (Quercus robur and Quercus pyrenaica), birches (Betula pendula), alders (Alnus
glutinosa), and willows. Different artificial structures are also present and are identified: rooftops covered by
tiles, some concrete structures, asphalt roads, stone structures, and bare soil roads.

The datasets were captured by the MicaSense RedEdge multispectral camera mounted on a custom UAV. Its
five discrete sensors provide spectral channels at wavelengths of 475 nm (Blue), 560 nm (Green), 668 nm (Red),
717 nm (Edge), and 840 nm (NIR). The spatial resolution is 8.2 cm/pixel at a heigth of 120 m. The sensor is
placed on a UAV, allowing the capture of data over long distances in each flight.

3.2 Datasets

Four datasets were captured in four different zones in the basins of the rivers Oitavén and Xesta:
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• River Oitavén: this dataset captures the watershed of the river Oitavén on its way through the local village
A Ponte. It was photographed on July 18, 2018 at a height of 120 meters. The size of the image is
6689 × 6722 pixels and its color composite can be seen in Figure 8a. It reveals some misregistrated areas
in the lower right part of the scene, probably caused by the unpredictable light variations along the flight.
Leaving aside those artifacts, the image is indeed in very good shape. In it, several tree species (oak and
eucalyptus are specially abundant) and a number of artificial structures can be spotted.

• Creek Ermidas: 500 meters east from the River Oitavén dataset, the Creek Ermidas meets the river
Oitavén. The flight, carried out on July 18, 2018 at a height of 120 m, covers the banks where these two
water flows converge, as depicted in Figure 8c. The dimensions of this dataset are 11924×18972 pixels and
present some shaded areas in the surroundings of the main road crossing the image from north to south.
In relation to the vegetation masses, there are plenty of oak and eucalyptus canopies on the west whereas
the east side is sparsely populated by pines.

• Xesta Basin: near the border between the Galician provinces of Pontevedra and Ourense is located the
source of the River Xesta. This is an exquisitely preserved basin with vast fields of low vegetation, unique
rocky areas as well as oak canopies. The images were captured on July 6, 2018 at a height of 120 m. The
RGB composition of the mosaic is shown in Figure 8e and it has a resolution of 15424 × 10179 pixels.

• Eiras Dam: finished in 1977, Eiras dam is the reservoir that supplies running water to the town of Vigo.
The dam outlet gives way to a river bed with many meanders, surrounded to the south by dense oak
canopies and artificial paths. The lack of vegetation that can be noticed on the north banks was due to a
fire that took place in 2018. To the east, the dam crest along the main penstock appear bounded by some
sparse pines crowns. The image dimensions are 5176 × 18224 pixels and it was captured on July 6, 2018
at 120 m. Its color composite can be seen in Figure 8g.

The construction of accurate reference data was a long-term process involving forestry experts and the authors
of the paper. Information from vegetation inventories, field visits and the expertise of the forestry experts along
with the analysis of canopy textures were the main elements considered in producing the reference data. The
latest revisions of the reference maps for the River Oitavén, Creek Ermidas, Xesta Basin, and Eiras Damdatasets
can be seen in Figures 8b, 8d, 8f, and 8h, respectively. The color legend and pixel count for the different classes
are detailed in Table 1.

T

Table 1: Color code and disaggregated pixel count of the reference data by class and dataset.

# Color Class River Oitavén Creek Ermidas Eiras Dam Xesta Basin

0. Unknown 38,879,694 219,303,651 90,270,115 139,955,174

1. Water 309,248 163,930 734,617 71,756

2. Oak 1,374,889 804,040 2,067,380 3,821,501

3. Tiles 78,785 138,678 8,232 –

4. Meadows 2,440,331 3,423,506 773,964 12,468,609

5. Asphalt 43,861 737,409 85,209 130,612

6. Bare Soil 113,329 123,416 96,935 49,468

7. Rock 79,152 174,088 144,800 503,776

8. Concrete 128,022 32,866 27,061 –

9. Autochthonous Vegetation 458,565 – – –

10. Eucalyptus 863,698 1,135,997 8,451 –

11. Pines 193,884 184,547 95,132 –
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(a) (b)

(c) (d)

(e) (f)

(g)

(h)
Figure 8: Multispectral datasets obtained for the experimental study. The color composite of figures (a), (c), (e) and (g)
alongside the reference data of (b), (d), (f) and (h) correspond to the River Oitavén, Creek Ermidas, Eiras Dam, and
Xesta Basin datasets, respectively.
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4. EXPERIMENTAL RESULTS

We evaluate the classification scheme in terms of Overall Accuracy (OA) and Average Accuracy (AA). OA
represents the total percentage of correctly classified pixels. AA represents the average percentage of correctly
classified pixels for each class.

In this section we present the experimental results of the proposed scheme tuned using segments with an
average size of 400 pixels, regularisation factor of 20, 200 iterations for the SLIC algorithm. For k-means the
number of centroids that is the same as the number of clusters is 30. Finally, for the EMP, 12 bands are generated
by using circular structuring elements of sizes 2, 4, 8, 10, 12 and 14. The values for these parameters were selected
after an extensive search considering the four real datasets.

In order to perform a supervised classification by SVM, the pixels in the reference data are usually divided
into two sets, training and testing. In our case the number of pixels of the image is reduced by using only one
superpixel to characterize each segment obtained by SLIC. Table 2 details the number of randomly selected
pixels (Sel. in the table) the total number of pixels, and the corresponding numbers of segments. As a regular
rule, we selected for training purposes only 15 % of the total number of segments for large classes such as Oak
or Meadows, and between 20 % and 30 % for the smallest ones (Tiles, Concrete).

Class River Oitavén Creek Ermidas Eiras Dam Xesta Basin

Pixels Segments Pixels Segments Pixels Segments Pixels Segments

Sel. Total Sel. Total Sel. Total Sel. Total Sel. Total Sel. Total Sel. Total Sel. Total

Water 52,827 309,248 96 643 26,435 163,930 48 321 113,319 734,617 214 1,428 10,747 71,756 20 146

Oak 209,344 1,374,889 554 3,696 124,614 804,040 331 2,209 317,454 2,067,380 859 5,732 444,515 3,821,501 1,103 9,878

Tiles 12,548 78,785 27 186 19,911 138,678 45 303 3,262 8,232 8 20 – – – –

Meadows 368,637 2,440,331 903 6,025 530,229 3,423,506 1,273 8,489 106,951 773,964 271 1,813 1,370,935 12,468,609 3,377 31,214

Asphalt 6,977 43,861 14 95 114,028 737,409 255 1,704 13,765 85,209 30 181 17,017 130,612 40 324

Bare Soil 16,841 113,329 43 287 19,353 123,416 47 315 19,448 96,935 55 331 9,989 49,468 25 122

Rock 10,829 79,152 32 218 22,732 174,088 67 447 11,018 144,800 40 217 50,617 503,776 151 1,368

Concrete 20,316 128,022 55 369 4,362 32,866 12 80 9,148 27,061 25 84 – – – –

N. Vegetation 70,758 458,565 190 1,273 – – – – – – – – – – – –

Eucalyptus 121,074 863,698 402 2,684 168,238 1,135,997 484 3,230 2,691 8,451 8 24 – – – –

Pines 26,386 193,884 68 458 27,742 184,547 77 516 19,346 95,132 55 265 – – – –

Table 2: Training samples and total number of samples of the reference data used in the experiments. The values are
shown in terms of pixels and the corresponding reduced number of segments.

A comparison of the SVM accuracy classification results yielded by a pixel-wise SVM classification and by
the proposed scheme when segments are classified, is shown in Table 3. As it can be seen, an increase in OA
and AA of 15 % and 7 %, respectively, is observed. The aforementioned results are remarkable in the sense that
the benefits of using spatial information are verified despite the reduction in the amount of training features.
Moreover, on the right part of the table, the OA values obtained by each SVM of the classification hierarchy
are detailed. The accuracies for the two classifiers that perform the first separation of segments identifying
vegetation and water (SVM 1 and SVM 2 respectively), achieved very high OA values. These high values are
very relevant to reduce the number of mistakes produced by the last two specialised classifiers. The variation
in the amount of samples available for the different classes and the different datasets produce a variation in the
OA values depending on the dataset considered.

Dataset SVM Scheme

OA AA OA AA SVM 1 SVM 2 SVM 3 SVM 4

River Oitavén 72.26 % 77.68 % 88.40 % 86.39 % 98.86 % 99.72 % 89.99 % 88.20 %

Creek Ermidas 78.78 % 81.65 % 94.43 % 89.73 % 99.76 % 99.70 % 93.97 % 94.53 %

Eiras Dam 79.93 % 81.18 % 93.84 % 87.30 % 99.39 % 99.70 % 95.05 % 93.49 %

Xesta Basin 82.04 % 81.05 % 94.61 % 86.21 % 99.46 % 99.89 % 87.96 % 94.92 %
Table 3: Comparison in terms of classification accuracy of the proposed scheme and a SVM classification.
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5. CONCLUSIONS

The problem of making an inventory of the vegetation species present at the river banks in order to control
natural resources is studied in this paper. In particular, a spatial-spectral texture-based classification scheme
for the identification of vegetation species from multispectral images is presented. The scheme was developed to
adapt to the identification of vegetation species, mainly trees, and non-vegetation classes such as water, rocks
and artificial structures present in the river banks of Galicia, in Spain. The work was carried out to replace
inventories based on field visits that are costly in time and money, because experts need to walk over large areas
that are difficult to access.

The scheme consists of different steps. The spectral-spatial information is extracted by using a superpixel
segmentation algorithm called SLIC, and extended morphological profiles. Texture features are exctracted by
using a k-means algorithm and selectively applied only to the classification of vegetation. The supervised
classification is performed by a hierarchical structure made up of four SVM classifiers and is featured not over
pixels but over superpixels that represent the segments obtained by the SLIC algorithm, thus reducing the
computational time.

The proposed scheme requires accurate reference data as input. It was evaluated over 4 multispectral datasets
obtained by a UAV at a height of 120 meters, showing its suitability to obtain relevant results for the forestry
experts. In particular, accuracies of up to 94.61% were obtained in comparison to values of up to 82.04% in the
case of a standard SVM classifier.

As future work we plan to analyse more in detail the performance of the classification scheme when different
images obtained by the same sensor in different spatial locations are analyzed.
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