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Abstract: In this article, we compare two different strategies to contextualize the meaning of words in a sentence: both
distributional models that make use of syntax-based methods following the Principle of Compositionality and
Transformer technology such as BERT-like models. As the former methods require controlled syntactic struc-
tures, the two approaches are compared against datasets with syntactically fixed sentences, namely subject-
predicate and subject-predicate-object expressions. The results show that syntax-based compositional ap-
proaches working with syntactic dependencies are competitive with neural-based Transformer models, and
could have a greater potential when trained and developed using the same resources.

1 INTRODUCTION

A very important issue for the study of natural lan-
guage semantics is to understand and formalize how
the sense of a sentence is composed from the meaning
of its constituent words. Compositionality, as defined
in formal semantics, requires the notion of syntactic
structure. More precisely, the Principle of Composi-
tionality states that the meaning of a complex expres-
sion is a function of the meanings of the constituent
words and of the way they are syntactically combined
(Partee, 2007).

Many approaches dealing with compositional dis-
tributional semantics in the latest 10 years have made
use of syntax-based models to build the meaning
of complex expressions following the Principle of
Compositionality (Baroni, 2013; Weir et al., 2016;
Gamallo et al., 2019). In these approaches, there
is an important interaction of meaning and context
mediated through the syntactic structure. However,
the most recent language models based on the Trans-
former architecture, such as BERT (Devlin et al.,
2019) RoBERTa, (Liu et al., 2019), or DistilBERT
(Sanh et al., 2020), do not make explicit use of syn-
tactic information and, thereby, they do not follow
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the Principle of Compositionality as defined in formal
semantics. Instead, they contextualize the sense of
each word using distributional information extracted
from the training corpus. There are very few works
on syntax-augmented transformers incorporating de-
pendency structure, but they raise some doubts re-
garding the viability of the use of syntax in basic Nat-
ural Language Processing applications and tasks such
as information extraction (Sachan et al., 2020).

In recent years, the overwhelming use of Trans-
formers and contextualization approaches to mean-
ing construction has led to a decline in purely com-
positional models based on syntactic information and
trained on parsed text. In fact, the main limitation of
purely compositional approaches is that, in general,
they are only able to work with controlled syntactic
contexts: adjective-noun, subject-verb, subject-verb-
object, etc. This is a strong limitation if we con-
sider that most datasets built to measure the quality
of detecting contextualized senses of words or com-
plex meanings of sentences are not restricted to spe-
cific syntactic structures. They are constituted by
free sentences or paragraphs with no specific syn-
tactic structure, as the test sentences of the data-
set provided by the SemEval-2020 Shared Task 3 -
Predicting the (Graded) Effect of Context in Word
Similarity (Armendariz et al., 2020), whose aim is
to predict the degree of similarity of two words
considering the context in which those words ap-
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pear. Another similar dataset is described in Pilehvar
and Camacho-Collados (2019) for evaluating context-
sensitive meaning representations.

To make a fair comparison between both syntax-
based and transformer-based models, we will take ad-
vantage of syntactically controlled datasets contain-
ing subject-predicate and subject-predicate-object ex-
pressions. We will compare several settings of the
following two main models: (a) Transformers: Con-
textualized vectors of constituent words generated by
Transformer models (Devlin et al., 2019), and (b)
Compositional Approaches: Compositional vectors
generated by combining non contextual vectors fol-
lowing the syntactic restrictions that links the con-
stituent words of a sentence (Gamallo, 2019).

There is a lot of context information encoded in
the syntax that all these distributional-based Trans-
former models are ignoring. The objective of this
paper is to highlight the true potential of syntax-
driven compositional models and their competitive-
ness even in clear disadvantage with regard to the
number of parameters required to train the models.
Under these conditions, we will compare the perform-
ance of non-compositional Transformers with a com-
positional strategy based on syntactic dependencies.

The rest of the paper is organized as follows. The
two strategies, in particular the compositional one, are
introduced in Section 2. Experiments and comparat-
ive results are described and discussed in Section 3.
Finally, conclusions are addressed in Section 4.

2 CONTEXTUALIZATION AND
COMPOSITIONALITY

As mentioned above, contextualized embeddings
based on Transformer architecture and compositional
distributional models relying on syntactic dependen-
cies are two different strategies to build the meaning
of composite expressions and to deal with the repres-
entation of contextualized word senses. This section
describes specific models of the two approaches.

2.1 Word Contextualization with
Transformers

Transformers are the most popular implementation
to build contextualized word embeddings. Trans-
former architecture is able to integrate word con-
text thanks to only self-attention mechanism, dispens-
ing with sequence-aligned recurrent or convolutional
neural networks (Vaswani et al., 2017). The multi-
headed attention mechanism is able to relate different

word positions of a single sequence so as to compute
the complex representation of the sequence.

Bidirectional Encoder Representations from
Transformers, known as BERT (Devlin et al., 2019),
is a bi-directional transformer-based language model
learning information from left to right and from
right to left. As any language model, it can be
used to extract high quality language features from
input text, but it can also be fine-tuned on specific
NLP tasks such as entity recognition, classification,
question answering, sentiment analysis, and so on. In
the experiments described later, we will use BERT
and family variations to extract both contextualized
word embeddings and sentence embeddings from
text in order to compute semantic similarity between
complex expressions or sentences.

It is possible to generate context-sensitive vectors
representing complex expressions or sentences using
Transformers, even though recent research suggests
that these representations do not capture high-level
compositional information (Yu and Ettinger, 2020).
In our experiments, two different Transformer tech-
niques to generate the context-sensitive vector repres-
enting the meaning of a sentence will be explored:

Sentence Embeddings with Pooling Methods
using SBERT (Reimers and Gurevych, 2019): it adds
a pooling operation to the output of the Transformer
to derive fixed sized sentence embeddings which are
fine-tuned on sentence pairs from Natural Language
Inference datasets. The default pooling strategy is to
compute the mean of all output vectors. SBERT is
the state-of-the-art strategy in several datasets requir-
ing sentence similarity.

Contextualized Word Embeddings: Each trans-
former layer of 12-layer BERT-base model (or 24 in
BERT-large and 6 in DistilBERT model) stands for
a contextualized representation of a given word by
putting the focus on different chunks of the input se-
quence. To elaborate the individual vectors of each
word in context, we combine some of the 12 (6 or 24)
layers of the deep neural network with the aim of find-
ing the combination of layers that provides the best
contextualization of each word in the sequence. By
considering that the upper layers of contextualizing
word models produce more context-specific repres-
entations (Ethayarajh, 2019) which are better suited
to the purpose of the task at stake, we create contextu-
alized vectors by combining the last four layers in two
different ways: by summing or by concatenating. In
our experiments, contextualized vectors of words will
represent the meaning of the complex expression.

For those cases where the tokenizer separates a
word into different sub-words (or affixes), we only
consider the first one, which represent the lexical stem
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of the full token.
It is worth pointing out that there is a controversy

regarding the ability of Transformers to identify syn-
tactic information. According to Rogers et al. (2020),
syntactic structure is not directly encoded in weights
generated by the self-attention mechanism. In fact,
the predictions of BERT-like models are not altered
even by the recurrent presence of syntactic problems
in the input text, such as truncated sentences, shuffled
word order, or removed subjects and objects (Ettinger,
2020). This suggests that the BERT’s successful en-
coding of syntactic structure, as in Goldberg’s work
(Goldberg, 2019), does not indicate that it actually re-
lies on that knowledge (Rogers et al., 2020), rather
than in purely statistical coincidence.

2.2 Dependency-based Compositional
Models

The first models to build the composite mean-
ing of complex expressions were not compositional
(Mitchell and Lapata, 2008, 2009, 2010), as they con-
sisted of combining non contextual vectors of con-
stituent words with arithmetic operations (addition or
component-wise multiplication). By contrast, more
recent distributional approaches directly rely on syn-
tactic information and thereby follow the Principle of
Compositionality. Some approaches develop sound
compositional models of meaning where functional
words are represented as high-dimensional tensors
(Coecke et al., 2010; Baroni and Zamparelli, 2010;
Grefenstette and Sadrzadeh, 2011b; Baroni, 2013).
This idea is mostly based on Combinatory Categorial
Grammar and typed functional application inspired
by Montagovian semantics. However, there is an im-
portant issue concerning this strategy: it results in
an information scalability problem, since tensor rep-
resentations grow exponentially as the phrases grow
longer (Turney, 2013).

Other compositional approaches, inspired by the
work described in Erk and Padó (2008), take advant-
age of dependency analysis and the concept of se-
lectional preferences. In these approaches, there is
not a single meaning for a complex expression, but
each constituent word is provided with a contextu-
alized meaning built by considering its direct and
indirect dependencies with the other constituents of
the complex expression (Weir et al., 2016; Gamallo,
2017, 2019). A specific dependency-based strategy
will be described in more detail in the following
subsections. The dependency-based strategy will be
compared with BERT-like models later in the experi-
ments.

2.3 Compositional Operation

In our dependency-based approach, each syntactic de-
pendency between two words is represented as a se-
mantic compositional operation modeled by two spe-
cific functions, head and dependent, that take three
arguments each:

head↑(r,~x,~y◦) (1)
dep↓(r,~x◦,~y) (2)

where head↑ and dep↓ represent the head and depend-
ent functions, respectively, r is the name of the rela-
tion (nsubj, dobj, nmod, etc), and~x,~x◦,~y, and~y◦ stand
for vector variables. On the one hand,~x and~y repres-
ent the denotation of the head and dependent words,
respectively. They can be represented by means of
standard word vectors derived from non-contextual
embeddings. On the other hand,~x◦ represents the se-
lectional preferences imposed by the head, while ~y◦

stands for the selectional preferences imposed by the
dependent word. Selectional preferences are dynam-
ically constructed vectors and the way they are con-
structed is defined by using an specific example as
follows:

Consider a specific dependency relation, nominal
subject (nsub j), holding between lemma cat, the de-
pendent, and chase, the head, which is the partial
analysis of the composite The cat chased1. The ap-
plication of the two functions consists of combining
(either multiplying or adding) the non contextual vec-
tors with the selectional preferences, by taking into
account the nsub j relation:

head↑(nsub j, ~chase, ~cat◦) = ~chase� ~cat◦ = ~chasensub j↑ (3)

dep↓(nsub j, ~chase
◦
, ~cat) = ~cat� ~chase

◦
= ~catnsub j↓ (4)

Each combinatorial operation (component-wise vec-
tor multiplication in Equation 4) results in a com-
positional vector which represents the contextualized
sense of one of the two words (the head or the de-
pendent). Here, ~cat◦ and ~chase

◦
are selectional pref-

erences resulting from the following vector additions:

~cat◦ = ∑
~w∈VVV cat/nsub j

~w (5)

~chase
◦

= ∑
~w∈ NNNnsub j/chase

~w (6)

where VVV cat/nsub j is the vector set of those verbs hav-
ing cat as subject. More precisely, given the lin-
guistic context < nsub j↓,cat >, the dynamically con-
structed vector ~cat◦ is obtained by adding the vectors

1Function words such as determiners and auxiliar verbs
are not considered in this compositional approach. Only
lexical words are taken into account.
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{~w|~w ∈VVV cat/nsub j} of those verbs (eat, jump, etc) that
are combined with the noun cat in that syntactic con-
text. In more intuitive terms, ~cat◦ stands for the in-
verse selectional preferences imposed by cat on any
verb at the subject position.

On the other hand, NNNnsub j/chase in equation 6 rep-
resents the vector set of nouns occurring as sub-
jects of chase. Given the lexico-syntactic context <
nsub j↑,run >, the vector ~run◦ is obtained by adding
the vectors {~w|~w ∈ NNNnsub j/chase} of those nouns (e.g.
tiger, hunter, etc) that might be at the subject position
of the verb chase. The dinamically constructed vector
~chase

◦
stands for the selectional preferences imposed

by the verb on any noun at the subject position.

2.4 Incremental Composition

Given the above definition of dependency-based com-
position, the iterative application of the syntactic de-
pendencies found in a sentence or complex expres-
sion is modelled as the recursive and compositional
process of constructing the contextualized sense of all
the constituent words. This incremental and recursive
process may go in two directions: from left-to-right
and from right-to-left.

Let us take the expression The cat chased a
mouse. The dependency-by-dependency functional
application from left-to-right results in the follow-
ing three contextualized word senses: ~catnsub j↓,
~chasensub j↑+dob j↑ and ~mousensub j↓+dob j↓. They all to-

gether represent the meaning of the sentence in the
left-to-right direction. Notice that ~catnsub j↓ is not a
fully contextualized vector: it was only contextual-
ized by the verb, but not by the direct object noun.
In order to fully contextualize the subject, we need
to initialize the composition process in the other way
around: from right-to-left.

3 EXPERIMENTS

To compare the performance on models based on
transformers (e.g. BERT-like models) with compos-
itional approaches in the task of building the meaning
of contextualized words, we are required to use data-
sets of expressions with controlled syntactic patterns.
We need this type of datasets because syntax-based
compositional approaches are not mature enough to
deal with expressions of any type and size.

In the experiments, we used two versions of the
dependency-based compositional approach:

comp explicit: It relies on a count-based distri-
butional model with context filtering. The model
is provided with explicit dependencies extracted

with DepPattern (Gamallo and Garcia, 2018) and
only the more relevant contexts per word are con-
sidered. Compositional operation is implemented
with component-wise multiplication.

comp embed: The distributional model con-
sists of word embeddings built with word2vec, con-
figured with CBOW algorithm, window of 5 tokens,
negative-sampling parameter of 15, and 300 dimen-
sions (Mikolov et al., 2013). Compositional operation
is implemented with component-wise vector addition.
Preliminary experiments led us to the conclusion that
vector addition works better than multiplication for
this type of distributional model.

In both cases, the distributional models were built
from the English Wikipedia (dump file of November
20192), containing over 2,500M words.

Concerning the Transformers architecture, we
made use of the large and base BERT variants and
two BERT-based models:

bert-large with 24 layers, 335M parameters and
trained on lower-cased English text.

bert-base with 12 layers, 110M parameters and
trained on lower-cased English text.

roberta with 12 layers and 125M parameters (Liu
et al., 2019).

distilbert with 6 layers and 66M parameters
(Sanh et al., 2020).

All approaches were evaluated against two data-
sets: one with Noun-Verb (i.e. subject-predicate)
expressions and the other with Noun-Verb-Noun
(subject-predicate-object) expressions.

3.1 Subject-predicate Dataset: NV
Expressions

The test dataset by Mitchell and Lapata (2008) com-
prises 120 different pairs of similar expressions eval-
uated by 30 humans, totalling 3,600 human similarity
judgments. Each pair consists of an intransitive verb
and a subject noun (NV expression), which is com-
pared to another NV pair combining the same noun
with a synonym of the verb. For instance, “thought
stray” is related to “thought roam”, being roam a
synonym of stray. To evaluate the results of the tar-
geted systems, the harmonic mean3 of two correla-
tions (Spearman and Pearson) is computed between
individual human similarity scores and the systems’
predictions (cosine similarity) as in SemEval-2017

2https://dumps.wikimedia.org/enwiki/
3In general, harmonic mean is more robust to com-

pute the average of the Spearman and Pearson correlations.
However, if they are not both positive or negative, standard
mean should be used instead, marked with an asterisk.
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Table 1: Left: Mean of Spearman and Pearson correlations
with intransitive expressions (NV) using the benchmark by
Mitchell and Lapata (2008). Right: Correlation with trans-
itive expressions (NVN) using the benchmark by Grefen-
stette and Sadrzadeh (2011). To allow comparison with pre-
vious approaches, we put Spearman values in brackets.

Models ρ

nocomp explicit - sentence 18.50
nocomp emb - sentence 3.25
nocomp explicit - head 8.37
nocomp embed - head 21.29
comp explicit - sentence 333222...222222 (31.77)
comp explicit - head 25.80
comp explicit - dep 29.21
comp embed - sentence 22.00
comp embed - head 9.23
comp embed - dep 5.32
Eck and Padò (2008) (27)
Dinu et al. (2013) (26)
Human 66

Models ρ

nocomp explicit - sentence 21.57
nocomp emb - sentence 28.18
nocomp explicit - head 8.37
nocomp embed - head 35.49
comp explicit - sentence (average) 44.80
comp explicit left-to-right - sentence46.79 (45.72)
comp explicit left-to-right - head 34.62
comp explicit left-to-right - dep 20.55
comp explicit right-to-left - sentence 36.17
comp explicit right-to-left - head 36.68
comp explicit right-to-left - dep 41.95
comp emb - sentence (average) 37.59
comp emb left-to-right - sentence 34.78
comp emb left-to-right - head 29.98
comp emb left-to-right - dep 20.88
comp emb right-to-left - sentence 37.18
comp emb right-to-left - head 29.98
comp emb right-to-left - dep 36.06
Grefenstette and Sadrzadeh (2011) (28)
Hashimoto and Tsuruoka (2014) (43)
Polajnar et al. (2015) (35)
Human 74

Table 2: Left: Mean of Spearman and Pearson correla-
tions with intransitive expressions (NV) between the bench-
mark by Mitchell and Lapata (2008) and different BERT-
based approaches. Right: Correlation with transitive ex-
pressions (NVN) between the Grefenstette and Sadrzadeh
(2011) benchmark and different versions of BERT.

Models ρ

bert-large - sentence 32.12 (31.52)
bert-base - sentence 11.59
roberta - sentence 24.83
distilbert - sentence 2.72
bert-large - head (sum) −11.03
bert-base - head (sum) −7.75
roberta - head (sum) 10.40
distilbert - head (sum) −11.23
bert-large - dep (sum) 14.44
bert-base - dep (sum) 7.23
roberta - dep (sum) 14.43
distilbert - dep (sum) −5.52
bert-large - head (concat) −11.68
bert-base - head (concat) −7.78
roberta - head (concat) 9.94
distilbert - head (concat) −11.45
bert-large - dep (concat) 14.50
bert-base - dep (concat) 6.04
roberta - dep (concat) 14.32
distilbert - dep (concat) −4.60
Human 66

Models ρ

bert-large - sentence 56.46 (61.18)
bert-base - sentence 49.06
roberta - sentence 46.12
distilbert - sentence 38.38
bert-large - head (sum) 35.21
bert-base - head (sum) 31.05
roberta - head (sum) 11.51
distilbert - head (sum) 33.73
bert-large - dep-subj (sum) 9.29
bert-base - dep-subj (sum) 4.07
roberta - dep-subj (sum) 10.23
distilbert - dep-subj (sum) −0.54*
bert-large - dep-obj (sum) 19.88
bert-base - dep-obj (sum) 4.24
roberta - dep-obj (sum) 3.85
distilbert - dep-obj (sum) 6.61
bert-large - head (concat) 34.48
bert-base - head (concat) 30.34
roberta - head (concat) 11.39
distilbert - head (concat) 32.81
bert-large - dep-subj (concat) 9.48
bert-base - dep-subj (concat) 4.89
roberta - dep-subj (concat) 10.15
distilbert - dep-subj (concat) −0.09*
bert-large - dep-obj (concat) 20.36
bert-base - dep-obj (concat) 4.13
roberta - dep-obj (concat) 4.74
distilbert - dep-obj (concat) 8.08
Human 74

Task 2 (Camacho-Collados et al., 2017), by using the
evaluation script provided in that shared task.

We compare three types of context-sensitive sim-
ilarities (between pairs of NV sentences):

sentence: Each composite expression or sentence
is associated with a single vector provided with a fixed
size, and built from the contextualized vectors of its

word constituents. Similarity is computed between
the two vectors, one per sentence. In the composi-
tional approach, this vector is just the average addi-
tion of its constituents. In the BERT-like approaches,
we used SBERT to elaborate each sentence embed-
ding (Reimers and Gurevych, 2019).

head: Similarity is computed between contextual-
ized vectors, namely the head vectors of each expres-
sion. For instance, we compute the similarity between
eye flare vs eye flame by comparing the verbs flare and
flame after being contextualized by the subject noun.
In the BERT-like approaches, contextualized vectors
are built in two different ways: by adding the last 4
layers (sum) or by just concatenate them (concat).

dependent: Similarity is computed between the
dependent vectors of each expression after having
been contextualized by the corresponding verb. E.g.,
we compute the similarity between eye flare vs eye
flame by comparing the noun eye in both contexts. As
in the head-based similarity, BERT-like approaches
are built with both addition and concatenation.

Table 1 (left side) shows the mean of Spearman
and Pearson correlation values (ρ) for intransitive
expressions (NV) using the benchmark by Mitchell
and Lapata (2008). Non-compositional baselines are
shown in the first rows. The sentence-based non-
compositional strategy builds the meaning of each
expression by adding the constituent vectors, while
the head-based non-compositional approach com-
putes similarity just on the basis of the head verb of
each NV expression. Similarity between dependent
words is not considered as the nouns of each NV pair
are identical.

In the next rows, Table 1 shows the results ob-
tained by the two configurations (explicit and em-
beddings) of our compositional strategy. Let us note
that the best scores are achieved by averaging both
head and dependent contextualized vectors with ex-
plicit vectors and embeddings: 32.22 and 22.00,
respectively. In all system configurations, explicit
count-based vectors outperform embeddings, which
are predictive vector models. We put in brack-
ets Spearman correlation values. The best system
(comp explicit - sentence) achieves 31.77 correlation,
which outperforms the Spearman score reported in
Dinu et al. (2013) using a corpus consisting of about
2.8 billion tokens merging Wikipedia, BNC and a
ukWaC (Baroni et al., 2009). The highest score by
comp explicit sentence also improves all BERT-like
configurations reported in Table 2, where the best sys-
tem is a sentence-based configuration, namely bert-
large - sentence: 32.12 correlation.
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3.2 NVN Composite Expressions

The second experiment consists of the same evalu-
ation task as in the previous subsection but performed
on transitive sentences (NVN). The test dataset is de-
scribed in Grefenstette and Sadrzadeh (2011a) and
was built using the same guidelines as Mitchell and
Lapata (2008). Given the dependency-based compos-
itional strategy (comp explicit and comp embed), it is
possible to compositionally build several vectors that
somehow represent the compositional meaning of the
whole NVN sentence. Take the expression “the coach
runs the team”. If we follow the left-to-right strategy,
at the end of the compositional process, we would ob-
tain two fully contextualized senses:

left-to-right head. The sense of the verbal head
run, as a result of being contextualized first by the
preferences imposed by the subject and then by the
preferences required by the direct object.

left-to-right dep. The sense of the direct object
team, as a result of being contextualized by the pref-
erences imposed by run previously combined with the
subject coach. In the left-to-right direction the object
is fully contextualized by the verb and the subject; by
contrast, the subject is not contextualized by the ob-
ject, so that this partially contextualized sense of the
subject is not used to represent the sentence.

If we follow the right-to-left strategy, at the end of
the compositional process, we also obtain two fully
contextualized senses:

right-to-left head. The sense of the head run as a
result of being contextualized first by the preferences
imposed by the object and then by the subject.

right-to-left dep. The sense of the subject coach,
as a result of being contextualized by the preferences
imposed by run previously combined with the object
team. Following this direction, the object is not con-
textualized by the subject.

Table 1 (right side) shows the results of
the dependency-based compositional methods, both
comp explicit and comp embed, as well as several
non-compositional baseline strategies, namely only
head vectors and non-compositional vector addition.
The best configuration is the addition of the contex-
tualized head and dependency words in the right-to-
left strategy with explicit count-based vectors (comp
explicit left-to-right - sentence), which reaches 46.79
correlation. To the best of our knowledge, this value is
three points higher than the best compositional system
on this dataset (Hashimoto et al., 2014). As in the pre-
vious experiment with intransitive expressions, expli-
cit count-based vectors outperform predicted-based
word embeddings. Let us note that the left-to-right
strategy seems to build less reliable compositional

vectors than the right-to-left counterpart in this spe-
cific dataset. This might be due to the weak semantic
motivation of the selectional preferences involved in
the subject dependency of transitive constructions in
comparison to the direct object.

In addition to the fully contextualized words, we
also build three global senses of the sentence, which
are the addition of the head and dep left-to-right and
right-to-left values, as well as the final average sum
of these two additions. It is worth mentioning that
the best fully contextualized word is the subject noun
generated with the right-to-left algorithm (right-to-
left dep: 41.95 in comp explicit), which outperforms
the two contextualized verb senses, both left-to-right
head and right-to-left head. This result was not ex-
pected as the sense of the root verb should be better
positioned to represent the core meaning of the sen-
tence. However, the fact that the subject noun works
so well is conceptually possible since any fully con-
textualized vector may represent the meaning of the
whole sentence from a specific point of view.

The score value obtained by right-to-left sentence
strategy outperforms other systems tested for this
dataset: e.g., Grefenstette and Sadrzadeh (2011b) and
Polajnar et al. (2015) (based on the categorical com-
positional distributional model of meaning of Coecke
et al. (2010)), and also the neural network strategy de-
scribed in Hashimoto and Tsuruoka (2015).

Concerning the BERT-like configurations, Table 2
(right side) includes not only the contextualized vec-
tor of the head and the subject (dep subject), but
also the contextualized vector of the direct object
(dep object) as all constituent words are fully con-
textualized in any Transformer architecture Table 2
shows that the sentence-based algorithm is again the
best strategy to grasp the meaning of NVN expres-
sions. As in the previous dataset, the best correl-
ation is achieved with bert-large: 56.46 (and 61.18
Spearman correlation), which is by far, to the best of
our knowledge, the highest correlation value reported
on this dataset. Another relevant observation is the
fact that there are no significant differences between
adding or concatenating the last layers to build con-
textualized vectors. This is true for the values shown
in both sides of Table 2.

An interesting further analysis is to compare the
correlation scatter plot of the best Transformer and
compositional-based configurations. Figure 1, where
the similarity scores have been standardized, shows
how Transformer models tend to overestimate sim-
ilarity of the sentences (left side), producing greater
errors when sentences are not similar. Conversely,
compositional-based models have a more scattered
and less biased error distribution. That dispersed er-

Comparing Dependency-based Compositional Models with Contextualized Word Embeddings

1263



ror might be the result of limitations of the model and
training resources, but the underlying semantics en-
coding seems to be powerful and less biased.4

Figure 1: SBERT (left) and compositional (right) computed
similarity scatter plots.

4 CONCLUSIONS

The fully compositional method based on transpar-
ent vectors and syntactic dependencies turns out to
be competitive with regard to BERT-like configura-
tions, even if the SBERT strategy using BERT-large
as pre-trained model achieves the best correlation val-
ues among all configurations. It should be noted that
the results of the compositional method have been ob-
tained without requiring neural network architecture.

Another noteworthy characteristic of the composi-
tional method is the fact that it is made up of transpar-
ent vectors. Transparency makes it possible to trace
with some ease which syntactic contexts (and there-
fore linguistic features) are most relevant in the con-
struction of the compositional vectors.

However, the main weakness of the compositional
method is its dependence on syntactic parsing, which
is an important source of errors. Likewise, another
weakness of this method is the increasing difficulty
to build compositional vectors of open sentences with
multiple dependencies of different types. Finally, the
compositional approach does not consider the differ-
ence between fully compositional expressions from
non-compositional or even partially compositional,
even though recent research suggests that neural-
based representations are not able to correctly model
semantic compositionality (Yu and Ettinger, 2020).

In future work, we will study different combinat-
orial mechanisms by distinguishing full composition-
ality from non-compositional expressions, and also by
considering several degrees of partial compositional-
ity. We will also design a strategy to build fully con-
textualized vectors for open sentences with whatever
syntactic structure by dynamically interpreting words
and their selectional restrictions. This will be done by
analyzing and interpreting each sentence dependency-

4The software used to compare models is available at:
https://github.com/manueldeprada/ComparingBERT/

by-dependency in a bi-directional way: from left-to-
right and from right-to-left.
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