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Abstract: Texture information allows characterizing the regions of interest in a scene. It refers to the
spatial organization of the fundamental microstructures in natural images. Texture extraction has been
a challenging problem in the field of image processing for decades. In this paper, different techniques
based on the classic Bag of Words (BoW) approach for solving the texture extraction problem
in the case of hyperspectral images of the Earth surface are proposed. In all cases the texture
extraction is performed inside regions of the scene called superpixels and the algorithms profit
from the information available in all the bands of the image. The main contribution is the use of
superpixel segmentation to obtain irregular patches from the images prior to texture extraction.
Texture descriptors are extracted from each superpixel. Three schemes for texture extraction are
proposed: codebook-based, descriptor-based, and spectral-enhanced descriptor-based. The first one is based
on a codebook generator algorithm, while the other two include additional stages of keypoint
detection and description. The evaluation is performed by analyzing the results of a supervised
classification using Support Vector Machines (SVM), Random Forest (RF), and Extreme Learning
Machines (ELM) after the texture extraction. The results show that the extraction of textures inside
superpixels increases the accuracy of the obtained classification map. The proposed techniques are
analyzed over different multi and hyperspectral datasets focusing on vegetation species identification.
The best classification results for each image in terms of Overall Accuracy (OA) range from 81.07% to
93.77% for images taken at a river area in Galicia (Spain), and from 79.63% to 95.79% for a vast rural
region in China with reasonable computation times.

Keywords: hyperspectral; texture extraction; superpixel; BoW; SVM; vegetation

1. Introduction

Monitoring vegetation species in a natural area is an important task in the context of human
intervention planning. Specifically, the observation of the dynamic behavior of the vegetation provides
useful insights for biodiversity conservation and forestry, among other fields. Hyperspectral imagery
for remote sensing has been revealed as a powerful technique in this field, and many examples can be
mentioned: from land cover changes [1] to mapping vegetation species [2,3]. Although satellite-based
remote sensing is a way of obtaining consistent and comparable data, Unmanned Aerial Vehicles
(UAVs) provide a more flexible platform with higher spatial resolution. The price of multi- or
hyperspectral sensors used on board UAVs has decreased during the last few years. This fact makes
them widely used even by small companies for an increasing number of tasks.
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In the case of images for land cover analysis, supervised classification solves the
problem of, given a hyperspectral image and its reference data, obtaining and distinguishing the
different vegetation species or artificial elements present in the scene. In order to perform this
classification, texture features can be extracted from the image [4], thus improving the classification
accuracy. These features characterize the visual structures present in the scene. As it is a powerful
visual cue, texture supplies information to identify objects or uniform regions of interest in the images.
Texture can be differentiated from color in the sense that it refers to the spatial organization of a set of
basic elements or primitives over the image called textons. These can be defined as the fundamental
microstructures in natural images and the atoms of preattentive human visual perception [5].

Texture classification deals with designing algorithms or processing schemes for declaring a given
texture region as belonging to one out of a set of categories (in a context where training samples
have been provided). Research on texture features is mainly focused on three well-established
approaches: Bag of Words (BoW)-based [6], Convolutional Neural Network (CNN)-based [7],
and attribute-based [8]. The goal of BoW texture feature extraction is the statistical representation of
texture images as histograms over a texton dictionary. The approach of CNNs aims to leverage large
labeled datasets to learn high quality features, which can then be categorized using a simple classifier.
In the case of the attribute-based approach, there are three essential issues: the identification of a
universal texture attribute vocabulary, the establishment of an annotated benchmark texture dataset,
and the estimation of texture attributes from images based on low level texture representations. One of
the first attempts was carried out in [9], where a set of seventeen human comprehensible attributes
(seven related to color and ten to structure) for color texture characterization were introduced.

Different papers focused on the classification of vegetation species using texture features in
color, multi-, or hyperspectral imagery can be found in the literature. The simplest methods to
characterize vegetation using textures are based on color histograms, statistical measures (mean,
standard deviation, skewness, kurtosis, or entropy, among others), and clustered centers of filter
bank responses. Following this approach, a classification scheme for the canopy cover mapping of
spekboom in a large semiarid region in South Africa is presented in [10]. The scheme is based on a set
of spectral features and vegetation indices, including several statistical measures in sliding windows
of several sizes. A different scheme for natural roadside vegetation classification is presented in [11].
This scheme learns two individual sets of BoW dictionaries from color and filter-bank texture features.

Two simple methods for texture extraction, based on the analysis of patterns in the neighborhood
of a pixel, are Local Binary Pattern (LBP) and Gray-Level Co-occurrence Matrix (GLCM). LBP is
used in [12] for the classification of tree species using hyperspectral data and an aerial stereo camera
system. Feature extraction is performed following a patch-based approach. On the other hand, a large
number of publications on the classification of vegetation are based on the GLCM texture method.
Vegetation mapping in complex urban landscapes using a hybrid method combining Random Forest
and GLCM texture analysis at nine different window sizes is presented in [13]. The classification is done
using ultra-high resolution imagery acquired at low altitudes. A proposal of crop classification method
for hyperspectral images combining spectral indices and GLCM texture information is presented
in [14]. An object-based GLCM texture extraction method for the classification of man-planted forests
on mountainous areas using satellite data is the contribution presented by [15]. As a preprocessing
step, the texture feature of segmented image objects are enhanced using a 2D Gabor filter. Using very
high resolution images acquired by UAVs, a study to identify the most relevant image parameters for
tree species discrimination is conducted in [16]. Specifically, classification of savannah tree species is
carried out by using chromatic coordinates, spectral indices, the canopy height model, and GLCM
texture measures in different window sizes. Similarly, the potential of combining spectral measures
and GLCM texture information for crop classification in time-series UAV images is investigated in [17].

More elaborate texture methods based on local invariant descriptors such as SURF and SIFT
can also be used for characterizing vegetation species. For example, a methodology for vegetation
segmentation in cornfield images obtained by UAVs is presented in [18]. Specifically, it focuses on
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finding an appropriate set of different color vegetation indices and local descriptors for vegetation
characterization. The classification of weeds growing among crops using a BoW model based on SIFT
or SURF features is presented in [19]. Finally, a study on the application of SIFT to cropland mapping
in the Brazilian Amazon based on vegetation index time series is conducted in [20].

A classification scheme based on textures can be combined with other types of features obtained
by UAVs to improve the classification results [10,16]. Among them are spectral features, vegetation
indices, and morphological measures. For the detection of the extent of trees and shrubs, the canopy
height model (CHM) is the one most commonly used. LiDAR sensors have been widely used in order
to collect high resolution information on forest structure. Surface reconstruction by image matching
can also be used to estimate CHM. It is achieved by exploiting the redundancy of multiple overlapping
aerial images [21,22]. CHM is not used in this paper since the available datasets in many cases do not
provide multiple images for the same area.

For the classification of a image using textures it is necessary to delimit regions over which the
texture features are computed. Most of the vegetation classification methods proposed in the literature
use regular patches [6,8,10,12,13,15,16,19]. In other cases, segmentation or object detection algorithms
for dividing the image into regions are used [14,17,18]. A technique commonly used for the extraction
of uniform regions in images is the segmentation based on superpixels [23,24]. A superpixel is a set
of neighboring pixels (segment) which are similar in terms of low-level properties (such as spatial
proximity, color, intensity, or other criteria). They differ from other segmentation methods in that
the size and regularity of the superpixels are similar throughout the image. Superpixels provide a
convenient and compact representation of images that allow to reduce the computational cost of the
processing algorithms [25]. In the schemes presented in this paper, a texture feature vector is computed
for each superpixel.

In this paper, different techniques for vegetation classification in multi and hyperspectral images
based on texture extraction and BoW are proposed. The techniques are grouped into three categories:
codebook-based, descriptor-based, and spectral enhanced descriptor-based schemes. The main
contribution of this work is that in all the presented schemes the texture algorithms are computed
inside superpixels, in contrast to most of the methods previously published in the literature, in which
the vegetation textures are extracted from patches or objects. Moreover, some of the descriptor-based
methods have not been applied before to multi- and hyperspectral images. Finally, a detailed
comparison of the different techniques is carried out in terms of classification accuracy for several land
cover remote sensing datasets.

The rest of the paper is organized into four sections. Section 2 presents a description of the
proposed schemes involving superpixel computation and texture extraction. The experimental results
for the evaluation in terms of classification performance and computational cost are presented in
Section 3. The discussion is carried out in Section 4. Finally, Section 5 summarizes the main conclusions.

2. Methods

Three different schemes for texture extraction in order to obtain superpixel descriptors
(i.e., a vector which describes the texture or visual properties of each superpixel in the scene) were
proposed. The main novelty is that the texture features were computed inside these irregular patches
of the images called superpixels and that the schemes were adapted to profit from the information
available in all the bands of the hyperspectral images. Different texture extraction techniques can be
derived from the proposed schemes depending on the algorithms selected for their stages as it will be
explained throughout the paper.

The different stages of the proposed schemes, shown in Figure 1, are the following.
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(a)

(b)

(c)

Figure 1. Texture extraction schemes for hyperspectral imagery using the Bag of Words (BoW)
superpixel-based approach proposed: (a) codebook-based, (b) descriptor-based, and (c) spectral-enhanced
descriptor-based.

Superpixel extraction. This is a particular type of segmentation stage. As previously mentioned,
a superpixel is a set of pixels which are similar in terms of spatial proximity, color, intensity, or other
properties. There is a relationship between these superpixels and the objects present in the scene.
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In this stage, a set of S superpixels was extracted from the image. The computed superpixels are
irregular, which is a difference between this process and other similar ones (e.g., creation of a grid of
square patches). The differences in size and shape among superpixels are due to the adaption of each
superpixel to the objects appearing in the scene.

In our case, the algorithm used for superpixel extraction was Simple Linear Iterative Clustering
(SLIC) [26], although other options such as those based on watershed [27] or Efficient Topology
Preserving Segmentation (ETPS) [28] would obtain similar results. SLIC clusterises pixels into
superpixels, taking into account their relative position and spectral values, so both spatial an spectral
information are considered. This algorithm is an adaptation of k-means for superpixel generation that
begins defining clusters. Each pixel is associated to the nearest cluster center. Then, the cluster centers
are adjusted to be the mean of all pixels belonging to the cluster. The assignment and update steps are
iteratively repeated until the convergence criteria (a maximum number of iterations or an error value)
is met. Finally, a postprocessing step enforces connectivity by reassigning disjoint pixels to nearby
superpixels. It offers good results for segmenting hyperspectral images [24].

After the segmentation was computed, most of the subsequent stages in the proposed schemes
were calculated at the superpixel level instead of at the pixel level. In particular, only one label from
the reference data was considered for each superpixel, which is the one associated to the central pixel
of this superpixel. Moreover, texture extraction was performed inside each superpixel.

Keypoint detection and description. A set of points of interest or keypoints were extracted from
the image for each band and each superpixel. This stage was used in two of the schemes as shown in
Figure 1b,c. These keypoints may be extracted in the positions given by a keypoint detector [29] or
densely at each pixel position over a fixed grid. In addition, they should be distinctive and robust to
image transformations.

Given a keypoint and its neighboring pixels, a set of features were computed, obtaining a local
texture descriptor. In our case, the algorithms used to create texture descriptors were Scale-Invariant
Feature Transform (SIFT) [30], Histogram of Oriented Gradients (HOG) [31], Dense SIFT (DSIFT) [32]
and Local Intensity Order Pattern (LIOP) [33]. SIFT and HOG algorithms include both a descriptor
and a keypoint detector. In LIOP a fixed grid was created, because this technique does not include a
keypoint detector algorithm, only a descriptor one. DSIFT also uses a similar dense approach, but the
detector is built-into the technique.

This process was applied to each spectral band, and then descriptors from all the bands were
grouped for each superpixel taking into account their location in the XY plane. At the end of the process,
a variable number of keypoints (with their corresponding descriptors) was assigned to each superpixel.
The dimension of each descriptor was denoted as D and the their number as N, as shown in Figure 1b,c.

Codebook generation. The objective of this stage was to create a texton dictionary with K
codewords based on all the bands of the input image. This codebook can be learned [34,35] or
predefined [36]. In this paper the codebook was learned using k-means [6] or Gaussian Mixture
Modeling (GMM) [37] algorithms. The size and nature of the codebook greatly affects the performance
of the classification. The key was to generate a compact but yet discriminatory one.

Feature encoding. Given the codebook and the computed local features (i.e., vector descriptors
corresponding to each superpixel), this encoding process mapped the latter to one or a variable number
of codewords. The result was a feature coding vector per superpixel. Thereby, the aim of this process
was mapping each superpixel description (object representation) to one or more codewords. This is
a core component of the scheme, influencing texture classification in terms of both accuracy and
speed. The feature encoding algorithms employed in this paper were Vector of Locally Aggregated
Descriptors (VLAD) [38] and Fisher Vectors (FV) [37]. Once the desired vector representation for
each superpixel was obtained, this representation was used as representative of the superpixel for the
later stages.

Dimensionality Reduction. This is a stage where a set of vectors obtained in the previous stage
(e.g., descriptors or coding vectors) were reduced. This reduction was performed if the number of
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bands B of the image was higher than the dimension D of the descriptors or coding vectors, in which
case the image was reduced to D bands (see Figure 1 for details). This step was also used in Figure 1c
in order to transform the descriptors from dimension D to Dred. The techniques used for the reduction
could be any of the traditional functions of aggregation such as the sum or the mean, or any other
algorithm related to feature extraction such as, for example, Principal Component Analysis (PCA).
PCA constitutes a quite popular method for feature extraction [39,40]. PCA estimates projections of
the original data so that most of the variance is concentrated in a few components.

Feature classification. This last stage was not part of the texture extraction schemes and performed
a classification of the images based on the features produced by the previous texture extraction
technique. Texture features were inputs to a superpixel-level classification, i.e., the training and testing
sets consisted of superpixels described by their texture features. Once the classification finished the
same class was assigned to all the pixels in each superpixel. SVMs were selected as classifiers. They are
usually presented as standard non-contextual classifiers for remote sensing classification [41], and can
handle scenarios with a low number of training samples [42]. Results obtained by other two standard
classifiers in remote sensing, RF and ELMs [43] were also obtained.

Figure 1 illustrates the three different proposed texture extraction schemes showing the different
stages according to the previous description. All of them have the image as input and one feature
vector per superpixel as output.

2.1. Codebook-Based Scheme

The first scheme (named codebook-based from now on and shown in Figure 1a) began by performing
two tasks in parallel: segmenting the image and creating a codebook. In terms of codebook generation,
a texton dictionary with K codewords was created. The final set of codewords obtained was of size
K × B (being B the number of bands of the input image).

Given the generated codebook and the computed superpixel segmentation, the next stage was
the feature encoding. A vector representation of each superpixel, a texture vector, was obtained by
mapping each superpixel to one or more codewords. In the case of k-means, this assignment can be
done using the centroid with the shortest Euclidean distance to the superpixel.

2.2. Descriptor-Based Scheme

The second scheme in Figure 1 (named descriptor-based) represents an increase in complexity
with respect to the first one. In parallel to the superpixel generation, a conditional dimensionality
reduction step was performed. Only if the number of bands B of the image is larger than the resulting
dimension D of the descriptors that were created, the image was reduced to D spectral bands. The next
stage was keypoint detection and description. An algorithm such as SIFT or HOG was applied
over each one of the bands of the image. The algorithm carried out two sequential stages. First N
keypoints (points of interest) were detected and then, using their neighborhood pixels, a local texture
descriptor algorithm was applied to obtain a set or pool of texture features of dimension D. Each one
of these vectors was assigned to a superpixel according to the location of the keypoint. The number
of keypoints per superpixel is variable, being possible to obtain even zero keypoints for a particular
one. The implications of this variable number of descriptors per superpixel are not important in this
scheme because they are used only when computing the codebook where they are stacked together.
Further implications will be pointed out when describing the feature encoding stage in the next scheme.

After keypoint detection and description, the codebook generator was applied to the stacked
descriptor vectors from all bands, obtaining K codewords of size D each. Another conditional
dimensionality reduction stage was then performed in case the number of bands of the input image
is lower than the descriptor dimension. After the dimensionality reduction (to the dimension of the
input image in the first step or to the dimension of the descriptors later), the dimensions of both
the codewords and the image pixel-vectors were equal (which means that now B is equal to D).
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The output obtained (a texture vector describing each superpixel) is equivalent to the one obtained by
the codebook-based scheme in Figure 1a.

2.3. Spectral-Enhanced Descriptor-Based Scheme

The last scheme (named spectral-enhanced descriptor-based), shown in Figure 1c, differs slightly
from the previous one. The main novelty is that the feature coding stage operates at superpixel level
and that a concatenation of spectral information to the texture descriptors at the end of the texture
extraction process is performed.

As it can be observed in the figure, the input hyperspectral image for the encoding stage in the
previous schemes was replaced here by the image descriptors obtained for the different superpixels.
If a superpixel has no associated texture descriptor, the resulting vector is zero. However, if it has one
or more descriptors, all of them are compared to each codeword in order to obtain the resulting vector.

As the feature encoding process took the texture descriptors as input (unlike the previous schemes),
some kind of spectral information needed to be added. With this objective, a new stage called
central pixel extraction was executed. It searched for the central pixel of each superpixel in
the spatial coordinates of the image and extracted the corresponding spectral values (central
pixel-vector). The resulting data structure once the central pixels were extracted consisted of S
vectors (as many as superpixels in the segmentation) each one of dimension B (the number of bands).
Finally, a concatenation was performed: a new vector per superpixel was created by stacking the
texture vector from the feature encoding with the pixel-vector from the central pixel extraction stage.
The output is equivalent to the one obtained by the previous schemes but differing in the dimension of
the superpixel feature vector: B + DRed.

2.4. Dataset Description

Three datasets were used to evaluate the schemes proposed: a set of three hyperspectral images
(from now on standard dataset), a set of multispectral scenes from river basins for which only vegetation
classes are taken into account (Galicia dataset), and a large set of multispectral images from a vast region
in China called Gaofen dataset. The standard dataset was used for comparison purposes as the scenes in
it are usually present in land cover classification papers. Both the Galicia dataset and the Gaofen dataset
were used because they contain large images with a wide range of vegetation species (both forests
and crops). For the Galicia dataset only vegetation classes will be classified although the images also
contain other materials, while for the remaining two datasets all classes including a non-vegetation
one are classified.

The previously mentioned standard dataset corresponds to two images commonly used in the
remote sensing literature: Pavia University (Pavia) and Salinas Valley (Salinas) [44]. Pavia was
obtained by the ROSIS-03 (Reflective Optics System Imaging Spectrometer) sensor over the city
of Pavia, Italy, with a spatial resolution of 2.6 m/pixel and covering the spectral range from 430 to
860 nm. Its dimensions are 610 × 340 pixels and 103 bands and its corresponding latitude and longitude
are 45◦11’23.66”N and 09◦08’57.06”E, respectively. Salinas was obtained by the AVIRIS (Airborne
Visible Infrared Imaging Spectrometer) sensor with a spectral range from 400 to 2500 nm. The main
properties of this image are a resolution of 3.7 m/pixel, dimensions of 512 × 217 and 224 spectral
bands. Moreover, its corresponding latitude and longitude are 36◦39’33.8”N and 121◦39’58.7”W.
Figure 2 shows the false color composite images and the reference data corresponding to this dataset,
while Table 1 displays the classes available in the reference data and the number of disjoint superpixels
used for classification in training (15%) and testing (85%). Fifteen percent of superpixels corresponds
to between 14% and 15% of the pixels in the image.
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(a) (b) (c) (d)

Figure 2. Standard dataset hyperspectral images and their corresponding reference maps for
classification: (a,b) image and reference map for Salinas, respectively, and (c,d) image and reference
map for Pavia, respectively. Each color in a reference map corresponds to a particular class for the
image. No reference information is available for the regions marked in black.

Table 1. Standard dataset. Classes available in the reference data and number of superpixels used for
training (15%) and testing (85%).

Salinas Pavia

Superpixels Superpixels

# and color Classes Train (15%) Test (85%) Classes Train (15%) Test (85%)
1. Broccoli gr. weeds 1 6 38 Asphalt 14 82
2. Broccoli gr. weeds 2 7 42 Meadows 59 336
3. Fallow 5 32 Gravel 8 50
4. Fallow rough plow 6 36 Trees 1 7
5. Fallow smooth 10 62 Metal 5 29
6. Stubble 9 57 Bare soil 15 85
7. Celery 13 77 Bitumen 7 41
8. Grapes untrained 30 174 Bricks 10 57
9. Soil vineyard dev. 12 68 Shadows 1 9
10. Corn gr. weeds 9 56
11. Lettuce rom 4 weeks 4 28
12. Lettuce rom 5 weeks 6 39
13. Lettuce rom 6 weeks 3 20
14. Lettuce rom 7 weeks 3 23
15. Vineyard untrained 22 126
16. Vineyard ver. trellis 4 26

The Galicia dataset is made up of four multispectral images, and the objective of their creation
was to monitor the interaction of masses of native vegetation with artificial structures and river
beds. Four locations in the Galician provinces of A Coruña and Pontevedra were selected in an area
comprised between Eiras Dam and River Mestas, with a distance of approximately 145.6 kilometers
end-to-end. The datasets were captured by a MicaSense RedEdge multispectral camera [45] mounted
on a custom UAV. Its 5 discrete sensors provide spectral channels at wavelengths of 475 nm (Blue),
560 nm (Green), 668 nm (Red), 717 nm (Edge), and 840 nm (Near infrared). The spatial resolution is
8.2 cm/pixel at a height of 120 m.

The four images in the dataset are the following; River Oitavén (Oitavén from now on) of size
6689 × 6722 pixels and is located in 42◦22’27.8”N 8◦25’30.3”W, River Mestas (Mestas from now on)
of size 4915 × 9040 pixels and is located in 43◦38’38.5”N 7◦59’04.3”W, River Ferreiras (Ferreiras from
now on) which is of size 9335 × 9219 pixels and is located in 43◦32’58.8”N 7◦57’33.2”W, and Eiras
dam (Eiras from now on) whose dimensions are 5176 × 18,224 pixels and is located in 42◦22’26.0”N
8◦25’41.3”W.
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Figure 3 shows the false color composite images and their reference data (constructed in a
long-term process involving forestry experts and the authors of the paper) corresponding to each one
of the scenes, while Table 2 shows the classes available in the reference data for classification and the
number of superpixels used for training (15%) and testing (85%). Moreover, as the objective is the
identification of plant species, only vegetation classes are considered.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Galicia dataset multispectral images and their corresponding reference maps for classification:
(a,b) image and reference map for Oitavén, respectively; (c,d) image and reference map for Mestas,
respectively; (e,f) image and reference map for Ferreiras, respectively; and (g,h) image and reference
map for Eiras, respectively. Each color in a reference map corresponds to a different class for the image.
Only vegetations classes are represented and considered for the experiments. No reference information
is available for the regions marked in black.
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Table 2. Galicia dataset. Classes available in the reference data and number of superpixels in the disjoint
training (15%) and testing (85%) sets. Only vegetation classes are considered in the experiments, the rest
of the classes are marked with “-”. NA indicates that the image does not contain samples for a specific
vegetation class [46].

Oitavén Mestas Ferreiras Eiras

Superpixels Superpixels Superpixels Superpixels

# and color Classes Train (15%) Test (85%) Train (15%) Test (85%) Train (15%) Test (85%) Train (15%) Test (85%)
1. Water - - - - - - - -
2. Oak 268 1523 NA NA 1 8 395 2240
3. Tiles - - - - - - - -
4. Meadows 342 1943 661 3748 557 3159 114 646
5. Asphalt - - - - - - - -
6. Bare Soil - - - - - - - -
7. Rock - - - - - - - -
8. Concrete - - - - - - - -
9. Authoctonous vegetation 90 514 13 74 8 46 8 51
10. Eucalyptus 208 1182 683 3873 957 5427 1 10
11. Pines 14 81 NA NA 1 4 16 91

Finally, the Gaofen dataset was used [47]. It is a large-scale land use grouping of images containing
160 annotated Gaofen-2 (GF-2) satellite scenes. GF-2 is the second satellite of the High-definition Earth
Observation System promoted by the China National Space Administration. The spectral range goes
from 0.45 to 0.89 µm (blue to near-infrared) and the spatial dimension of the images is 6908 × 7300 pixels.
Some of the dataset advantages are its large coverage, wide distribution, and high spatial resolution.
It is remarkable that this dataset has high intra-class and low inter-class differences. The images cover
an area of more than 50,000 kmt2 in China. Specifically, it can be divided into two sets. A large-scale
classification set made up of 150 high-resolution images acquired from more than 60 different cities in
China and where 5 major categories are annotated. From now on, this dataset will be named GID5
(Gaofen Image Dataset 5 classes). A fine land-cover classification set composed of 30,000 multi-scale
image patches coupled with 10 pixel-level annotated images and made up of 15 sub-categories.
From now on GID15 (Gaofen Image Dataset 15 classes). Figure 4 shows the false color composite
images and their reference data of two images from GID5 and two others from GID15. Table 3 shows
the classes available in the reference data and the number of superpixels used for training (15%) and
testing (85%).

Table 3. Gaofen dataset. Classes available in the reference data and number of superpixels used
for training (15%) and testing (85%). NA values indicate the non-existence of samples for a
specific vegetation class and image, while “-” implies the non-existence of samples for the specific
non-vegetation class [47].

GF1 GF2 GF3 GF4

Superpixels Superpixels Superpixels Superpixels

# and Color Classes Train (15%) Test (85%) Train (15%) Test (85%) # and color Classes Train (15%) Test (85%) Train (15%) Test (85%)

1. Built-up 123 698 34 194 1. Industrial land 533 3024 - -

2. Farmland 2323 13,169 796 4511 2. urban residential 952 5401 6 34

3. Forest 348 1978 187 1066 3. Rural residential 291 1651 76 433

4. Meadow 668 3791 114 648 4. Traffic land 496 2812 38 221

5. Water - - - - 5. Paddy field NA NA NA NA

6. Irrigated land 2258 12,801 2159 12,235

7. Dry cropland 118 675 - -

8. Garden plot 13 77 NA NA

9. Arbor woodland NA NA 707 4010

10. Shrub land 14 80 NA NA

12. Natural grassland NA NA 803 4551

13. Artificial grassland NA NA NA NA

13. River - - - -

14. Lake - - - -

15. Pond 12 71 4 26
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Gaofen dataset multispectral images and their corresponding reference maps for classification:
(a,b) image and reference map for GF1 (original name GF2_PMS2__L1A0001708261-MSS2), respectively;
(c,d) image and reference map for GF2 (original name GF2_PMS1__L1A0001798942-MSS1), respectively;
(e,f) image and reference map for GF3 (original name GF2_PMS2__L1A0001821754-MSS2), respectively;
and (g,h) image and reference map for GF4 (original name GF2_PMS1__L1A0001680858-MSS1),
respectively. The different colors in the reference data indicate different classes for the images. No
reference information is available for the regions marked in black.
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2.5. Accuracy Assessment and Set-Up Description

The classification accuracy obtained by classifying the features provided by the proposed schemes
was reported in terms of the usual measures in remote sensing. The first measure Overall Accuracy (OA)
is the most widely used [48]. It provides the percentage of correctly classified pixels, and it is presented
for every experiment. Besides, Quantity Disagreement (QD) and Allocation Disagreement (AD),
which measure the disagreement between classification map and reference data in terms of proportion
and spatial allocation of the classes, respectively, were also provided [49].

The input data for the experiments were standardized (a mean of 0 and a standard deviation
of 1). In addition, with the aim of evaluating the computational cost associated to each method,
execution time measures were performed. All the results presented in the paper are the mean value of
3 independent runs for each scenario, each one being obtained under identical experimental conditions.

Regarding the configuration parameters, as mentioned above, SLIC was used as the superpixel
extraction algorithm. There are two parameters for SLIC: superpixel size and regularity of the
superpixels. The superpixel size is the desired average size of each superpixel (in terms of area
in pixel units). Ten and 1100 were the values selected for the standard dataset (as the images in the
dataset are small) and the other two datasets, respectively. For superpixel regularity, the larger
the value, the more regular the superpixels obtained. A value of 20 was selected for all datasets.
These values were experimentally decided and depend mainly on the resolution of the images and
on the size of the structures present on them, being in general bigger superpixels more adequate for
higher resolution images.

The classification was performed by using SVM, Random Forest, and ELM. More precisely,
for SVM the LIBSVM implementation version 3.24 in C/C++ was chosen [50] selecting a linear kernel.
The parameter C was determined for each SVM and values of 0.02 for parameter C (the same value
for all datasets) gave the best results. In the case of Random Forest, the OpenCV implementation was
used [51]. The only parameter set for this algorithm is the number of trees. After a search for the
considered datasets, a value of 200 trees was chosen. Last, the ELM implementation selected was [52].
The number of neurons in the hidden layer was 250 for the small images and 500 for the bigger ones.
These are standard values for the datasets considered [43].

The classification is performed at superpixel level, i.e., all the pixels in a superpixel are assigned
the same label. As far as the training and testing features are concerned, two disjoint sets were set up for
each image. Specifically, after segmenting the images using SLIC, 15% of the superpixels from each class
were randomly taken for training and the remaining 85% for testing in the general scenario. For training,
only one label per superpixel, the label of the spatially central pixel, is considered. The number of 15%
of superpixels is equivalent to choose ~13% of the pixels of each class. This percentage of training
samples is reasonable as it is shown in [43]. Results for 10% and 20% of samples for training were also
tested for all the images in the Galicia dataset as this is the most representative dataset in the study,
containing large images and including only vegetation classes.

Regarding other set-up details, the VLFeat library version 0.9.21 was used [32]. Specifically,
the implementations of the texture extraction related algorithms SIFT, DSIFT, LIOP, HOG, GMM,
VLAD, and FV available in the library were used. All the experiments were carried out using C/C++
compiled with gcc 7.5.0. Additionally, a first generation Intel Core i7-8700K CPU at 3.70 GHz and a
64-bit Ubuntu 18.04 were used for all the experiments including the execution time evaluation.

The classification accuracy results were obtained for each one of the three datasets described in
Section 2.4 and considering different texture extraction techniques. The selection of specific algorithms
for each stage of the proposed texture extraction schemes resulted in 16 different techniques for the
experiments. The mapping between these techniques, the schemes they correspond to and the specific
algorithms used are presented in Table 4. The row Without Texture Features shows the configuration
without performing feature extraction at all and using the central pixel of each superpixel as input for
the classification.
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Table 4. Texture extraction techniques considered for the schemes proposed in Figure 1 detailing the
configuration of the different stages.

Scheme Technique Superpixel
Extraction

Keypoint
Detection and

Description

Codebook
Generation

Feature
Encoding

Dimensionality
Reduction

Feature
Classification

- Without Texture Features SLIC - - - - SVM

k-means + VLAD SLIC - k-means VLAD - SVM
Codebook-based scheme k-means + BOW SLIC - k-means BoW - SVM

GMM + FV SLIC - GMM FV - SVM

SIFT + k-means + VLAD SLIC SIFT k-means VLAD PCA SVM
SIFT + GMM + FV SLIC SIFT GMM FV PCA SVM
DSIFT + k-means + VLAD SLIC DSIFT k-means VLAD PCA SVM

Descriptor-based DSIFT + GMM + FV SLIC DSIFT GMM FV PCA SVM
scheme LIOP + k-means + VLAD SLIC LIOP k-means VLAD PCA SVM

LIOP + GMM + FV SLIC LIOP GMM FV PCA SVM
HOG + k-means + VLAD SLIC HOG k-means VLAD PCA SVM
HOG + GMM + FV SLIC HOG GMM FV PCA SVM

SIFT + k-means + VLAD + Spec SLIC SIFT k-means VLAD PCA SVM
Spectral-enhanced SIFT + GMM + FV + Spec SLIC SIFT GMM FV PCA SVM
descriptor-based scheme DSIFT + k-means + VLAD + Spec SLIC DSIFT k-means VLAD PCA SVM

DSIFT + GMM + FV + Spec SLIC DSIFT GMM FV PCA SVM

3. Experimental Results

The aim of this section is to analyze how the use of the different schemes influences the results of
the classification. Classification results and computational efficiency in terms of Overall Accuracy (OA),
Quantity Disagreement (QD), Allocation Disagreement (AD), and execution time are presented.
The results are obtained for the three hyperspectral and multispectral datasets described above and
for the texture extraction techniques that were described in Table 4. Three classifiers are considered:
SVM, RF, and ELM.

The classification accuracy results for the standard dataset are shown in Tables 5 for the SVM
classifier, Table 6 when RF is used for classification, and Table 7 for the experiments with the ELM
classifier. The listed techniques are grouped according to the texture scheme followed: codebook-based,
descriptor-based, and spectral-enhanced descriptor-based. For each technique, 15 % of the superpixels were
randomly selected for training and the remaining 85 % for testing. The best results for each image in
terms of OA are highlighted with a gray background.

The results in Tables 5–7 show the same trends. As the images in the standard dataset are very small,
they do not benefit from a superpixel level classification independently of the classifier considered,
so for each classifier all techniques offer similar results and, in general, the OA values are low.
The techniques from the descriptor-based scheme and spectral-enhanced descriptor-based scheme present a
slightly higher OA, being the SIFT-based ones, specifically SIFT + GMM + FV and SIFT + k-means +
VLAD, the best methods for the Salinas and Pavia images respectively. The QD and AD values are
low for all the experiments and lower for the higher OA values, as expected. As the standard dataset
does not focus on vegetation, experiments with the Galicia dataset considering only vegetation classes
were performed.
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Table 5. Classification results in terms of OA (%), QD (%), and AD (%) obtained by the techniques
detailed in Table 4 for the images of the standard dataset and using a SVM classifier. Fifteen percent of
the superpixels are used for training. The best OA results are in a gray background.

Scheme Technique Salinas Pavia
OA QD AD OA QD AD

- Without Texture Features 76.48 ± 0.46 15.19 ± 2.72 3.12 ± 1.36 65.77 ± 0.97 21.48 ± 9.67 6.75 ± 1.94

k-means + VLAD 75.07 ± 1.55 15.88 ± 2.95 3.74 ± 1.46 65.92 ± 2.97 20.28 ± 8.32 6.55 ± 1.01
Codebook-based scheme k-means + BOW 77.93 ± 1.08 14.97 ± 2.56 3.04 ± 1.27 60.93 ± 1.32 27.98 ± 10.17 7.95 ± 2.34

GMM + FV 74.86 ± 1.66 16.64 ± 3.52 4.07 ± 1.89 66.84 ± 3.52 21.28 ± 9.37 6.05 ± 1.52
SIFT + k-means + VLAD 82.11 ± 0.14 9.41 ± 0.60 1.48 ± 0.36 71.41 ± 3.60 16.88 ± 7.61 4.57 ± 0.99
SIFT + GMM + FV 83.38 ± 1.54 9.12 ± 0.57 1.18 ± 0.22 70.12 ± 1.36 17.83 ± 6.39 5.77 ± 1.24
DSIFT + k-means + VLAD 79.90 ± 0.98 13.41 ± 2.29 2.88 ± 1.11 68.71 ± 0.29 19.88 ± 8.13 5.69 ± 1.84

Descriptor-based DSIFT + GMM + FV 82.70 ± 1.12 9.36 ± 0.67 1.54 ± 0.46 70.36 ± 0.30 19.28 ± 8.67 5.42 ± 1.94
scheme LIOP + k-means + VLAD 76.90 ± 1.28 15.89 ± 2.78 3.43 ± 1.51 67.89 ± 3.48 21.93 ± 9.25 6.73 ± 2.95

LIOP + GMM + FV 78.09 ± 3.53 15.96 ± 2.14 3.12 ± 1.20 68.96 ± 3.54 20.03 ± 8.87 5.93 ± 2.15
HOG + k-means + VLAD 78.66 ± 3.46 15.81 ± 2.26 3.31 ± 1.25 69.35 ± 3.36 20.36 ± 8.54 5.83 ± 1.65
HOG + GMM + FV 79.19 ± 3.40 16.06 ± 2.58 3.10 ± 1.49 69.76 ± 3.20 20.17 ± 8.83 5.13 ± 1.35

SIFT + k-means + VLAD + Spec 79.28 ± 3.16 16.32 ± 2.18 3.90 ± 1.82 69.66 ± 2.99 20.03 ± 8.52 4.87 ± 1.75
Spectral-enhanced SIFT + GMM + FV + Spec 79.61 ± 3.11 16.12 ± 2.34 3.15 ± 1.29 69.42 ± 2.91 20.94 ± 8.51 5.02 ± 1.85
descriptor-based scheme DSIFT + k-means + VLAD + Spec 79.66 ± 2.99 16.96 ± 2.88 3.76 ± 1.52 69.40 ± 2.75 19.74 ± 8.12 4.83 ± 1.72

DSIFT + GMM + FV + Spec 79.89 ± 2.94 16.66 ± 2.83 3.14 ± 1.79 69.38 ± 2.62 20.97 ± 7.96 4.33 ± 1.63

Table 6. Classification results in terms of OA (%), QD (%), and AD (%) obtained by the techniques
detailed in Table 4 for the images of the standard dataset and using a RF classifier. Fifteen percent of the
superpixels are used for training. The best OA results are in a gray background.

Scheme Technique Salinas Pavia
OA QD AD OA QD AD

- Without Texture Features 77.32 ± 0.56 13.27 ± 2.86 3.01 ± 1.16 66.69 ± 1.24 20.28 ± 9.37 5.91 ± 1.72

k-means + VLAD 75.77 ± 1.13 14.68 ± 2.35 3.20 ± 0.68 66.82 ± 2.05 19.88 ± 7.76 5.10 ± 1.42
Codebook-based scheme k-means + BOW 78.53 ± 1.68 14.21 ± 2.06 3.14 ± 1.58 61.93 ± 1.02 24.18 ± 9.72 7.55 ± 2.04

GMM + FV 75.26 ± 1.60 15.64 ± 2.63 3.87 ± 1.74 67.38 ± 2.22 20.08 ± 8.27 5.73 ± 1.22
SIFT + k-means + VLAD 83.20 ± 0.54 8.31 ± 1.82 1.18 ± 0.25 72.83 ± 2.85 15.92 ± 6.81 4.37 ± 0.79
SIFT + GMM + FV 84.26 ± 1.43 8.82 ± 0.37 1.04 ± 0.36 71.58 ± 1.38 16.94 ± 5.97 5.03 ± 1.73
DSIFT + k-means + VLAD 80.63 ± 0.85 12.82 ± 2.19 2.38 ± 1.10 69.82 ± 0.25 18.71 ± 7.93 5.09 ± 1.51

Descriptor-based DSIFT + GMM + FV 83.67 ± 1.02 8.56 ± 0.97 1.29 ± 0.36 71.76 ± 0.24 18.84 ± 8.07 4.86 ± 1.32
scheme LIOP + k-means + VLAD 77.13 ± 1.44 15.19 ± 2.28 3.34 ± 1.25 68.69 ± 3.04 20.33 ± 9.03 6.42 ± 2.30

LIOP + GMM + FV 79.49 ± 3.23 15.09 ± 2.28 2.87 ± 1.16 69.45 ± 3.19 19.07 ± 8.34 5.27 ± 1.77
HOG + k-means + VLAD 79.36 ± 3.06 14.91 ± 1.93 2.24 ± 1.23 70.95 ± 3.06 19.46 ± 7.74 4.32 ± 1.15
HOG + GMM + FV 80.91 ± 2.31 15.63 ± 2.06 2.88 ± 0.97 70.96 ± 2.17 19.67 ± 6.93 4.46 ± 1.55

SIFT + k-means + VLAD + Spec 80.38 ± 2.86 15.87 ± 2.98 3.56 ± 1.62 70.86 ± 2.74 19.43 ± 8.02 3.74 ± 1.05
Spectral-enhanced SIFT + GMM + FV + Spec 80.62 ± 3.10 15.63 ± 2.14 2.75 ± 1.30 70.12 ± 1.91 19.84 ± 8.11 4.92 ± 1.45
descriptor-based scheme DSIFT + k-means + VLAD + Spec 80.63 ± 2.93 16.26 ± 2.28 3.36 ± 1.54 70.41 ± 2.25 18.94 ± 8.02 4.33 ± 1.68

DSIFT + GMM + FV + Spec 80.35 ± 2.75 15.36 ± 2.33 2.67 ± 1.82 70.31 ± 2.41 20.07 ± 7.16 4.56 ± 1.57

Table 7. Classification results in terms of OA (%), QD (%), and AD (%) obtained by techniques detailed
in Table 4 for the images of the standard dataset and using a ELM classifier. Fifteen of the superpixels
are used for training. The best OA results are in a gray background.

Scheme Technique Salinas Pavia
OA QD AD OA QD AD

- Without Texture Features 75.64 ± 0.87 16.30 ± 2.38 3.33 ± 1.30 64.49 ± 0.15 22.69 ± 8.86 6.65 ± 1.47

k-means + VLAD 74.58 ± 1.14 16.48 ± 2.50 3.96 ± 1.72 66.01 ± 2.11 21.53 ± 8.87 6.72 ± 1.10
Codebook-based scheme k-means + BOW 76.08 ± 1.50 15.12 ± 2.38 3.63 ± 1.55 59.04 ± 1.89 28.77 ± 11.03 7.67 ± 2.94

GMM + FV 73.01 ± 1.82 17.52 ± 3.10 5.24 ± 1.28 65.94 ± 3.09 23.82 ± 5.91 6.66 ± 1.69
SIFT + k-means + VLAD 80.07 ± 0.93 11.24 ± 0.01 1.23 ± 0.31 72.07 ± 3.88 18.93 ± 7.58 5.31 ± 0.84
SIFT + GMM + FV 82.58 ± 1.82 11.49 ± 0.13 1.38 ± 0.36 68.92 ± 1.60 18.13 ± 6.32 7.76 ± 1.42
DSIFT + k-means + VLAD 79.47 ± 0.29 15.48 ± 1.65 3.49 ± 1.17 70.34 ± 0.51 20.01 ± 8.96 6.77 ± 1.02

Descriptor-based DSIFT + GMM + FV 83.93 ± 1.60 8.30 ± 0.57 1.75 ± 0.88 69.81 ± 0.90 19.28 ± 8.10 5.43 ± 1.49
scheme LIOP + k-means + VLAD 74.25 ± 1.42 16.05 ± 2.36 5.83 ± 1.10 69.29 ± 3.20 23.44 ± 9.41 8.10 ± 2.83

LIOP + GMM + FV 76.72 ± 3.71 15.02 ± 2.56 4.07 ± 1.22 67.86 ± 3.46 22.22 ± 8.51 7.39 ± 2.01
HOG + k-means + VLAD 76.83 ± 3.81 16.24 ± 2.35 4.82 ± 1.87 67.44 ± 3.50 22.10 ± 8.62 6.11 ± 1.17
HOG + GMM + FV 77.82 ± 3.72 18.70 ± 2.73 3.90 ± 1.18 67.76 ± 3.38 23.23 ± 8.53 7.36 ± 1.07

SIFT + k-means + VLAD + Spec 78.06 ± 3.31 18.92 ± 2.33 5.07 ± 1.93 68.11 ± 2.39 21.16 ± 8.17 4.74 ± 1.02
Spectral-enhanced SIFT + GMM + FV + Spec 78.60 ± 3.63 18.47 ± 2.72 3.48 ± 1.85 67.24 ± 2.08 21.57 ± 8.26 5.62 ± 1.45
descriptor-based scheme DSIFT + k-means + VLAD + Spec 77.07 ± 2.52 18.08 ± 2.96 5.59 ± 1.07 67.45 ± 2.17 20.89 ± 8.29 5.75 ± 1.07

DSIFT + GMM + FV + Spec 77.11 ± 2.35 18.90 ± 2.39 3.60 ± 1.09 68.98 ± 2.26 21.22 ± 7.73 5.14 ± 1.41

The results for the Galicia dataset are detailed in Tables 8–10 for the results with a SVM, a RF, and a
ELM classifier, respectively. Unlike the standard dataset, the Galicia dataset is made up of larger images,



Remote Sens. 2020, 12, 2633 15 of 24

so the execution time is very relevant. This is the reason for displaying execution times in the Tables.
The best results for each image in terms of OA are highlighted with a gray background.

It can be observed that in this case, two techniques based on k-means as codebook generator,
k-means + BoW and LIOP + k-means + VLAD, offer the best results for all the classifier. The best result
is achieve for only one of the images, Mestas, and the RF classifier by a different technique: SIFT +
GMM + FV + Spec. The AD and QD values are lower for higher OA values, as expected. Regarding
execution times, the techniques with the highest ones correspond to those using a SIFT-based keypoint
detection and description algorithm. On the contrary, the methods with the lowest computational cost
are those based on LIOP or HOG as keypoint detection and description algorithms, while those based
on the simpler codebook-based scheme present reasonable computational costs. Focusing on the best
two techniques, LIOP + k-means + VLAD displays lower execution times than k-means + BoW.

In order to determine whether the previous results for the Galicia dataset are statistically reliable,
Table 11 shows results varying the percentage of superpixels considered in the training set. Ten percent,
15%, and 20 % of the superpixels from each of the five vegetation classes were selected for training.
For each percentage, the superpixels are randomly picked. The four best techniques extracted from the
previous table were chosen to perform this comparison: k-means + BoW, GMM + FV, LIOP + k-means +
VLAD, and SIFT + k-means + VLAD + Spec. It can be observed that the standard deviation decreases
as the size of the training set increases. The highlighted best results show that the k-means + BoW
technique outperforms the other methods 7 out of 16 times and presents the lowest standard deviation
values. LIOP + k-means + VLAD obtains the best results in 2 out of 16 times and competitive results for
the remaining experiments.

Table 8. Classification results in terms of OA (%), QD (%), AD (%), and execution times (seconds)
obtained by the techniques detailed in Table 4 for the Galicia dataset images and using a SVM classifier.
Fifteen percent of the superpixels are used for training. The best OA results are in a gray background.

Oitavén Mestas
OA QD AD Time OA QD AD Time

Without Texture Features 72.71 ± 0.53 3.23 ± 1.88 2.22 ± 1.12 6 ± 0 86.10 ± 0.36 1.75 ± 0.48 1.06 ± 0.09 5 ± 0

k-means + VLAD 76.68 ± 1.06 2.08 ± 0.11 1.81 ± 0.41 239 ± 6 89.44 ± 0.13 0.73 ± 0.05 0.19 ± 0.09 161 ± 1
k-means + BoW 81.94 ± 0.54 2.71 ± 0.48 1.39 ± 0.38 239 ± 6 92.67 ± 0.41 0.50 ± 0.01 0.54 ± 0.04 160 ± 0
GMM + FV 79.62 ± 0.57 1.87 ± 0.79 1.15 ± 0.11 360 ± 7 90.27 ± 0.25 0.61 ± 0.07 0.99 ± 0.40 399 ± 1

SIFT + k-means + VLAD 79.52 ± 0.43 2.26 ± 0.79 1.15 ± 0.07 280 ± 2 86.92 ± 0.33 2.75 ± 0.66 1.45 ± 0.47 479 ± 2
SIFT + GMM + FV 64.58 ± 0.50 5.26 ± 1.56 3.58 ± 0.34 268 ± 2 90.08 ± 0.24 1.51 ± 0.25 0.98 ± 0.08 264 ± 0
DSIFT + k-means + VLAD 75.22 ± 0.48 3.43 ± 0.71 2.13 ± 1.10 1279 ± 6 86.09 ± 0.36 1.77 ± 0.60 0.86 ± 0.09 1369 ± 5
DSIFT + GMM + FV 77.32 ± 0.33 3.51 ± 0.73 1.61 ± 0.58 1136 ± 3 91.85 ± 0.67 1.01 ± 0.50 0.75 ± 0.08 2257 ± 4
LIOP + k-means + VLAD 82.74 ± 0.47 2.52 ± 0.43 2.48 ± 0.68 68 ± 1 90.24 ± 3.67 1.79 ± 0.03 1.78 ± 0.04 26 ± 0
LIOP + GMM + FV 71.72 ± 0.49 6.02 ± 1.42 4.51 ± 0.73 21 ± 0 90.33 ± 0.02 1.64 ± 0.73 1.12 ± 0.02 14 ± 0
HOG + k-means + VLAD 73.14 ± 0.26 5.65 ± 0.89 3.13 ± 0.88 111 ± 0 90.00 ± 0.11 1.34 ± 0.67 0.99 ± 0.18 49 ± 0
HOG + GMM + FV 60.43 ± 0.58 10.98 ± 1.47 6.16 ± 1.13 111 ± 0 90.33 ± 0.02 1.71 ± 0.02 0.30 ± 0.18 49 ± 0

SIFT + k-means + VLAD + Spec 77.86 ± 0.28 5.28 ± 1.24 3.39 ± 1.44 1068 ± 3 92.48 ± 0.02 0.95 ± 0.14 0.40 ± 0.04 1076 ± 2
SIFT + GMM + FV + Spec 77.97 ± 0.03 5.81 ± 1.66 3.78 ± 1.83 1068 ± 3 92.53 ± 0.02 0.25 ± 0.04 0.18 ± 0.02 1076 ± 2
DSIFT + k-means + VLAD + Spec 77.64 ± 0.33 5.63 ± 1.25 3.49 ± 1.55 1135 ± 4 92.51 ± 0.03 0.18 ± 0.07 0.36 ± 0.01 1501 ± 5
DSIFT + GMM + FV + Spec 78.03 ± 0.27 5.56 ± 1.28 3.14 ± 1.47 1135 ± 4 92.47 ± 0.03 0.50 ± 0.09 0.42 ± 0.09 1988 ± 4

Ferreiras Eiras
OA QD AD Time OA QD AD Time

Without Texture Features 76.84 ± 0.71 7.86 ± 1.49 3.70 ± 1.08 9 ± 0 78.40 ± 0.79 6.05 ± 1.86 4.37 ± 1.28 11 ± 0

k-means + VLAD 83.58 ± 0.35 2.43 ± 1.07 2.30 ± 0.49 230 ± 1 86.58 ± 1.09 2.24 ± 0.75 1.78 ± 0.79 245 ± 2
k-means + BoW 84.93 ± 0.47 3.13 ± 0.43 2.77 ± 0.57 228 ± 0 85.19 ± 0.81 2.30 ± 1.16 1.57 ± 0.28 243 ± 0
GMM + FV 82.77 ± 0.34 3.95 ± 0.99 2.28 ± 1.12 702 ± 0 85.61 ± 0.41 2.83 ± 0.61 1.79 ± 0.69 887 ± 0

SIFT + k-means + VLAD 80.75 ± 0.08 3.41 ± 0.58 2.23 ± 1.07 682 ± 6 84.32 ± 0.24 3.83 ± 0.45 1.64 ± 0.81 503 ± 9
SIFT + GMM + FV 83.99 ± 0.28 3.87 ± 1.30 2.05 ± 0.84 600 ± 6 81.42 ± 0.48 4.97 ± 1.59 2.89 ± 0.76 493 ± 7
DSIFT + k-means + VLAD 83.29 ± 0.13 3.15 ± 0.73 1.49 ± 0.32 1951 ± 19 73.35 ± 4.56 5.76 ± 1.79 3.74 ± 0.65 2081 ± 1.89
DSIFT + GMM + FV 84.38 ± 1.09 3.29 ± 1.17 2.67 ± 0.96 2547 ± 131 81.17 ± 0.17 4.26 ± 1.17 2.28 ± 0.39 3953 ± 30
LIOP + k-means + VLAD 83.08 ± 0.41 3.40 ± 1.34 2.05 ± 0.43 118 ± 0 88.21 ± 0.37 3.99 ± 1.61 2.93 ± 0.48 99 ± 0
LIOP + GMM + FV 84.82 ± 0.19 5.34 ± 1.58 3.64 ± 0.61 52 ± 0 69.24 ± 0.35 6.64 ± 1.19 3.16 ± 1.15 73 ± 0
HOG + k-means + VLAD 82.98 ± 0.01 4.51 ± 1.49 2.43 ± 0.25 216 ± 0 84.41 ± 0.17 4.13 ± 1.04 2.79 ± 0.36 308 ± 0
HOG + GMM + FV 83.50 ± 0.03 3.77 ± 1.16 2.82 ± 0.44 216 ± 0 69.01 ± 0.26 6.22 ± 1.07 3.66 ± 0.81 308 ± 0

SIFT + k-means + VLAD + Spec 84.08 ± 0.10 3.96 ± 1.04 2.90 ± 0.86 1477 ± 7 84.96 ± 0.78 2.91 ± 0.97 1.94 ± 0.82 1707 ± 7
SIFT + GMM + FV + Spec 84.12 ± 0.16 3.72 ± 1.40 2.23 ± 0.02 1477 ± 0 85.14 ± 0.51 2.15 ± 0.98 1.17 ± 0.82 1707 ± 7
DSIFT + k-means + VLAD + Spec 84.06 ± 0.13 3.09 ± 1.05 2.31 ± 0.51 2195 ± 26 85.21 ± 0.59 2.84 ± 0.42 1.47 ± 0.28 2385 ± 14
DSIFT + GMM + FV + Spec 84.05 ± 0.13 3.42 ± 1.43 2.97 ± 0.87 2064 ± 476 85.11 ± 0.57 2.01 ± 0.26 1.34 ± 0.67 4037 ± 148
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Table 9. Classification results in terms of OA (%), QD (%), AD (%), and execution times (seconds)
obtained by the techniques detailed in Table 4 for the Galicia dataset images and using a RF classifier.
Fifteen percent of the superpixels are used for training. The best OA results are in a gray background.

Oitavén Mestas
OA QD AD Time OA QD AD Time

Without Texture Features 73.66 ± 0.27 2.38 ± 0.75 1.69 ± 1.12 8 ± 0 87.65 ± 0.32 1.85 ± 0.10 1.56 ± 0.93 7 ± 0

k-means + VLAD 78.75 ± 1.83 2.56 ± 0.50 1.41 ± 0.94 243 ± 5 91.21 ± 0.12 0.92 ± 0.06 0.16 ± 0.02 164 ± 2
k-means + BoW 82.86 ± 0.83 2.13 ± 0.64 1.80 ± 0.79 242 ± 6 92.44 ± 0.68 0.57 ± 0.02 0.65 ± 0.05 165 ± 2
GMM + FV 80.35 ± 0.69 1.13 ± 0.51 1.74 ± 0.05 362 ± 4 91.31 ± 0.15 0.48 ± 0.06 0.25 ± 0.08 402 ± 2

SIFT + k-means + VLAD 81.38 ± 0.48 2.35 ± 0.59 1.33 ± 0.04 285 ± 2 87.85 ± 0.39 2.90 ± 0.60 1.45 ± 0.27 477 ± 4
SIFT + GMM + FV 66.93 ± 0.12 6.98 ± 1.23 3.26 ± 0.77 264 ± 1 90.34 ± 0.39 1.13 ± 0.57 0.46 ± 0.06 272 ± 2
DSIFT + k-means + VLAD 76.60 ± 0.33 3.21 ± 0.34 2.83 ± 1.31 1291 ± 9 88.63 ± 0.11 1.47 ± 0.22 0.55 ± 0.07 1345 ± 6
DSIFT + GMM + FV 78.78 ± 0.89 2.94 ± 0.35 1.33 ± 0.25 1139 ± 2 91.37 ± 0.90 1.94 ± 0.29 0.49 ± 0.01 2263 ± 5
LIOP + k-means + VLAD 83.29 ± 0.80 2.86 ± 0.85 2.36 ± 0.23 69 ± 1 91.24 ± 3.99 1.09 ± 0.03 1.16 ± 0.02 29 ± 0
LIOP + GMM + FV 73.89 ± 0.41 7.61 ± 1.29 4.90 ± 0.37 22 ± 1 91.44 ± 0.04 1.66 ± 0.83 1.77 ± 0.03 15 ± 0
HOG + k-means + VLAD 74.24 ± 0.10 5.45 ± 0.62 3.87 ± 0.06 113 ± 0 91.08 ± 0.18 1.84 ± 0.45 0.24 ± 0.01 52 ± 0
HOG + GMM + FV 62.04 ± 0.38 10.59 ± 1.98 6.29 ± 1.51 115 ± 3 91.33 ± 0.09 1.56 ± 0.08 0.28 ± 0.01 51 ± 0

SIFT + k-means + VLAD + Spec 78.26 ± 0.28 4.21 ± 0.87 2.51 ± 0.46 1076 ± 3 93.67 ± 0.62 0.95 ± 0.03 0.64 ± 0.01 1089 ± 1
SIFT + GMM + FV + Spec 78.92 ± 0.55 4.04 ± 0.31 2.08 ± 0.32 1078 ± 2 93.77 ± 0.79 0.45 ± 0.07 0.74 ± 0.02 1086 ± 1
DSIFT + k-means + VLAD + Spec 78.85 ± 0.69 4.97 ± 0.80 2.88 ± 0.25 1097 ± 3 93.34 ± 0.42 0.99 ± 0.03 0.59 ± 0.03 1189 ± 1
DSIFT + GMM + FV + Spec 78.04 ± 0.59 4.14 ± 0.25 2.46 ± 0.92 1089 ± 3 93.45 ± 0.91 0.93 ± 0.04 0.33 ± 0.02 1146 ± 3

Ferreiras Eiras
OA QD AD Time OA QD AD Time

Without Texture Features 78.64 ± 0.99 7.19 ± 1.62 3.64 ± 0.38 11 ± 0 81.70 ± 0.78 6.60 ± 1.95 4.68 ± 1.43 14 ± 1

k-means + VLAD 84.19 ± 0.40 2.36 ± 0.44 1.07 ± 0.05 240 ± 2 87.38 ± 1.19 2.61 ± 0.54 1.58 ± 0.17 263 ± 2
k-means + BoW 85.99 ± 0.44 3.36 ± 0.60 2.01 ± 0.26 235 ± 0 86.46 ± 0.59 2.54 ± 1.74 1.82 ± 0.89 267 ± 4
GMM + FV 83.47 ± 0.96 3.48 ± 0.14 2.10 ± 1.40 732 ± 1 85.41 ± 0.85 2.39 ± 0.09 1.66 ± 0.53 896 ± 1

SIFT + k-means + VLAD 81.82 ± 0.31 3.22 ± 0.61 2.16 ± 0.58 701 ± 3 85.57 ± 0.24 3.71 ± 0.57 1.93 ± 0.64 533 ± 12
SIFT + GMM + FV 84.09 ± 0.82 3.18 ± 1.07 2.27 ± 0.12 608 ± 4 81.84 ± 0.49 4.96 ± 1.41 2.01 ± 0.27 515 ± 5
DSIFT + k-means + VLAD 83.24 ± 0.91 3.41 ± 0.86 1.04 ± 0.06 1962 ± 14 73.54 ± 4.13 5.11 ± 1.25 3.74 ± 0.80 2099 ± 2
DSIFT + GMM + FV 85.76 ± 1.92 3.35 ± 0.80 2.49 ± 0.46 2588 ± 56 82.56 ± 0.76 4.40 ± 1.59 2.81 ± 0.22 3943 ± 4
LIOP + k-means + VLAD 84.56 ± 0.65 3.68 ± 0.27 2.94 ± 0.10 123 ± 3 89.20 ± 0.96 3.39 ± 1.54 2.25 ± 0.56 117 ± 2
LIOP + GMM + FV 85.96 ± 0.84 5.19 ± 1.16 3.27 ± 0.54 58 ± 0 71.03 ± 0.60 6.65 ± 1.32 3.16 ± 0.25 87 ± 0
HOG + k-means + VLAD 82.74 ± 0.01 4.91 ± 1.32 2.43 ± 0.11 228 ± 1 85.92 ± 0.81 4.29 ± 0.49 2.72 ± 0.52 315 ± 1
HOG + GMM + FV 84.63 ± 0.09 3.86 ± 1.28 2.14 ± 0.16 239 ± 0 69.01 ± 0.54 6.59 ± 1.07 3.97 ± 0.07 308 ± 0

SIFT + k-means + VLAD + Spec 84.93 ± 0.09 3.22 ± 1.04 2.02 ± 0.45 1497 ± 5 84.99 ± 0.54 2.41 ± 0.75 1.06 ± 0.87 1712 ± 4
SIFT + GMM + FV + Spec 84.64 ± 0.37 3.10 ± 1.30 2.53 ± 0.49 1481 ± 0 85.36 ± 0.53 2.40 ± 0.92 1.47 ± 0.59 1757 ± 5
DSIFT + k-means + VLAD + Spec 84.38 ± 0.65 3.16 ± 1.81 2.69 ± 0.29 2208 ± 20 85.87 ± 0.59 2.94 ± 0.01 1.89 ± 0.74 2399 ± 3
DSIFT + GMM + FV + Spec 84.62 ± 0.94 3.17 ± 1.90 2.15 ± 0.61 2084 ± 217 85.18 ± 0.53 2.46 ± 0.08 1.45 ± 0.08 4056 ± 176

It can be concluded from Table 11 that k-means + BoW is a technique that offers the best
consistent results because it outperforms the other ones in terms of OA and obtains reasonable
results regarding execution times. LIOP + k-means + VLAD is also an interesting technique, although it
was experimentally checked that its results are highly dependent on the optimization of the tuning of
its input parameters, which is a resource expensive process.

Finally, Table 12 shows the results obtained for the Gaofen dataset as it is a dataset with a large
number of scenes. It is divided into GID5 (150 scenes) and GID15 (10 scenes) [47], as it was detailed in
the dataset description. The data trends are similar to those of the Galicia dataset, being the codebook-based
scheme the best, followed by the descriptor-based scheme and the spectral-enhanced descriptor-based
scheme. Specifically, the best techniques are again those based on k-means as codebook generator
algorithm. In this case, the best techniques are, in particular, k-means + BoW and k-means + VLAD.
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Table 10. Classification results in terms of OA (%), QD (%), AD (%), and execution times (seconds)
obtained by the techniques detailed in Table 4 for the Galicia dataset images and using a ELM classifier.
Fifteen percent of the superpixels are used for training. The best OA results are in a gray background.

Oitavén Mestas
OA QD AD Time OA QD AD Time

Without Texture Features 71.90 ± 0.72 4.23 ± 1.19 2.90 ± 0.64 8 ± 0 84.66 ± 0.23 1.97 ± 0.63 0.54 ± 0.07 6 ± 0

k-means + VLAD 74.32 ± 0.57 3.19 ± 0.80 2.66 ± 0.89 248 ± 3 87.31 ± 0.15 0.74 ± 0.04 0.34 ± 0.02 178 ± 1
k-means + BoW 80.01 ± 0.86 2.54 ± 0.33 1.22 ± 0.92 248 ± 4 91.95 ± 0.16 1.38 ± 0.08 0.94 ± 0.06 179 ± 1
GMM + FV 78.16 ± 0.75 1.33 ± 0.52 1.98 ± 0.82 383 ± 4 89.46 ± 0.57 0.83 ± 0.04 0.74 ± 0.90 408 ± 2

SIFT + k-means + VLAD 78.66 ± 0.70 2.67 ± 0.58 1.21 ± 0.01 289 ± 2 84.71 ± 0.52 2.94 ± 0.57 1.35 ± 0.78 503 ± 1
SIFT + GMM + FV 63.55 ± 0.76 5.08 ± 0.32 3.71 ± 0.22 275 ± 2 89.18 ± 0.41 1.43 ± 0.67 0.02 ± 0.13 271 ± 1
DSIFT + k-means + VLAD 73.39 ± 0.36 3.85 ± 0.08 2.58 ± 0.13 1287 ± 7 85.09 ± 0.99 1.70 ± 0.81 0.86 ± 0.11 1469 ± 7
DSIFT + GMM + FV 76.84 ± 0.85 3.93 ± 0.68 1.62 ± 0.88 1153 ± 4 91.04 ± 0.59 1.36 ± 0.90 0.37 ± 0.07 2274 ± 3
LIOP + k-means + VLAD 81.07 ± 0.57 2.64 ± 0.29 2.36 ± 0.61 75 ± 1 89.43 ± 1.69 1.13 ± 0.08 1.26 ± 0.06 36 ± 1
LIOP + GMM + FV 70.16 ± 0.92 5.88 ± 0.61 4.09 ± 0.11 31 ± 0 89.64 ± 0.04 1.21 ± 0.13 1.73 ± 0.05 28 ± 1
HOG + k-means + VLAD 72.91 ± 0.40 5.01 ± 0.70 3.57 ± 0.73 121 ± 2 89.35 ± 0.31 1.67 ± 0.49 0.29 ± 0.09 56 ± 1
HOG + GMM + FV 60.55 ± 0.26 12.02 ± 1.66 7.79 ± 1.16 150 ± 2 89.69 ± 0.05 1.56 ± 0.04 0.64 ± 0.27 54 ± 0

SIFT + k-means + VLAD + Spec 76.79 ± 0.69 5.86 ± 0.99 3.10 ± 1.25 1076 ± 3 90.20 ± 0.02 0.96 ± 0.04 0.39 ± 0.01 1176 ± 3
SIFT + GMM + FV + Spec 75.68 ± 0.02 5.42 ± 1.82 3.46 ± 1.18 1142 ± 3 91.49 ± 0.01 0.16 ± 0.06 0.63 ± 0.07 1256 ± 2
DSIFT + k-means + VLAD + Spec 76.10 ± 0.76 5.96 ± 1.65 3.79 ± 1.84 1155 ± 4 91.85 ± 0.04 0.35 ± 0.04 0.36 ± 0.49 1701 ± 5
DSIFT + GMM + FV + Spec 77.42 ± 0.82 5.60 ± 0.86 3.19 ± 1.05 1835 ± 4 90.14 ± 0.03 0.47 ± 0.05 0.65 ± 0.06 2410 ± 4

Ferreiras Eiras
OA QD AD Time OA QD AD Time

Without Texture Features 73.48 ± 0.82 7.68 ± 0.60 3.35 ± 0.49 12 ± 1 76.05 ± 0.60 6.15 ± 1.23 4.02 ± 1.33 19 ± 0

k-means + VLAD 80.93 ± 0.55 2.27 ± 1.97 2.75 ± 0.90 252 ± 3 85.98 ± 0.76 2.40 ± 0.52 1.80 ± 0.60 269 ± 3
k-means + BoW 83.27 ± 0.66 3.94 ± 0.97 2.72 ± 0.61 235 ± 1 84.68 ± 0.81 3.29 ± 0.97 1.60 ± 0.47 282 ± 2
GMM + FV 81.83 ± 0.66 3.33 ± 0.91 2.47 ± 0.75 722 ± 1 84.66 ± 0.42 2.03 ± 0.75 1.73 ± 0.52 925 ± 2

SIFT + k-means + VLAD 78.46 ± 0.28 3.40 ± 0.50 3.14 ± 0.25 701 ± 4 82.84 ± 0.17 3.91 ± 0.76 1.57 ± 0.47 573 ± 1
SIFT + GMM + FV 81.71 ± 0.91 3.93 ± 0.96 2.29 ± 0.47 630 ± 6 80.81 ± 0.51 4.82 ± 0.71 3.55 ± 0.52 536 ± 2
DSIFT + k-means + VLAD 82.82 ± 0.07 3.27 ± 0.44 1.41 ± 0.87 2254 ± 23 72.30 ± 1.48 6.20 ± 0.58 4.94 ± 0.42 2191 ± 1.70
DSIFT + GMM + FV 83.14 ± 0.64 4.21 ± 0.24 3.54 ± 0.88 2747 ± 52 80.29 ± 0.72 4.01 ± 0.44 3.34 ± 0.45 4201 ± 41
LIOP + k-means + VLAD 82.02 ± 0.55 3.29 ± 0.12 3.88 ± 0.53 238 ± 1 87.58 ± 0.37 3.39 ± 0.42 1.37 ± 0.48 106 ± 2
LIOP + GMM + FV 82.77 ± 0.23 5.01 ± 0.83 3.92 ± 0.63 72 ± 1 67.63 ± 0.65 7.70 ± 1.25 4.05 ± 0.04 96 ± 1
HOG + k-means + VLAD 81.12 ± 0.09 4.40 ± 1.09 2.29 ± 0.04 266 ± 1 83.70 ± 0.93 4.28 ± 1.07 2.78 ± 0.40 358 ± 1
HOG + GMM + FV 82.75 ± 0.18 3.67 ± 1.81 2.85 ± 0.50 296 ± 0 67.99 ± 0.47 6.99 ± 0.86 3.43 ± 0.84 358 ± 1

SIFT + k-means + VLAD + Spec 82.56 ± 0.48 4.68 ± 1.25 2.38 ± 0.31 1682 ± 7 82.33 ± 0.07 3.50 ± 0.29 1.77 ± 0.08 1857 ± 3
SIFT + GMM + FV + Spec 82.93 ± 0.28 3.40 ± 1.04 2.27 ± 0.09 1688 ± 0 84.08 ± 0.03 2.73 ± 0.95 1.54 ± 0.09 1835 ± 7
DSIFT + k-means + VLAD + Spec 83.88 ± 0.96 3.01 ± 1.10 2.30 ± 0.26 2674 ± 26 85.90 ± 0.66 2.80 ± 0.05 1.70 ± 0.59 2412 ± 14
DSIFT + GMM + FV + Spec 82.95 ± 0.78 3.11 ± 1.88 2.95 ± 0.39 2580 ± 476 83.48 ± 0.59 2.49 ± 0.60 1.41 ± 0.37 4345 ± 148

Table 11. Classification results for different percentages of training samples for the Galicia dataset
images using a SVM classifier and varying the percentage of superpixels randomly selected for training.
Accuracy values expressed in terms of OA (in %) indicating standard deviation values (±). The best
results are in a gray background.

% Technique Oitavén Mestas Ferreiras Eiras

10

k-means + BoW
GMM + FV
LIOP + k-means + VLAD
SIFT + k-means + VLAD + Spec

76.01 ± 0.30
75.24 ± 1.01
75.23 ± 0.82
75.83 ± 1.44

87.6 ± 0.20
84.01 ± 3.14
86.24 ± 3.01
86.93 ± 3.08

79.52 ± 0.27
80.23 ± 1.59
81.02 ± 1.01
81.22 ± 1.57

84.48 ± 0.21
82.51 ± 2.00
83.31 ± 2.00
83.93 ± 2.00

15

k-means + BoW
GMM + FV
LIOP + k-means + VLAD
SIFT + k-means + VLAD + Spec

81.94 ± 0.54
79.62 ± 0.67
82.74 ± 0.47
77.86 ± 0.28

92.67 ± 0.41
90.27 ± 0.25
90.24 ± 3.67
92.48 ± 0.02

84.93 ± 0.47
82.77 ± 0.34
83.08 ± 0.41
84.08 ± 0.10

85.19 ± 0.81
85.61 ± 0.41
88.21 ± 0.37
84.96 ± 0.78

20

k-means + BoW
GMM + FV
LIOP + k-means + VLAD
SIFT + k-means + VLAD + Spec

83.12 ± 0.14
81.93 ± 1.21
81.38 ± 2.04
82.39 ± 1.19

92.14 ± 0.19
91.65 ± 0.66
91.22 ± 1.93
90.76 ± 2.03

85.07 ± 0.35
84.42 ± 0.71
83.98 ± 0.75
83.99 ± 0.86

86.62 ± 0.27
87.32 ± 1.22
86.77 ± 1.43
86.66 ± 0.88
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Table 12. Classification accuracy results in terms of OA (%) for the GID5 and GID15 datasets.

Scheme Technique GID5 GID15

- Without Texture Features 91.28 69.93
k-means + VLAD 93.84 79.63

Codebook-based scheme k-means + BoW 95.79 79.61
GMM + FV 94.66 79.61

SIFT + k-means + VLAD 92.46 76.21
SIFT + GMM + FV 93.63 75.97
DSIFT + k-means + VLAD 93.02 76.47

Descriptor-based DSIFT + GMM + FV 93.04 75.81
scheme LIOP + k-means + VLAD 94.85 77.32

LIOP + GMM + FV 92.19 71.24
HOG + k-means + VLAD 94.53 76.76
HOG + GMM + FV 92.18 70.98

SIFT + k-means + VLAD + Spec 93.99 75.49
Spectral-enhanced SIFT + GMM + FV + Spec 94.00 75.50
descriptor-based scheme DSIFT + k-means + VLAD + Spec 93.91 75.47

DSIFT + GMM + FV + Spec 93.92 75.51

4. Discussion

In this work, different texture schemes based on BoW for vegetation classification using a
superpixel approach were studied. We considered multi- and hyperspectral remote sensing images
taken by UAVs and satellites. In all the presented schemes, the texture algorithms were computed
inside superpixels, in contrast to most of the methods previously published in the literature,
in which the vegetation textures are extracted from patches or objects. A detailed comparison of
the different techniques was carried out in terms of classification accuracy for several land cover
remote sensing datasets. In particular, the Galicia dataset contained five classes of vegetation (oak,
meadows, autochthonous vegetation, eucalyptus, and pines), while in the GID5 5 classes were
considered, three of them corresponding to vegetation, and in the GID15, 15 classes were considered,
corresponding eight of them to vegetation. The best classification results for each image ranged
from 81.07% to 93.77% for the Galicia dataset, and from 79.63% to 95.79% for the Gaofen dataset.
The techniques and algorithms used in this work included several keypoint detectors and descriptors
(HOG, LIOP, SIFT, and DSIFT), algorithms for codebook generation (k-means and GMM), algorithms
for feature encoding (histogram-based, VLAD, and FV), and, finally, some algorithms for feature
classification (SVM, RF, and ELM). Additionally, SLIC was used for superpixel generation and PCA
for dimensionality reduction.

In previous works, studies were carried out to determine the most suitable set of parameters,
including textures, to carry out the classification of vegetation in remote sensing images.
However, in these works the only texture method considered was GLCM. Specifically, the authors
of [10] present a classification scheme for the canopy cover mapping of spekboom in a large semiarid
region in South Africa using multispectral imagery (red, green, blue, and near-infrared bands).
Three classes were considered (spekboom, tree, and background) and the classification scheme is a
decision tree with 47 features grouped into two broad categories: per-pixel (spectral information)
and sliding window features (statistic of the pixels inside a small local neighborhood). The decision
tree obtained a mean absolute canopy cover error of 5.85%. The authors of [14] present a crop
classification method for hyperspectral images combining 40 spectral indices, spectral features (several
class-pair distances), and GLCM texture information in a object-oriented approach. Eight classes were
considered (chinese cabagge, japanese cabbage, lettuce, radish, pasture, pole bean, and forest) and the
classification accuracy obtained was 97.84%. Finally, the authors of [16] performed the classification
of savannah tree species from very high resolution images acquired by UAVs. Two flights capturing
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multispectral imagery (red, green, blue, and near-infrared bands) were made to obtain image mosaics
with longitudinal and lateral overlap. The method uses chromatic coordinates, spectral indices,
the canopy height model, and GLCM texture measures in different window sizes. Nine classes of trees
and shrubs (with an abundance of more than ten individuals within the samples) were considered and
an outline of each single-stem individual was drawn onto the image. The overall accuracy obtained
was of 77% on average.

For the detection of the extent of trees and shrubs, the canopy height model (CHM) is the one
most commonly used. Information on height is obtained from different sources, in some cases through
sensor fusion with LiDAR information. In other cases surface reconstruction from aerial images is the
way of obtaining this complementary information [21,22]. In this paper, information on height was not
considered as only single images are available in the dataset for the areas under study.

Other works use simple texture methods for vegetation classification, specifically LBP and GLCM.
For example, the authors of [12] applied the LBP textures for the classification of tree species using
hyperspectral data and an aerial stereo camera system. In the classification step, a pixel-based
approach and a patch-based BoW approach were used. Four classes were considered (spruce, beech,
mixed, and non-tree) and the classification accuracy obtained was approximately 60%. In [13],
an UAV performs vegetation mapping in complex urban landscapes using ultra-high resolution color
imagery acquired at low altitudes. A hybrid method combining Random Forest and GLCM texture
analysis at nine different window sizes was used. Six typical land covers (out of which three are
vegetated ones) were considered (grass, trees, shrubs, bare soil, impervious surface, and water) and
the classification accuracies ranged from 86.2% to 91.8%. The authors of [15] propose an object-based
GLCM texture extraction method for the classification of man-planted forests on mountainous areas
using high resolution satellite data, including panchromatic and multispectral bands. The method used
a multi-resolution segmentation algorithm to generate image objects and enhances the texture feature
of objects using a 2D Gabor filter. Four classes were considered (non-vegetation, natural forest, rubber
trees, and crops) and the classification accuracy obtained was 91.4%. The authors of [17] propose
a method combining spectral measures and GLCM texture information for crop classification in
time-series UAV images composed of three bands (green, red, and near-infrared). The object-oriented
approach extracted meaningful objects via multi-resolution segmentation and classification was carried
out on object units. Four vegetation classes (highland kimchi cabbage, cabbage, potato, and fallow)
were considered. In six multi-temporal images, combining texture features with spectral information
led to an increase of 7.72% in OA, compared to the classification result with spectral information only
(from 83.13% to 90.85%).

For the classification of a image using textures it is necessary to delimit regions on which the
texture features are computed. None of the works cited above uses superpixels to obtain the textures.
Instead they use patches, segments or objects. Superpixels were used in [24], which proposes a scheme
for natural roadside vegetation classification shooting on the ground (not remote sensing) using
color cameras. Six classes were considered (brown grass, green, road, soil, tree, and soil) and the
scheme learns two individual sets of BoW dictionaries from color and filter-bank texture features using
the nearest Euclidean distance, which were aggregated into class probabilities for each superpixel.
Experimental evaluations on a natural image dataset obtained 75.5% accuracy for classifying six objects.

For keypoint detection and description, we considered four algorithms: HOG, LIOP, SIFT,
and DSIFT. Few works in the literature proposed descriptor-based methods for the classification
of vegetation in images, although this approach is common in the classification of scenes. For example,
the authors of [18] present a methodology for vegetation segmentation in cornfield images obtained
by autonomous agricultural vehicles. A collection of outdoor color images, which were acquired
under different illumination conditions and different plant growth state, were selected. The method
focuses on finding an appropriate set of different color vegetation indices and local descriptors for
vegetation characterization. Three different classes were considered (vegetation, light-brown soil,
and dark-brown soil), and an accuracy value of 95.3% was achieved. In [19], the classification of weeds
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growing among crops using a BoW model based on SIFT or SURF features is presented. In that work,
a small-sized robot was developed for vision based precision control of volunteer potatoes (weed) in
a sugar beet field. The highest classification accuracy (96.5%) was obtained using SIFT, Out-of-Row
Regional Index (ORRI), and SVM. Finally, the authors of [20] study the application of SIFT to cropland
mapping in the Brazilian Amazon based on vegetation index time series. It used a dense temporal
SIFT BoW algorithm, which is able to capture temporal locality of the data. The dataset was thus made
of 46 MODIS images acquired over two years. Five crop classes were considered (soybean, soybean +
millet, soybean + maize, soybean + cotton, and cotton) with accurate detection of around 70% of the
agricultural areas.

Based on the presented information, it can be concluded that the number of works in the
literature that use descriptors to characterize textures in the topic of vegetation classification in
images is very limited. To the best of our knowledge, no superpixel-based descriptors have been
previously proposed for the classification of vegetation in multi and hyperspectral images. On the other
hand, our classification results are comparable to other studies in the literature. However, an exact
numerical comparison is difficult as it depends on the nature of the datasets, the number of classes,
and the number of samples used for training. Comparable results in the literature are only available
for GID5 [47]. In particular, the accuracy obtained by the CNN-based technique used in this
reference was 95.74%, which is similar to the 95.79% obtained in the experiments shown in Table 12.
However, the experimental conditions in [47] were different as disjoint sets of images were taken
for training and testing. In our approach the same percentage of training and testing samples were
selected over each one of the images.

5. Conclusions

In this paper, different texture extraction schemes at the superpixel level for the classification
of vegetation species using multi- and hyperspectral imagery are proposed. These schemes,
based on the classical BoW approach, are called codebook-based, descriptor-based, and spectral-enhanced
descriptor-based schemes. Some of the following stages are considered for each one; superpixel extraction,
keypoint detection and description, codebook generation, feature encoding, and dimensionality
reduction. The relevant contributions of this paper are the use of a superpixel segmentation algorithm
as a way of dividing an image into homogeneous regions previously to the texture extraction, and the
adequate exploitation of the spectral information available in all the bands of the image. Superpixels
are used in the keypoint detection and description, codebook generation, feature encoding and
classification stages. Sixteen different texture-extraction techniques derived from the three proposed
schemes are analyzed in detail in the paper and compared in terms of classification accuracy and
execution time considering SVM, RF and ELM as supervised classification algorithms.

Three datasets consisting of real multi- and hyperspectral images containing vegetation classes
were employed to test the proposed schemes. As the standard dataset does not focus on vegetation,
the Galicia and Gaofen datasets were also considered. The best classification results for each image
range from 81.07% to 93.77% for the Galicia dataset and from 79.63% to 95.79% for the Gaofen dataset.
The techniques and algorithms used in this work include several keypoint detectors and descriptors
(HOG, LIOP, SIFT, and DSIFT), algorithms for codebook generation (k-means and GMM), algorithms
for feature encoding (histogram-based, VLAD and FV), and, finally, some algorithms for feature
classification (SVM, RF, and ELM). Additionally, SLIC was used for superpixel generation and PCA
for dimensionality reduction. The experimental results show that the best techniques are based on
k-means as codebook generator. In particular, the highest OA values are offered by k-means + BoW,
that is a representative of the codebook-based scheme, using BoW for feature encoding. The second best
results on average are provided by LIOP + k-means + VLAD, which uses LIOP for keypoint detection
and description and VLAD for feature encoding, as a representative of the descriptor-based scheme.
These are also techniques that present reasonable computational cost according to our experiments.
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As future work, we plan to analyze the performance of the best techniques with new multispectral
images corresponding to vegetation. The desired properties of these images will be the abundance of
vegetation and high spatial resolution. Several future research lines that would benefit from the current
proposal have also been considered such as testing different algorithms for keypoint detection and
description, for instance, robust and powerful techniques like SURF and KAZE. Moreover, the creation
of schemes with a different structure from the three described is also projected as future work.

Author Contributions: Conceptualization, D.B.H. and F.A.; Experiments, S.R.B.; Project administration, D.B.H.
and F.A.; Software, S.R.B.; Supervision, F.A.; Writing—original draft, S.R.B.; Writing—review and editing, D.B.H.
and F.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Civil Program UAVs Initiative, promoted by the Xunta de Galicia
and developed in partnership with the Babcock Company to promote the use of unmanned technologies in civil
services. We also have to acknowledge the support by Ministerio de Ciencia e Innovación, Government of Spain
(grant number PID2019-104834GB-I00), and Consellería de Educación, Universidade e Formación Profesional
(ED431C 2018/19, and accreditation 2019-2022 ED431G-2019/04). All are cofunded by the European Regional
Development Fund (ERDF).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript.

UAV Unmanned Aerial Vehicle
BoW Bag of Words
LBP Local Binary Pattern
GLCM Gray-Level Co-occurrence Matrix
CHM Canopy Height Model
SVM Support Vector Machines
RF Random Forest
ELM Extreme Learning Machine
CNN Convolutional Neural Network
GLCM Gray-Level Co-occurrence Matrix
FNEA Fractal Net Evolution Approach
NDVI Normalized Difference Vegetation Index
DEM Digital Elevation Model
SLIC Simple Linear Iterative Clustering
ETPS Efficient Topology Preserving Segmentation
SIFT Scale-Invariant Feature Transform
HOG Histogram of Oriented Gradients
DSIFT Dense Scale-Invariant Feature Transform
LIOP Local Intensity Order Pattern
GMM Gaussian Mixture Modeling
VLAD Vector of Locally Aggregated Descriptors
FV Fisher Vectors
PCA Principal Component Analysis
GID Gaofen Image Dataset
ROSIS Reflective Optics System Imaging Spectrometer
AVIRIS Airborne Visible Infrared Imaging Spectrometer
RF Random Forest
OA Overall Accuracy
QD Quantity Disagreement
AD Allocation Disagreement
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