
Kobus et al. BMC Bioinformatics (2020) 21:102
https://doi.org/10.1186/s12859-020-3429-6

SOFTWARE Open Access

A big data approach to metagenomics
for all-food-sequencing
Robin Kobus1†, José M. Abuín2,3†, André Müller1, Sören Lukas Hellmann4, Juan C. Pichel3,
Tomás F. Pena3, Andreas Hildebrandt1, Thomas Hankeln4 and Bertil Schmidt1*

Abstract

Background: All-Food-Sequencing (AFS) is an untargeted metagenomic sequencing method that allows for the
detection and quantification of food ingredients including animals, plants, and microbiota. While this approach avoids
some of the shortcomings of targeted PCR-based methods, it requires the comparison of sequence reads to large
collections of reference genomes. The steadily increasing amount of available reference genomes establishes the
need for efficient big data approaches.

Results: We introduce an alignment-free k-mer based method for detection and quantification of species
composition in food and other complex biological matters. It is orders-of-magnitude faster than our previous
alignment-based AFS pipeline. In comparison to the established tools CLARK, Kraken2, and Kraken2+Bracken it is
superior in terms of false-positive rate and quantification accuracy. Furthermore, the usage of an efficient database
partitioning scheme allows for the processing of massive collections of reference genomes with reduced memory
requirements on a workstation (AFS-MetaCache) or on a Spark-based compute cluster (MetaCacheSpark).

Conclusions: We present a fast yet accurate screening method for whole genome shotgun sequencing-based
biosurveillance applications such as food testing. By relying on a big data approach it can scale efficiently towards
large-scale collections of complex eukaryotic and bacterial reference genomes. AFS-MetaCache and MetaCacheSpark
are suitable tools for broad-scale metagenomic screening applications. They are available at https://muellan.github.io/
metacache/afs.html (C++ version for a workstation) and https://github.com/jmabuin/MetaCacheSpark (Spark version
for big data clusters).

Keywords: Next-generation sequencing, Metagenomics, Species identification, Eukaryotic genomes, Locality
sensitive hashing, Big data

Background
Monitoring of food ingredients is becoming an increas-
ingly important task. Relevant issues include correct label-
ing, fraud detection, and assessment of health risks [1].
This motivates the need for analytical methods that allow
for accurate determination and quantification of food
ingredients ideally spanning all kingdoms of life including
animals, plants, bacteria, fungi, and possibly even viruses.

*Correspondence: bertil.schmidt@uni-mainz.de
†Robin Kobus and José M. Abuín contributed equally to this work.
1Department of Computer Science, Johannes Gutenberg University, 55099
Mainz, Germany
Full list of author information is available at the end of the article

Quantitative real-time polymerase chain reaction
(qPCR) [2] and droplet digital PCR (ddPCR) [3] are DNA-
based technologies for food control that are widely used
in practice. Unfortunately, these methods are limited by
the number of target species within a single assay and thus
are not suitable for broad-scale species screening. Similar
restrictions apply to approaches based on sequencing of
species-specific DNA bar codes [4].
High-throughput sequencing of total metagenomic

DNA from biological samples provides the possibility to
screen for a wide range of species as it does not require
any prior definition of possible target species. How-
ever, subsequent bioinformatic analysis of large amounts

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3429-6&domain=pdf
https://muellan.github.io/metacache/afs.html
https://muellan.github.io/metacache/afs.html
https://github.com/jmabuin/MetaCacheSpark
mailto: bertil.schmidt@uni-mainz.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 2 of 15

of sequence-reads is required to identify and quantify
actual food components. Our All-Food-Seq (AFS) pipeline
[5, 6] maps each sequenced read to a number of reference
genomes and then determines species composition and
relative quantities based on a read counting procedure.
Evaluation based on simulated as well as real data has
demonstrated that AFS can detect anticipated species in
food products and achieve quantification accuracy com-
parable to qPCR.
However, the AFS pipeline relies on applying a read

alignment tool (such as BWA [7–9], Bowtie2 [10], or
CUSHAW [11]) for each considered reference genome.
Thus, runtime scales linearly with the number of consid-
ered genomes. For example, the quantification of a typical
short read dataset consisting of a few million reads using
ten mammalian and avian reference genomes with the
BWA-based AFS pipeline already requires several hours
on a standard workstation (not including the time for
index construction). For broader scale screening of many
species amuch larger amount of reference genomes would
be required, making this approach unfeasible.
More recently, a number of innovative techniques

for fast taxonomic labeling in the field of bacterial
metagenomics have been proposed. Wood and Salzberg
[12] demonstrated that a k-mer-based exact matching
approach can achieve high read classification accuracy
while being around three orders-of-magnitude faster than
the alignment tool MegaBLAST. It relies on building a
database of all substrings of length k of each considered
(bacterial) reference genome. A read is classified by query-
ing the database using each of its k-mers as query. If a
query returns a match a counter for the corresponding
reference genome(s) is incremented. Finally, a read is taxo-
nomically labeled based on high-scoring counters. Recent
benchmark studies [13, 14] demonstrated that k-mer
based tools such as Kraken [12], Kraken2+Bracken [15],
CLARK [16], and MetaCache [17] can produce superior
read assignment accuracy compared to several other tools
including MetaPhlAn [18], mOTU [19], QIIME [20], and
Kaiju [21] for selected bacterial metagenomic datasets.
While being accurate, the major drawback of the k-mer
based approach is high main memory consumption and
long database construction times. For typical bacterial ref-
erence genome sets the databases used by Kraken and
CLARK already consume several hundreds of gigabytes in
size. The significantly higher complexities of eukaryotic
reference genomes relevant for monitoring food ingre-
dients therefore make an extension of this method to
food-monitoring challenging.
Here, we present a novel computational method for

broad-scale detection and quantification of species com-
position in food and other complex biological matters.
It is based on our recently introduced MetaCache [17]
bacterial metagenomic read classification algorithm. We

employ a big data technique called minhashing to sub-
sample k-mers in an intelligent way, thereby reducing the
amount of stored k-mers by an order-of-magnitude. In
this paper we show how this method can be extended
from the taxonomic labeling of bacterial reads to the
detection and quantification of ingredients in food sam-
ples that can span various kingdoms of life. MetaCache
is augmented with the ability to estimate the abundance
of organisms at a selectable taxonomic level as well as
the possibility to filter out target references based on
sequence coverage. Furthermore, we combine the min-
hashing algorithm used by MetaCache with efficient par-
titioning schemes. This allows us to employ databases
that index large collections of reference genomes effi-
ciently in terms of both construction times and mem-
ory consumption. We present two partitioning schemes
and provide corresponding implementations for standard
workstations based on C++ (AFS-MetaCache) and for big
data clusters based on Apache Spark (MetaCacheSpark).
Both version can be used as substitutes for the alignment
tools previously employed in the AFS pipeline.
Our experimental results using a number of sequenced

calibrator sausages of known species composition show
that AFS-MetaCache runs orders-of-magnitude faster
than the alignment-based AFS pipeline while yield-
ing similar results. Furthermore, AFS-MetaCache and
MetaCacheSpark yield lower false-positive rates and
higher quantification accuracy compared to Kraken2,
Kraken2+Bracken, and CLARK. They also provide faster
database construction times and competitive query
speeds. Our database partitioning scheme allows the
reduction of peak main memory consumption on a single
workstation or a cluster node significantly and therefore
enables scalability to growing genome collections.

Implementation
Approach
Many tools in metagenomics struggle to keep pace with
the increasing amount of available reference genomes. We
address this issue by aiming at species identification and
quantification at a large scale by using a combination of
two big data techniques.

Minhashing: We adopt minhashing – a locality sensi-
tive hashing (LSH) based data subsampling tech-
nique. It has been successfully applied by search
engines to detect near duplicate web pages [22]
but has recently gained popularity in bioinformat-
ics with example applications including genome
assembly [23], sequence clustering [24], and privacy-
preserving read mapping [25]. Mash Screen [26]
also employs minhashing for metagenomic analysis.
While it allows to identify genomes contained in a
sample, Mash Screen is not able to classify individual
reads or quantify abundances by itself.

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 3 of 15

Partitioning: Because the RAM of a single workstation
or a cluster node can become insufficient to hold
a complete reference database, we employ a parti-
tioning scheme to divide reference sequences into
multiple chunks. The partitions can be queried suc-
cessively on a single workstation or among multi-
ple worker nodes of a distributed compute cluster.
In order to support these two types of compute
resources we have developed (i) AFS-MetaCache:
a C++ version for individual workstations, and (ii)
MetaCacheSpark: a distributed version based on the
big data analytics engine Apache Spark [27] for com-
pute clusters.

Database construction
Consider a collectionG of m genomic sequences (reference
genomes). Each reference genome is divided into win-
dows of size l which overlap by k− 1 base-pairs. Typically,
l is of similar size to the anticipated read length (e.g.
l = 128 for Illumina data as default). For each window
a sketch is calculated using minhashing. A sketch con-
sists of the s smallest k-mers (in strand-neutral canonical

representation) contained in the window with respect to
an applied hash function h1. Thus, the sketching proce-
dure selects only a subset of k-mers to be inserted into
the database used for similarity computation. Assuming
unique k-mers, the subsampling factor can be determined
as S = l−k+1

s ; i.e. for typical values such as s = 8, k = 16,
and l = 128 this corresponds to a data reduction by
over an order-of-magnitude (S = 14.125). Besides provid-
ing data reduction, minhashing also exhibits a desirable
mathematical property when comparing two sketches:
The relative intersection ratio between two sketched win-
dows approximates the true Jaccard index evaluated on
the whole k-mer space [22].
The hash table (database) for a given collection of refer-

ence genomes is constructed using open addressing. The
entries of the hash table consist of key-target-list pairs. An
associated hash function h2 maps k-mers to slots in the
hash table. If an identified slot is empty or occupied with
the same k-mer, the corresponding k-mer is inserted as
key and the corresponding location (genome ID, window
ID) is appended to the target-list. If the slot is occupied
by a different k-mer quadratic probing is used to iterate

Fig. 1Workflow: (a) Partitioning: reference sequences are divided into the sets G1 and G2. Each reference is further partitioned into slightly
overlapping windows wi . (b) Database construction: the s smallest k-mers of each window are computed and inserted into the database. (c)
Classification: a database is queried with the s smallest k-mers of a read. The returned hits are used to count the number of hits within each window.
Target reference genomes are identified by high scores in the window count statistics. In case of several partitions, the top hits from querying each
database need to be merged in order to assign a read to a reference genome. After all reads have been processed, coverage check and
quantification are performed

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 4 of 15

to the next slot. Target lists have a pre-defined maximum
length. If the maximum length is reached, the correspond-
ing k-mer is considered uninformative and deleted from
the hash table at the end of the construction.
In the big data scenario we need to consider cases where

the database is too large to fit into the RAM of a sin-
gle workstation or a cluster node. Hence, it needs to be
split into multiple parts which can be queried successively
or distributed among multiple worker nodes of a cluster.
Partitioning divides the collection of reference genomes
G of total base-pair length M into disjoint buckets G =⋃n

i=1Gi of roughly equal size; i.e. Gi = {Gi
1, . . . ,Gi

ni}
where Ni = ∑ni

j=1

∣
∣
∣Gi

j

∣
∣
∣ ≈ M/n. The partition size Ni

can be chosen depending on the available main memory
resources and the subsampling factor S. For each parti-
tion Gi a separate hash table (database) is constructed
by the aforementioned method. Our partitioning scheme
is illustrated in Fig. 1(a) and database construction in
Fig. 1(b).

Single workstation
AFS-MetaCache constructs a separate database for each
partition of reference sequences Gi and stores it as a
database file on disk. We also allow to add sequences to
previously constructed databases. This makes it easy to
modify the set of reference genomes by either swapping
out database partitions or including more sequences.

Spark
Apache Spark is a distributed memory computing engine
[27]. It is able to process a large quantity of input data
in parallel thanks to the combination of the Hadoop Dis-
tributed File System (HDFS) and Resilient Distributed
Datasets (RDDs). These two features are used by Meta-
CacheSpark. Our algorithm consists of four phases that
are illustrated in Fig. 2.

1. Reference genome sequences are loaded from HDFS
and distributed proportionally among the Spark
executors. In this way, each executor will contain a
different subset of sequences to work with.

2. With these sequences loaded into memory, the Spark
executors perform the described minhashing
algorithm. Results are stored in a executor-local C++
hash table, similar to the one used by
AFS-MetaCache.

3. We apply a map-reduce operation where the map
operator receives the number of items belonging to
the same key in each executor, and the reduction
phase sums up the number of items calculating a
global count. If the global item count per key exceeds
a given threshold (by default 254), the corresponding
items are deleted from all the executor-local hash
tables.

4. Each hash table is written to a database file stored in
HDFS.

At the end of the process, each executor will contain
one, and only one, hash table. Note that a key can be
present in several hash tables. However, items belonging
to the same target ID (i.e., to the same reference sequence)
will be present only in one hash table (this is important for
the subsequent read assignment phase).
Furthermore, both versions have a pre-processing phase

prior to database construction that builds a taxonomic
tree of the considered reference genomes.

Individual read assignment
In order to assign reads to reference genome(s) minhash-
ing is applied to any given read R in the same way as
to a reference genome window using the hash function
h1. The produced sketch is used to query a loaded hash
table using the hash function h2. Each query returns a

Fig. 2 Database construction algorithm used by MetaCacheSpark

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 5 of 15

(possibly empty) target list. The target lists are merged
into a sparse two-dimensional data structure (called win-
dow count statistic) by accumulating identical (genome
ID, window ID) pairs. High values in the window count
statistic indicate a match of the read in the corresponding
genome. The counts are sorted in descending order and
the targets with the highest counts are considered in order
to classify a read. This process is illustrated in Fig. 1(c).
However, a match of a paired-end (or even a single-

end) read typically corresponds to a region in the genome
that overlaps the borders of two or more windows in this
genome. Thus, we accumulate the counters spanning a
contiguous range of several neighboring windows to find
the ranges withmaximumhit counts. The considered read
is assigned to the genome containing the best final count if
it is significantly higher than the second best. If the count
difference is small, the read is assigned to the lowest com-
mon ancestor (LCA) ofmultiple candidate genomes which
are in a similar count range using the provided taxonomic
tree.

Single workstation
AFS-MetaCache reads the database partitions from disk
and queries them with the set of reads in succession.
Subsequently, the individual results are merged to deter-
mine the final classification for each read. We further
support multi-threading by processing chunks of reads
independently in order to exploit multiple CPU cores.

Spark
Two inputs are needed: the database files created in the
build phase and the input reads to be processed. The
MetaCacheSpark algorithm consists of four steps (see
Fig. 3):

1. Each hash table is loaded into the main memory of
one executor. Furthermore, the taxonomy is loaded
only in the Spark driver.

2. All executors read a block of N input reads to be
processed from HDFS. Note that every executor
needs to read all of them since the hash table is
distributed. While reading the input sequences, each
executor queries its local hash table to compute the
(local) classification candidates with their
corresponding hits. This process returns a set of
key-value pairs, where the key is the ID of the read
being processed, and the value is a list of possible
candidates with their corresponding hit counts.

3. The next step is a reduction phase. Here, partial
results from each executor are grouped using read
IDs as keys. The driver then collects the N results
and performs the assignment of reads to reference
genomes (classification). This step uses the Spark
function reduceByKey(), and it requires a shuffle.

4. Classification results from the previous step are
written to the output file in HDFS. The algorithm
goes back to Step 2 to process the next chunk of reads.

It is also important to note that:
• There is a guarantee that items belonging to the same

reference sequence during the build phase are
present in the same local hash table. Otherwise,
calculating the hits in Step 2 would involve a
distributed operation (such as groupByKey()) that
would cause severe performance degradation.

• To gain speed, we further support multi-threading.
Each thread processes a different set of input reads by
means of a map-reduce job that corresponds to Steps
3 and 4.

Fig. 3 Individual read classification algorithm used by the MetaCacheSpark

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 6 of 15

Table 1 Food-related reference genomes used for database construction

Item Name ID Size on disk

1 Sus scrofa (pig) GCF_000003025.6 2.4GB

2 Equus caballus (horse) GCF_002863925.1 2.4GB

3 Meleagris gallopavo (turkey) GCF_000146605.2 1.2GB

4 Mus musculus (house mouse) GCF_000001635.26 2.7GB

5 Gallus gallus (chicken) GCF_000002315.5 1.1GB

6 Ovis aries (sheep) GCF_000298735.2 2.5GB

7 Rattus norvegicus (Norway rat) GCF_000001895.5 2.8GB

8 Bos taurus (cattle) GCF_002263795.1 2.6GB

9 Bubalus bubalis (water buffalo) GCF_003121395.1 2.6GB

10 Cervus elaphus hippelaphus (red deer) GCA_002197005.1 3.3GB

11 Capreolus capreolus (Western roe deer) GCA_000751575.1 3.0GB

12 Struthio camelus australis (African ostrich) GCA_000698965.1 1.2GB

13 Anas platyrhynchos (mallard) GCF_003850225.1 1.1GB

14 Capra hircus (goat) GCF_001704415.1 2.8GB

15 Oryctolagus cuniculus (rabbit) GCF_000003625.3 2.6GB

16 Cavia aperea (Brazilian guinea pig) GCA_000688575.1 2.6GB

17 Camelus ferus (Wild Bactrian camel) GCF_000311805.1 1.9GB

18 Canis lupus familiaris (dog) GCF_000002285.3 2.3GB

19 Felis catus (domestic cat) GCF_000181335.3 2.4GB

20 Homo sapiens (human) GCF_000001405.38 3.1GB

21 Equus asinus (ass) GCA_001305755.1 2.3GB

22 Rangifer tarandus (reindeer) GCA_004026565.1 2.9GB

23 Phasianus colchicus (Ring-necked pheasant) GCA_004143745.1 987MB

24 Glycine max (soybean) GCF_000004515.5 946MB

25 Zea mays (maize) GCF_000005005.2 2.1GB

26 Triticum aestivum (bread wheat) GCA_900519105.1 14.0GB

27 Secale cereale (rye) GCA_900079665.1 1.8GB

28 Hordeum vulgare (barley) GCA_004114815.1 3.8GB

29 Oryza sativa Japonica Group (Japanese rice) GCF_001433935.1 362MB

30 Arachis hypogaea (peanut) GCF_003086295.1 2.4GB

31 Saccharomyces cerevisiae S288C (baker’s yeast) GCA_000146045.2 12MB

Total 74GB

• The reduction generates a lot of traffic over the
network and requires an expensive shuffle operation.
In order to reduce the associated communication
overhead, we have introduced an optional parameter
(H) that is used to discard all candidates in Step 2 and
Step 3 with less than H hits. However, if this
parameter is used, results can be slightly different
compared to the single workstation version.

Coverage filter
False positive read assignments can be caused by shared
regions of DNA among multiple reference genomes [28].

We use coverage information to detect some of these cases
as follows.
Before assigning reads to classification targets we can

filter the list of candidate genomes identified during the
read assignment phase by checking the coverage per
genome as follows. We analyze which windows of a tar-
get genome are covered by reads from the dataset. If
the percentage of covered windows of a genome is much
lower compared to other genomes, it is likely to be a
false positive and will be deleted from the list of possi-
ble target genomes. In fact we delete a quantile (e.g. 10%)
of the target genomes with the lowest coverage. The

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 7 of 15

reads are then classified with respect to the remaining
genomes.
Note that this strategy is only applicable if the num-

ber of reads is large enough to cover significant parts of
the genomes. In our experience it proofed especially effi-
cient in case of bacterial genomes which are orders of
magnitudes smaller than animal or plant genomes.

Quantification
In addition to the per-read classification we are able to
estimate the abundances of organisms contained in a
dataset at a specific taxonomical rank. For each taxon
which occurs in the dataset we count the number of reads
assigned to it. We then build a taxonomic tree containing
all found taxa.
Taxa on lower levels than the requested taxonomic

rank are pruned and their read counts are added to their
respective parents, while reads from taxa on higher lev-
els are distributed among their children in proportion to
the weights of the sub-trees rooted at each child. After
the redistribution the estimated number of reads and
abundance percentages are returned as outputs.

Results
Datasets
In order to measure performance and accuracy of our
approach in comparison to other metagenomic tools, we
have created databases of varying size containing differ-
ent organisms. Food-related genomes (selection of main
ingredients) used for database construction are listed
in Table 1 while the considered bacteria, viruses, and
archaea from NCBI RefSeq (Release 90) are summarized
in Table 2. The created databases with their included
reference genomes are described in Table 3.
We use ten short read datasets sequenced from cal-

ibrator sausage samples containing admixtures of a set
of food relevant ingredients (chicken, turkey, pork, beef,
horse, sheep) on an Illumina HiSeq machine (down-
loaded from ENA project ID PRJNA271645 (Kal_D and
KAL_D) and PRJEB34001 (all other data)). Table 4 shows
the read datasets together with the corresponding per-
centage of meat components used during preparation.
The samples comprise meat proportions ranging from
0.5% to 80% and can be subdivided into two categories:

Table 2 Reference genomes from NCBI RefSeq (Release 90) used
for database construction

Organism Number of references Size on disk

Bacteria 10838 41.0GB

Viral 7857 269MB

Archaea 269 656MB

Total 18964 41.9GB

Table 3 Data sets used for database construction

Name Number of
species

Size on disk

AFS10 Animal genomes
from 1 to 10

22.3GB

AFS20 Animal genomes
from 1 to 20

45.8GB

AFS20RS90 Animal genomes
from 1 to 20 plus
NCBI RefSeq
(Release 90)

87.5GB

AFS31 Animal genomes
from 1 to 31

76.8GB

AFS31RS90 Animal genomes
from 1 to 31 plus
NCBI RefSeq
(Release 90)

118.5GB

Kal A-E consist only of mammalian meat, while KLyo A-D
represent Lyoner-like sausages containing poultry in addi-
tion to mammals [29, 30]. The dataset KAL_D is identical
to Kal_D but sequenced with higher coverage.

Quantification accuracy
Tables 5 and 6 show the quantification results returned
by the tested tools (AFS-MetaCache (v.0.5.3), Meta-
CacheSpark, CLARK (v.1.2.6), Kraken2 (v.2.0.7-beta),
and Kraken2 with subsequent abundance estimation by
Bracken v.2.0.0 – all executed with default parameters)
using AFS20 as reference database. Besides showing the
quantification for each included meat component, we also
show the (false positive) results for water buffalo (closely
related to cattle) and goat (closely related to sheep). In
addition, we provide the sum of all false positive (� FP)
read classifications over all of the detected reference
genomes that were not included in the sample. In addition,
the sum of the deviations of the measured proportions

Table 4 Calibrator sausage datasets and their meat composition

Name #Reads
(paired-end)

Cattle Sheep Pig Horse Chicken Turkey

KLyo_A 401K 14.0% 0.0% 80.0% 0.0% 0.5% 5.5%

KLyo_B 302K 36.0% 0.0% 58.0% 0.0% 2.0% 4.0%

KLyo_C 507K 58.0% 0.0% 36.0% 0.0% 4.0% 2.0%

KLyo_D 417K 80.0% 0.0% 14.0% 0.0% 5.5% 0.5%

Kal_A 830K 1.0% 9.0% 35.0% 55.0% 0.0% 0.0%

Kal_B 977K 9.0% 1.0% 55.0% 35.0% 0.0% 0.0%

Kal_C 404K 25.0% 25.0% 25.0% 25.0% 0.0% 0.0%

Kal_D 403K 35.0% 55.0% 9.0% 1.0% 0.0% 0.0%

Kal_E 289K 55.0% 35.0% 1.0% 9.0% 0.0% 0.0%

KAL_D 26,114K 35.0% 55.0% 9.0% 1.0% 0.0% 0.0%

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 8 of 15

Table 5 Quantification results for the Klyo samples using the reference dataset AFS20 and the average result for AFS31RS90

Dataset Classifier Cattle Pig W.Buf. Goat Chicken Turkey � FP � Dev

KLyo_A

Expected 14.0% 80.0% 0.00% 0.00% 0.50% 5.50%

AFS-MC 16.6% 71.5% 0.04% 0.02% 0.60% 4.64% 0.28% 12.39%

MCSpark 16.9% 71.2% 0.04% 0.02% 0.60% 4.64% 0.32% 12.99%

CLARK 16.4% 70.4% 0.20% 0.09% 0.62% 4.61% 0.51% 13.55%

Kraken2 15.9% 70.0% 0.27% 0.11% 0.65% 4.59% 0.87% 13.82%

K2+Brack 17.6% 70.3% 0.30% 0.14% 0.66% 4.63% 0.97% 15.33%

KLyo_B

Expected 36.0% 58.0% 0.00% 0.00% 2.00% 4.00%

AFS-MC 37.6% 51.0% 0.12% 0.04% 2.05% 2.99% 0.50% 10.16%

MCSpark 37.9% 50.5% 0.12% 0.04% 2.06% 3.02% 0.60% 11.11%

CLARK 35.9% 50.4% 0.47% 0.19% 2.10% 3.01% 1.03% 9.84%

Kraken2 34.5% 49.9% 0.68% 0.24% 2.12% 2.99% 1.57% 12.11%

K2+Brack 39.1% 50.2% 0.32% 0.78% 2.15% 3.02% 1.84% 13.93%

KLyo_C

Expected 58.0% 36.0% 0.00% 0.00% 4.00% 2.00%

AFS-MC 57.7% 27.1% 0.16% 0.06% 3.56% 1.16% 0.95% 11.47%

MCSpark 57.7% 26.9% 0.16% 0.06% 3.63% 1.18% 0.95% 11.48%

CLARK 54.1% 25.9% 0.69% 0.29% 3.58% 1.16% 1.88% 17.11%

Kraken2 52.2% 25.7% 0.95% 0.36% 3.57% 1.17% 2.58% 19.94%

K2+Brack 58.6% 25.8% 1.07% 0.46% 3.60% 1.18% 2.89% 14.90%

KLyo_D

Expected 80.0% 14.0% 0.00% 0.00% 5.50% 0.50%

AFS-MC 74.7% 10.9% 0.23% 0.08% 4.66% 0.33% 0.93% 10.27%

MCSpark 74.7% 10.8% 0.23% 0.08% 4.69% 0.33% 1.09% 10.58%

CLARK 70.8% 10.8% 0.94% 0.39% 4.73% 0.35% 1.94% 15.27%

Kraken2 68.0% 10.7% 1.26% 0.48% 4.70% 0.36% 2.42% 18.62%

K2+Brack 77.6% 10.8% 1.45% 0.62% 4.76% 0.36% 2.87% 9.35%

Average

AFS-MC 0.14% 0.05% 0.67% 11.07%

MCSpark 0.14% 0.05% 0.74% 11.54%

CLARK 0.58% 0.24% 1.34% 13.94%

Kraken2 0.79% 0.30% 1.86% 16.12%

K2+Brack 0.71% 0.50% 2.14% 13.38%

AFS31RS90
Average

AFS-MC 0.58% 13.97%

MCSpark 0.59% 14.08%

AFS-MC: AFS-MetaCache, MC-Spark: MetaCacheSpark, K2+Brack: Kraken2 with subsequent Bracken, W.Buf: Water Buffalo, � FP: Sum of all false positive read classifications, �
Dev: Sum of absolute deviations to the given meat composition (best results for each dataset in bold)

to the real sausage composition (� Dev) as well as the
averages over all tested datasets are shown.
In terms of sensitivity, all methods are able to detect

the included meat components. In addition, several
tools detect false positive signals; e.g., Kraken2+Bracken
detects over 1% of water buffalo in KLyo_C and KLyo_D
and over 3% of goat in Kal_C, Kal_D, and Kal_E. False pos-
itive quantities in these cases correlate with the amount
of beef and the amount of sheep present in the respec-
tive sample. Overall, AFS-MetaCache achieves the lowest
FP-rates for each tested dataset with an average FP-sum

per sample of only 0.67% for the Klyo samples and 1.12%
for the Kal samples. This is much lower compared to
CLARK (1.34% for Klyo, 3.59% for Kal), Kraken2 (1.86%
for Klyo, 3.87% for Kal), and Kraken2+Bracken (2.14% for
Klyo, 4.41% for Kal). The relative differences become even
more significant when looking at some of the individual
FP signals. In the Klyo samples (Table 5) AFS-MetaCache
only detects negligible amounts of goat (0.05% on average)
and water buffalo (0.14%), while the amounts detected
by CLARK, Kraken2, and Kraken2+Bracken are higher
by factors of 4.2 and 4.8, 5.6 and 6.0, and 5.1 and 10.0,

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 9 of 15

Table 6 Quantification results for the Kal samples using the reference dataset AFS20 and the average result for AFS31RS90

Dataset Classifier Cattle Sheep Pig Horse W.Buf. Goat � FP � Dev

Kal_A

Expected 1.00% 9.0% 35.0% 55.0% 0.00% 0.00%

AFS-MC 1.25% 11.0% 30.5% 54.1% 0.01% 0.29% 0.42% 8.13%

MCSpark 1.27% 11.1% 30.3% 54.1% 0.01% 0.29% 0.45% 8.42%

CLARK 1.29% 9.1% 31.1% 54.0% 0.09% 0.89% 1.15% 6.43%

Kraken2 1.23% 8.7% 30.9% 53.9% 0.08% 0.96% 1.31% 6.99%

K2+Brack 1.43% 10.3% 31.0% 54.0% 0.10% 1.12% 1.53% 8.24%

Kal_B

Expected 9.0% 1.00% 55.0% 35.0% 0.00% 0.00%

AFS-MC 10.5% 1.42% 49.3% 35.6% 0.03% 0.06% 0.27% 8.43%

MCSpark 10.6% 1.42% 49.1% 35.7% 0.03% 0.06% 0.30% 8.92%

CLARK 10.3% 1.26% 50.0% 35.8% 0.17% 0.18% 0.56% 7.85%

Kraken2 10.0% 1.21% 49.6% 35.7% 0.20% 0.20% 1.03% 8.40%

K2+Brack 11.0% 1.40% 35.8% 49.7% 0.22% 0.23% 1.09% 9.60%

Kal_C

Expected 25.0% 25.0% 25.0% 25.0% 0.00% 0.00%

AFS-MC 23.3% 29.6% 19.2% 23.0% 0.06% 0.73% 1.08% 15.28%

MCSpark 23.5% 29.6% 19.0% 22.9% 0.06% 0.73% 1.18% 15.32%

CLARK 23.4% 25.6% 19.4% 23.2% 0.45% 2.56% 3.38% 12.98%

Kraken2 22.7% 24.7% 19.4% 23.1% 0.49% 2.69% 3.48% 13.65%

K2+Brack 24.8% 27.8% 19.4% 23.2% 0.54% 3.02% 3.89% 14.35%

Kal_D

Expected 35.0% 55.0% 9.00% 1.00% 0.00% 0.00%

AFS-MC 32.9% 51.5% 7.14% 1.14% 0.09% 1.50% 2.07% 9.62%

MCSpark 33.2% 51.2% 7.03% 1.13% 0.09% 1.49% 2.23% 9.91%

CLARK 32.8% 43.1% 7.31% 1.16% 0.72% 4.40% 5.69% 21.61%

Kraken2 31.6% 41.3% 7.26% 1.16% 0.79% 4.62% 5.77% 24.75%

K2+Brack 35.8% 48.4% 7.28% 1.16% 0.89% 5.40% 6.70% 15.96%

Kal_E

Expected 55.0% 35.0% 1.00% 9.00% 0.00% 0.00%

AFS-MC 50.4% 33.7% 0.99% 7.80% 0.12% 0.96% 1.52% 8.55%

MCSpark 50.7% 33.4% 0.97% 7.73% 0.12% 0.95% 1.66% 8.82%

CLARK 50.7% 28.7% 1.02% 7.81% 0.84% 3.07% 4.43% 16.26%

Kraken2 49.2% 27.6% 1.00% 7.80% 0.99% 3.28% 4.58% 18.96%

K2+Brack 54.1% 31.4% 1.00% 7.81% 1.10% 3.71% 5.15% 10.86%

KAL_D

Expected 35.0% 55.0% 9.00% 1.00% 0.00% 0.00%

AFS-MC 30.3% 49.6% 7.27% 1.16% 0.08% 1.25% 1.38% 13.36%

MCSpark 30.4% 49.5% 7.25% 1.16% 0.08% 1.26% 1.36% 13.36%

CLARK 30.8% 43.3% 7.51% 1.20% 0.86% 4.57% 6.30% 23.85%

Kraken2 29.6% 41.3% 7.47% 1.19% 0.95% 4.98% 7.03% 27.86%

K2+Brack 33.5% 48.7% 7.58% 1.19% 1.08% 5.84% 8.07% 17.44%

Average

AFS-MC 0.07% 0.80% 1.12% 10.56%

MCSpark 0.07% 0.80% 1.20% 10.79%

CLARK 0.51% 2.61% 3.59% 14.83%

Kraken2 0.58% 2.79% 3.87% 16.77%

K2+Brack 0.66% 3.22% 4.41% 12.74%

AFS31RS90
Average

AFS-MC 1.84% 13.38%

MCSpark 1.84% 13.63%

AFS-MC: AFS-MetaCache, MC-Spark: MetaCacheSpark, K2+Brack: Kraken2 with subsequent Bracken, W.Buf: Water Buffalo, � FP: Sum of all false positive read classifications, �
Dev: Sum of absolute deviations to the given meat composition (best results for each dataset in bold)

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 10 of 15

Table 7 Runtimes and peak memory consumption for non-partitioned database construction (build) and querying for different data
sets on a workstation with 512 GB RAM

Data set AFS-MetaCache CLARK Kraken2 Kraken2+Bracken

AFS20

Build time 1h 11m 15h 37m 1h 27m 5h 32m

Build memory 64 GB 428 GB 69 GB 147 GB

Query time 136 s 93 s 37 s 111 s

Query speed 11.5 MR/m 16.9 MR/m 43.2 MR/m 14.2 MR/m

Query memory 50 GB 152 GB 54 GB 54 GB

AFS31

Build time 1h 47m - 3h 19min 11h 41min

Build memory 91 GB - 107 GB 296 GB

Query time 175 s - 44 s 58 s

Query speed 8.9 MR/m - 35.9 MR/m 27.0 MR/m

Query memory 78 GB - 72 GB 72 GB

AFS20RS90

Build time 1h 42m - 2h 58m 8h 53m

Build memory 110 GB - 94 GB 168 GB

Query time 180 s - 43 s 117 s

Query speed 8.7 MR/m - 37.0 MR/m 13.5 MR/m

Query memory 94 GB - 79 GB 79 GB

AFS31RS90

Build time 3h 10m - 5h 55min 17h 44min

Build memory 135 GB - 134 GB 329 GB

Query time 217 s - 49 s 61 s

Query speed 7.2 MR/m - 32.1 MR/m 25.7 MR/m

Query memory 117 GB - 97 GB 97 GB

Query speeds are measured for the KAL_D dataset in terms of million reads per minute (MR/m). For the cases with “-” the corresponding program exceeds the main memory
capacity of 512 GB. Fastest runtimes and lowest memory consumption for each dataset are indicated in bold

respectively. Similar results can be observed for the Kal
samples (Table 6): AFS-MetaCache only detects 0.07% of
water buffalo meat on average and 0.80% of goat meat on
average, while the amounts detected by CLARK, Kraken2,
and Kraken2+Bracken are higher by factors of 7.3 and 3.3,
8.3 and 3.5, and 9.4 and 4.0, respectively.
In terms of deviation from the expected foodstuff ingre-

dients, AFS-MetaCache shows the lowest average of the
sums of absolute differences for both Klyo (11.07%) sam-
ples and Kal samples (10.56%). Kraken2+Bracken (13.38%
and 12.74%) has smaller deviations on average than

Kraken2 alone (16.12% and 16.77%), showing that quan-
tification after read assignment is beneficial.
As can be seen in Tables 5 and 6 there are small

differences between the results of AFS-MetaCache and
MetaCacheSpark. They are caused by the constraint
list of target genomes with highest scores (tophits) of
MetaCacheSpark and by the different ordering of tar-
gets with the same score. The differences could be
reduced by increasing the tophits list size, but we
decided for a smaller list in favor of faster querying
speeds.

Table 8 Partitioned build time and query speed for AFS31RS90 database

Tool Build time Max. Memory Query Speed Max. Memory

AFS-MetaCache (1 part.) 3h 10min 135 GB 7.2 MR/m 117 GB

AFS-MetaCache (2 part.) 3h 04min 82 GB 3.1 MR/m 70 GB

AFS-MetaCache (4 part.) 3h 45min 52 GB 2.5 MR/m 39 GB

MetaCacheSpark (8Ex-32Th) 2h 57min 175 GB 4.3 MR/m 76 GB

MetaCacheSpark (16Ex-16Th) 1h 57min 100 GB 3.4 MR/m 48 GB

MetaCacheSpark (32Ex-8Th) 1h 25min 69 GB 2.2 MR/m 37 GB

MetaCacheSpark (64Ex-4Th) 1h 03min 45 GB 1.4 MR/m 29 GB

Query speed measured for dataset KAL_D in million reads per minute (MR/m). For MetaCacheSpark, the number of executors and threads per executor are indicated

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 11 of 15

When scanning the calibrator sausage read datasets
with AFS-MetaCache using the bigger AFS31 and
AFS31RS90 databases, we can make the following obser-
vations: (1) More k-mers are removed from the hash table
due to overflowing target lists. Therefore, the number of
classified reads is reduced and total deviation increases
slightly. (2) Additional false positive targets are intro-
duced, but the total number of false positives is reduced
for the Klyo datasets (excluding bacteria).
A benefit of screening for microbiota and eukaryotic

foodstuff species at the same time is a lower false positive
rate. Usually reads of a dataset are queried against either
one or the other and only the remaining unclassified reads
are investigated further. This can lead to false assumptions
about the data. In our experiments some reads are falsely
classified as Triticum aestivum (bread wheat) when using
the AFS31 database. With the AFS31RS90 database, how-
ever, those reads are identified as bacterial or unspecific
(classified as the lowest common ancestor of bread wheat
and bacteria).

Runtime andmemory consumption for non-Partitioned
databases
Runtime and memory consumption where the whole
database can fit into the available main memory are mea-
sured on a system with a dual Xeon E5-2630v4 (2.2 GHz,
2 × 10 cores) CPU with 512 GB of DDR4 RAM. We
have compared the speed and the peak memory con-
sumption during database construction and classifica-
tion of the default versions of AFS-MetaCache (v.0.5.3),
CLARK (v.1.2.6), Kraken2 (v2.0.7-beta), and Kraken2
with subsequent abundance estimation by Bracken v.2.0.0
(Kraken2+Bracken) using 40 threads. Table 7 shows the
results for the reference genome datasets listed in Table 3
and the KAL_D read dataset (26 million paired-end reads
of length 101 bp) for classification. Note, that the time
to load the databases is excluded when measuring query
speed for all programs to make the results independent of
dataset size.
AFS-MetaCache is fastest for database construction for

all tested data sets. Furthermore, it requires least mem-
ory for constructing the database for AFS20 and AFS31,
but requires slightly more memory than Kraken2 for
AFS20RS90 and AFS31RS90.
Kraken2 is fastest in terms of query (classification)

speed. If Kraken2 is executed with subsequent quantifica-
tion by Bracken, corresponding runtimes increase. Even
though query speeds of MetaCache-AFS are slowest, cor-
responding execution times are still competitive (only
around three minutes for the largest data set (KAL_D)).
For common data set sizes in food control applications

runtimes for database construction (a few hours) are typ-
ically much higher than for the classification stage (a few
minutes). Since the amount of relevant reference genomes

Table 9 Runtimes and peak memory consumption for database
construction (build) and querying for AFS10

Data set AFS-MetaCache AFS-previous

AFS10

Build time 47m 7h 0m

Build memory 35 GB 5GB

Query speed 17.1 MR/m 0.04 MR/m

Query memory 30 GB 6GB

Query speeds are measured for the KAL_D dataset in terms of million reads per
minute (MR/m)

is increasing rapidly corresponding databases have to
be constructed or extended frequently. Thus, fast built
times are of high importance. Besides having the fastest
database construction time, AFS-MetaCache is also the
only tool that supports the functionality of extending an
existing database.

Runtime andmemory consumption for partitioned
databases
In this subsection we evaluate the ability of AFS-
MetaCache andMetaCacheSpark to reduce the consumed
main memory by partitioning the database into smaller
chunks. AFS-MetaCache is again evaluated on a work-
station with a dual Xeon E5-2630v4 CPU and 512 GB of
DDR4 RAM. MetaCacheSpark has been tested on a big
data cluster composed of 12 Dell EMC PowerEdge R730
servers, each one with a dual Xeon E5-2630v4 (2.2GHz 10
cores) CPU with 384 GB RAM and 32 TB HDDs running
Java version Openjdk 1.8.0_201, gcc 7.3.1, Spark 2.2.0, and
Hadoop 2.7.3.
Table 8 shows the speed and memory consumption

of AFS-MetaCache and MetaCacheSpark for partitioned
database construction and querying using the AFS31RS90
reference genome dataset and the KAL_D dataset. Using
four partitions, AFS-MetaCache can reduce the main
memory consumption from 135 GB to only 52 GB while
the construction time only slightly increases from 3h 10m
to 3h 45m. In addition, memory consumption for classi-
fication is reduced from 117 GB to 39 GB. However, the
corresponding query speed decreases from 7.2 MR/m to
2.5 MR/m since the partitions have to be queried by all

Table 10 Average quantification results for the Klyo and Kal
samples using the reference dataset AFS10

Dataset Classifier � FP � Dev

KLyo Average
AFS-MC 0.37% 10.71%

AFS-prev 0.37% 10.80%

Kal & KAL_D Average
AFS-MC 0.19% 8.43%

AFS-prev 0.33% 6.65%

AFS-MC: AFS-MetaCache, AFS-prev: previous AFS pipeline, � FP: Sum of all false
positive read classifications, � Dev: Sum of absolute deviations to the given meat
composition

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 12 of 15

Fig. 4 Visualization of the AFS-MetaCache results using Krona [31] for the dataset KLyo_C using the AFS31RS90 reference data set

reads in succession and the individual results need to be
merged.
The results show that memory requirements per node

and build time for MetaCacheSpark both decrease when
increasing the number of executors. As the number
of executors increases, the benefits of using the Spark
version are revealed. For 64 executors the AFS31RS90
database can be built in around one hour using 45
GB of memory per node. This is 3×, 3.6×, 5.6×,
16.9× faster than AFS-MetaCache, 4-partitioned AFS-
MetaCache, Kraken2 and Kraken2+Bracken, respectively.
Important reductions in the memory consumed per node
can also be observed.
MetaCacheSpark consumes less memory in the classi-

fication phase than in the build phase. Some additional

Table 11 Detected bacteria in dataset KLyo_C using reference
dataset AFS31RS90

Genus AFS-MetaCache Kraken2 Kraken2+Bracken

Brochothrix 1.94% 1.94% 1.98%

Pseudomonas 1.23% 1.73% 1.92%

Psychrobacter 0.59% 1.43% 1.45%

Genera with less 500 than hits (< 0.1% of the dataset) are omitted

memory is required to store query hits. However, this
memory can be re-used with each batch of sequences
being classified. As a trade-off to fast build time and
low memory consumption per node, the query speeds of
MetaCacheSpark are lower compared to non-partitioned
AFS-MetaCache. This can be explained by the necessity to
perform a costly shuffle operation for the reduce-by-key
function. Its cost increases with the number of executors
as can be seen in Table 8: query speed reduces from 4.2
MR/m with 8 executors to 1.4 MR/m with 64. Neverthe-
less, runtimes are still acceptable in application scenarios
where relevant read datasets are small compared to the
utilized databases.

Comparison to previous aFS pipeline
To compare AFS-MetaCache to our previous alignment-
based AFS pipeline the same dual-socket workstation as
before is used. Runtimes and memory consumption of
both approaches are shown in Table 9. For the small
genome dataset AFS10 the previous AFS pipeline already
takes several hours to construct the index. Querying
of the KAL_D dataset takes even more than 10 hours.
For bigger numbers of reference genomes this approach
becomes unfeasible because the runtime scales linearly

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 13 of 15

Fig. 5 Genome coverage of Actinoalloteichus for the dataset KLyo_C. The sparse coverage is an indicator for false positives

with the number reference genomes. On the other hand,
AFS-MetaCache takes less than an hour for database con-
struction of AFS10 while the query speed improves by
more than two orders of magnitude. As shown before
even larger databases like AFS31 can be built by AFS-
MetaCache in just a few hours and query speed drops by
less than a factor of two.
The average quantification results for the Klyo and Kal

samples produced by AFS-MetaCache and the previous
AFS pipeline are shown in Table 10. The k-mer based
AFS-MetaCache is able to match quantification accuracy
of the previous alignment-based pipeline for the KLyo
datasets. The average deviation to themeat components is
even lower for AFS-MetaCache. For the Kal datasets AFS-
MetaCache reduces the false positive rate while the aver-
age deviation increases slightly. However, it is still possible
to identify the correct components with the benefit of less
false positives.

Detection of microbiota
A major strength of next generation sequencing when
applied to foodstuffs, is its theoretically infinite range
of species that can be detected. We therefore analyzed
the microbiota detected by AFS-MetaCache and Meta-
CacheSpark in more detail. A visualization of the AFS-
MetaCache results using Krona [31] for the dataset
KLyo_C using the AFS31RS90 reference data set is shown
in Fig. 4. The results of Kraken2 and Bracken agree on
the most prominent bacteria as shown in Table 11. The
detected bacterial genera Brochothrix, Pseudomonas, and
Psychrobacter are well known representatives in food-
stuffs. In some sausages a very high amount of the species
Brochothrix thermosphacta and even the corresponding

Brochothrix phage BL3 could be found, possibly indicat-
ing meat spoilage. Furthermore, in several cases a signif-
icant amount of Actinoalloteichus was initially detected
which has no known relation to foodstuff. However, after
application of the coverage filter these matches could be
detected as false positives and were removed.
Figures 5 and 6 show the corresponding genome cov-

erage diagrams for Actinoalloteichus and Brochothrix
thermosphacta for the KLyo_C read dataset. The highly
uneven genome coverage of Actinoalloteichus is taken
as an indicator by AFS-MetaCache for a false-positive
species identification. The Brochothrix genome is evenly
covered by reads and is thus classified as a true positive.

Discussion
The determination and quantification of food ingredients
is an important issue in official food control [1]. Fur-
thermore, microbiological contamination or the presence
of non-declared allergenic food components establishes
the need for a broad-scale screening method that allows
for precise determination and quantification of ingredi-
ents ideally spanning all kingdoms of life including plants,
animals, fungi, and bacteria. DNA-based methods like
quantitative real-time PCR are established technologies
for analyzing foodstuff. However, they have the drawback
of being limited to a set of target species within a single
assay that need to be defined beforehand. The usage of
next-generation sequencing of total genomic DNA from
biological samples followed by bioinformatics analyses
based on comparisons to available reference genomes can
overcome this limitation. Our previous alignment-based
AFS-pipeline was found suitable to screen for species
in processed food samples [5, 6]. However, the utilized

Fig. 6 Genome coverage of Brochothrix thermosphacta for the dataset KLyo_C. The even coverage is an indicator for true positives

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 14 of 15

algorithms put limitations on the number species to be
screened and on the computational throughput.
Here, we have presented AFS-MetaCache and Meta-

CacheSpark as new computational methods for the effi-
cient detection and quantification of species composition
in food samples from sequencing reads. Being based on an
alignment-free exact k-mer matching approach, we gain
significant speed compared to our previous alignment-
based AFS method at the expense of a higher mem-
ory consumption for constructing and querying reference
genome databases. We apply an intelligent subsampling
technique based on minhashing within local windows
to reduce the database size. Further reductions of peak
memory consumption can be achieved by the intro-
duced partitioning schemes either for single workstations
(AFS-MetaCache) or for big data clusters (MetaCacheS-
park) at the expense of query speed. Applications of
our previous alignment-based AFS pipeline have been
limited to around ten complex genomes. With AFS-
MetaCache we are able to significantly extend this limit,
which is of high importance since the amount of avail-
able reference genomes continues to grow rapidly [32, 33].
Thus, our results are particularly encouraging since AFS-
MetaCache and MetaCacheSpark are fastest in terms of
database construction times. Corresponding peak mem-
ory consumption is competitive and can be even further
reduced by the partitioned version of AFS-MetaCache on
a single workstation or by using MetaCacheSpark on a big
data cluster.
While AFS-Metacache can achieve higher query speed

than MetaCacheSpark, it takes some manual setup for
the partitioned version. MetaCacheSpark on the other
hand allows for faster database creation and can easily
be deployed on existing Spark infrastructure, while being
faster than the partitioned version of AFS-Metacache.
Spark, while being fault tolerant, also enables to use a
cluster of lower powered computers than we used for our
benchmarks.
Within this study we have applied our approach on a

broad set of reference samples, containing admixtures of
a set of food relevant ingredients (chicken, turkey, pork,
beef, horse, sheep). The results demonstrate that our
approach is able to reliably detect the components even at
the 0.5% level. The comparison to the established metage-
nomics tools Kraken2, CLARK, and Kraken2+Bracken
shows that AFS-MetaCache and MetaCacheSpark are
superior in terms of false positive (FP) rates. In particu-
lar for pairs of closely related genomes AFS-MetaCache
can achieve almost an order-of-magnitude lower FP-
rates. These results demonstrate that our classification
approach based on counting k-mer matches within small
windows is effective compared to simply counting k-mer
matches over an entire genome (as used by CLARK and
Kraken) and to an alignment-based approach (as used by

the our previous AFS pipeline). Our results also show
that AFS-MetaCache achieves the lowest sum of absolute
deviations to the included food ingredients. As differ-
ent types of tissue can contain different concentrations of
DNA (matrix effect), deviations could possibly be further
reduced by a subsequent normalization procedure that
takes tissue ratios into account.
Applications of AFS-MetaCache and MetaCacheSpark

are not limited to the study of foodstuff but can be used to
analyze high throughput sequencing datasets of metage-
nomic DNA from other complex biological samples as
well, including diverse environmental materials, in-vitro
cell cultures, and biopharmaca.

Conclusion
We have presented a fast screening and quantifica-
tion method together with two corresponding publicly
available implementations (AFS-MetaCache and Meta-
CacheSpark) for whole genome shotgun sequencing-
based biosurveillance applications such as food testing.
By relying on a big data approach our approach can
scale efficiently towards large-scale collections of com-
plex eukaryotic and bacterial reference genomes making
both tools suitable for broad-scalemetagenomic screening
applications.

Availability and requirements
Project name: AFS-MetaCache
Project home page: https://muellan.github.io/metacache/
afs.html
Operating system(s): Linux
Programming language: C++
Other requirements: gcc
License: GPL-3
Any restrictions to use by non-academics: according to
license

Project name: MetaCacheSpark
Project home page: https://github.com/jmabuin/MetaCa
cheSpark
Operating system(s): Linux
Programming language: Java and C++
Other requirements: Openjdk, gcc, Spark, Hadoop
License: GPL-3
Any restrictions to use by non-academics: according to
license

Abbreviations
AFS: All-Food-Sequencing; ddPCR: Droplet digital real-time polymerase chain
reaction; HDFS: Hadoop distributed file system; LCA: Lowest common
ancestor; LSH: Locality sensitive hashing; qPCR: Quantitative real-time
polymerase chain reaction; RDD: Resilient distributed datasets; � FP: Sum of all
false positive read classifications; � Dev: Sum of absolute deviations

Acknowledgements
Not applicable.

https://muellan.github.io/metacache/afs.html
https://muellan.github.io/metacache/afs.html
https://github.com/jmabuin/MetaCacheSpark
https://github.com/jmabuin/MetaCacheSpark

Kobus et al. BMC Bioinformatics (2020) 21:102 Page 15 of 15

Authors’ contributions
RK, JA, and AM implemented and tested the software. RK, JA, and SH
performed the experiments. BS, TH, and AH wrote the draft of the manuscript.
BS proposed the project. BS, TH, AH, JP, and TP supervised the project. RK, JA,
AM, SH, JP, TP, TH, and BS edited the manuscript and analyzed the results. The
author(s) read and approved the final manuscript.

Funding
This work was partially supported by the Deutsche Forschungsgemeinschaft
(DFG), Project HySim, the MINECO under award RTI2018-093336-B-C21, Xunta
de Galicia under awards ED481B 2018/013 and ED431C 2018/19, the European
Regional Development Fund, and by the Federal Office for Agriculture and
Food. The funders had no role in study design, data collection, interpretation
of data, decision to publish, or preparation of the manuscript.

Availability of data andmaterials
AFS-MetaCache and MetaCacheSpark are available at https://muellan.github.
io/metacache/afs.html and https://github.com/jmabuin/MetaCacheSpark. The
utilized Illumina sequence read datasets can be downloaded at ENA projects
PRJNA271645 (Kal_D and KAL_D) and PRJEB34001 (all others). PRJEB34001 will
be made publicly available upon acceptance of the paper.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Science, Johannes Gutenberg University, 55099
Mainz, Germany. 2IPCA, Polytechnic Institute of Cávado and Ave, 4750-810
Barcelos, Portugal. 3CiTIUS, Universidade de Santiago de Compostela, 15782
Santiago de Compostela, Spain. 4Molecular Genetics and Genome Analysis,
Institute of Organismal and Molecular Evolution, Johannes Gutenberg
University, 55099 Mainz, Germany.

Received: 19 August 2019 Accepted: 24 February 2020

References
1. Esteki M, Regueiro J, Simal-Gándara J. Tackling fraudsters with global

strategies to expose fraud in the food chain. Compr Rev Food Sci Food
Saf. 2019;18(2):425–40.

2. Köppel R, Ruf J, Rentsch J. Multiplex real-time pcr for the detection and
quantification of dna from beef, pork, horse and sheep. Eur Food Res
Technol. 2011;232(1):151–5.

3. Köppel R, Ganeshan A, van Velsen F, Weber S, Schmid J, Graf C,
Hochegger R. Digital duplex versus real-time pcr for the determination of
meat proportions from sausages containing pork and beef. Eur Food Res
Technol. 2019;245(1):151–7.

4. Tillmar AO, Dell’Amico B, Welander J, Holmlund G. A universal method
for species identification of mammals utilizing next generation
sequencing for the analysis of dna mixtures. PloS ONE. 2013;8(12):83761.

5. Ripp F, Krombholz CF, Liu Y, et al. All-food-seq (afs): a quantifiable screen
for species in biological samples by deep dna sequencing. BMC
Genomics. 2014;15:639.

6. Liu Y, Ripp F, Koeppel R, et al. Afs: identification and quantification of
species composition by metagenomic sequencing. Bioinformatics.
2017822. https://doi.org/10.1093/bioinformatics/btw822.

7. Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

8. Li H, Durbin R. Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95.

9. Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. arXiv:1303.3997v2. 2013.

10. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2.
Nat Methods. 2012;9(4):357.

11. Liu Y, Schmidt B, Maskell DL. Cushaw: a cuda compatible short read
aligner to large genomes based on the burrows–wheeler transform.
Bioinformatics. 2012;28(14):1830–7.

12. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 2014;15:R46.

13. Lindgreen S, Adair KL, Gardner P. An evaluation of the accuracy and
speed of metagenome analysis tools. Sci Rep. 2016;6(19233):. https://doi.
org/10.1038/srep19233.

14. Seppey M, Manni M, Zdobnov EM. Lemmi: A live evaluation of
computational methods for metagenome investigation. bioRxiv. 2019.
https://doi.org/10.1101/507731.
https://www.biorxiv.org/content/early/2019/04/16/507731.full.pdf.

15. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species
abundance in metagenomics data. PeerJ Comput Sci. 2017;3:104.

16. Ounit R, Wanamaker S, Close TJ, et al. CLARK: fast and accurate
classification of metagenomic and genomic sequences using
discriminative k-mers. BMC Genomics. 2015;16(1):1–13. https://doi.org/
10.1186/s12864-015-1419-2.

17. Müller A, Hundt C, Hildebrandt A, Hankeln T, Schmidt B. Metacache:
context-aware classification of metagenomic reads using minhashing.
Bioinformatics. 2017;33(23):3740–8.

18. Truong DT, Franzosa EA, Tickle TL, et al. MetaPhlAn2 for enhanced
metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–3.
https://doi.org/10.1038/nmeth.3589.

19. Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA,
Kultima JR, Coelho LP, Arumugam M, Tap J, Nielsen HB, et al.
Metagenomic species profiling using universal phylogenetic marker
genes. Nat Methods. 2013;10(12):1196.

20. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, et al. Qiime allows
analysis of high-throughput community sequencing data. Nat Methods.
2010;7(5):335–6.

21. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for
metagenomics with kaiju. Nat Commun. 2016;7:11257.

22. Broder AZ. Identifying and Filtering Near-Duplicate Documents. In: Proc.
11th Annual Symposium on Combinatorial Pattern Matching, COM ’00;
2000. p. 1–10. http://dl.acm.org/citation.cfm?id=647819.736184.

23. Berlin K, Koren S, Chin C-S, et al. Assembling large genomes with
single-molecule sequencing and locality-sensitive hashing. Nat Biotech.
2015;33:623–30. https://doi.org/10.1038/nbt.3238.

24. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH,
Phillippy AM. Mash: fast genome and metagenome distance estimation
using minhash. Genome Biol. 2016;17(1):132. https://doi.org/10.1186/
s13059-016-0997-x.

25. Popic V, Batzoglou S. A hybrid cloud read aligner based on minhash and
kmer voting that preserves privacy. Nat Commun. 2017;8:15311.

26. Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB,
Phillippy AM. Mash screen: high-throughput sequence containment
estimation for genome discovery. Genome Biol. 2019;20(1):232. https://
doi.org/10.1186/s13059-019-1841-x.

27. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X,
Rosen J, Venkataraman S, Franklin MJ, et al. Apache spark: a unified
engine for big data processing. Commun ACM. 2016;59(11):56–65.

28. Dadi TH, Renard BY, Wieler LH, Semmler T, Reinert K. Slimm: species level
identification of microorganisms from metagenomes. PeerJ. 2017;5:3138.

29. Köppel R, Ruf J, Rentsch J. Multiplex real-time pcr for the detection and
quantification of dna from beef, pork, horse and sheep. Eur Food Res
Technol. 2011;232(1):151–5.

30. Eugster A, Ruf J, Rentsch J, Köppel R. Quantification of beef, pork,
chicken and turkey proportions in sausages: use of matrix-adapted
standards and comparison of single versus multiplex pcr in an
interlaboratory trial. Eur Food Res Technol. 2009;230(1):55.

31. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic
visualization in a web browser. BMC Bioinformatics. 2011;12(1):385.

32. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R,
Schatz MC, Sinha S, Robinson GE. Big data: astronomical or genomical?.
PLoS Biol. 2015;13(7):1002195.

33. Schmidt B, Hildebrandt A. Next-generation sequencing: big data meets
high performance computing. Drug Discov Today. 2017;22(4):712–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://muellan.github.io/metacache/afs.html
https://muellan.github.io/metacache/afs.html
https://github.com/jmabuin/MetaCacheSpark
https://doi.org/10.1093/bioinformatics/btw822
https://doi.org/10.1038/srep19233
https://doi.org/10.1038/srep19233
https://doi.org/10.1101/507731
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2019/04/16/507731.full.pdf
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1038/nmeth.3589
http://dl.acm.org/citation.cfm?id=647819.736184
https://doi.org/10.1038/nbt.3238
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-019-1841-x
https://doi.org/10.1186/s13059-019-1841-x

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Approach
	Database construction
	Single workstation
	Spark

	Individual read assignment
	Single workstation
	Spark

	Coverage filter
	Quantification

	Results
	Datasets
	Quantification accuracy
	Runtime and memory consumption for non-Partitioned databases
	Runtime and memory consumption for partitioned databases
	Comparison to previous aFS pipeline
	Detection of microbiota

	Discussion
	Conclusion
	Availability and requirements
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

