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Abstract: Presently, smartphones are used more and more for purposes that have nothing to do with
phone calls or simple data transfers. One example is the recognition of human activity, which is
relevant information for many applications in the domains of medical diagnosis, elderly assistance,
indoor localization, and navigation. The information captured by the inertial sensors of the phone
(accelerometer, gyroscope, and magnetometer) can be analyzed to determine the activity performed
by the person who is carrying the device, in particular in the activity of walking. Nevertheless,
the development of a standalone application able to detect the walking activity starting only from
the data provided by these inertial sensors is a complex task. This complexity lies in the hardware
disparity, noise on data, and mostly the many movements that the smartphone can experience and
which have nothing to do with the physical displacement of the owner. In this work, we explore
and compare several approaches for identifying the walking activity. We categorize them into two
main groups: the first one uses features extracted from the inertial data, whereas the second one
analyzes the characteristic shape of the time series made up of the sensors readings. Due to the lack
of public datasets of inertial data from smartphones for the recognition of human activity under
no constraints, we collected data from 77 different people who were not connected to this research.
Using this dataset, which we published online, we performed an extensive experimental validation
and comparison of our proposals.

Keywords: walking recognition; activity recognition; smartphones; inertial sensor fusion; pattern
classification; time series classification.

1. Introduction

Our society is more and more surrounded by devices—smartphones, tablets, wearables, “things”
from the Internet of Things (IoT), etc.—which are rapidly transforming us, changing the way we
live and interact with each other. The gradual incorporation of new sensors on these devices
provides significant opportunities towards the development of applications that use these sensors
in an ever-increasing number of domains: healthcare, sport, education, leisure, social interaction,
etc. Thus, inertial sensors are being used in the smartphones to monitor human activity and,
in particular, the action of walking. The information about whether the user is walking or not
is very valuable for many applications, such as medicine (detection of certain pathologies) [1],
biometric identification (recognition of the owner of the device based on his or her characteristic
gait) [2–5], elderly assistance [6], emergency services [7], monitoring systems [8] and pedestrian
indoor localization [9–11].
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In the particular case of pedestrian indoor localization, recognizing the activity of walking using
inertial sensors is essential, since other alternatives such as the Global Navigation Satellite System
(GNSS) do not work indoors. Although other sensor modalities, such as infrared, ultrasound, magnetic
field, WiFi or BlueTooth [12–14], have been used to detect the displacement of a person indoors,
the combination of the information provided by these sensors together with the recognition of walking
using the accelerometer, magnetometer and gyroscope (IMU) has been proved to be the best option to
significantly increase the performance of indoor localization.

Other sensors and processing strategies were applied to identify the activity of walking, such as
cameras for visual odometry or pressure sensors attached to the shoes [9]. These approaches involve
additional hardware attached to the body (foot, arm, trunk, etc. [10,11,15]), so that their processing
is simpler and the outcome more reliable. However, the placement of sensors on the body or
clothing greatly restricts their applicability. Instead, using the inertial sensors that the vast majority
of smartphones already have (accelerometer, gyroscope and magnetometer) is much more attractive,
since they present fewer restrictions and most people already carry this kind of devices.

One of the biggest advantages of using the inertial sensors of the smartphone for walking
recognition is that very little physical infrastructure is required for these kind systems to function.
Nevertheless, achieving a robust recognition system for this task is more complex than it might seem.
It is relatively easy to detect the walking activity and even count the number of steps given when people
walks ideally carrying the device in the palm of his/her hand, facing upwards and without moving it.
However, the situation becomes more complicated in real life, since the orientation of the smartphone
with respect to the user, as well as its placement (hand, pocket, ear, bag, etc.), can constantly change
as the person moves [16]. Getting a robust classification regardless of the device carrying mode and
its orientation is challenging. This kind of devices experience a large variety of motions producing
different patterns in the signal. Frequently, we obtain similar patterns for movements or actions
that have nothing to do with walking, which makes the recognition of this activity a complex task.
Figure 1 shows the complexity of this problem with a real example. In this figure we can see the norm
of the acceleration experienced by a mobile phone while its owner is doing two different activities.
The person and the device are the same in both cases. In Figure 1a, we can see the signal obtained
when the person is walking with the mobile in the pocket. The impacts of the feet touching the floor
are reflected in the signal as local maximum points. Please note that identifying and counting these
peaks, for example applying a simple peak-valley algorithm [17], would easily allow counting the
number of steps. Figure 1b shows the acceleration experienced by the mobile when the user is standing
still with the mobile in his hand, without walking, but gesticulating with the arms in a natural way.
Unfortunately, in this case, the peaks of the signal do not correspond to steps, so the aforementioned
peak-valley algorithm would detect false positives.
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Figure 1. Norm of the acceleration experienced by a mobile phone when its owner is walking (a),
and not walking, but gesticulating with the mobile in his/her hand (b).
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In this work, we carried out an exhaustive analysis and development of different methodologies
to solve the problem of walking recognition in mobile devices. We made an extensive review of the
state of the art and we explored and compared several approaches based on different machine learning
techniques that allow a robust detection of the walking activity in mobile phones. We categorize these
approaches into two main groups: (1) feature-based classification and (2) shape-based classification.

The paper is structured as follows: Section 2 gives a review of the state of the art. Section 3 details
some tasks of preprocessing the inertial data that are necessary. Section 4 describes our proposals for
walking recognition. Section 5 introduces the database that we used for ground truth and shows the
experimental analysis of our proposals. Finally, some conclusions are presented in Section 6.

2. State of the Art

Thanks to technological progress in recent years, it is possible to develop inertial sensors of very
small size, ideal for integration into smartphones. Taking advantage of their potential, several solutions
have been developed in walking recognition. In most of the works, the position of the device is kept
fixed (foot, arm, trunk, etc.) [10,11,15], because any change in position could result in a drop in
performance. This is not desirable because in real world people carry their smartphones in different
ways (hand, pocket, handbag, etc.) and they do not keep them in a static position. Recently, more
research has been carried out on activity recognition without restricting the position of the phone. Some
authors use the magnitude of the acceleration as input to make the signal invariant to orientation [18,19].
This may work well in controlled situations when the user walks normally, but the resulting signal is
contaminated with excitations unrelated to walking when using the smartphone in different ways.

2.1. Heuristic Methods

A simple approach to identify the activity of walking is counting the steps given by the user of
the smartphone. The most common way to perform that count is the a heuristic solution present in
many pedometer applications. It consists of using a peak-valley detector [17] to identify events, such
as heel strikes, where the impacts of the feet are reflected in the vertical component of the acceleration.
In this way, a step corresponds to a signal segment in which there is a peak (local maximum exceeding
a threshold) followed by a valley (local minimum below a threshold). However, this type of algorithm
is susceptible to detect any motion produced within the expected range of frequencies (e.g., situations
like the one in Figure 1b), which makes it prone to commit false positives. Moreover, it also often
has problems to detect changes in the walking speed [20]. Due to this, it is necessary another
complementary module to perform a real-time filtering of those parts of the signal that capture
some kind of movement in the device, but have nothing to do with walking [21]. This is a challenge
because of the high perceptual aliasing (i.e., the existence of signals that are very similar to each other
but caused by completely different movements).

2.2. Feature-Based Approach

One robust way to identify the walking activity is by extracting relevant features from the inertial
data and using them to train a classifier. Bradjic et al. [20] conducted an experiment in which they
evaluated different classifiers using several features in time and frequency domains extracted from
the inertial data. They employed a large dataset of 130 sensor traces of 27 different users walking and
performing different activities while carrying a smartphone. Even though the accuracies they reported
are high, these algorithms still present a high number of false positives when the phone is being
moved but the user is not walking. Susi et al. [19] tried not only to identify walking activity, but also
classify the motion mode of the device (static, handheld texting, swinging, etc.) by extracting time and
frequency domain features and training a decision tree. They reported a good performance, but they
only evaluated their proposal in controlled tests walking while texting and swinging. Zou et al. [22]
used deep learning techniques to learn and model the gait biometrics. In particular, features from time
and frequency domains were successfully abstracted by combining a convolutional neural network
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with a recurrent neural network. In their experiments, two datasets collected by 118 different people
were used for evaluations achieving high accuracies. However, their approach is not valid for real time
operation in mobile devices.

2.3. Shape-Based Approach

Another way of dealing with the classification problem is by comparing the shape of the inertial
signals. For that, it is assumed that it is possible to distinguish the activity of walking from that
of not walking by simply observing the characteristic signal of the accelerometer. This is mainly
because, as it was pointed out before, when walking, the acceleration signal shows a recurring pattern,
also known as step cycle. The event that is often used to mark the beginning of the cycle is the heel
strike of the swing leg [3,4], which is the impact produced when both feet are on the ground and
they are farthest from each other. When this impact occurs, a local minimum should be observed
in the vertical component of the acceleration. Thus, the step cycle can be detected by extracting
the timestamps of the heel strikes. However, identifying the step cycle is challenging because the
accelerometer readings may be distorted due to the irregular movement of the user’s body or changes
in walking speed. Then, it is necessary to find a match between the step cycle candidates and one or
more patterns selected in advance using a distance metric. Euclidean distance is a simple metric, but it
was observed that it is very sensitive to noise and distortion and very similar patterns can be separated
by very large distances if the data items are not aligned [23]. A better option is to use warping distances,
such as dynamic time warping (DTW) [24], longest common subsequence (LCSS) [25] or edit distance
on real sequence (EDR) [23]. The main drawback of this approach is that if the step candidates are
misidentified during the signal division process, the subsequent matching with the reference patterns
is compromised. Moreover, there is a need to arrange a set of reference patterns, which must be chosen
in advance and, most likely, manually.

Most of the experimentation in the bibliography only uses data of people walking, so it is not clear
how these algorithms would behave in terms of false positives when the person uses the device without
walking. In addition, there is a tendency to evaluate the performance of these algorithms to measure
the total traveled distance or the total number of detected steps, but there is no evaluation of whether
each single step being detected is true or not. We believe that such a thorough evaluation is important
because false positives and false negatives can cancel each other and mask the real performance of the
system in short time intervals.

3. Signal Preprocessing

The walking recognition is performed using the signals provided by the tri-axis accelerometer
and the tri-axis gyroscope in a mobile phone, and which respectively measure the acceleration and the
angular velocity of the device with respect to the device frame, which is the reference system linked to
the phone as it is defined relative to its screen. The output of these sensors is a 6-dimensional time
series composed by the accelerometer output at ∈ R3 and the gyroscope output ωt ∈ R3:[

at

ωt

]
, (1)

where t represents the temporal index of the signal. The sampling frequency in our case is 100 Hz.
Due to their low quality, the sensors embedded in most common mobile devices are strongly

affected by errors degrading their accuracy [26]. To deal with such errors, we carry out a specific signal
preprocessing stage, making transformations on the raw sensor data; First, we estimate its orientation
with respect to an inertial reference system, the Earth frame, the axes of which always points towards
the same points (with respect to the Earth). Second, we can estimate the linear acceleration which is
being experienced by the phone in the Earth reference system and, finally, we can filter and center the
resultant signal for noise reduction.
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3.1. Attitude Estimation

As the mobile phone can be carried in any position and orientation, we need to know its attitude,
or 3D orientation, to extract the vertical component of the acceleration, which contains the information
of the heel strikes. The magnitude of the acceleration can be used in some scenarios, since it is
independent of phone orientation, but it is not robust enough since it can be affected by accelerations
not related to walking.

To understand this stage we must be aware of the existence of two reference systems: (1) the local
one (device frame), linked to the phone, and (2) the inertial reference system (Earth frame). In the case
of the inertial-Earth frame, we work with a frame analogous to the East North Up (ENU) coordinate
system [27], in which the x-axis points toward the East, the y-axis points towards the North Magnetic
Pole and the z-axis points in the opposite direction of the gravitational force. The readings of the
sensors are provided in the body frame, and therefore it is convenient to project them into the Earth
frame in order to estimate the movement of the person who carries the mobile. Hence, it is necessary
to know the orientation (attitude) of the mobile with respect to the inertial Earth frame.

To represent this orientation we use quaternions, because of their many advantages over other
representations [28]. A quaternion is a four-dimensional vector that represents the transformation
among two reference systems, A and B, as a rotation of an angle θ around a three-dimensional axis
u = [ux uy uz], such that:

A
B q =


q0

q1

q2

q3

 =


cosθ

sinθ ux

sinθ uy

sinθ uz

 , (2)

being A
B q the normalized quaternion that represents the orientation of frame B relative to frame

A. Following this notation we will use S
Eqt to refer to the current value of the quaternion that

represents the orientation of frame E (inertial/Earth frame), relative to the frame S (sensor/local
frame). Applying Madgwick’s method [29,30], we can obtain the quaternion that can be used to
project the sensors readings obtained in the local frame, linked to the mobile, into the inertial reference
system (Earth frame). In particular, we will use the simplest version of the algorithm, that obtains
this quaternion by using the information provided by the gyroscope and the accelerometer sensors,
without using the magnetometer data.

The gyroscope measures the angular velocity around the x, y, and z axes of the local system,
termed ωx, ωy and ωz respectively. If these parameters are arranged into the Sω vector defined by
Equation (3), the quaternion derivative describing the rate of change of orientation of the Earth frame
relative to the sensor frame (local frame), S

Eq̇, can be calculated using Equation (4):

Sω = [0 ωx ωy ωz], (3)

S
Eq̇ =

1
2

S
Eq⊗ Sω, (4)

where ⊗ is the quaternion product. Therefore, the orientation of the Earth frame relative to the local
one at time t, S

Eqt, can be computed by integrating over time the quaternion derivative:

S
Eqt =

S
Eqt−1 +

(
1
2

S
Eqt−1 ⊗ Sωt

)
× ∆t, (5)

where Sωt is the angular rate provided by the gyroscope and measured at time t, ∆t is the sampling
period, and S

Eqt−1 and S
Eqt are the previous and current estimations of the quaternion S

Eq.
The gyroscope has a high rate error, its data drifts over time, is unstable, and low angular velocities

might not be properly registered. Because of all this, and to compensate these errors, it is possible to
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use the accelerometer readings to correct the estimation of the quaternion. The accelerometer measures
the accelerations experienced by the mobile in the three axes of the local reference system: ax, ay and
az. Once again, these values can be arranged into a four-dimensional vector, Sa:

Sa = [0 ax ay az]. (6)

When the mobile is not subdued to any other external forces but the gravity, the projection of
the unit gravity vector in the Earth frame, Eg =

−→
G / ‖ G ‖ = {0, 0, 0, 1}, into the local reference

system (body frame), should coincide with the information detected by the tri-axial accelerometer
Sa = {0, ax, ay, az}. This projection of Eg into the local reference system can be computed as:

S
Eq∗t ⊗ Eg⊗ S

Eqt, (7)

where S
Eq∗t is the conjugate of S

Eqt. Hence, it should happen that S
Eq∗ ⊗ Eg⊗ S

Eq = Sa. This is the reason
why the quaternion will be the one that minimizes the difference shown in Equation (8):

S
Eq = arg min

S
Eq∈R4

(
S
Eq ∗ ⊗ Eg⊗ S

Eq− Sa
)

. (8)

Finally, we can add up the two sources of information, Equations (5) and (8), to achieve the
quaternion at every instant, as shown in Equation (9), where f comes from Equation (8), such that
f = S

Eq ∗ ⊗ Eg⊗ S
Eq− Sa:

S
Eqt =

S
Eqt−1 + γ

(
−µ

∇ f
||∇ f ||

)
+ (1− γ)

(
1
2

S
Eqt−1 ⊗ Sωt

)
× ∆t. (9)

3.2. Estimation of the Acceleration in the Earth Frame

Once we know the attitude of the phone, Equation (9), we can now obtain the three components
of the acceleration experienced by the mobile in the Earth reference system, SaE,t, which we will call
projected acceleration henceforth:

SaE,t =
S
Eqt ⊗ Sat ⊗ S

Eq∗t , (10)

where Sat is the vector that arranges the accelerometer readings (in the local frame) at time t.

3.3. Signal Filtering and Centering

At this stage, we have the following 9-dimensional time series st:

st =

 at

aE,t
ωt

 , (11)

where at ∈ R3 is the acceleration data in the sensor frame, aE,t ∈ R3 is the projected acceleration data
in the Earth frame that we have just introduced in Equation (10), and ωt ∈ R3 is the angular velocity
data in the sensor frame.

In Section 4 we will present several proposals for walking recognition that use as inputs some
components of the above time series. However, we can still carry out two more preprocessing tasks
which will help to improve the performance of our algorithms. These two task are a frequency domain
filtering and a signal centering.

Since most of the energy captured by the accelerations and angular rates associated with human
walking is bellow 3 Hz [31], we can apply a low-pass filter over the components in Equation (11)
to minimize the signal noise. Specifically, we use a 10th order Butterworth filter with a 3 Hz cut-off
frequency. In this way, we remove the high-frequency components of the noise.
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The presence of a non-zero DC component can hide important information, especially in the
frequency domain. To solve this issue, we apply a DC-bias filter to center the signal:

s̃t = st −
1
N

N

∑
n=1

st−n, (12)

where the second term is the signal mean value computed using a moving average filter and N is the
length of the moving average, in our case, N = 250.

4. Walking Recognition

To identify when the user is walking, we addressed the problem in two different ways:
feature-based and shape-based approaches. Our aim is to explore the various ways to solve the problem
with each of these strategies and then compare them by extracting the most relevant advantages and
disadvantages.

In the first case, the feature-based approach, the classifier is built from the most representative
feature set, extracted from time-series data. In the case of the shape-based approach, the classifier uses
directly the shape of the time series to detect characteristic patterns. In both cases, to determine whether
the user is walking, the classifiers work with a window that comprises the last 250 sensor measurements:
s̃t, s̃t−1, . . . , s̃t−249, from Equation (12). Hence, we work with sliding windows of N = 250 samples and
50% overlap. Since we sample at 100 Hz, 250 samples correspond to 2.5 seconds. As each new window
overlaps with half of the previous one, we can make a new prediction (i.e., say whether the person is
walking or not) every 1.25 seconds. We chose this way of partitioning based on previous results [19,32].

4.1. Feature-Based Classification

Following this approach, we use supervised learning to differ walking from non-walking
sequences in the signal. In this case, the classifier starts from a set of features computed from the
data window described in the previous section. This set of features, which can be either manually
or automatically determined, should be meaningful and contain relevant information to identify the
walking activity. Using feature vectors instead of raw data can reduce the number of input elements
and improve the generalization ability. To obtain this feature set, we applied both manual feature
selection techniques for traditional machine learning algorithms, as well as deep learning networks,
which automatically extract the most relevant features from the data.

4.1.1. Classification Methods Using Manual Feature Selection

To use traditional machine learning algorithms, we manually collected a total of 46 features both
in temporal and frequency domains based on previous works [2,19,33–36], Then, we analyzed the
relevance of each feature and discarded those redundant or irrelevant through the combined use of
two feature selection techniques: Recursive Feature Elimination (RFE) [37] and Correlation-based
Feature Selection (CFS) [38]. The final subset is made up of 21 variables.

The selected features in the time domain are:

• EaE,z : the energy of the vertical component of the projected acceleration;
• Eω: the energy of the gyroscope norm;
• σ2

ω: the variance of the gyroscope norm;
• σax , σay and σaz : the standard deviation for each axis of the acceleration;
• σaE,x , σaE,y and σaE,z : the standard deviation for each axis of the projected acceleration;
• ZCRa: the zero-crossing rate of the acceleration norm;
• Pa: the peak count of the acceleration norm;
• PaE,z : the peak count of the vertical projected acceleration;
• ςaE,z : the skewness of the vertical projected acceleration;
• ςω: the skewness of the gyroscope norm;
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• κaE,z : the kurtosis of the vertical projected acceleration.

The previous energy features (EaE,z and Eω) are computed as:

EaE,z =
1
N

N

∑
n=1
|aE,z,n| , (13)

Eω =
1
N

N

∑
n=1

ωn, (14)

where N is the length of the window and ωn is the norm of the gyroscope data at the temporal index n
of the window:

ωn = ‖ωn‖ =
√

ω2
x,n + ω2

y,n + ω2
z,n. (15)

The zero-crossing rate for the acceleration norm is computed according to:

ZCRa = 0.5× 1
N

N−1

∑
n=1
|sign (an+1)− sign (an)| (16)

where sign(x) is the sign function, which returns the sign of a real number:

sign(x) =

{
1, x >= 0

0, x < 0
(17)

and an is the norm of the acceleration data at the temporal index n:

an = ‖an‖ =
√

a2
x,n + a2

y,n + a2
z,n. (18)

The peak count is just the number of the peaks identified in each sliding window as local
maximum points. Finally, for estimating the skewness and kurtosis metrics, we followed the third
method proposed by Joanes and Gill in [39].

Regarding the frequency domain, all the features were extracted from the frequency spectrum
of the norm of the original acceleration, f , and the frequency spectrum of the vertical component of
the projected acceleration, fE. To obtain these spectrums, we applied the Fast Fourier Transform (FFT)
over each sliding window. The relevant features extracted from the spectrums are:

• µ fE : the mean frequency of the vertical component of the projected acceleration;
• σfE : the standard deviation of the previous mean frequency;
• Md fE : the median frequency of the vertical projected acceleration;
• Mo fE : the modal frequency of the vertical projected acceleration;
• Mo f : the modal frequency of the acceleration norm;
• κ fE : the kurtosis of the spectrum of the vertical projected acceleration.

We evaluated this feature set with several classifiers: Random Forests, Support Vector Machines
(SVM), Gradient Boosting Machines (GBM), k-Nearest Neighbors (kNN), Naïve Bayes and C5.0.
In Section 5 we describe the experimental results obtained.

4.1.2. Deep Learning

We also explored deep learning for feature selection and modeling. In recent years, deep learning
has made great progress in the field of human activity recognition [40,41]. Unlike traditional machine
learning methods, such as those mentioned in Section 4.1.1, deep learning methods perform gait
behavior features extraction in a supervised and automatic way and can significantly improve the
accuracy of recognition.
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We used some convolutional neural network (CNN) architectures to extract the walking
characteristics of data which is collected from inertial sensors. CNNs are a kind of deep networks
that often consists of an input and an output layer, as well as multiple hidden layers. The hidden
layers are typically a series of convolutional layers that convolve with a multiplication or other
dot product. The activation function is commonly a ReLU layer, and is subsequently followed by
additional convolutions such as pooling layers, fully connected layers and normalization layers. CNNs
are very powerful extracting abstract features, especially in the context of image recognition processing.
Due to the outstanding ability of CNNs in image processing, many researchers used them for gait or
activity recognition [40,42].

CNNs are by nature computationally expensive and this could be a problem, since we are focusing
on exploring several ways of solving the task in the context of mobile devices, which have a modest
hardware. Moreover, CNNs often stand out from other learning methods when there are huge
amounts of data to feed them with, but such large amounts of data are not always available, as in our
case. An overly complex CNN architecture will be too computationally expensive to integrate into
a smartphone application and will lead to underfitting when the amount of data is limited. Therefore,
as in this work we intend to propose feasible solutions, we designed the simplest possible architectures
so that they can be used not only in these kind of devices providing good performance, but even trained
using only their hardware. Hence, our networks have few layers and, consequently, few parameters to
tune. Furthermore, we only use one dimension from the 9-dimensional time series s̃t –Equation (12)–
as input layer. The best candidates are the vertical component of the projected acceleration, aE,z and
the norm of the acceleration in the sensor frame, ‖an‖ –Equation (18)–. These components, aE,z and
‖an‖, are the ones that we consider the most representative of the walking activity. Thus, our CNN
classifiers will automatically learn features from patterns made up of the last 250 values of one of
these 1-dimensional signal inputs, which will allow them to classify new patterns never seen before.
Sacrificing the rest of the dimensions and using only one of them allows us to work with smaller
network topologies. Moreover, as we will see in Section 5, working with CNNs with a single-dimension
input layer is sufficient to obtain high performance in our particular problem.

The details about the different network architectures that we explored as well as the performance
that we obtained using each one are exposed in Section 5 of experimental results.

4.2. Shape-Based Classification

As we already mentioned in Section 2, another way of dealing with the classification problem is by
directly analyzing the shape of acceleration time series. In this raw-data-based approach, the classifiers
will label patterns made up of the last 250 values of the vertical component of the projected acceleration,
aE,z : aE,z(t), aE,z(t− 1), . . . , aE,z(t− 249). We could have used more than just one dimension of the
time series, but this would increase the computational cost of this approach too much. Therefore,
we selected the component with the most representative shape to solve the problem, i.e., the vertical
component of the projected acceleration, aE,z.

Nevertheless, working with these raw data is not straightforward, since this is a distance-based
classification, in which most classifiers label the patterns by comparing them with some kind of
prototypes (support vectors in the SVMs, the k nearest neighbors in kNN, etc.). The problem is that this
comparison includes the use of some distance metric, being the most common the Euclidean distance.
The Euclidean distance has been widely used since it provides a simple and mathematically convenient
metric on raw data. However, this metric is not convenient for the problem being tackled, due to its
sensitivity to distortion of the patterns in the time axis (two identical patterns might differ significantly
by something as simple as the fact that both patterns are shifted one with respect to the other by only
one sample). As we work with segments of time series, the best option to perform matching among
these sequences is by a non-linear stretching and contracting of the time axes, using techniques, such as
dynamic time warping (DTW) [24]. In fact, as it has been pointed out in [43,44], DTW provides an
elastic matching of two sequences while Euclidean distance is too brittle since it only allows one-to-one
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point matching. The Euclidean distance is sensitive to offset, amplitude, scaling, noise, phase shifts
and temporal distortion. On the contrary, DTW can be used to align time series in a non-linear manner
by minimizing the distance among them. DTW allows local contraction and expansion of the time
axis. Originally, this technique was used to compare different speech patterns in automatic speech
recognition, determining if two waveforms represented the same spoken phrase [45]. In addition to
speech recognition, DTW has also been found useful in many other disciplines [46], including data
mining, gesture recognition, robotics, manufacturing and medicine.

DTW employs dynamic programming to compare and align two temporal sequences (that might
even differ in length), trying to minimize the distance between the two of them [24]. Thus,
if x = (x1, ..., xn) and y = (y1, ..., ym) are the two finite series taking values in a space χ, the alignment
π between x and y, of length |π| is a pair of increasing p-tuples (π1, π2) such that:

1 = π1,1 ≤ . . . ≤ π1,p = n,
1 = π2,1 ≤ . . . ≤ π2,p = m.

(19)

Hence, the distance among the two aligned time series (dynamic time warping distance) can be
computed as:

dDTW(x, y) = P(π) =
|π|

∑
i=1

ϕ(xπ1,i , yπ2,i ), (20)

where ϕ is a cost, in our case the Euclidean distance. Dynamic programming algorithms provide
an efficient way to compute the optimal path π∗ in terms of mean-score with respect to π:

π∗ = arg min
π

1
|π|P(π).

Although DTW is a robust distance metric, it is not always easy to integrate it into our
distance-based classifiers. For example, in the particular case of a SVM, deriving a kernel to train the
classifier based on the dynamic time warping distance is not a feasible solution, since in general DTW
is not positive semi-definite (PSD) [43,47]. Any kernel function intended for the SVM must satisfy
Mercer’s condition [48], i.e., it must be symmetric and positive semi-definite (PSD). Several ad-hoc
strategies have been proposed for including non-PSD kernels in SVMs. The most immediate one is to
simply ignore the fact that the kernel is non-PSD and see how it performs, but in this case the existence
of a Reproducing Kernel Hilbert Space (RKHS) is not guaranteed [49] and it is no longer clear what is
being optimized during the training of the SVM. Moreover, the resulting optimization problem may be
non-convex, making it difficult to achieve a solution.

Hence, to work with DTW and distance-based classifiers, we suggest a solution inspired in what
is know as pairwise proximity function SVM (ppfSVM) [43,50–52]. Our strategy operates in two stages:
mapping and classification (Figure 2). Given a certain pattern x, the mapping stage projects it into
a new space, φm(x), that reflects the distance (DTW) of x to several representative patterns:

φm : x→ (dDTW(x, z1), dDTW(x, z2), . . . , dDTW(x, zm)), (21)

where zi, with i = 1, . . . , m is a set of representative patterns (S′).
Therefore, given any pattern x, the classification proposed in this section is determined by

φm(x), Equation (21), i.e., the distances among x and a set of representative patterns in S′. For some
distance-based classification methods, such as the k-Nearest Neighbors or the aforementioned ppfSVM,
the set of representative patterns S′ is the whole training dataset (TS) itself. Nevertheless, in our case,
we cannot work with a big set S′ since the mapping step φm(x) would take too long for the real time
application of our classifier. Therefore, and as we will see later, S′ is a reduced and small subset of the
training data, i.e., S′ ⊂ TS.
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Figure 2. Workflow diagram of the shape-based proposal.

We still decided to carry out a further improvement. As we pointed out before, the input pattern
x is a 250-dimensional vector that might contain the sequence of values (aE,z) corresponding to several
steps (if the user is walking). Because of this, we split the representative patterns of S′ in half and
we apply what is know as subsequence DTW (SDTW) [53]. Hence, any pattern z ∈ S′ will now have
125 components. These 125 points might comprise the sequence of points corresponding to a bit
more than one single step. In this case, performing SDTW between any x and any z is equivalent to
searching whether the step represented by z is present in the pattern x. In this way, instead of aligning
these sequences x and z globally, we will search the subsequence z ∈ S′ within the longest patterns
x. The subsequence DTW, also called “unconstrained” or open-begin-end (OBE-DTW), is achieved
relaxing both the start-point and the end-point, discovering the contiguous part of the x pattern
that best matches the whole half representative pattern z, which we will refer to, respectively, as the
reference and query patterns from now on. Figure 3 shows graphically how this matching process is
done. The small top signal is z (query), while the longest bottom signal is an instance x (reference).
The figure shows how the best alignment is found in the first half of the reference.

Let x = (x1, . . . , xn) and z = (z1, . . . , zm) be the two vectors that we want to compare and
align using subsequence DTW. The first one, x, is the reference, while z is the query. We assume
that the length n is much larger than the length m. The goal of SDTW is to find a subsequence
x(a∗ :b∗) = (xa∗ , ..., xb∗) with 1 ≤ a∗ ≤ b∗ ≤ n that minimizes the DTW distance to z over all possible
subsequences of x:

(a∗, b∗) = arg min
(a,b):1≤a≤b≤n

(dDTW(x(a:b), z)). (22)
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Figure 3. Subsequence DTW between a query representative pattern (the top black line) and another
reference pattern x (the bottom red dotted line).

Thus, we can define the subsequence dynamic time warping distance function as:

dSDTW = dDTW(x(a∗ :b∗), z). (23)

After all this process, the final mapping φm(x) that is used in our shape-based approach is:

φm : x→ (dSDTW(x, z1), dSDTW(x, z2),

. . . , dSDTW(x, zm)). (24)

For the second stage described in Figure 2, i.e., the classifier that labels the projected patterns
φm(x), we used the same classifiers tested for the feature-based approach: Random Forests, Support
Vector Machines (SVM), Gradient Boosting Machines (GBM), k-Nearest Neighbors (kNN), Naïve Bayes
and C5.0. Please note that the first stage of our strategy, the mapping, allows us not only to use
distance-based classifiers in the second stage (such as SVM or kNN), but also any other classifier,
including statistical algorithms, rule-based methods, neural networks, etc. In Section 5 we will show
the results that we obtained.

Thus, summarizing what has been described so far, we need a set of representative patterns
(queries) S′, included in the training set (S′ ∈ TS), with which perform the mapping described in
Equation (24). Hence, given any pattern x (reference), we will classify φm(x) as walking or not walking.
To obtain S′ from TS we explored different strategies, in particular when S′ is made up of:

• support vectors of an SVM trained using TS as training set (Section 4.2.1),
• medoids obtained after using a clustering algorithm (PAM), over the original training data TS

(Section 4.2.2), and
• most representative patterns found through a supervised summarization procedure

(Section 4.2.3).

4.2.1. Support Vectors of a SVM as Representative Patterns

The first option we analyzed is to train a standard SVM using the original training set TS and
the Euclidean distance to compare the temporal sequences. According to what has been pointed out
before, we know that this solution is not appropriate to solve the classification problem, but here we
are only interested in the support vectors achieved after the training stage, i.e., we take the resulting m
support vectors of the SVM after the training, as the new set S′. We proceed in this way, as the support
vectors are the training examples that lie in the optimal frontier, i.e., the hyperplane that maximizes
the margin between the two classes when the Euclidean distance is being used.
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4.2.2. PAM Medoids as Representative Patterns

The second option we explored to summarize the original training data TS into a reduced set
S′, is the application of a clustering technique, k-medoids [54]. k-medoids is a clustering method
related to k-means in the sense that its objective is to partition the data into k sets, where each cluster is
represented by the most centrally located object in the cluster, called medoid.

The most popular heuristic algorithm used to find good medoids is the partitioning around medoids
(PAM) [54]. The PAM algorithm has two phases: (1) Build, in which a collection of k patterns are
selected for the initial set S′. (2) Swap, which tries to improve the quality of the clustering by exchanging
those patterns selected as medoids in S′ with the unselected ones. The pseudo-code can be found
in Algorithm 1.

Algorithm 1: Partitioning Around Medoids (PAM).

1 Decide on a value k
2 Build an initial set of k medoids
3 while the medoid assignment changes do
4 for each medoid mj do
5 for each non-medoid observation xi do
6 if swapping mj and xi improves the solution then
7 Swap mj and xi

8 end
9 end

10 end
11 return the k medoids and the cluster assignment

After applying Algorithm 1, the medoid of any cluster j fulfills the following condition:

mj = arg min
xi , x̃l ∈ Cj/j

∑ dSDTW(xi, x̃l), (25)

where mj represents the medoid of the cluster j, Cj , and xi and xl are patterns included in that cluster.
It is important to realize that in the previous Equation (25) we wrote x̃l since, as we explained before,
we use subsequence DTW and the query is made by a pattern, in this case xl , divided in half, which we
represent with a tilde. We must be aware of the fact that the k medoids achieved after the application
of Algorithm 1 are patterns that belong to the training data TS, and which will now make up the set S′

used in the mapping function φm from Equation (24).
Medoids are quite useful for data summarization because they are the most prototypical elements

of their respective clusters. A big advantage of k-medoids over other partitive clustering algorithms
like k-means is that PAM is more robust in the presence of noise and outliers, as well as the fact that
any distance metric (DTW in our case) can be used. Moreover, k-medoids explores a smaller solution
space than k-means. However, a potential disadvantage of this summarization with k-medoids or
any other conventional clustering algorithm is that it is applied in a completely unsupervised way,
using an error function that is only based on inter-pattern distances. It does not take into account the
labels of the patterns. Because of this, we investigated the third method, “supervised summarization”,
described in the next section.

4.2.3. Supervised Summarization

To get S′ from TS, we explored this third method which is inspired on a data mining technique
called supervised summary generation (SSG) [55]. The objective of this supervised summarization is the
creation of class-centered summaries that represent patterns that are typical for a class. In our case,
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the supervised summarization we applied generates a hard partition of the space in regions, so that
each region contains mostly patterns belonging to the same class (Algorithm 2).

Algorithm 2: Supervised summarization.

1 Decide on a value k
2 Build an initial set of k centroids S̃
3 while S̃ changes do
4 Assign each pattern xi ∈ TS to one cluster: BMUS̃(xi)

5 Compute the cost function F
(
S̃
)

6 Swap the centroids of S̃ looking for new patterns of TS that might increase F
(
S̃
)

7 end
8 return the k centroids

Thus, if we have an initial set of k centroids S̃ ⊂ TS, given any input pattern x we use
a winner-takes-all strategy to assign this pattern to only one cluster:

BMUS̃(xi) = arg min
∀x̃l ∈ S̃

dSDTW(xi, x̃l). (26)

Then, we define a cost function F
(
S̃
)
, which reflects to what extent the clusters are homogeneous

considering the classes of the patterns included in each of them:

F
(
S̃
)
=

n

∑
i=1

δ
(
Class(xi) = Class

(
BMUS̃(xi)

))
, (27)

where S̃ ⊂ TS is the current subset of k centroids (representative patterns), xi the i-th pattern in TS,
n is the cardinal of TS and Class(x) is the class of a given pattern x.

Thus, the higher the values of F
(
S̃
)
, the better the solution represented by this set S̃. Therefore,

we will iterate the patterns in S̃ looking for those which optimize F
(
S̃
)
:

S′ = arg max
S̃ ⊂ TS

F
(
S̃
)

. (28)

Hence, S′ represents the subset of TS with the k representative patterns that maximizes F.
The swapping of the elements in S̃ to look for new candidates with which improve F (Algorithm 2)

is not trivial. If k is very small a brute-force search is possible, but it will not be feasible if either the
cardinal of the TS or the number of centroids, k, increases. In our case, for values of k higher than 2,
we applied widely known heuristic methods common in optimization problems in order to perform
an informed search and find quasi-optimal summaries of a greater number of patterns. In particular,
we used breadth-first search (BFS) [56] and simulated annealing (SA) [57,58] methods.

5. Experimental Analysis and Results

We analyzed the performance of all the different proposals for walking recognition described
in this paper: feature-based and shape-based classifiers, including the use of support vectors,
PAM medoids or supervised summarization to get the mapping function described in the shape-based
approach. To perform a fair comparison of these proposals, we first obtained a set of labeled data
(ground truth), the description of which is included in Section 5.1. Finally, Section 5.2 shows the
results obtained.
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5.1. Ground Truth

To evaluate the performance of our proposals, we built a large dataset composed of a total of
140 records carried out by 77 different people. The vast majority of them (72, specifically) were
volunteers not connected to the research, because we wanted to ensure that the data were not biased.
In this way, in each record, the participant walked under natural conditions, freely or following some
basic premises, while the information provided by the inertial sensors of the mobile phone being
carried by the user was recorded and processed. Each volunteer walked, on average, about 2 min,
giving around 110 steps.

We did an important effort to collect data in a wide variety of cases or situations. With this aim,
we tried to get as many different volunteers as possible. On the other hand, when they moved, as they
did it freely and in different environments, their speed and way of movement were different (walking
in corridors, going upstairs, etc.), as it was the position of the mobile they carried (in their hand, pocket,
backpack, etc.).

Obviously, one option to label these data, i.e., the steps walked by each user, would be manual
counting. Nevertheless, this is error prone, especially if we consider the amount of data collected.
There are commercial step counting solutions that perform particularly well when the user walks
ideally (with the mobile in the palm of his/her hand) but which are susceptible to false positives
when the movement or position of the mobile is far from the ideal one [59]. There are also some
other solutions, described in medical literature, but which we have not used since they involve
sensorized environments that constrain the freedom of movement of the user [60]. Besides, we want to
emphasize that we are interested on an individual labeling of each step in the signal. Most articles
in the bibliography evaluate the performance of their algorithms taking only into account the total
number of steps detected per experiment or the total distance walked, instead of a detailed prediction
about when the person is really walking and when is not [61–63]. We want to evaluate classifiers that
distinguish whether each segment of signal corresponds to an user walking or not. This real time
labeling of each segment of data will allow a fair analysis of the performance, avoiding the hiding
effect due to the cancelling between false negatives and false positives.

Because all of this, and to achieve a reliable labeling of the inertial sensor signals, we decided
that the volunteers had to carry a set of sensorized devices in their legs. In particular, they carried
two other smartphones, one on each leg, tied with sport armbands, as shown in Figure 4. The inertial
information registered in the legs is good enough to perform real time labeling and disambiguate
when the user is really walking.

Figure 4. Sports armbands holding the mobiles of the legs.

Figure 5 shows a graphic representation of the ground truth over the signal of the vertical
component of the acceleration registered in the main mobile phone. Each peak-valley sequence in the
ground truth signal is equivalent to one step, so it is easy to identify when the user is really walking
and when the phone is experiencing accelerations due to actions different from walking.
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Figure 5. Graphical representation of the ground truth (thicker and darker line) over the signal of the
vertical component of acceleration in the phone (thinner and clearer line).

Our system of obtaining the ground truth fulfills its objective. However, given the large number of
records performed with very varied characteristics, there will be situations in which the analysis of the
signals for the identification of the steps is very complicated, even performing a manual count. In 28%
of the records of the dataset, the ground truth has also been obtained by counting the steps manually,
which allowed us to limit the error committed bellow 2%, i.e., between 1 and 2 steps per record.

We believe that our dataset could be useful for the community. For this reason, we published it
online for anyone who wants to use it in their research. It can be consulted and downloaded at the
following URL: https://citius.usc.es/investigacion/datasets/walking-recognition-dataset.

5.2. Performance Analysis

Now we are going to describe the evaluation and results obtained when each of our proposals,
feature-based and shape-based ones, were tested over the dataset that we just described. All data
preprocessing stages, as well as the training and testing of the different models, were carried out
using the framework provided by the R language. In particular, for the training of the traditional
models (Random Forests, SVM, kNN, etc.) we used the implementations already provided by the
caret package [64]. In the case of the CNNs, we employed the keras package [65].

We split the records into sliding windows. Each window was labeled with the majority class of its
samples: walking (positive) or not walking (negative). A problem with the division in sliding windows
is that some of them coincide with moments in which the person carrying the mobile phone just stops
or resumes walking. These windows are difficult to label because both activities occur in them, so they
are noisy and can blur the results. Therefore, we kept only those windows in which at least 75% of the
samples belong to the same class. After this, we had a total of 7886 labeled patterns. Nevertheless,
this data was very unbalanced, because there were many more instances of the positive class, walking
(78.1%) than of the negative class, not walking (21.9%). The imbalance in the training set can lead to bad
models, because classifiers such as Random Forests are sensitive to the class distribution, i.e., they will
tend to recognize better the class with the highest proportion of observations (known as the majority
class). Therefore, to take advantage of all the data collected, we decided to work with an always
balanced training set and leave the rest of the data for testing. Thus, the training set comprises 70%
of the negative samples (1211 patterns) and the same number of positive patterns. Our training set,
therefore, consisted of 2422 instances, which is 30.7% of the collected data. The remaining 69.3% was
used for testing. This test set is used in this section of experimental results to make an evaluation of
the different approaches always on the same data.

https://citius.usc.es/investigacion/datasets/walking-recognition-dataset
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5.2.1. Feature-Based Classification

We evaluated the feature-based proposal with several classifiers. Optimal hyperparameters for
each classifier were estimated applying 10-fold cross validation on the training set. For each classifier
we obtained its confusion matrix: true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN). Then, we calculated the accuracy, sensitivity and specificity metrics.

For deep learning, we tried two different CNN architectures. Considering that the input signal is
one-dimensional, several one-dimension kernels are used in the convolution operations in the proposed
networks. Figure 6 shows both architectures. The first one, shown in Figure 6a –architecture a–,
is constructed with two convolutional layers, one max-pooling layer, two dropout layers, one flattening
layer and two fully connected layers. The second one, shown in Figure 6b –architecture b– is a little
more complex, constructed with two convolutional layers, two max-pooling layers, one flattening layer,
one dropout layer and two fully connected layers. The total number of parameters for architecture
a is 158176, and for architecture b is 627894. Tables 1 and 2 show the details of architectures a and
b, respectively. We evaluated both architectures using as input layer the vertical component of the
projected acceleration, aE,z (classifiers a.1 and b.1), and the norm of the acceleration in the device
frame, ‖an‖ (classifiers a.2 and b.2). All CNNs were trained during 64 epochs using a batch size of
128 instances. A dropout rate of 0.2 was used in all the dropout layers.
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(a) Architecture for classifiers a.1 and a.2.
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Figure 6. Graphical representation of the two different CNN architectures used in the experiments.
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Table 1. Details of the CNN architecture a.

Layer Name Kernel Size # Kernels Stride Feature Map. # Params

conv1_a 1 × 3 10 1 1 × 248 × 10 40
conv2_a 1 × 3 10 1 1 × 246 × 10 310

max_pool_a 1 × 2 - 1 1 × 123 × 10 0
dropout1_a - - - 1 × 123 × 10 0
flattening_a - - - 1 × 1230 × 1 0
fully_con1_a - - - 1 × 128 × 1 157,568
dropout2_a - - - 1 × 128 × 1 0

fully_con2_a - - - 1 × 2 × 1 258

Table 2. Details of the CNN architecture b.

Layer Name Kernel Size # Kernels Stride Feature Map. # Params

conv1_b 1 × 3 5 1 1 × 248 × 5 20
max_pool1_b 1 × 2 - 1 1 × 124 × 5 0

conv2_b 1 × 3 10 1 1 × 122 × 10 160
max_pool2_b 1 × 2 - - 1 × 61 × 10 0
flattening_b - - - 1 × 610 × 1 0
fully_con1_b - - - 1 × 1024 × 1 625,664

dropout_b - - - 1 × 1024 × 1 0
fully_con2 _b - - - 1 × 2 × 1 2050

Table 3 summarizes the results for all the classifiers tested, both traditional and those of deep
learning. As we can see, the seven traditional classifiers provide very good results, although there
are nuances. Some of them, such as k-Nearest Neighbors (kNN) and Naïve Bayes, despite providing
competitive accuracies, present an imbalance between false positives and false negatives. The false
positive rate (FPR = 1− Specificity) is higher than the false negative rate (FNR = 1− Sensitivity) in
these cases. Random Forests provides the best results, followed closely by the radial basis function
(RBF) kernel SVM. The percentage of false positives and false negatives is balanced in both cases.
Using Random Forests only 19 of 519 negative instances are misclassified, which is equivalent to 3.66%,
while 237 of 4945 positive instances are wrong, which is 4.79%. Random Forests is an ensemble of
decision trees. In our case, the optimal number of trees was 400 and the minimum size of each terminal
node was restricted to 1. The effectiveness of tree-based methods for activity recognition has been
shown previously [19,66]. Random decision forests correct the tendency of decision trees of overfitting
the training set. Therefore, we believe that Random Forests is the best traditional classifier for our
feature-based proposal.

Table 3. Summary of results using the feature-based proposal with different classifiers.

Feature Selection Method Classifier TP FP TN FN Sensitivity Specificity Accuracy

Manual selection

Random Forests 4708 19 500 237 0.9521 0.9634 0.9531
RBF SVM 4703 19 500 242 0.9511 0.9634 0.9522
GBM 4707 29 490 238 0.9519 0.9441 0.9511
kNN (k = 5) 4723 48 471 222 0.9551 0.9075 0.9506
Linear SVM 4642 44 475 303 0.9387 0.9152 0.9365
Naïve Bayes 4654 61 458 291 0.9412 0.8825 0.9356
C5.0 4633 48 471 312 0.9369 0.9075 0.9341

Deep learning

CNN (architecture a.1) 4632 38 481 313 0.9359 0.9282 0.9357
CNN (architecture a.2) 4563 50 469 382 0.9210 0.9115 0.9210
CNN (architecture b.1) 4567 32 487 378 0.9251 0.9211 0.9250
CNN (architecture b.2) 4596 47 472 349 0.9276 0.9247 0.9275

CNN (architecture a.1) 3100 3 3003 100 0.9834 0.9819 0.9834
Deep learning CNN (architecture a.2) 3080 17 3005 92 0.9824 0.9803 0.9824

(oversampling data) CNN (architecture b.1) 3098 5 3019 84 0.9857 0.9853 0.9857
CNN (architecture b.2) 3069 28 3016 81 0.9824 0.9830 0.9824
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Regarding the CNNs, their results are slightly below those obtained using traditional methods.
However, it must be borne in mind that this kind of learning techniques requires huge amounts of
training data to perform well, much more than we have used so far. Since continuing to record more
and more data was neither feasible nor honest for the comparison of classifiers, we decided to carry
out an oversampling process to generate more instances artificially. First, we increased the overlap
between consecutive data windows from 50% to 75%. Moreover, we upsampled the minority class
(negative examples) using random resampling without replacement. Then, we kept 70% of the data
for training and the remaining 30% for testing. This way, the deep learning training set increased from
the original 2422 examples to 18,618, while the test set grew from 5464 to 6206 patterns.

When re-training the CNNs using the upsampled data, results improve significantly. Any of
them outperforms the traditional methods. Comparing the four networks, we can affirm that both
architectures, a and b, provide similar results, but architecture a is more interesting because it is the
simplest in terms of number of parameters and, hence, it is the architecture that most likely exhibits
the best generalization for new patterns. Similarly, both architectures are able to extract relevant
features using any of the proposed signals as input layer. It could be more interesting to use the
norm of the acceleration in the device frame, ‖an‖ (classifiers a.2 and b.2) because this avoids the
preprocessing stage of quaternion calculation for attitude estimation. Thus, although training a CNN
is computationally expensive, using these models would be more efficient than using traditional
proposals once the model has been trained, since making predictions is inexpensive and they do not
require some of the preprocessing stages. In conclusion, the most efficient deep learning network for
our feature-based proposal would be the CNN a.2.

5.2.2. Shape-Based Classification

We also evaluated the performance of the shape-based approach. As was described in Section 4.2,
this strategy works in two stages: First, it defines a mapping that requires the selection of a set of k
representative patterns of the training data. On a second stage, a classifier is trained using this new
mapped space. To analyze this approach, we used different values for k, as well as the three strategies
described in Section 4.2 to obtain the set of representative patterns S′: the support vectors of an RBF
SVM, k medoids of PAM and the outcome of a supervised summarization. For the calculation of the
DTW distances, we used subsequence matching (SDTW) with asymmetric step pattern [67]. Finally,
to perform the classification we used seven alternatives, the same seven classifiers dealt with in the
previous section. Table 4 shows the results.

When we used the RBF SVM to obtain the set of representative patterns S′, we obtained a total
of 1551 support vectors. If we use all of them we get results very similar to those obtained via
feature-based classification. If the final classifier is also another RBF SVM, the accuracy is 95.35%,
being this performance a bit lower when we use a linear SVM instead. However, the computational
cost of this approach grows excessively due to the number of representative patterns S′ used to perform
the mapping. Hence, we decided to reduce the cardinal of S′ by applying feature selection techniques.
First, due to the high dimensionality, we applied a filter method, because it is the most agile option:
we ranked the features based on the Information Gain (IG) and Chi-squared (χ2) metrics [68] and we
selected the first 221 features with the best scores (IG > 0.3 and χ2 > 0.7). Then, we applied Recursive
Feature Elimination (RFE) [37], which is a wrapper method, on that subset. RFE did not find any
smaller subset with better performance, but with only the top 5 features we obtained quite good results.
We want to emphasize that the specificity decreases significantly for the best models, by approximately
20%, or what is the same, false positive rate increases by 20%. Despite all, the false negative rate and
the accuracy obtained are still quite good.
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Table 4. Summary of results using the shape-based proposal with different classifiers.

Pattern Selection Method Classifier No. of Patterns TP FP TN FN Sensitivity Specificity Accuracy

RBF SVM

RBF SVM
1551 4724 33 486 221 0.9553 0.9364 0.9535
221 4611 121 398 334 0.9325 0.7669 0.9167
5 4586 126 393 359 0.9274 0.7572 0.9112

Random Forests
1551 4674 35 484 271 0.9452 0.9326 0.9440
221 4573 75 444 372 0.9248 0.8555 0.9182
5 4378 109 410 567 0.8853 0.7900 0.8763

GBM
1551 4668 37 482 277 0.9440 0.9287 0.9425
221 4547 82 437 398 0.9195 0.8420 0.9122
5 4497 116 403 448 0.9094 0.7765 0.8968

Linear SVM
1551 4621 37 482 324 0.9345 0.9287 0.9339
221 4449 52 467 496 0.8997 0.8998 0.8997
5 4425 115 404 520 0.8948 0.7784 0.8838

support vectors
kNN (k = 7)

1551 4703 69 450 242 0.9511 0.8671 0.9431
221 4563 68 41 382 0.9228 0.8690 0.9176
5 4330 105 414 615 0.8756 0.7977 0.8682

Naïve Bayes
1551 4660 146 373 285 0.9424 0.7187 0.9211
221 4607 132 387 338 0.9316 0.7457 0.9140
5 4541 123 396 404 0.9183 0.7630 0.9036

C5.0
1551 4400 56 463 545 0.8898 0.8921 0.8900
221 4176 84 435 769 0.8445 0.8382 0.9439
5 4683 136 383 262 0.9470 0.7380 0.9272

PAM medoids

RBF SVM
180 4651 47 472 294 0.9405 0.9094 0.9376
10 4555 81 438 390 0.9211 0.8439 0.9138
4 4623 104 415 322 0.9349 0.7996 0.9220
2 4323 149 370 622 0.8742 0.7129 0.8589

Random Forests
180 4633 57 462 312 0.9369 0.8902 0.9325
10 4513 77 442 432 0.9126 0.8516 0.9068
4 4410 91 428 535 0.8918 0.8247 0.8854
2 3973 126 393 972 0.8034 0.7572 0.7990

GBM
180 4598 53 466 347 0.9298 0.8979 0.9268
10 4468 70 449 447 0.9035 0.8651 0.8999
4 4500 94 425 445 0.9100 0.8189 0.9014
2 4229 120 399 716 0.8552 0.7688 0.8470

Linear SVM
180 4511 38 481 434 0.9122 0.9268 0.9136
10 4544 89 430 401 0.9189 0.8285 0.9103
4 4496 123 396 449 0.9092 0.7630 0.8953
2 4311 156 363 634 0.8718 0.6994 0.8554

kNN (k = 7)
180 4629 66 453 316 0.9361 0.8728 0.9301
10 4572 97 422 373 0.9246 0.8131 0.9140
4 4434 92 425 445 0.9100 0.8189 0.9014
2 4117 120 399 828 0.8326 0.7688 0.8265

Naïve Bayes
180 4526 113 406 419 0.9153 0.7823 0.9026
10 4346 79 440 599 0.8789 0.8478 0.8759
4 4395 85 434 550 0.8888 0.8362 0.8838
2 4172 156 363 773 0.8437 0.6994 0.8300

C5.0
180 4362 76 443 583 0.8821 0.8536 0.8794
10 4293 77 442 652 0.8681 0.8516 0.8666
4 4593 109 410 352 0.9288 0.7900 0.9156
2 4200 144 375 745 0.8493 0.7225 0.8373

Exhaustive search

RBF SVM 2 4492 93 426 453 0.9084 0.8208 0.9001

Random Forests 2 4179 89 430 766 0.8451 0.8285 0.8435

GBM 2 4306 78 441 639 0.8708 0.8497 0.8688

Linear SVM 2 4360 85 434 585 0.8817 0.8362 0.8774

kNN (k = 7) 2 4293 91 428 625 0.8681 0.8247 0.8640

Naïve Bayes 2 4135 91 428 810 0.8362 0.8247 0.8351

C5.0 2 4587 120 399 358 0.9276 0.7688 0.9125
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Table 4. Cont.

Pattern Selection Method Classifier No. of Patterns TP FP TN FN Sensitivity Specificity Accuracy

Informed search:

RBF SVM 4 4526 68 451 419 0.9153 0.8690 0.9109
10 4504 63 456 441 0.9108 0.8786 0.9078

Random Forests 4 4441 68 451 504 0.8981 0.8690 0.8953
10 4494 60 459 451 0.9088 0.8844 0.9065

GBM 4 4411 62 457 534 0.8920 0.8805 0.8909
10 4465 64 455 480 0.9029 0.8767 0.9004

Linear SVM 4 4376 66 453 569 0.8849 0.8728 0.8838
10 4443 69 450 502 0.8985 0.8671 0.8955

Breadth-first search kNN (k = 7) 4 4434 75 444 511 0.8967 0.8555 0.8928
10 4430 74 445 515 0.8959 0.8574 0.8922

Naïve Bayes 4 4623 130 389 322 0.9349 0.7495 0.9173
10 4645 110 409 300 0.9393 0.7881 0.9250

C5.0 4 4404 86 433 541 0.8906 0.8343 0.8852
10 4382 64 455 563 0.8861 0.8767 0.8852

Informed search:

RBF SVM 4 4656 121 398 289 0.9416 0.7669 0.9250
10 4532 92 427 413 0.9165 0.8227 0.9076

Random Forests 4 4414 95 424 531 0.8926 0.8170 0.8854
10 4496 72 447 449 0.9092 0.8613 0.9046

GBM 4 4524 110 409 421 0.9128 0.7881 0.9028
10 4441 83 436 504 0.8981 0.8401 0.8926

Linear SVM 4 4553 124 395 392 0.9207 0.7611 0.9056
10 4384 85 434 561 0.8866 0.8362 0.8818

Simulated Annealing kNN (k = 7) 4 4443 114 405 502 0.8985 0.7803 0.8873
10 4471 98 421 747 0.9041 0.8112 0.8953

Naïve Bayes 4 4546 142 377 399 0.9193 0.7264 0.9010
10 4595 135 384 350 0.9292 0.7399 0.9112

C5.0 4 4413 101 418 535 0.8924 0.8054 0.8842
10 4134 71 448 811 0.8360 0.8632 0.8386

Using PAM as a selection strategy to obtain the set of representative patterns S′, we can obtain
good results too. As shown in Table 4, the results are quite competitive, taking into account the
small number of patterns used. There are some global clustering quality indexes (Calinski-Harabasz
index [69], C-index [70], Gamma-index or or Goodman-Kruskal index [71], Silhouette index [72],
Gap Statistic [73], etc.) that can be used to automatically determine the optimal number of medoids.
In our case, we calculate the Silhouette index, which is based on compactness and separation of clusters.
We observed that low values of k (k = 2) are sufficient to obtain good clustering results.

Finally, using supervised summarization the results are in the same range of values. First,
we performed an exhaustive search in order to find the two best representative patterns. Then, due to
computational limitations, we performed several informed searches using breadth-first search (BFS)
and simulated annealing (SA) heuristic methods in order to find good subsets of four and ten patterns.

As we can see, the shape-based approach easily achieves accuracies above 90% whatever the
configuration used. Nevertheless, globally, the shape-based approach is overtaken by the feature-based
one. In particular, deep learning methods provide results that are difficult to achieve by more traditional
strategies and they do not require a high effort in data preprocessing.

5.2.3. Combination of Classifiers

As a final experiment, being aware that CNNs are the alternative that provides better performance,
we tried to combine the predictions of the traditional feature-based Random Forests and the
shape-based RBF SVM classifiers in order to see if, together, they are able to rival deep learning.
For this purpose, we used two ensemble techniques.

First, we built a weighted average (WA) ensemble [74]. We applied 10-fold cross validation using
training data and we calculated and saved the probabilistic predictions from each of the 10 folds for
both classifiers. These values define the probability of walking in the range [0,1]. Then, we prepared
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a new dataset combining the predicted probabilities for each instance of the training set for Random
Forests and RBF SVM (2 features) plus the real label. We applied logistic regression on the new dataset
and obtained two coefficients derived from the logistic regression. We calculated linear weights based
on the coefficients:

wRF =
|cRF|

|cRF|+ |cSVM|
, (29)

wSVM =
|cSVM|

|cRF|+ |cSVM|
, (30)

where wRF and cRF are, respectively, the weight and the coefficient for the Random Forests and
wSVM and cSVM the weight and the coefficient for the SVM. In our case, we obtained wRF = 0.9721
and wSVM = 0.0278. Finally, we calculated the ensemble learning prediction probability score, pe,
by multiplying weights with predicted scores of each classifier:

pe = wRF × pRF + wSVM × pSVM, (31)

being pRF the prediction given by the feature-based Random Forests model and pSVM the prediction
given by the shape-based RBF SVM model. Discretizing the probabilistic prediction pe, we obtained
the results of Table 5, which are exactly the same as we got for Random Forests in Table 3. This is
because the logistic regression assigns a very high weight to the Random Forests and the prediction of
the SVM practically does not influence the results. Therefore, in our case, using a weighted average
model does not bring any benefit.

Table 5. Summary of results using an ensemble of both proposals.

Ensemble Method TP FP TN FN Sensitivity Specificity Accuracy

Top layer RBF SVM 4766 30 489 179 0.9638 0.9422 0.9617
Top layer C5.0 4746 24 495 199 0.9598 0.9538 0.9592

Logistic Regression WA 4708 19 500 237 0.9521 0.9634 0.9531
Top layer Naïve Bayes 4539 8 511 406 0.9179 0.9846 0.9242
Top layer Linear SVM 4441 9 510 504 0.8981 0.9827 0.9061

Top layer GBM 4426 9 510 519 0.8950 0.9827 0.9034
Top layer Random Forests 4419 7 512 526 0.8936 0.9865 0.9025

Top layer kNN (k = 9) 4418 9 510 527 0.8934 0.9827 0.9019

The second approach we tried was stacking [75]. We can train a new model using the same dataset
that we used to apply logistic regression, composed by the predicted probabilities of the feature-based
Random Forests and the shape-based RBF SVM classifiers as independent variables and the original
target variable as dependent variable. In this case, the trained model is called top layer model. For each
new prediction, we have first to obtain the predicted probabilities of the bottom layer models and then
obtain the final prediction using the top layer one. We evaluated 7 different models in the top layer.
The results are shown in Table 5. As we can see, we obtained slight improvements using another RBF
SVM or C5.0 in the top layer. However, it is not too significant to make it worthwhile to use this new
layer in a real application and it still does not improve the results of Table 3 obtained using the CNNs.

6. Conclusions

The use of the inertial information in mobile phones to recognize when a person is walking is
an important issue in tasks such as biometric identification, indoor navigation, health monitoring,
etc. Nevertheless, walking recognition in mobile phones is challenging due to the existence of a high
aliasing, i.e., we get very similar signals for many different movements of the mobile. In this paper,
we reviewed the state of the art in this field and we carried out an exhaustive analysis and development
of two different approaches to detect walking activity on a person carrying a mobile device. Both of
them process the information provided by the inertial sensors of the device to make continuous
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predictions. The first one, feature-based classification, is based on extracting features of time and
frequency domains from the accelerometer and gyroscope readings. The second one, shape-based
classification, focuses on comparing the shape of the vertical component of the acceleration (in the Earth
reference system) with representative (query) patterns.

Using the feature-based classification, the best model has proved to be a simple CNN that uses
the norm of the acceleration in the mobile frame as input layer. In any case, if we have limited
resources, a traditional Random Forests is a competitive alternative when an appropriated manual
feature selection is carried out. In the shape-based approach, we need to apply first a strategy able to
determine representative patterns (queries) to which compare any input pattern. In fact, they will be the
warped distances (DTW) among any input patterns and these queries what will later allow classifying
the signal and, thus, recognize when the user is walking. We explored three different strategies to build
the set of representative patterns (queries) as well as different strategies for classification. In general,
we noticed that there are many combinations that provide good results, but they cannot compete
with those achieved using deep learning. Finally, we also tried to combine traditional methods from
feature-based and shape-based approaches, thus creating a small ensemble. We applied two different
strategies, weighted average and stacking. However, the improvement obtained is not too significant
to make worthwhile to use an ensemble in a real-time scenario.

Some further tests could be carried out in an attempt to improve the performance of the
shape-based classifiers even further, for example using a different distance metric, such as longest
common subsequence (LCSS), instead of DTW. Nevertheless, the expected benefits would be marginal
considering the results already achieved. The evident conclusion of this work is that deep learning
methods (in this case, CNNs) far outperform traditional learning methods. This work is a further
proof of the advantages that deep learning can offer. In our problem, a small CNN architecture
managed to simplify the data preprocessing stage by offering the highest accuracies. A priori, the main
advantage of traditional methods is that they require much less data for the training of the model. In
addition, they seem to be computationally lighter and, therefore, more appropriate for training and
predicting in real time on smartphones. However, a deeper study should be done comparing traditional
and deep learning methods running in a real mobile phone to test computational requirements and
battery consumption.
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