

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
DEPARTAMENTO DE ELECTRÓNICA E COMPUTACIÓN

PhD. Dissertation

High-Performance Decimal
Floating-Point Units

Álvaro Vázquez Álvarez
Santiago de Compostela, January 2009

To my family
Á miña familia

Acknowledgements

It has been a long way to see this thesis successfully concluded, at least longer than what I
imagined it. Perhaps the moment to thank and acknowledge everyone’s contributions is the
most eagerly awaited. This thesis could not have been possible without the support of several
people and organizations whose contributions I am very grateful.

First of all, I want to express my sincere gratitude to my thesis advisor, Elisardo Antelo.
Specially, I would like to emphasize the invaluable support he offered to me all these years.
His ideas and contributions have a major influence on this thesis.

I would like to thank all people in the Departamento de Electrónica e Computación for
the material and personal help they gave me to carry out this thesis, and for providing a
friendly place to work. In particular, I would like to mention to Prof. Javier D. Bruguera and
the other staff of the Computer Architecture Group. Many thanks to Paula, David, Pichel,
Marcos, Juanjo, Óscar, Roberto and my other workmates for their friendship and help.

I am very grateful to IBM Germany for their financial support though a one-year research
contract. I would like to thank Ralf Fischer, lead of hardware development, and Peter Roth
and Stefan Wald, team managers at IBM Deutchland Entwicklung in Böblingen. I would like
to extend my gratitude to the FPU design team, in special to Silvia Müller and Michael Kröner,
for their help and the warm welcome I received during my stay in Böblingen. I would also like
to thank Eric Schwarz from IBM for his support.

Many thanks to Paolo Montuschi from Politecnico di Torino for his collaboration in sev-
eral parts of this research.

Finally, I want to thank the institutions that have financially supported this research
through trip grants for attending to different conferences: Universidade de Santiago de Com-
postela, Ministerio de Ciencia y Tecnologı́a (Ministry of Science and Technology) of Spain
under contracts TIN2004-07797-C02 and TIN2007-67537-C03, and Xunta de Galicia under
contract PGIDT03-TIC10502PR.

“Before computers,
I used my 10 fingers,
but now . . .

what am I supposed to do
with the other 9 ?”

Anonymous

Contents

1 Decimal Computer Arithmetic: An Overview 1
1.1 The evolution of ALUs: decimal vs. binary . 2
1.2 The new financial and business demands . 6
1.3 Decimal floating-point: Specifications, standard and implementations 10
1.4 Current and future trends . 12

2 Decimal Floating-Point Arithmetic Units 15
2.1 IEEE 754-2008 standard for floating-point . 15
2.2 Decimal floating-point unit design . 21
2.3 Decimal arithmetic operations for hardware acceleration 23

3 10’s Complement BCD Addition 25
3.1 Previous work on BCD addition/subtraction 26

3.1.1 Basic 10’s complement algorithm 27
3.1.2 Direct decimal addition . 29
3.1.3 Speculative decimal addition . 33

3.2 Proposed method: conditional speculative decimal addition 37
3.3 Proposed architectures . 42

3.3.1 Binary prefix tree architectures . 42
3.3.2 Hybrid prefix tree/carry-select architectures 45
3.3.3 Ling prefix tree architectures . 51

3.4 Sum error detection . 55
3.4.1 2’s complement binary addition . 57
3.4.2 10’s complement BCD addition . 57
3.4.3 Mixed binary/BCD addition . 61

3.5 Evaluation results and comparison . 62
3.5.1 Evaluation results . 62
3.5.2 Comparison . 66

3.6 Conclusions . 71

4 Sign-Magnitude BCD Addition 73
4.1 Basic principles . 73
4.2 Sign-magnitude BCD speculative adder . 75
4.3 Proposed method for sign-magnitude addition 78
4.4 Architectures for the sign-magnitude adder . 79

4.4.1 Binary prefix tree architecture . 80

i

ii Contents

4.4.2 Hybrid prefix/carry-select architecture 82
4.4.3 Ling prefix tree architectures . 83

4.5 Sum error detection . 85
4.6 Evaluation results and comparison . 87

4.6.1 Evaluation results . 88
4.6.2 Comparison . 89

4.7 Conclusions . 91

5 Decimal Floating-Point Addition 93
5.1 Previous work on DFP addition . 94

5.1.1 IEEE 754-2008 compliant DFP adders 94
5.1.2 Significand BCD addition and rounding 98

5.2 Proposed method for combined BCD significand addition and rounding . . . 102
5.3 Architecture of the significand BCD adder with rounding 109

5.3.1 Direct implementation of decimal rounding 112
5.3.2 Decimal rounding by injection . 114

5.4 Evaluation results and comparison . 115
5.4.1 Evaluation results . 115
5.4.2 Comparison . 116

5.5 Conclusions . 117

6 Multioperand Carry-Free Decimal Addition 119
6.1 Previous Work . 120
6.2 Proposed method for fast carry-save decimal addition 121

6.2.1 Alternative Decimal Digit Encodings 122
6.2.2 Algorithm . 123

6.3 Decimal 3:2 and 4:2 CSAs . 124
6.3.1 Gate level implementation . 124
6.3.2 Implementation of digit recoders . 125

6.4 Decimal carry-free adders based on reduction of bit columns 128
6.4.1 Bit counters . 128
6.4.2 Architecture . 130

6.5 Decimal and combined binary/decimal CSA trees 130
6.5.1 Basic implementations . 131
6.5.2 Area-optimized implementations . 132
6.5.3 Delay-optimized implementations 132
6.5.4 Combined binary/decimal implementations 135

6.6 Evaluation results and comparison . 137
6.6.1 Evaluation results . 137
6.6.2 Comparison . 138

6.7 Conclusions . 139

7 Decimal Multiplication 141
7.1 Overview of DFX multiplication and previous work 142
7.2 Proposed techniques for parallel DFX multiplication 143
7.3 Generation of partial products . 144

Contents iii

7.3.1 Generation of multiplicand’s multiples 144
7.3.2 Signed-digit multiplier recodings . 146

7.4 Reduction of partial products . 150
7.5 Decimal fixed-point architectures . 152

7.5.1 Decimal SD radix-10 multiplier . 152
7.5.2 Decimal SD radix-5 multiplier . 153
7.5.3 Combined binary/decimal SD radix-4/radix-5 multipliers 153

7.6 Decimal floating-point architectures . 154
7.6.1 DFP multipliers . 157
7.6.2 Decimal FMA: Fused-Multiply-Add 159

7.7 Evaluation results and comparison . 161
7.7.1 Evaluation results . 162
7.7.2 Comparison . 163

7.8 Conclusions . 164

8 Decimal Digit-by-Digit Division 165
8.1 Previous work . 165
8.2 Decimal floating-point division . 166
8.3 SRT radix-10 digit-recurrence division . 168

8.3.1 SRT non restoring division . 168
8.3.2 Decimal representations for the operands 169
8.3.3 Proposed algorithm . 171
8.3.4 Selection function . 173

8.4 Decimal fixed-point architecture . 175
8.4.1 Implementation of the datapath . 175
8.4.2 Operation sequence . 178
8.4.3 Implementation of the selection function 179
8.4.4 Implementation of the decimal (5421) coded adder 182

8.5 Evaluation and comparison . 184
8.5.1 Evaluation results . 184
8.5.2 Comparison . 185

8.6 Conclusions . 186

Conclusions and Future Work 187

A Area and Delay Evaluation Model for CMOS circuits 191
A.1 Parametrization of the Static CMOS Gate Library 192
A.2 Path delay evaluation and optimization . 197
A.3 Optimization of buffer trees and forks . 199
A.4 Area and delay estimations of some basic components 202

Bibliography 213

iv Contents

List of Figures

1.1 Example of a decimal tax calculation using binary floating-point. 9

2.1 DFP interchange format encodings. 18
2.2 Configurations for the architecture of the DFU. 22

3.1 10’s complement Addition/Subtraction Algorithm. 28
3.2 Direct Decimal Algorithm. 29
3.3 Direct decimal adder with direct BCD sum. 31
3.4 Mixed binary/direct decimal adder using a hybrid configuration. 32
3.5 Decimal Speculative Algorithm. 34
3.6 10’s complement BCD speculative adders. 36
3.7 Mixed binary/BCD speculative adders. 37
3.8 Proposed Conditional Speculative Algorithm. 38
3.9 Example: Conditional Speculative BCD Addition. 40
3.10 10’s complement BCD adder using a binary prefix carry tree. 43
3.11 Graph representations of binary prefix tree adders. 45
3.12 Mixed binary/decimal adder using a binary parallel prefix carry tree. 46
3.13 Block diagram of the 10’s complement BCD hybrid adder. 47
3.14 Proposed two-conditional BCD (4-bit) sum cell. 47
3.15 Proposed implementations for the operand setup stage (1-digit slices). 48
3.16 Quaternary prefix carry tree. 48
3.17 Direct decimal prefix carry tree. 49
3.18 Mixed binary/BCD quaternary prefix tree/carry-select adder. 50
3.19 Transformation of a prefix adder into a Ling adder. 53
3.20 Implementation of Ling digit sum cells. 53
3.21 Implementation of two-conditional Ling digit sum cells. 54
3.22 Sum error checking using unit replication. 55
3.23 Proposed scheme for sum error checking. 56
3.24 Proposed architecture for the detection of 2’s complement sum errors (8-bits). 58
3.25 Proposed architecture to check BCD addition/subtraction errors (2 digits). 60
3.26 Proposed architecture to detect decimal and binary sum errors (8-bits) 61
3.27 Area/delay space of 10’s complement BCD adders. 67
3.28 Area/delay space of mixed binary/BCD adders. 69

4.1 Implementation of sign-magnitude BCD addition. 74
4.2 9’s complement prefix tree adder [136, 157] using speculative decimal addition. 76

v

vi List of Figures

4.3 Proposed method for sign-magnitude BCD addition/subtraction. 78
4.4 Proposed sign-magnitude BCD prefix tree adder. 80
4.5 Proposed sign-magnitude BCD quaternary-tree adder. 82
4.6 Digit sum block of BCD sign-magnitude Ling prefix adders. 84
4.7 Proposed checker for BCD sign-magnitude addition/subtraction errors (2 digits). . . . 87
4.8 Area/delay space of BCD adders. 91

5.1 Block diagram of the DFP adder proposed in [136]. 96
5.2 Block diagram of the DFP adder proposed in [157]. 97
5.3 Significand BCD addition and rounding unit [136]. 99
5.4 Significand addition and rounding unit [157]. 101
5.5 Alignment and layout of input operands. 103
5.6 Proposed method for significand BCD addition with rounding. 104
5.7 Pre-correction stage. 105
5.8 Proposed selection stage. 109
5.9 Proposed sign-magnitude BCD adder with rounding. 110
5.10 Modified binary 4-bit sum cells. 111
5.11 Diagram of direct decimal rounding. 113
5.12 Diagram of decimal rounding by injection. 114

6.1 BCD carry-save addition using a 4-bit 3:2 CSA. 121
6.2 Calculation of ×2 for decimal operands coded in (4221) and (5211). 124
6.3 Proposed decimal digit (4-bit) 3:2 CSAs. 125
6.4 Proposed decimal (1-digit slice) 4:2 CSAs. 126
6.5 Gate level implementation of the (4221) to (5211) digit recoders. 127
6.6 Implementation of a (5211) to (4221) digit recoder. 128
6.7 Gate level implementation of digit counters . 129
6.8 9:4 reduction of (5211) decimal coded operands. 130
6.9 Basic implementation of decimal (4221) q:2 CSAs. 131
6.10 Area-optimized implementation of a decimal (4221) 17:2 CSA. 133
6.11 Area-optimized implementation of a decimal (4221) 32:2 CSA. 134
6.12 Delay-optimized 17:2 decimal (4221) CSA tree. 135
6.13 Delay-optimized 32:2 decimal mixed (4221/5211) CSA tree. 136
6.14 Combined binary/decimal 3:2 CSA. 137
6.15 Combined binary/decimal carry-free adders. 138

7.1 Calculation of ×5 for decimal operands coded in (4221). 145
7.2 Generation of multiplicand multiples. 146
7.3 Partial product generation for SD radix-10. 146
7.4 Decimal partial product generation for SD radix-5. 148
7.5 Combined binary SD radix-4/decimal SD radix-5 scheme. 150
7.6 Partial product generation for SD radix-4. 151
7.7 Partial product arrays of the DFX multipliers. 151
7.8 Combinational SD radix-10 architecture. 153
7.9 SD radix-5 DFX multiplier. 154
7.10 Combined binary/decimal radix-4 (radix-5) multiplier. 155

List of Figures vii

7.11 Scheme of the DFP multiplier proposed in [67]. 156
7.12 Proposed area-optimized scheme for DFP multiplication. 157
7.13 Proposed delay-optimized scheme for DFP multiplication. 158
7.14 Operand alignment for the decimal FMA operation. 160
7.15 Proposed high-performance scheme for decimal FMA operation. 161

8.1 Architecture of a IEEE 754-2008 DFP divider unit. 167
8.2 Selection constants for some intervals of D for k = 5 and k = −4. 176
8.3 Datapath for the proposed radix-10 divider. 177
8.4 Generation of D and bD multiples. 177
8.5 Implementation of the digit selection function. 179
8.6 Decimal carry generate (G) and alive (A) block. 180
8.7 Implementation of the LSD carry-out block. 181
8.8 Diagram block of the Q-T decimal (5421) adder. 183

A.1 RC model of a logic gate (for one input). 192
A.2 Library of minimum size static CMOS gates. 196
A.3 Path to be optimized. 198
A.4 An amplifier fork with a load of n 2:1 muxes. 201
A.5 Basic multi-stage gate components. 202

viii List of Figures

List of Tables

2.1 Parameters defining basic and storage format DFP numbers. 16
2.2 Encoding parameters for basic and storage formats. 18

3.1 Conventional BCD coding. 26
3.2 Delay and area figures for 10’s complement adders. 63
3.3 Delay and area figures for 2’s complement/10’s complement adders. 65
3.4 Evaluation results for sum error checkers. 65
3.5 Delay and area figures for 10’s complement BCD adders. 66
3.6 Delay and area figures for mixed binary/BCD adders. 70
3.7 Comparison results for sum checkers. 70

4.1 Delay and area figures for sign-magnitude BCD adders. 88
4.2 Delay-area figures for sign-magnitude BCD sum checkers. 89
4.3 Delay and area figures for sign-magnitude BCD adders. 90

5.1 Rounding modes implemented in [136]. 100
5.2 Injection values for the rounding modes implemented in [157]. 100
5.3 Conditions for the decimal rounding modes implemented. 114
5.4 Delay-area figures for the significand BCD adder with rounding. 116
5.5 Comparison figures for significand adders with rounding. 117

6.1 Decimal codings . 122
6.2 Selected decimal codes for the recoded digits. 127
6.3 Evaluation results for the proposed CSAs (64-bit operands). 138
6.4 Area-delay figures for 16:2 carry-free tree adders. 139

7.1 Decimal codings . 145
7.2 SD radix-10 selection signals. 147
7.3 SD radix-5 selection signals. 149
7.4 Area and delay for the proposed 16-digit BCD DFX multipliers. 162
7.5 Area and delay for the combined binary/decimal architectures. 162
7.6 Area-delay figures for 64-bit binary/16-BCD digit decimal fixed-point multipliers. . . . 163

8.1 Decimal digit encodings and their characteristics 171
8.2 Delay and area of the proposed divider. 184
8.3 Comparison results for area-delay. 185

A.1 Optimum delay of buffer forks for a load of n 2:1 muxes. 202

ix

x List of Tables

A.2 Area, delay and input capacitance estimations of some multi-stage gates. 203

Preface

The decimal arithmetic units implemented in early computers have been replaced in today’s
processors by binary fixed and floating-point units. Binary arithmetic is suitable for scientific
applications due to its mathematical properties and performance advantage, since, in elec-
tronic computers (based on two-state transistors), binary data can be stored more efficiently
and processed faster than decimal data.

However, the decimal format is preferred for many other non-scientific applications.
Thus, current financial, e-commerce and user-oriented applications make an intensive use of
integer and fractional numbers represented in decimal radix. General-purpose microproces-
sors only provide hardware support for binary-to-from-decimal conversions while, until very
recently (mid 2007), hardware support for decimal arithmetic in mainframe microprocessors
was limited to speedup some basic decimal integer arithmetic operations.

Therefore, microprocessors had to manage decimal numbers using, mainly, their binary
fixed and floating-point arithmetic units, introducing costly performance penalties due to
conversion operations. Thus, decimal data is converted to a binary representation before
being processed using binary arithmetic and the results are converted back to a decimal
representation. For intensive decimal data workloads, these conversion operations contribute
significatively to the total processing time.

More importantly, the binary floating-point units may generate accuracy errors when
processing the decimal data directly, since many decimal fractions cannot be represented
exactly in binary (for example, 1/10 = 0.1 has not an exact binary representation). In many
financial and monetary applications, the errors introduced by decimal to binary conversions
are not tolerated and must be corrected since they may violate the legal requirements of
accuracy.

Software implementations of decimal floating-point arithmetic fulfill the accuracy and
precision requirements, but are at least an order of magnitude slower than hardware units
and cannot satisfy the increasing workloads and performance demands of future financial and
commercial applications. By other hand, the continuous size scaling of transistors permits
the fabrication of integrated circuits with a complexity of billions of transistors at a moderate
cost. This makes an attractive opportunity for the microprocessor manufactures to provide a
dedicated DFU (decimal floating-point unit) in their new high-end microprocessors.

This interest has been supported by the efforts in defining a standard for decimal floating-
point arithmetic. Specifically, the revision of the IEEE 754-1985 and IEEE 854-1987 floating-
point standards (IEEE 754-2008), incorporates specifications for decimal arithmetic. It can
be implemented in hardware, software or in a combination of both. In this way, the first
IEEE 754-2008 compliant DFUs are already in the market. The dual core IBM Power6 proces-
sor, released in June 2007, and the quad core IBM z10 mainframe microprocessor, released

xi

xii Preface

in March 2008, implement a DFU in each core. Other manufactures, such as Intel, have
opted for software implementations, but they are planning to incorporate some hardware to
assist the binary arithmetic unit in IEEE 754-2008 decimal-floating point operations. More
processors are expected to gradually incorporate hardware support for decimal floating-point
arithmetic. In addition, it is arising a significant academic work on high-performance decimal
hardware design.

Decimal floating-point arithmetic is again a hot topic of research. Also, more efficient
architectures for decimal fixed-point units are necessary to satisfy the increasing demands of
high-performance decimal processing. So, welcome back decimal arithmetic!

In this context, this Ph.D. thesis presents the research and design of new algorithms and
high-performance architectures for DFX (decimal fixed-point) and DFP (decimal floating-point)
arithmetic units. The most part of the results are already published in [144, 145, 148, 149,
150, 147]. The main contributions of this work to the field of decimal computer arithmetic are
the following:

• A new algorithm for 10’s complement carry-propagate addition or subtraction [144, 145]
of two integer operands represented in BCD (binary coded decimal), and the extension
for sign-magnitude BCD addition/subtraction. The proposed high-performance archi-
tectures can be implemented using any fast binary carry prefix tree topology, resulting
in more efficient designs of DFX adders.

• A new algorithm to combine IEEE 754-2008 significand BCD addition or subtraction
with decimal rounding that only requires a single full word carry propagation. This leads
to more efficient implementations of high performance decimal DFP adders and DFP
multipliers.

• A new method for sum error checking applied to (10’s complement and sign-magnitude)
BCD addition or subtraction.

• A novel method for fast multioperand decimal carry-save addition or subtraction [148,
150] using unconventional (non BCD) decimal codings.

• Different efficient designs of decimal carry-save adder trees for any number of input
operands based on the previous method.

• Two new parallel DFX multipliers [148, 150] implemented using different signed digit
recodings of the multiplier and the proposed decimal carry-save adder trees.

• A combined parallel binary/decimal fixed-point multiplier that presents a reduced la-
tency for binary operations.

• A new design of a IEEE 754r DFP multiplier combining some of the proposed DFX parallel
multipliers with the proposed BCD adder with rounding.

• A proposal for the design of a DFP fused multiply-add (FMA).

• A new digit-recurrence algorithm and architecture for radix-10 division [149] that adapts
conventional techniques developed to speed-up binary radix-2k division with novel fea-
tures to improve radix-10 division.

Preface xiii

The structure of this thesis is as follows. Chapter 1 presents an overview of decimal
computer arithmetic, including a review of the use of decimal arithmetic in the history of
computation, a discussion of the current needs of high-performance implementations of dec-
imal arithmetic, and future trends in the field.

Chapter 2 summarizes the decimal specification of the IEEE 754-2008 standard and
discusses some important issues about compliant IEEE 754-2008 DFU design. We finally
present the preferred set of decimal arithmetic operations to implement based on estimations
of real demands and the benefits and costs of accelerating them in hardware.

These implementations are detailed from Chapter 3 to Chapter 8. The structure of these
Chapters is very similar: first, we provide a background of the previous and most representa-
tive methods and architectures proposed to implement in hardware each arithmetic operation,
detailing their strengths and weaknesses. Next, we introduce and discuss our proposals for
the selected operation, and finally we present the area and delay evaluation figures of the
proposed high-performance implementations and a comparative study between the differ-
ent alternatives. Appendix A is included to provide a better understanding of the evaluation
method used to estimate the area and delay of the different circuit topologies at the gate level.

Chapters 3 and 4 deal with decimal integer and fixed-point addition of two operands.
Specifically, Chapter 3 is devoted to 10’s complement BCD carry-propagate addition or sub-
traction while Chapter 4 is devoted to sign-magnitude BCD carry-propagate addition or sub-
traction.

Chapter 5 is focused on DFP addition, specifically on significand BCD addition and IEEE
754-2008 decimal rounding.

In Chapter 6 we include the carry-free propagation methods for multioperand decimal
addition, used to speed-up other operations such as decimal multiplication and division.

Chapter 7 covers both DFX and DFP multiplication. It also contains a proposal for an
implementation of a decimal FMA (fused multiply-add) unit.

Chapter 8 deals with decimal division, in particular with subtractive methods based
on the radix-10 digit-recurrence iteration. An overview of DFP division is first presented to
discuss next the implementation of DFX division.

Finally, we present the main conclusions and future work.

xiv Preface

Chapter 1

Decimal Computer
Arithmetic: An Overview

Decimal is the most natural arithmetic system for humans. People represent and exchange
numerical information in base (or radix) 10 and perform calculations applying the rules of
decimal arithmetic they are taught at school. However, in today’s computers, data is processed
mainly in the binary system, using some fixed-point or floating-point representation in radix 2.
Although most of the early computers used decimal arithmetic [60, 61], binary has practically
replaced decimal in current computers because it is faster an more efficient [17].

Until very recently, only decimal fixed-point or integer BCD arithmetic units were im-
plemented in some high-end processors oriented to commercial servers [19, 20]. High per-
formance floating-point computations were carried out in binary, appropriate for scientific
computations. The use of DFP (decimal floating-point) hardware in real applications has been
limited to hand-held calculators [66, 135] or early computers [18, 78]. But now, due to the
high demands of numerical processing for new financial, commercial and Internet-based ap-
plications, efficient implementations of DFP arithmetic are required to address the limitations
of binary hardware or DFX (decimal fixed-point) formats [35].

In this Chapter we present the precedents, facts and future trends related to this re-
cent and increasing interest in providing efficient high-performance implementations of DFP
arithmetic. Section 1.1 outlines the evolution of the ALUs (arithmetic logic units) from the
early computers to the modern microprocessors available nowadays. Section 1.2 discuss the
characteristics of the decimal processing demands for the new financial and business applica-
tions. It also describes the main drawbacks of the binary floating-point arithmetic and integer
and fixed-point arithmetic to deal with decimal data. Section 1.3 covers the recent efforts
towards the definition of efficient specifications and a standard for DFP arithmetic. Next, we
analyze whether the new software and hardware implementations of DFP arithmetic satisfy
the accuracy and performance demands, introducing several research studies leaded from
both industry and academy. Finally, Section 1.4 presents a vision of the evolution and future
trends in this field. A quite complete bibliography on decimal arithmetic can be found in Mike
Cowlishaw’s general decimal arithmetic website [33].

1

2 Chapter 1. Decimal Computer Arithmetic: An Overview

1.1 The evolution of ALUs: decimal vs. binary

The evolution of the ALUs goes in parallel to the history of computers [24]. The decimal
number system was used in mechanical computers to help with the manual calculations of
commerce and science. Two well-known examples are the specific-purpose Difference En-
gine and the general-purpose Analytical Engine of Charles Babbage (1792-1871), which was
projected to have a differentiate ALU that used columns of 10-toothed wheels and other me-
chanical components to perform decimal calculations [60]. In 1914, Torres y Quevedo, a
Spanish scientist and engineer, wrote a paper describing how electromechanical technology
(based on relays) could be applied to produce a complete Analytical Engine [112].

Separate decimal and binary ALUs. From 1945 to 1960.

The electronic era of computers began with the vacuum tubes, that substantially reduced
the delays of the mechanical and electromechanical computers. Many of the early electronic
computers, such as the ENIAC [61], were decimal. Their arithmetic units operated directly
with numbers and/or addresses represented in decimal. BCD (binary coded decimal) was
the most frequent encoding of decimal digits although many other codes were considered
[163]. The ALUs of these computers could only perform simple arithmetic and logic operations
(usually add and compare) in circuits called accumulators [24]. In the ENIAC, fully operative
in 1946, the decimal arithmetic circuits were mixed with the program circuitry, which had
to be reconfigured (rewired) for a new task. Based on the notes of Eckert and Mauchly, the
designers of the ENIAC, and the previous works of Alan Turing, John von Neumann formalized
in 1945 the stored-program architecture (the EDVAC computer [151]), on which the programs
were internally stored in a memory (both data and instructions) and separated from the ALU
and the other components (input/output system and control logic) [129].

This work contributed widely to popularize the general-purpose electronic digital comput-
ers. The first generation of commercial models appeared around 1950. Examples of decimal
computers are the UNIVAC and the IBM 650. The arithmetic processor of the UNIVAC con-
sisted of four general-purpose accumulators and could perform about 465 multiplications per
second [24]. It used four binary digits to code each decimal digit. Each word was 45 bits long,
representing 11 decimal digits plus a sign.

During all the 1950s both decimal and binary arithmetic were implemented in computers
[113]. The advantage of binary arithmetic over decimal implementations was already consid-
ered by Burks, Goldstine, and von Neumann in their reports from the Princeton Institute for
Advanced Study (IAS) [17]. They proposed a pure binary architecture (for both addressing and
data processing), the IAS computer, and concluded that it was simpler to implement than a
decimal design using two-state digital electronic devices (vacuum tubes, in this case). Since
it required a reduced number of components (less memory and arithmetic circuits), it was
therefore more reliable. They also pointed out that binary arithmetic was optimal for scientific
computations because of their mathematical properties.

However, other authors [13, 117] suggested later that the combination of binary address-
ing with decimal data arithmetic was more powerful. They considered that, in many appli-
cations in which few arithmetic steps are taken on huge data workloads, format conversions
can contribute significatively to the processing time when data are represented in a different
format from that used in the arithmetic unit. This implied that computers needed at least two

1.1. The evolution of ALUs: decimal vs. binary 3

arithmetic units, one for binary addressing and the other for decimal data processing.

Therefore, the development of two separate lines of computers persisted into the end of
the 1950s. One type of computers was focused on scientific and engineering applications,
involving long and complex calculations with numbers in a wide range of magnitudes. The
ALUs implemented in these models were primarily binary floating-point units, such as the
one in the Z4 (derived from Konrad Zuse’s first programmable floating-point units), and the
one in the IBM 704. The first computers to operate with decimal floating point arithmetic
hardware were the Bell Laboratories Model V and the Harvard Mark II, both of which were
relay calculators designed in 1944.

Floating-point arithmetic was proposed independently by Torres y Quevedo (1914), Zuse
(1936) and Stibitz (1939) [85]. It allowed their users to manage with the overall scale of a
computation in hardware, otherwise having to program the complex scaling operations re-
quired by fixed-point formats. However, floating-point units require much more circuitry than
fixed-point ALUs and only binary implementations were finally considered [24].

The other type of computers was intended for business applications, which involved
processing large amounts of data. However, the commercial calculations of that period did not
need to handle numbers of many digits and large ranges. So the business-oriented comput-
ers used a shorter word length than scientific computers and decimal fixed-point arithmetic
usually with two digits to the right of the decimal point.

Merging of decimal and binary ALUs. From 1960 to 1970.

The arrival of the solid-state semiconductor transistor and the integrated circuit con-
tributed to the large scale production of computers, greatly reducing the size and cost of
computers. In this way, more complex arithmetic and logic were introduced in the second
generation of electronic computers from the 1960s.

At the beginning of the 1960s, the tendency was to provide only binary arithmetic units.
Binary was much easier to implement than other number systems in the Boolean logic of
electronic devices, and more reliable after the introduction of the transistor in computers.
A survey of computer systems carried out in the USA by 1961 [161] reported that the most
preferred system was binary, ”131 utilize a straight binary system internally, whereas 53
utilize the decimal system (primarily BCD, binary coded decimal). . .”.

However, several models, such as the IBM 1401, the IBM 1620 and the IBM 7070, im-
plemented decimal arithmetic units for data processing, the majority integer and fixed-point.
Manufacturers felt that commercial customers did not need floating point, so DFP in hard-
ware was very rare [35]. Some exceptions are the normalized variable-precision DFP feature
implemented in the IBM 1620 computer [78] and the Burroughs B5500 computer [18], that
could use an integer or a fixed-point coefficient of 21 or 22 precision digits.

Other early representatives of this generation are the IBM 7094 and the UNIVAC 1100
and 2200 series targeted to high-performance applications of science and engineering. The
introduction of the IBM 7094 led origin to mainframe computers. It could perform between
50,000 and 100,000 binary floating-point operations per second using 36-bit words [24]. This
word size could handle a precision of 10 decimal digits, which was adequate for most business
applications, so customers used floating-point hardware for business computations as well.

4 Chapter 1. Decimal Computer Arithmetic: An Overview

Moreover, many customers used scientific computers for commercial applications, as well as
business-oriented computers was often installed in university centers, where professors and
students develop floating-point software for it [24].

Thus, IBM finally combined both lines (scientific and commercial) with the introduction of
the System/360 line of computers in 1964 [2]. The IBM System/360 mainframes implemented
a hexadecimal floating-point unit [3]1, but decimal computations were carried out using a BCD
integer arithmetic unit (mainly a BCD adder).

The transistor also helped create a new type of computers, the minicomputers, that pro-
vided computing facilities at reduced cost than the mainframes. The early minicomputers
appeared around 1960, and end users could interact directly with the computer. To reduce
costs, the minicomputers used a short word length (12 bits in the PDP-8). Thus, at first, they
could not compete with mainframes in decimal arithmetic (a 12-bit word only supports 3 dec-
imal digits) or floating-point computations, but for many other applications the minicomputer
was the better performance/cost solution.

With the massive production of integrated circuits (chips) in the second half of the 1960s,
minicomputers were fabricated at lower cost and could offer support for wider word lengths
and some high-performance characteristics available in mainframe computers. Thus, mini-
computers became also competitive for some commercial and scientific uses. To minimize
the threat of minicomputers, mainframes also replaced the circuits of discrete components
by the integrated circuit at the end of the decade. This allowed the use of high-performance
techniques to speed up ALUs.

Dedicated binary floating-point units. From 1970 to 1985.

In the 1970s, binary was very popular with very few computers supporting decimal. The
new parallel techniques proposed to speed up arithmetic operations in hardware [7, 40, 86,
94, 114, 153] were implemented in many cases in the high-performance binary arithmetic
units of mainframes, represented by the IBM S/370 line of computers [21]. Only in a few
cases they were applied to decimal arithmetic and limited to improve the BCD integer units of
mainframe computers [118]. In mainframes, the different integer ALUs and binary floating-
point units [142] were implemented in separate chips from the control logic unit.

In spite of the architectural and technological advances of minicomputers, they could not
replace the mainframes in the business data-processing field. On the contrary, they generated
a new demand for low cost computation, leading to the personal computers and being finally
replaced by these. In addition, the programmable pocket calculators [66], introduced in the
mid-1970s by Hewlett-Packard and Texas Instruments at the price of a current laptop, were
presented as personal computers and also created a huge demand among engineers and
professional and financial people. However, these devices were not general-purpose computers
but specialized numerical processors that could compute, apart from the basic arithmetic
operations, logarithms and trigonometric functions using decimal floating-point arithmetic to
10 decimal digits of precision.

The microprocessor incorporated a general-purpose stored-program architecture into a
single integrated circuit, making possible the rising of personal computers at the end of the

1This unit is of a similar hardware complexity as an equivalent binary floating-point unit, since the hexadecimal
radix is an integer multiple of 2.

1.1. The evolution of ALUs: decimal vs. binary 5

1970s. The early microprocessors, marketed for personal computers, only integrated binary
fixed-point or integer ALUs [75]. Some of them, such as those based on the Intel x86 and
on the Motorola 68x architectures, provided instructions for 8-bit word BCD addition and
subtraction [76, 104]. Nevertheless, these arithmetic operations were actually performed in
the binary integer ALU with the support of 8-bit BCD from/to binary conversion instructions
[70]. Moreover, these instructions were not extended to formats wider than 8 bits, since this
decimal support would be incorporated later into the binary floating-point units.

Because of their complexity, the binary floating-point units were, at first, not inte-
grated into the microprocessors, but in specialized chips called floating-point accelerators
or coprocessors [65, 69, 110, 134]. These floating-point coprocessors also contributed to
the growth of a new type of specialized high-end computers intended for scientific intensive
floating-point calculations, the supercomputers, while the mainframes were focused mainly
on business applications.

Standardized binary floating-point units. From 1985 to 2007.

The fast spread of floating-point units led to many proprietary floating-point formats
and different rounding behaviors for the arithmetic operations [59]. Therefore it was very
necessary to standardize a floating-point system to provide reliable and portable results to
users. Thus, in 1985 a binary floating-point arithmetic standard was released (IEEE 754-
1985 [72]) and is now implemented in almost all microprocessors.

When the scale of integration made it possible, the binary floating-point coprocessors
were incorporated into the microprocessors [55]. Compliant IEEE 754 floating-point units
and increasing performance capabilities were implemented in microprocessors for embedded
systems [6, 107], laptop and desktop computers [11, 58], workstations and servers [105, 28]
and supercomputers [87, 152]. Because of the widespread acceptance of IEEE 754-1985,
IBM decided finally, at the end of the 1990s, to provide compliant IEEE 754-1985 floating-
point units in its microprocessors for the S/390 mainframes [1, 123], and in the following
generation of 64-bit microprocessors for the IBM z/Series mainframes [57, 123].

Although the IEEE 754-1985 standard was soon adopted by practically all the micro-
processor developers, the attempts to popularize another radices different than binary at
the end of the 1980s were not very successful. The IEEE standard for radix-independent
floating-point arithmetic (IEEE 854-1987 [73]) lacked of some features such as an efficient
binary encoding to represent the decimal numbers, and the manufactures did not perceive
in the market a real demand of decimal floating-point processing. Moreover, the fabrication
technology was not mature enough to integrate a dedicated decimal floating-point unit into a
general-purpose microprocessor.

But at the beginning of the 2000s, these factors had changed and evolved. The new fi-
nancial and business demands of a global market [52], the recent developments of reliable and
efficient decimal specifications and encodings [39] and the technological improvements that
allowed the integration of multiple processors on a chip (multicore), have created an interest in
the microprocessor industry to provide support for decimal floating-point arithmetic [31, 35].
In addition, an incipient research was producing significant advances in this field [121]. Be-
cause of this interest, the recently approved revision of the IEEE standard for floating-point
arithmetic (IEEE 754-2008 [74]) includes specifications for decimal floating-point arithmetic.

6 Chapter 1. Decimal Computer Arithmetic: An Overview

However, prior to 2007, few computing systems provided decimal facilities in hardware
and none of these implementations was for decimal floating-point. For instance, the early
IBM z/Series mainframes only included decimal integer arithmetic units [19, 20], consisting
basically in a BCD adder with some hardware support to accelerate other decimal integer
operations. Microprocessors based on the Intel x86 architecture provide a 18-digit packed
BCD format to simplify decimal integer arithmetic operations, but these are carried out as
binary integer computations in the binary floating-point unit, which requires costly format
conversions [70]. A very similar limited support can be found in other architectures including
Motorola 68x, IBM PowerPC and HP PA-RISC.

The early implementations of compliant IEEE 754-2008 DFUs (decimal floating point
units) in commercial microprocessors arrived in the first semester of 2007. The dualcore
IBM Power6 server microprocessor includes a IEEE 754-2008 DFU in each core [45, 122].
Also, similar IEEE 754-2008 DFUs (one per core) are included in the 64-bit quad core mi-
croprocessor of the z/Series z10 mainframe [160], launched in March 2008. Previously, a
compliant firmware implementation of IEEE 754-2008 DFP, accelerated using the available
BCD hardware, was provided for the IBM z9 mainframe microprocessor [44].

Finally, we expect that DFUs follow the same roadmap of binary floating-point units,
from high-end computers to low-end processors, and that they become as popular as binary
units are nowadays.

1.2 The new financial and business demands

Financial and commercial applications for risk management, banking, accounting, tax calcu-
lation, currency conversion, insurance, marketing, retail sales, among many other business
areas, make an intensive use of numerical data processing. In addition, the recent movement
of many business processes to the Web (e-commerce, e-banking,...), the rapid expansion and
development of the new emergent economies and the global economic and financial markets
have triggered the demand of computational power.

Commercial software applications [71, 96] are typically executed in high-performance
mainframes 2 [88, 160], which offer a specialized support such as:

• Reliability. They provide features to detect and correct system faults.

• Availability. They are available for long periods of time even when parts of the system
are malfunctioning.

• Serviceability. The maintenance and repair tasks are carried out affecting as little as
possible the normal operation of the system.

• Parallel processing to run a diversity of tasks using multithreading [88] with multiple
processors and cores [160].

• Dedicated service processors for cryptographic support, I/O handling, monitoring, mem-
ory handling,...

2We use this term only for servers oriented to commercial applications such as databases, Web services, ERP
(Enterprise Resource Planning) systems, financial tools, ...

1.2. The new financial and business demands 7

• Numerical processing capabilities optimized to perform simple computations involving
large amounts of data workloads. These numerical data are mainly decimal fractions
(rational numbers whose denominator is a power of ten) and integer numbers in a wide
range of values [138].

This last issue is of special importance for the design of the processor arithmetic. The calcula-
tions used in commercial and financial applications follow the human rules and conventions
of decimal arithmetic, that may differ from the conventional arithmetic used for scientific
calculations.

For instance, in scientific applications, numerically identical values such as 32.60 and
32.6 are treated in the same way. The binary floating-point arithmetic implemented in com-
puters is normalized and does not distinguish numbers of equal value. In commercial and
other human-oriented applications, the trailing fractional zero in 32.60 may represent extra
information that should be preserved [35], such as the unit of measurement (centimeter), of
currency (cent)...

For this reason, the decimal numbers used in financial applications are usually encoded
as integer coefficients scaled by a power of ten. For example, the value 764.50 is represented
as an integer coefficient 76450 with a scale of 2 (or an exponent -2), that is, as 76450 · 10−2.
This integer scaled encoding is redundant since more than one coefficient may represent the
same value: both coefficients 009 (with an exponent 2) and 090 (with an exponent 1) represent
the value 900. Although a normalized fixed-point (non redundant) coefficient could also be
used, this is more adequate for scientific calculations.

The scale or exponent can be fixed or floating. Some applications work with a fixed scale
(fixed decimal point) which is preserved for all the calculations. Other applications, such as
currency conversions, need a floating-point type. For instance, the Euro exchange rates are
given to 6 precision digits [52], so the decimal point position is floating (1 Euro = 166.386
Pesetas = 6.55957 Francs).

Consequently, in addition to compute numerical values, the implementations of decimal
arithmetic should be able to preserve the full precision of the numbers when required, in-
cluding the trailing fractional zeroes. Early computers used exact decimal arithmetic, so they
had to provide word length enough to support the full precision and range that required the
financial calculations. However, 11 or 12 digits were sufficient for the applications of that
time [24].

Current applications use, typically, 25 to 32 precision digits in order to represent a
good range of values exactly. But, since applications are now more complex, having to deal
with a wider range of values, implementations of exact arithmetic have become inefficient for
many situations [35]. For instance, an exact decimal multiplication requires the double of the
precision digits of the largest input value. In this way, a sequence of multiplications would
exceed soon any precision available in hardware. Therefore, the use of rounding is necessary
in financial and commercial applications in two different situations:

• To approximate to the exact result in many complex computations (rounding imposed by
precision).

• To reduce the exact result to a lower precision demanded by the application (rounding

8 Chapter 1. Decimal Computer Arithmetic: An Overview

imposed by legal requirements).

The most common decimal rounding modes used in financial calculations are round-
half-up (round to nearest, ties away from zero) and round-down (rounded towards zero or
truncation), though round-half-even (round to nearest, ties to even) is sometimes applied to
cancel out rounding errors on average.

Numerical processing is carried out by computers using different arithmetic systems:

1. Binary floating-point arithmetic. Numbers are represented as

FX = (−1)sX (cX .fX) · 2EX (1.1)

where sX is the sign, cX and fX are respectively the integer and fractional parts of the
coefficient X = cX .fX and EX is the integer exponent (cX = 1 for a normalized represen-
tation).

2. Integer (binary or BCD) arithmetic. Numbers represented as X = (−1)sX cX

3. Fixed-point (binary or decimal) arithmetic. Numbers represented as FX = (−1)sX (cX .fX)
(cX = 1 in case of a normalized binary representation and cX ∈ {1, . . . , 9} in case of a
normalized decimal representation).

4. Decimal floating-point arithmetic. Numbers are represented as

FX = (−1)sX (cX .fX) · 10EX (1.2)

where fX = 0 in case of an integer coefficient, and cX ∈ {1, . . . , 9} in case of a normalized
fractional coefficient.

The straightforward method to perform a decimal calculation would be to use a binary
floating-point unit directly. However, though integer numbers have exact conversions, most
decimal fractions can only be approximated by binary floating-point numbers [27, 56]. For
example, decimal values such as 0.1 (= 10−1) would require an infinite sum of binary frac-
tions (infinite precision) for an exact binary representation. Moreover, decimal to/from binary
conversions [27, 56, 130] are implemented in software routines with high computational cost.

Conversion errors could lead to inaccurate results when a decimal calculation is carried
out with binary floating-point arithmetic. Fig. 1.1 details an example of a 5% tax applied
over a phone call of cost 0.70 euros, rounded to the nearest cent (ties to even) [35]. Using
double precision binary floating-point for the calculation, the result is one cent less than the
expected (tax calculations are regulated by law). These systematic one-cent errors add up,
so, for a mobile phone company with millions of calls a day, the annual loses could represent
over a million euros [35].

Notice that these errors are due to the lack of accuracy of binary floating-point, and not
to rounding. These type of decimal exactly rounded results, although inexact, are imposed
by legal and financial requirements and are the expected results of a decimal computation.
Therefore, binary floating-point cannot be used for financial calculations or for any application
based on decimal human-oriented arithmetic, since it cannot neither meet legal requirements
nor provide decimal exactly rounded results.

1.2. The new financial and business demands 9

Binary floating-point
unit

Decimal calculator

Telephone billing

5%0.70

0.70 x 1.05

0.73499999999999998

double precision binary multiplication

Rounding to the
nearest cent
(tie-even)

Tax

7

2

9

1
.

/

-

4

8

0

3

65

=

x

+

0.70 x 1.05

Cost

Total

[1.05]

0.735

0.730.74

0.74 eur

Dec. to Bin.
Conversion (inexact)

0.70

Bin. to Dec. Conversion (exact)

 (legal result)

 (incorrect result) (correct result)

[0.69999999999999998]

1.05Decimal multiplication

[0.73499999999999998]

x

Figure 1.1. Example of a decimal tax calculation using binary floating-point.

Both fixed-point and integer arithmetic units can be used to satisfy the accuracy
requirements of decimal applications. However, the range of numbers they can hold is limited
by the format precision3, being necessary, for many current applications, to work with scaled
integer data (a type of floating-point). Thus, scaling operations must be applied using software
solutions and libraries [38, 42, 103] or by manual programming to keep the coefficients in the
available range during the calculations. This manual tracking of scales is error-prone and
difficult to manage, specially when both large and small values are involved in a calculation
[35].

Another limitation is that fixed-point and integer arithmetic units do not implement
rounding. Rounding operations are characteristic of floating-point computations and when
no rounding occurs the operation can be reduced to an integer or fixed-point computation.
However, as it was previously mentioned, rounding is demanded by many current financial
and commercial applications, so it must be explicitly applied in software when using integer
or fixed-point arithmetic.

The integer coefficients are represented in binary form or in a decimal (mainly BCD)
representation. The advantage of BCD over binary is that it simplifies rounding, scaling and
conversions, although the BCD arithmetic units are slightly complex and slower than binary
units. But even with the speedup support of BCD integer and fixed-point units [19, 20],
the simulation of scaled arithmetic has a significant overhead with respect to floating-point
hardware implementations.

Therefore, the use of a decimal floating-point arithmetic unit could be a solution to:

3Maximum number of digits available to represent the integer (preferred) or fixed-point coefficient.

10 Chapter 1. Decimal Computer Arithmetic: An Overview

• Overcome the inaccuracy of binary floating-point arithmetic.

• Extend the limitations of fixed-point and integer hardware for scaling and rounding.

In addition, to be widely used, it should be conformed to modern standards for floating-
point arithmetic. However, the radix independent floating-point system defined in IEEE 854-
1987 was primary designed for scientific and engineering uses and seems to not satisfy the
commercial needs [79]. For instance, this decimal floating-point arithmetic should also meet
other requirements of commercial and financial applications more oriented for fixed-point
computations such as

• To provide the exact result in simple calculations (rounding imposed by precision must
be avoided in these cases).

• To provide rounding of the exact result to a variable lower precision when it is demanded
(rounding defined by the application).

• To preserve the scales in exact computations (normalization loses scale information).

which seem to be, apparently, in contradiction with a floating-point type. Nevertheless, dec-
imal floating-point types using a non-normalized, integer coefficient can satisfy the previous
requirements [39]. Furthermore, exact computations could be carried out directly in hard-
ware, supporting enough precision digits to represent this integer coefficient in the most part
of practical situations, applying scaling by software only to exceptional cases.

So, before providing reliable decimal floating-point units for commercial use, it was nec-
essary to develop a consistent specification of a decimal floating-point arithmetic [37], efficient
when implemented in both software and hardware and compatible with the established rules
of human-oriented decimal arithmetic used in finances. Overall, it was necessary to incorpo-
rate this specification in a standard, the IEEE 754-2008, that could be widely accepted as the
IEEE 754-1985 was.

1.3 Decimal floating-point: Specifications, standard and
implementations

Apart from its use in early computers, proposed designs of DFP arithmetic units prior to 2000
[12, 29, 115] were mainly intended for scientific and engineering uses, since they assumed
fractional coefficients and did not meet the special requirements of scaled decimal arithmetic
in commercial applications. Thus, in real applications, the use of those scientific-oriented
implementations was limited to low-performance applications as hand-held calculators [66,
135], since, for a given investment, binary floating-point units provide better performance and
accuracy.

On the other hand, the implementations of scaled integer decimal arithmetic [42] (in
effect a floating-point system), of common use in databases and other software for commercial
applications prior to 2000, did not incorporate support for the floating-point types defined by
the IEEE 854-1987 standard, so they could not make use of future hardware facilities for DFP
arithmetic to improve these computations.

1.3. Decimal floating-point: Specifications, standard and implementations 11

Some initial attempts to provide a more general data type for decimal arithmetic were the
Microsoft Decimal class, and the Rexx DFP [99], but a more reliable and general specification
for DFP was already required. Therefore, at the beginning of the 2000s, IBM introduced
a more general specification for decimal floating-point [39, 37] also suitable for commercial
uses. This specification provides the necessary decimal support for commercial applications,
including exact unrounded decimal arithmetic and integer arithmetic, and is also compatible
with the DFP arithmetic defined in IEEE 854-1987, allowing efficient implementations in both
hardware and software.

To avoid the different proprietary formats, IBM suggested in 2002 to incorporate its
proposal for decimal arithmetic into the ongoing revision of the IEEE 754-1985. Thus, these
decimal specifications were merged into the draft of the IEEE 754-2008 and the IEEE 854-
1987 was, in fact, incorporated to the revision. The main addition in IEEE 754-2008 with
respect to IEEE 854-1987 is the inclusion of format specifications for the new DFP data types,
used for integer, fixed-point, and floating-point decimal arithmetic.

The IEEE 754-2008 [74] defines three interchange decimal formats (of 32, 64 and 128
bits) with two different encodings for decimal floating-point numbers (represented as a sign,
a coefficient and an exponent). The exponent in encoded as an unsigned binary integer. The
coefficient can be encoded as a binary or a decimal unsigned integer. To allow an efficient
packing of decimal digits (BCD requires 17% more storage capacity than binary) IBM pro-
posed a decimal encoding using DPD (Densely Packed Decimal) [34] to pack 3 decimal digits
into 10 bits (storage efficiency of 97.6%). A limitation of this encoding is that arithmetic op-
erations must be performed in other less compact decimal codings such as BCD, but the
DPD encoding allows fast and low cost conversions to/from BCD in hardware. To improve
software implementations of IEEE 754-2008, Intel proposed an alternate binary encoding,
the BID (Binary Integer Decimal) encoding [133], since the DPD to BCD conversions imposed
some performance penalties in software. In both cases, the number of digits encoded in the
integer coefficient are the same for the three format widths (7 digits for Decimal32, 16 digits
for Decimal64 and 34 digits for Decimal128). Format encoding and the decimal arithmetic
specifications incorporated in the IEEE 754-2008 are more detailed in Chapter 2.

The IEEE 754-2008 DFP data types are now replacing the old decimal formats in many
commercial software products [64] and software libraries for compilers. These include Sun
BigDecimal for Java 5 [103], Intel IEEE 754-2008 BID library [31, 30] and IBM decNum-
ber library for ANSI C and C++ [36]. These DFP software packages are currently adequate
for some applications, but their performance may not suffice for the increasing demands of
multinational corporations and global e-business.

For instance, initial studies from IBM [35, 49] report that some applications spend 50%
to 90% of their time in decimal processing because software implementations are typically
100 to 1000 times slower than binary floating-point hardware. They estimate a performance
improvement of using DFP hardware for commercial applications from 2× to 10×. Other
study [119] compares the performance of a software DFP library (IBM decNumber) running a
benchmark (simulating a telephone company) with estimations of latency from available DFP
hardware designs [50, 136, 154]. They conclude that hardware implementations of decimal
floating-point arithmetic operations are one to two orders of magnitude faster than software
implementations. However, a performance analysis reported from Intel [10], shows that, re-

12 Chapter 1. Decimal Computer Arithmetic: An Overview

lated to the performance, the overhead of using software decimal implementations in some
commercial Java applications is low (less than 4%) and, at least from the point of view of these
workloads, there are insufficient performance benefits to use DFP hardware. Moreover, Intel
also claims that the speedup of DFP hardware with respect to the Intel BID decimal floating-
point library [31, 30] is not as dramatic as reported by IBM using the decNumber library, and
that hardware implementations are only interesting if applications spend a large percentage
of their time in DFP computations.

These reports indicate that there is a lack of representative workloads to take objective
design decisions. A recent work [158] provides a benchmark suite covering a more diverse
and broad set of financial and commercial applications, including banking, currency conver-
sion, risk management, tax preparation and telephone billing. Using a similar comparative
technique as that reported in [119], they obtain that more than 75% of the execution time
when using software libraries (IBM decNumber) is spent in DFP processing, and the use of
reference DFP hardware [97, 106, 157, 156] results in speedups ranging from 1.5 to about
30.

From these performance studies, IBM has considered an interesting option to incorpo-
rate DFP hardware in their high-performance microprocessors for mainframes and high-end
servers. The first compliant IEEE 754-2008 DFU implemented in the IBM Power6 [45, 122]
and z10 [160] microprocessors is area efficient, at the cost of a reduction in performance.

On the other hand, Sun and Intel rely on their DFP software libraries and they have
not yet announced the incorporation of some hardware acceleration for DFP in their high-end
microprocessors.

In addition to the industry efforts, there has been a significant academic research stimu-
lated by the perspective of a new IEEE 754-2008 standard. An important part of the published
work is related to the design of high-performance DFX and DFP arithmetic units. Practi-
cally all the DFP designs use the IEEE 754-2008 decimal (DPD) encoding, since leads to
much faster hardware implementations. For instance, there have been proposals for high-
performance integer decimal BCD adders [144] and DFP adders [136, 157], DFX iterative
[50, 82] and combinational [91, 148] multipliers, DFP multipliers [97, 67], digit recurrence
radix-10 dividers [92, 106, 149] and decimal dividers and a square-root unit based on multi-
plicative methods [154, 155, 156]. But the design of an efficient multioperand carry free adder
[41, 81, 91, 149] has been the most recurrent topic due to its key role to speedup some basic
operations as multiplication and division. These designs and other representative examples
are described and analyzed in Chapters 3 to 8.

Implementations based on the IEEE 754-2008 binary (BID) encoding [139, 140] propose
the reuse of binary hardware as a potential advantage. However, the complexity of perform-
ing decimal rounding and alignment over binary coefficients makes BID hardware a tradeoff
solution between software implementations and high-performance DPD hardware.

1.4 Current and future trends

In summary, we can conclude that, in effect, there is a generalized interest in providing
support for DFP arithmetic by means of software or hardware. This demand obeys primarily

1.4. Current and future trends 13

to a need of performance boost for commercial and financial applications which must meet
strict accuracy requirements in decimal calculations. The DFP arithmetic defined in the new
IEEE 754-2008 standard not only satisfies the rules of decimal arithmetic for finances, but is
also adequate for a more general use, as it conforms to the IEEE 854-1987. Thus, IEEE 754-
2008 DFP is intended for a broad audience, which includes scientific, engineering, commercial
and financial users.

The different preferences of microprocessors manufacturers about a software or a hard-
ware implementation of DFP are probably imposed by the profile of their customers, which
have different computational demands. For instance, Sun Niagara [88], Intel Itanium [101]
and AMD Opteron [80] microprocessor families for commercial and Web servers are mainly
oriented to a broad range of diverse medium scale and distributed computing applications.
Currently, they only provide software DFP support, since they have not detected the sufficient
performance demand of decimal processing to justify the cost of a dedicated DFU. Otherwise,
if market demands more performance, their first option could be to add some hardware sup-
port in the binary floating-point unit to speedup the performance of a software DFP (BID)
library.

IBM preference for dedicated DFUs is due to its privileged position in the market of main-
frames for large scale enterprise computing. The rapid growth of the e-business transactions
processed by mainframe software has required major investments in performance. In this
way, they have detected an urgent necessity to speedup decimal processing. To meet the re-
quirements of exact decimal computations for commercial and financial uses, the first DFU
design [45] supports 34 digits of precision (Decimal128 DFP format). Because of this wide
word length (144-bit datapath), the performance of commercial DFUs must be sacrificed to
meet the quite exigent area constraints.

By other hand, the current research in this field is focused on providing decimal hard-
ware with the maximum performance by exploiting parallelism and adapting high-performance
techniques from binary, aiming to reduce the performance gap with respect to binary floating-
point units. Other hot topic of research is the design of efficient pipelined implementations
of arithmetic units for future commercial DFUs, that should lead to the build of a decimal
fused-multiply-adder [121].

But the future of DFP hardware depends on many factors [79] and is very hard to predict:

• First, DFP hardware should build up enough volume in commercial applications. If soft-
ware DFP implementations (with some hardware help) became fast enough for commer-
cial applications, probably the performance benefits of dedicated DFUs will be eclipsed
by their higher costs, and the investments in chip area will be derived to other uses.
Since the preliminary analysis of performance demands do not apport a definitive con-
clusion in one or other direction, the market will ultimately determine the success or
downfall of these early DFUs.

• By other hand, if customers really feel that these processors satisfy their real demands,
they will be willing to pay for the extra cost of more performance. Thus, the next gener-
ations of DFUs will gradually reduce most of the performance gap with respect to binary
hardware. In this sense, the current research is contributing to the necessary advances
to minimize this performance gap.

14 Chapter 1. Decimal Computer Arithmetic: An Overview

• With the adequate volume of production and the continuous reduction of the scale of
integration, high-performance DFP units will be cheap enough for their use in personal
computers. Thus, when the performance of DFP units is close to the performance of the
binary units, the human preference for decimal representations could favor the use of
DFP also for scientific and engineering applications.

• And then, maybe decimal will finally replace binary in all but a few applications which
require the superior numerical properties of binary.

Chapter 2

Decimal Floating-Point
Arithmetic Units

One of the main drawbacks of decimal arithmetic is that it is less efficient than binary for hard-
ware implementation. Future microprocessors will support a DFP format only if it requires
relatively little hardware (memory storage and arithmetic logic) with much better performance
than binary for decimal data processing. To be competitive with binary hardware, the effi-
ciency of existing decimal hardware must be improved by means of new algorithms and better
architectures.

For this purpose, in this Chapter we consider the improvement of a set of decimal arith-
metic operations that maximizes the performance benefits with respect to the costs. This
Chapter also covers several issues concerning the design of hardware architectures for DFP
arithmetic. First, Section 2.1 summarizes the decimal specifications (both arithmetic and for-
mats) included in the IEEE 754-2008 standard [74], which currently constitutes the reference
for DFP implementations. Section 2.2 discusses several factors that influence the efficient
implementation of a IEEE 754-2008 compliant DFU. Finally, in Section 2.3 we present a pre-
ferred set of decimal arithmetic operations that require improved performance by hardware
acceleration.

2.1 IEEE 754-2008 standard for floating-point

The IEEE 754-2008 is the revision to the IEEE 754-1985 standard for binary floating-point
arithmetic [72] and the IEEE 854-1987 standard for radix independent floating-point arith-
metic [73]. It specifies formats, methods and exception condition handling for binary and
decimal floating-point arithmetic in computers. The IEEE 754-2008 standard can be imple-
mented in software, in hardware, or in any combination of both.

Apart from the incorporation of decimal specifications, the main additions with respect
to the IEEE 754-1985 are two new 16-bit and a 128-bit binary types, new operations as
fused multiply add, recommended correctly rounded elementary functions and a significant
clarification in terminology. We only summarize the specifications for decimal floating-point.

Decimal formats and encodings.

One of key points of IEEE 754-1985 is that it includes an explicit representation for the
binary formats. On the other hand, the IEEE 854-1987 does not specify any representation

15

16 Chapter 2. Decimal Floating-Point Arithmetic Units

DFP format
Parameter Decimal32 Decimal64 Decimal128

storage basic basic

p 7 16 34
emax +96 +384 +6144
emin -95 -383 -6143

Table 2.1. Parameters defining basic and storage format DFP numbers.

for decimal data, which makes difficult to share decimal numerical data among different ma-
chines. Therefore, both decimal formats and encodings (for the decimal interchange formats)
are now an integral part of the IEEE 754-2008 standard.

The formats defined by the standard are classified as follows:

• Interchange formats, which have defined encodings. They are available for storage and
for data interchange among platforms. The interchange formats are grouped in:

– basic formats, are the interchange formats available for arithmetic. The standard
defines two basic DFP formats of lengths 64 (decimal64) and 128 bits (decimal128).

– storage formats, are narrow interchange formats not required for arithmetic. The
standard defines one decimal storage floating-point format of 32 bits length (deci-
mal32).

– extended precision formats, are used to extend a supported basic format by pro-
viding wider precision and range.

• Non-interchange formats, which are extended precision formats without defined en-
codings. These formats are not required by the standard, but they can be used for
arithmetic. For data interchange, they need to be converted into a interchange format of
a suitable extended precision.

A conforming implementation must provide support for at least one basic format (decimal64
and/or decimal128). Each format is characterized by the number of significant digits, p (or
precision), and the minimum and maximum exponents emax and emin = 1 − emax. The values
of the parameters defining the basic and storage interchange DFP formats are shown in Table
2.1.

Signed zero and non-zero DFP numbers are represented in a given format by a sign,
an exponent and a not normalized significand or coefficient. Normalization is not required
for DFP numbers. It does offer an advantage in binary floating-point, since it decreases the
length of the coefficient by one bit (a hidden bit), but not in DFP. Moreover, normalization is
incompatible with scaled-integer decimal arithmetic. The standard also includes special rep-
resentations for two infinities, +∞ and −∞ and two NaNs, qNaN (quiet) and sNaN (signaling).
The non-zero DFP numbers with magnitude less than 10emin are called subnormal.

A DFP representation can be given in a scientific form or in a financial form. In a
scientific notation, the DFP number represented by {s, e, M} has a value

(−1)s ×M × 10e (2.1)

2.1. IEEE 754-2008 standard for floating-point 17

where s ∈ {0, 1} is the sign, emin ≤ e ≤ emax is the integer exponent and M < 10 is an unsigned
fractional coefficient, not normalized, of the form M0.M1M2M3M4 . . . Mp−1, Mi ∈ {0, 1, . . . , 9}.

In the financial notation, the not normalized coefficient is interpreted as an integer C.
A unsigned integer coefficient allows to integrate the exact integer and the scaled decimal
arithmetic systems discussed in Chapter 1 into the standard using a single DFP data type. In
this case, the finite DFP numbers represented by {s, q, C} have a value of

(−1)s × C × 10q (2.2)

where the exponent q (or quantum) is an integer emin ≤ q + p − 1 ≤ emax, and the coeffi-
cient C< 10p is represented by a string of decimal digits of the form C0C1C2C3C4 . . . Cp−1. The
quantum is the same concept as the scale, since it indicates the magnitude of the unit of mea-
surement, such as (10−3) millimeters or (10−2) cents . To preserve the scale (when possible),
each operation is defined to have a preferred quantum.

Both forms of representing a finite DFP number (scientific and financial) are equivalent,
since e = q + p − 1 and M = C × 101−p. In the subsequent, we use the financial notation to
represent the DFP data4.

Since the coefficient is not normalized, DFP numbers might have multiple representa-
tions. The set of different representations of a DFP number is called a cohort. For instance,
if C is a multiple of 10 and q < emax, then {s, q, C} and {s, q + 1, C/10} are two representations
for the same DFP number and are members of the same cohort.

An encoding maps a representation of a floating-point number into a bit string. The
standard specifies the layouts for the decimal interchange formats, and allows the integer
coefficient to be encoded either in a decimal compressed form (DPD, Densely packed decimal)
or in a pure binary form (BID, Binary Integer Decimal). The DPD encoding [34] packs each 3
decimal digits into 10 bits, providing more compression than BCD (1000 combinations out of
1024, or more than 97.6% compression ratio). This allows to encode the same number of digits
in a fixed length DFP format as using BID encoding [133], but providing faster conversions
to/from BCD (about three simple gate delays in hardware).

A DFP number (a finite DFP number {s, q, C}, an infinity or a NaN) is encoded in k bits
using the following three fields, detailed in Fig. 2.1:

• A 1-bit sign field, encoding the sign of the coefficient.

• A w+5-bit combo field, comprising the w+2 bit binary biased exponent E = q + bias and
the 4 most significant bits of the p-digit coefficient. The value of the 2 most significant
bits of the exponent cannot be 3.

• A 10t-bit trailing coefficient field, encoding p-1= 3×t trailing digits of the p-digit inte-
ger coefficient using DPD, or binary integer values from 0 through 210t−1 using BID.

For instance, Table 2.2 shows the values of the format encoding parameters corresponding
to the decimal basic and storage formats of Table 2.1. The total number of coefficient digits
encoded using DPD or BID is similar in both cases, and equal to p = 3×t +1.

4We use quantum to name the exponent and coefficient for the integer significand.

18 Chapter 2. Decimal Floating-Point Arithmetic Units

Combo field Trailing significand fieldSign

1 bit

(p digits or 4p bits)
C

MSB LSB MSB LSB

w+5 bits

DFP representation {s,q,C}

E =q+bias CiC0

(4 bits)

q
(w+2 bits)

s
(1 bit)

(4(p-1) bits)

w+5 bits

DPD or BID Encoding

(Compressed)

CiE C0

3t digits (DPD encoding)
10t bits (BID encoding)

(p-1) digits (DPD)
4(p-1) bits (BID)

Figure 2.1. DFP interchange format encodings.

DFP format
Parameter Decimal32 Decimal64 Decimal128

storage basic basic

k 32 64 128
t 2 5 11
w+5 11 13 17
bias 101 398 6176

Table 2.2. Encoding parameters for basic and storage formats.

The specific encoding of the combo field depends on whether the integer coefficient uses
the DPD or the BID encoding. If the coefficient uses the DPD encoding, then the 2 MSBs (most
significant bits) of the biased exponent and the MSD (most significant digit) of the coefficient
are compressed in the first 5 bits of the combo field. The remaining w bits of the combo field
contain the trailing exponent bits.

If the coefficient uses the BID encoding, the exponent and the 4 MSBs of the coefficient
are determined by the value of the 2 first bits of the combo field:

• If these bits are 00, 01 or 10, the w+2 first bits of the combo field contains the biased
exponent E. The leading 4 bits of the BID coefficient are formed concatenating a leading
0 to the 3 LSBs (least significant bits) of the combo field.

• If these bits are 11, then the biased exponent E is encoded from bits 3 to w+4. The 4
MSBs of the coefficient are obtained concatenating ’100’ and the bit at position w+5 of
the combo field.

Decimal arithmetic operations.

The operations required by the standard must be implemented for all the supported
formats, in software, in hardware, or in a combined hardware and software solution. Among
the decimal operations required are the following:

2.1. IEEE 754-2008 standard for floating-point 19

• Basic arithmetic operations: addition, subtraction, multiplication, division, square-root
and fused multiply addition. Correct rounding is required to provide the exactly rounded
result for inexact computations.

• Two new decimal-specific operations: samequantum and quantize. The quantize oper-
ation is used to scale the numerical value of a DFP representation to a given quantum.
It is intended for exact computations, so invalid or inexact exceptions must be signaled.
Samequantum compares the quantum of the representation of two DFP numbers.

• Comparisons. These operations compare the numerical values of the decimal operands,
and therefore do not distinguish between redundant representations of the same num-
ber.

• Different types of conversions:

– Between integer and floating-point formats.

– Between different floating-point formats. Conversions between decimal and binary
floating point must be correctly rounded.

– Between floating-point data in internal formats and external string representations.

In addition, the standard recommends to provide correctly rounded implementations of ele-
mentary functions, such as exponentials, trigonometric functions and logarithms.

Since a DFP number might have multiple representations (the number’s cohort), decimal
arithmetic involves not only computing the numerical result but also selecting the proper
representation of the number. Thus, each operation is defined to have a preferred quantum
(exponent). For all the operations (except for quantize), if a result is inexact, then the cohort
member with the least possible quantum is selected to get the longest possible coefficient,
using the maximum precision digits available.

If a result is exact, the cohort member with its exponent equal to or closest to the pre-
ferred quantum is chosen. The preferred quantum depends on the operation. For decimal
addition and subtraction, the preferred quantum is the minimum quantum of the operands,
that is qr = min(qx, qy). The preferred quantum for exact decimal multiplication is qr = qx+qy,
qr = qx-qy for decimal division, and qr = floor(qx/2) for decimal square-root. For exact decimal
fused multiply-add computations (R=X×Y+Z), the preferred quantum is qr = min(qx+qy,qz).

This simplifies the scale preservation in exact computations. For instance, the addition
of 10.5 euro (= 105×10−1) and 3.50 euro (= 350×10−2) results in 1400×10−2, and not 14×10−1,
preserving the units of measurement (cents) given by the minimum quantum.

Decimal Rounding.

Floating-point numbers can only represent exactly a finite subset of the real numbers.
Thus, inexact results must be converted to a close representable DFP number in a given
finite precision format. Operations defined by the IEEE 754-2008 must provide correctly
(exactly) rounded results. This is equivalent to compute an intermediate result correct to
infinite precision (exact result), and then select one of the two possible closest DFP numbers,
according to the rounding direction (rounding mode). The standard specifies the following five
rounding modes:

20 Chapter 2. Decimal Floating-Point Arithmetic Units

• Two rounding modes to the nearest DFP number. These modes deliver the DFP number
nearest to the infinitely precise result, differing in case of two DFP numbers equally near:

– roundTiesToEven, round to nearest even, the result is the one with an even least
significant digit.

– roundTiesToAway, round to nearest ties away from zero, the result is the one with
larger magnitude.

• Three directed rounding modes:

– roundTowardPositive, round towards positive infinity, delivers the closest DFP
number greater than the exact result.

– roundTowardNegative, round towards negative infinity, delivers the closest DFP
number lower than the exact result.

– roundTowardZero, truncate, delivers the closest DFP number lower in magnitude
than the exact result.

For DFP formats, the default rounding mode for results is defined by program, but it is rec-
ommended to be roundTiesToEven. The standard also requires to specify separate rounding
modes for binary and decimal, so results are rounded according to the corresponding round-
ing mode of their radix.

Other three rounding modes, not defined by the standard, are often used in DFP imple-
mentations:

• roundTiesToTowardZero, round to nearest ties towards zero, delivers the nearest DFP
with the lower magnitude in case of two DFP numbers equally near.

• roundAwayZero, round away from zero, delivers the closest DFP number greater than
the exact result if this is positive, or the closest DFP number lower than the exact result
if this is negative.

• roundToVariablePrecision, round to prepare for a shorter variable precision rounding,
delivers a p-digit truncated version of the exact result incremented in one ulp (unit in the
last place) when the LSD (least significant digit) is 0 or 5. This mode is used for further
rounding to less precision digits.

Exception handling.

When the result of an operation is not the expected floating-point number an exception
must be signaled and handled. The default nonstop exception handling uses a status flag
to signal each exception and continues execution, delivering a default result. The IEEE 754-
2008 standard defines 5 types of exceptions, listed in order of decreasing importance:

• Invalid operation. The result of an operation is not defined, e.g., in computations
with NaN operands, multiplications of zero by ∞, subtraction of infinities, square-root
of negative operands. In this case, the default result is a qNaN that provides some
diagnostic information.

2.2. Decimal floating-point unit design 21

• Division by zero. The divisor of a divide operation is zero and the dividend is a finite
non-zero number. The default result is a signed ∞.

• Overflow. The result of an operation exceeds in magnitude the largest finite number
representable in the destination format. The default result, determined by the rounding
mode and the sign of the result, is either the largest finite number representable or a
signed ∞. In addition, an inexact exception is signaled.

• Underflow. The result of a DFP operation in magnitude is below 10emin . This is detected
before rounding examining the precision digits and the exponent range. The default
result is a p-digit rounded result which can be zero, a subnormal number (with a mag-
nitude < 10emin) , or ±10emin . If the rounded result is not the exact result an inexact
exception is signaled.

• Inexact. The correctly rounded result of an operation differs from the infinite precision
result. The default result is the rounded or the overflowed result.

Optionally, alternative methods for exception handling may be defined by a programming
language standard. These mechanisms include traps and other models such as try/catch.

2.2 Decimal floating-point unit design

The proposed IEEE 754-2008 DFP and BFP (binary floating-point) arithmetic systems can be
implemented in separated units on a microprocessor, or can share some hardware, in which
case there are some possible variations:

• Implement a BFU (binary floating-point unit) and use a software library for DFP (BID
encoding) with some hardware support.

• Implement a mixed binary/decimal (DPD encoding) FPU.

• Implement a DFU and use a software library for BFP with some hardware support.

The use of a single BFU for both floating-point arithmetic systems may be an appro-
priate solution for reduced hardware cost implementations, since compliant IEEE 754-1985
BFUs are already incorporated in every microprocessor and their adaptation to IEEE 754-
2008 is more immediate. In this case, a binary BID encoded coefficient is preferred for DFP
implementations. Decimal BCD integers are not efficiently supported in binary units, and
the required hardware for operations with binary coefficients can be reused for BFP and DFP.
However, rounding and operand shifting by multiples of 10 are more difficult with binary
integers. Rounding to a decimal point requires many operations in a radix-2 format, such
as leading-ones detection, table lookup, reciprocal multiplication, and trailing zeros detec-
tion. This makes the binary BID units [139, 140] significatively slower and, in principle, less
adequate for high-performance DFP applications than the decimal DPD units.

A mixed binary/decimal DPD FPU might reduce the penalty overhead of BID implemen-
tations, while also sharing a significant part of the hardware. The BFP and DFP formats are
very similar so the register file and the input multiplexors, which expand the data into sign,

22 Chapter 2. Decimal Floating-Point Arithmetic Units

FP register file

DFP adder + iterative
multiplication and
division support

DPD unpacking DPD packing

(a) DFP adder with support for
other operations.

DFP
multiplier

DFP adder DFP
divide and

square-root
unit

FP register file

DPD unpacking DPD packing

(b) Separate adder, multiplier and div/sqrt
unit.

Decimal FMA
(fused multiply-add)

with support for division
and square-root

FP register file

DPD unpacking DPD packing

(c) Combined FMA/div/sqrt unit.

Decimal FMA
(fused multiply-add)

DFP
divide and

square-root
unit

FP register file

DPD unpacking DPD packing

(d) Separate FMA and div/sqrt units.

Figure 2.2. Configurations for the architecture of the DFU.

exponent and coefficient, could be shared. The sign and exponent dataflow could also reuse
the most part of the hardware. The main problem to overcome is to provide area efficient
implementations for the combined BCD/binary coefficient datapath with a very reduced per-
formance overhead with respect to the standalone binary coefficient datapath. Thus, rounding
and operand shifting by multiples of the corresponding radix could be done in the same way.

The use of a DFU for general-purpose computations, including some hardware to as-
sist the BFP computations, is limited by the low performance of current implementations,
even though all BFP operands have an exact DFP representation. For general-purpose high-
performance applications, currently, it may be best to implement dedicated DFUs and BFUs.
For a performance/cost tradeoff design a mixed binary/decimal DPD FPU might be an attrac-
tive option.

Another issue is the set of operations to implement in hardware. For instance, the Power6
DFU [45, 122] only implements the basic arithmetic operations, add, subtract, multiply and
divide and the remaining must be implemented in software. Moreover, the decimal multipli-
cation and division operations use iterative algorithms integrated in the DFP adder datapath.
The block diagram of the architecture corresponding to this DFU is shown in Fig. 2.2(a).

The implementation of the different decimal arithmetic units is covered from Chapters 3
to 8. Thought not implemented in the Power6 DFU, the decimal square root operation could

2.3. Decimal arithmetic operations for hardware acceleration 23

be included in the division recurrence. A commonality in all DPD units is a hardware block for
DPD to BCD packing and unpacking, which includes also multiplexors for sign, exponent and
coefficient separation. Since DPD encoding cannot be used to perform arithmetic operations,
it is necessary to convert the DPD operands to a suitable decimal encoding for arithmetic,
primarily BCD. The hardware for encoding 3 BCD digits into 10 bits requires approximately 33
NAND2 gates, and decoding back to BCD about 54 NAND2 gates, with three simple gate delays
in both directions. This is quite acceptable for high-performance implementations, moreover
when compared with the several cycles of delay of the binary from/to BCD conversions, which
depends linearly on the number of digits.

The integration of iterative multiplication in the DFP adder datapath reduces the through-
put of the decimal addition/subtraction operation. Another three configurations for high per-
formance DFUs are shown in Figs. 2.2(b), 2.2(c) and 2.2(d). The architecture of Fig. 2.2(b)
uses separate units for DFP addition, multiplication and division/square root. The other
option is to build a decimal FMA (fused multiply-adder). The advantage of a FMA is that
a compiler can make use of the Horners rule to transform a set of equations into a series
of multiply-adds, delivering multiply-add operations with a similar throughput than sepa-
rate units for addition and multiplication. The configuration of Fig. 2.2(c) integrates the
division/square-root operations into the FMA using multiplicative based methods, while Fig.
2.2(d) includes a division/square-root unit separated from the FMA.

The research efforts presented in this PhD. thesis are aimed to obtain efficient imple-
mentations of both high-performance decimal DPD units for floating-point computation and
combined binary/BCD units for coefficient computation. The preferred set of operations to
implement in hardware is determined in the next Section.

2.3 Decimal arithmetic operations for hardware acceleration

A set of preferred decimal arithmetic operations has been selected in base to the estimated
benefits and costs of a hardware implementation. For this estimation, diverse factors have
been taken into account, such as the performance of existing decimal implementations, the
relative frequency of the operations in commercial programs, and the contribution to the
speedup of the basic arithmetic operations defined in the IEEE 754-2008.

For instance, decimal multiplication is a frequent operation used in finances, e.g. for tax
calculation and currency conversion. Current hardware implementations of decimal multipli-
cation are mainly serial and present low performance and throughput. On the other hand,
the BFUs of current microprocessors incorporate a binary parallel multiplier, which presents
considerably more performance than a serial multiplier. Therefore, an efficient parallel imple-
mentation of decimal multiplication could reduce significatively the performance gap between
DFUs and BFUs. Although a 34-digit fully combinational parallel implementation is now
beyond the scope of commercial DFUs due to area and power constraints, a parallel architec-
ture that could be easily pipelined is interesting to scale the performance for different area
and power constraints. Also, a decimal pipelined FMA could be an interesting architecture for
future commercial DFUs [120, 121].

In this way, we consider that the preferred decimal operations, covered in Chapters 3 to

24 Chapter 2. Decimal Floating-Point Arithmetic Units

8, which need improved hardware implementations are the following:

• Mixed BCD/binary (two-operand) addition/subtraction (Chapters 3 and 4). Previous
proposals rely on certain carry tree topologies to improve performance, imposing more
area constrains. A more flexible architecture should lead to designs with better area and
performance tradeoffs.

• DFP (two-operand) addition/subtraction (Chapter 5). Current DFP adders use two word
length carry propagations for BCD coefficient addition and decimal rounding. To improve
the performance of DFP adders, a combined BCD adder with rounding should perform
this operation in a single carry propagation time delay with a little constant overhead, as
in binary.

• Decimal carry-free multioperand addition/subtraction (Chapter 6). This operation is
the base to speed up parallel multiplication and radix-10 division based on subtractive
methods. Previous methods use either trees of radix-10 carry-save adders, slower than
binary CSA (carry-save adders), or binary CSAs directly over BCD operands, requiring
time-consuming corrections of invalid BCD digit representations. In either case, a binary
CSA multioperand tree presents much better performance and area figures than the
equivalent decimal tree, and this significant gap should be reduced.

• Fixed-point/integer decimal and mixed binary/decimal multiplication (Chapter 7).

• DFP multiplication (Chapter 7).

• Decimal fused multiply-addition (Chapter 7).

• Fixed-point decimal division (Chapter 8). A decimal divider adequate for a high perfor-
mance DFU should use a separate datapath from multiplication and addition and should
present a reduced area implementation able to generate at least a radix-10 quotient digit
per cycle. A normalized fixed-point unit could support both DFP and integer division
adding a few extra hardware for operand alignment and sign and exponent calculation.
This unit should be easily extended to compute decimal square-roots.

Chapter 3

10’s Complement BCD
Addition

The addition of two decimal integer operands (usually represented in BCD) is a basic operation
in decimal fixed and floating-point computations such as non-redundant coefficient addition,
assimilation of a decimal redundant operand and rounding. This Chapter deals with the
methods and architectures for 10’s complement carry-propagate addition/subtraction of BCD
operands. Sign-magnitude BCD addition/subtraction is considered in Chapter 4. By other
hand, carry-free decimal multioperand integer addition/subtraction is covered in Chapter 6.

We introduce the architectures of several high-performance 10’s complement BCD and
mixed 2’s complement binary/10’s complement BCD adders. These adders are based on
a carry-propagate algorithm for decimal addition [144] that shows a lower dependency on
the carry-tree topology than previous methods. This algorithm gives more flexibility to the
designer to choose the adder architecture and the area/latency trade-offs and also allows for
efficient implementations of mixed binary/decimal addition.

We provide implementations using different representative high-performance prefix tree
and hybrid carry-select/prefix tree structures [86, 89, 100]. We also present a simpler refor-
mulation of Ling addition as a prefix computation [147] and the subsequent implementation
for the proposed architectures.

Another important issue is that users of financial and e-commerce services demand a
high degree of reliability. On the other hand, soft errors5 are becoming more significative due
to the higher densities and reduced sizes of transistors on a chip [102, 105]. In this context,
we introduce a scheme for BCD sum error checking that avoids the replication of arithmetic
units without sacrificing significant area or performance.

To compare the potential performance and/or cost advantages of our proposals with
respect to other different representative algorithms and architectures, we have developed a
rough area and delay evaluation model for CMOS circuits based on logical effort [131]. We
provide area and delay estimations for both proposed and other academical and patented
implementations, most of them currently in use in industrial designs.

The Chapter is organized as follows. Section 3.1 outlines some representative carry-
propagate methods to compute 10’s complement addition/subtraction in hardware. In Section
3.2 we introduce a method to improve decimal carry-propagate computations for 10’s com-

5Temporary circuit failures caused by high-energy transient particles that can lead to incorrect results.

25

26 Chapter 3. 10’s Complement BCD Addition

Dec. digit BCD digit

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
Invalid 1010
Invalid 1011
Invalid 1100
Invalid 1101
Invalid 1110
Invalid 1111

Table 3.1. Conventional BCD coding.

plement BCD addition. In Section 3.3 we provide several implementations for the proposed
10’s complement BCD adder and the mixed 2’s complement/10’s complement adder using
different representative prefix carry tree topologies. The proposed scheme for BCD sum error
checking is discussed in Section 3.4. The area and delay evaluation results and comparisons
are shown in Section 3.5. Finally, the conclusions are summarized in Section 3.6.

3.1 Previous work on BCD addition/subtraction

We only consider carry-propagate methods for the addition/subtraction of two decimal signed
integer operands, S = X ± Y . Although redundant addition has a lower delay independent of
the number of operand digits, it is best suited for multioperand addition, since the conversion
to a non-redundant representation presents a similar delay than a carry propagate addition.
Also, we assume non-redundant decimal operands coded in BCD. The ith decimal digit Xi ∈
[0, 9] of an operand X is represented in BCD as 6

Xi =
3∑

j=0

xi,j · 2i (3.1)

where xi,j ∈ {0, 1} is the jth bit of the weighted 4-bit vector (xi,3,xi,2,xi,1,xi,0), that is, the BCD
digit i. Note that only 10 out of the 16 possible combinations of 4 bits represent a valid BCD
digit, as shown in Table 3.1.

Thus, a p-BCD digit unsigned integer operand X is represented as

X =
p−1∑

j=0

Xj · 10j =
p−1∑

j=0

(3∑

k=0

xj,k · 2k
) · 10j (3.2)

6We use capital letters to represent decimal digits, and small letters for single bits.

3.1. Previous work on BCD addition/subtraction 27

To represent a signed BCD number Y ≡ (yp, Yp−1, Yp−2, . . . , Y0) (an additional bit yp is
required for sign) we consider several possibilities:

• True and complement systems. The most commonly used true and complement sys-
tems are 9’s complement and 10’s complement:

– 9’s complement. The signed BCD number Y in 9’s complement has a value equal
to

Y = −yp · (10p − 1) +
p−1∑

i=0

Yi · 10i (3.3)

where

yp =

{
0 If (Y ≥ 0)
1 Else

(3.4)

is the sign bit and −(10p − 1) ≤ Y ≤ 10p − 1.

The value −Y is obtained by bit complementing each BCD digit plus 6 (modulo 16)
and inverting the sign bit (9’s complement), that is

−Y = −yp (10p − 1) +
p−1∑

i=0

¬Yi · 10i (3.5)

where
¬Yi = 9− Yi = 15− (Yi + 6) = Yi + 6 (3.6)

– 10’s complement. Y is equal to

Y = −yp · 10p +
p−1∑

i=0

Yi · 10i (3.7)

where −10p ≤ Y ≤ 10p − 1. The value −Y is obtained from its 9’s complement plus
one:

−Y = −yp · 10p +
p−1∑

i=0

¬Yi · 10i + 1 (3.8)

• Sign-magnitude system. The BCD digit vector Y ≡ (yp, Yp−1, Yp−2, . . . , Y0) has an arith-
metic value equal to Y = (−1)yp |Y |, where |Y | = ∑p−1

i=0 Yi 10i. The value −Y is obtained by
a simple inversion of the sign bit yp.

The best choice for an efficient implementation of signed decimal integer and fixed-point
addition/subtraction is 10’s complement, since subtraction is simply performed by adding the
10’s complement of the subtrahend [117]. Although sign-magnitude subtraction is more com-
plex, it is required for IEEE 754-2008 decimal floating-point computations, so it is discussed
in Chapter 4. In the remaining Section we analyze several representative carry-propagate
methods for 10’s complement addition/subtraction.

3.1.1 Basic 10’s complement algorithm

The carry propagate algorithm for 10’s complement addition/subtraction [113, 117] is de-
scribed in Fig. 3.1, where Ci ∈ {0, 1} is the input decimal carry7 to decimal position i. If an

7Although decimal carries can be also represented as single bits, we consider them to be decimal digits.

28 Chapter 3. 10’s Complement BCD Addition

[Algorithm: 10’s complement Addition/Subtraction(S=X±Y)]

Inputs: X := −xp · 10p +
Pp−1

i=0 Xi · 10i,Y := −yp · 10p +
Pp−1

i=0 Yi · 10i

C0 :=

(
1 If(op == sub)

0 Else

For (i:=0;i<p;i++){

Y ∗i =

(
¬Yi If(op == sub)

Yi Else

Ci+1 = b(Xi + Y ∗i + Ci)/10c

Si = mod10(Xi + Y ∗i + Ci)

}

sp =

8><>: 1 If (op == add) and (xp == yp == 1 or (xp! = yp) and Cp == 0)

1 Else If (op == sub) and (xp == yp == 1 or (xp == yp) and Cp == 0)

0 Else

Figure 3.1. 10’s complement Addition/Subtraction Algorithm.

overflow does not occur, then the logical implementation of the sign bit is straightforward8:

sp = xp ⊕ yp ⊕ sub⊕ Cp (3.9)

where sub indicates the selected operation (sub = 1 for subtraction). An overflow occurs when
the following expression is evaluated as true:

overflow ⇔ xp (yp ⊕ sub) Cp ∨ xp yp ⊕ sub Cp (3.10)

In this case, the sign bit sp is given by:

sp = xp (yp ⊕ sub) ∨ (xp ⊕ yp ⊕ sub) Cp (3.11)

In the rest of the Chapter, we only deal with the addition of the trailing p-digits. The
main limitation of this algorithm is, obviously, the carry propagation dependency. Moreover,
in binary systems, radix-10 operations, such as module 10 addition and integer division by
10, are not implemented as efficiently as radix-2n (n > 0) operations. For instance, BCD
addition is more complicated than binary addition, since six of the sixteen possible 4-bit
combinations are unused (’1010’ to ’1111’), and they must be skipped. Thus, binary carry-
propagate algorithms cannot be used directly to implement decimal addition. There are mainly
two strategies to implement 10’s complement addition:

• Direct Decimal Addition [25, 50, 118]. The decimal carries Ci are obtained by a direct
implementation of a decimal carry propagate recurrence which indicates the conditions
for the generation and propagation of decimal carries for each digit.

• Speculative Decimal Addition [14, 19, 20, 63, 117]. The bit-vector representation of deci-
mal operands is modified to allow the computation of decimal addition as an hexadecimal

8We represent the logical OR by ∨, the logical AND by an empty space between signals and the logical XOR by ⊕.

3.1. Previous work on BCD addition/subtraction 29

[Algorithm: Direct Decimal Addition/Subtraction (S=X±Y)]

Inputs: X :=
Pp−1

i=0 Xi · 10i,Y :=
Pp−1

i=0 Yi · 10i

C0 :=

(
1 If(op == sub)

0 Else

For (i:=0;j<p;i++){

Y ∗i =

(
Yi + 6 If(op == sub)

Yi Else

Gi =

(
1 If(Xi + Y ∗i > 9)

0 Else
Ai =

(
1 If(Xi + Y ∗i ≥ 9)

0 Else

Ci+1 = b(Xi + Y ∗i + Ci)/10c = Gi ∨Ai Ci

Si = mod10(Xi + Y ∗i + Ci) = mod16

�
Xi + Y ∗i + Ci + 6 · Ci+1

�
}

Figure 3.2. Direct Decimal Algorithm.

(radix-16) addition and a decimal correction. Since the bit-vectors of the hexadecimal
and binary representations are identical, this permits the use of the same binary addi-
tion techniques.

These methods can be implemented in a serial (linear delay) or parallel (logarithmic delay)
configuration. We only consider parallel implementations for high-performance applications.
Moreover, the resulting architectures need to support wide word lengths (up to 144 bits or 34
BCD digits).

3.1.2 Direct decimal addition

The direct decimal addition method implements 10’s complement addition using the carry
recurrence Ci+1 = Gi ∨ Ai Ci, as is described in Fig. 3.2. The decimal carry generate Gi and
decimal carry alive Ai functions, defined in Fig. 3.2, state the conditions for the generation
and propagation of a decimal carry to the next decimal position i+1. Their logical expressions
only depend on the bit-vector representation of Xi and Y ∗

i . We use the decimal carry alive
function instead of decimal carry propagate, defined as Pi = 1 If(Xi + Y ∗

i = 9), due to its
simpler logical implementation. For BCD, Gi and Ai are given by

Gi = GU
i ∨AU

i xi,0 y∗i,0

Ai = AU
i (xi,0 ∨ y∗i,0) (3.12)

where the upper decimal carry-generate (GU
i) and carry-alive (AU

i) functions are obtained from
the three most significant bits of each input digit as

GU
i = xi,3 (y∗i,3 ∨ y∗i,2 ∨ y∗i,1) ∨ y∗i,3 (xi,2 ∨ xi,1) ∨ xi,2 y∗i,2 (xi,1 ∨ y∗i,1)

AU
i = xi,3 ∨ y∗i,3 ∨ xi,2 y∗i,2 ∨ (xi,2 ∨ y∗i,2) xi,1 y∗i,1 (3.13)

30 Chapter 3. 10’s Complement BCD Addition

Ai and Gi can be expressed in terms of the binary carry-generate (gi,j = xi,j y∗i,j), and
binary carry-alive signals (ai,j = xi,j ∨ y∗i,j), as Gi = GU

i ∨AU
i gi,0, and Ai = AU

i ai,0, where

GU
i = gi,3 ∨ gi,2 ai,1 ∨ ai,3 (ai,2 ∨ ai,1)

AU
i = ai,3 ∨ gi,2 ∨ ai,2 gi,1 (3.14)

The direct decimal carry propagate recurrence Ci+1 = Gi ∨ Ai Ci can be evaluated using
conventional high-performance parallel carry evaluation techniques such as prefix tree [84,
86, 89]. We consider the carry look-ahead [162] and Ling carry [95] recurrences as particular
cases of prefix carry tree computations. In Section 3.3 we present a unified framework for
parallel carry computation [147], which reformulates most of the carry-propagate adders as
prefix tree adders.

By other hand, the BCD sum digits Si are given by

Si = mod16

(
Xi + Y ∗

i + Ci + 6 · Ci+1

)
(3.15)

That is, the BCD (modulo 10) sum is equivalent to a hexadecimal (modulo 16) sum corrected
by a +6 factor when a decimal carry-out is produced (Xi + Y ∗

i + Ci ≥ 10). The expression (3.15)
can be evaluated either directly from Xi, Yi and the computed carries using combinational
logic, as it was originally proposed in [118], or using two-conditional 4-bit presums with a
carry-select output, as proposed in [91, 144]. This leads to two distinct architectures for 10’s
complement adders based on direct decimal addition.

In the first case, the BCD sum digits are obtained by splitting the direct decimal digit
recurrence Ci+1 = Gi ∨Ai Ci into two recurrences as

ci,1 = gi,0 ∨ ai,0 Ci

Ci+1 = GU
i ∨AU

i ci,1 (3.16)

and introducing the expression for Ci+1 in (3.15). After expanding and reorganizing terms, we
obtain the following logical expressions for the bits of Si:

Si =





si,3 = (gi,3 ∨ pi,2 pi,1) pi,3 ci,1 ∨AU
i GU

i ci,1

si,2 = (pi,2 ⊕ pi,1 AU
i) ci,1 ∨ (pi,2 ⊕ pi,1 GU

i) ci,1

si,1 = pi,1 ⊕AU
i ci,1 ∨ (pi,1 ⊕GU

i) ci,1

si,0 = pi,0 ⊕ Ci

(3.17)

where the terms pi,j = xi,j ⊕ y∗i,j are the binary carry propagates. BCD carry-lookahead adders
using similar equations [50, 118] are implemented in the functional units of the IBM G4,
G5 and G6 S/390 microprocessors [25]. Fig. 3.3(a) shows a prefix tree 10’s complement
BCD adder based on this algorithm. We distinguish the following stages: operand setup,
carry evaluation and sum. The 9’s complement of Y is evaluated in the operand setup stage
as ¬Y =

∑p−1
i=0 Yi + 6 · 10i in a digitwise form (no carry is propagated between digits). This

operation (the +6 digitwise increment and the bit inversion) only requires a simple logic stage,
that is

Yi + 6 =





yi,3 ∨ yi,2 ∨ yi,1

yi,2 ⊕ yi,1

yi,1

yi,0

3.1. Previous work on BCD addition/subtraction 31

Sum logic

X Y

Mux-2
1 0 sub

Yi+6

p

4p

Ci

S

SUM

OP. SETUP

4p

Computation of propagate and
generate signals

Carry prefix-tree

ai,0 gi,0

gi,3 ci,1

AU
i

pi,j

C0

4p

GU
i

AU
iGU

i p p

CARRY
COMPUTATION

(a) Block diagram of the architecture.

pi,3 pi,0

Ci

si,3 si,2 si,1 si,0

pi,2

Mux-2
1 0

Mux-2
1 0Mux-2

1 0

DIRECT DECIMAL BCD SUM CELL

pi,1

ci,1

AU
i GU

i

AU
i GU

i

AU
i G

U
i

gi,3

(b) BCD (4-bit) direct decimal sum cell.

Figure 3.3. Direct decimal adder with direct BCD sum.

(3.18)

The 10’s complement of Y is formed selecting the 9’s complement of Y (¬Y) through a row of
2:1 multiplexes controlled by the operation signal sub (sub = 1 for subtraction) and setting the
carry input C0 to 1 (we use C0 = sub).

The carry computation is performed in two steps. First, the carry-generate functions
GU

i , gi,0 and carry-alive functions AU
i , ai,0 are evaluated as shown in Equation (3.13). In

addition, the binary carry-propagate pi,j and the binary carry-generates gi,3 are also computed
for further use in the sum stage. Next, the decimal carries Ci and the binary carries ci,1

(carries produced from bit one of each digit), are computed in a prefix tree of 2p-bit wide9 that
implements the recurrences (3.16). After the carry computation, the sum digits are obtained
using a row of the BCD sum cells of Fig. 3.3(b), which implement equation (3.17).

The second type of direct decimal architectures [91, 144] uses a hybrid adder config-
uration [159], which combines a prefix carry tree and a carry-select sum stage. In this
case, the appropriate sum digit is selected from the corresponding decimal carry Ci as Si =
S1i Ci ∨ S0i Ci, where the pre-sum digits S1i, S0i are computed as

S1i = mod10(Xi + Y ∗
i + 1) =

{
mod16

(
(Xi + Y ∗

i + 6) + 1
)

If(Ai == 1)
mod16

(
(Xi + Y ∗

i) + 1
)

Else

9A detailed description of parallel prefix carry computation is presented in Section 3.3

32 Chapter 3. 10’s Complement BCD Addition

Mux-2
1 0

Ci

OP. SETUP

S0i
S1i

Prefix Carry Tree
(p bits wide)

X

Yi+6 Mux-2

Y

sub

dec

2-level prefix carry
tree

CARRY COMPUTATION

Mux2 01

Mux2
01

1 0

S

Row of 4-bit two-conditional
binary/BCD sum cells

4p

4p 4p
p

PRESUM

ds

SUM

binary gi,i, ai,j

Gi, Ai computation

gi+4:i

gi,j

Gi

ai,j

C0

Ai ai+4:i

p p

4p

4p

4p

4p

4p 4p 4p 4p

(a) Block diagram of the architecture.

Two-conditional 4-bit
binary adder

Two-Conditional BCD Sum Cell

Mux2

+6

01

decGi

Xi Y*i

4

44

S1i
 S0i

44

Ai

S1*i
 S0*i

Mux2

+6

01

4

dec

(b) Two-conditional sum
cell.

ai,3gi,3 pi,3

xi,3 y*i,3

ai,2gi,2 pi,2

xi,2 y*i,2

ai,1gi,1 pi,1

xi,1 y*i,1

ai,0gi,0 pi,0

xi,0 y*i,0

carry cell

ai,jgi,j

ci,j

gi,j v ai,j ci,j

2
1

1

ai,jgi,j pi,j

xi,j y*i,j

carry-generate/
carry-propagate/
carry-alive cell

pi,3 pi,1 pi,0
pi,2 gi,0ai,0

C1i+1

ai,1

gi,1

ai,2

gi,2
ai,3

gi,3

C0i+1

s1*i,3 s0*i,3 s1*i,2 s0*i,2 s1*i,1 s0*i,1 s1*i,0 s0*i,0

two-conditional 4-bit binary sum cell

(c) Two-conditional 4-bit binary adder.

Figure 3.4. Mixed binary/direct decimal adder using a hybrid configuration.

S0i = mod10

(
Xi + Y ∗

i) =

{
mod16

(
Xi + Y ∗

i + 6
)

If(Gi == 1)
mod16

(
Xi + Y ∗

i

)
Else

(3.19)

using a row of two-conditional 4-bit adders (modulo16 adders) and additional hardware for
the +6 BCD digit corrections.

Moreover, this hybrid configuration is more suitable to implement mixed binary/direct
decimal adders. Fig. 3.4(a) shows the architecture of a mixed binary/direct decimal adder
with the following stages: operand setup, pre-sum, carry evaluation and sum. In the operand
setup stage Y ∗

i is evaluated as

Y ∗
i =





Yi + 6 If(op == sub & dec)

Yi Else If(op == sub & not(dec))

Yi Else

(3.20)

3.1. Previous work on BCD addition/subtraction 33

Control signal ds selects Y + 6 for decimal subtraction. The control signal dec is enabled for
decimal operations. Another control signal, sub is used to select the 2’s complement of Y in
case of binary subtractions. To exploit some hardware sharing in mixed binary/direct decimal
implementation, GU

i and AU
i are evaluated according to Equation (3.14). Next, Gi and Ai are

evaluated as Gi = GU
i ∨ AU

i gi,0 and Ai = AU
i ai,0. In parallel with the evaluation of the G′is and

A′is, a two-level prefix tree computes, for binary operations, the block carry-generate (gi+4:i)
and block carry-alive (ai+4:i) of each group of 4 bits as

(gi+4:i, ai+4:i) =
3∏

j=0

(gi,j , ai,j) (3.21)

where the product uses the prefix operator • defined as (see Section 3.3 for more detail):

(gi,j , ai,j) • (gi,j−1, ai,j−1) = (gi,j ∨ ai,j gi,j−1, ai,l ai,j−1) (3.22)

In this way, the remaining levels of the prefix carry tree can be shared for decimal and binary
operations.

In the pre-sum stage, S0i and S1i are computed for the two possible values of Ci using a
row of the two-conditional mixed binary/BCD sum cells of Fig. 3.4(b). Each two-conditional
mixed sum cell consists of the two-conditional 4-bit adder shown in Fig. 3.4(c) and two
conditional +6 digit increment blocks. The decimal carry generate and carry alive signals
computed in the carry stage are used to obtain the conditional digit carry outputs, C1i+1 = Ai

and C0i+1 = Gi, since Ci+1 = Gi ∨ Ai Ci. The conditional carry outputs determines when the
conditional 4-bit binary pre-sums S1∗i and S0∗i need to be biased by 6, producing the BCD sum
digits S1i and S0i according to Equations (3.19). Finally, in the sum stage, the decimal carries
Ci computed in the parallel prefix tree, select the appropriate binary/BCD sum digits S0i or
S1i using the control signals Ai dec and Gi dec. For binary operations, we select S1i = S1∗i and
S0i = S0∗i with dec = 0.

3.1.3 Speculative decimal addition

The advantage of decimal speculative methods is their simple implementation in a binary
carry-propagate adder since direct decimal addition requires dedicated combinational logic
to produce generate and propagate (or alive) signals and sum digits. Because of this, dec-
imal speculative methods are also best suited for implementing combined 2’s complement
binary/10’s complement BCD adders [144]. However, unlike direct decimal addition, they
may require a sum digit correction after carry evaluation. To avoid an overhead delay in the
critical path due to this decimal correction, several high-performance implementations use
an hybrid sparse prefix tree/carry-select topology [14, 63].

The algorithm for speculative addition is shown in Fig. 3.5. When the sum of two BCD
digits is higher than 9, the corresponding carry-out Ci+1 must be set to one and the invalid
4-bit sum vector corrected. To accomplish this, the speculative decimal addition method un-
conditionally increments by 6 each decimal digit position, performs a carry-propagate binary
addition S∗ and then correct the speculative sum digit S∗i (subtracting 6) if the corresponding
carry-out Ci+1 is zero.

34 Chapter 3. 10’s Complement BCD Addition

[Algorithm: Speculative Decimal Addition/Subtraction (S=X±Y)]

Inputs: X :=
Pp−1

i=0 Xi · 10i,Y :=
Pp−1

i=0 Yi · 10i

C0 :=

(
1 If(op == sub)

0 Else

For (i:=0;i<p;i++){

Y ∗i =

(
Yi + 6 If(op == sub)

Yi Else

1. 4-bit binary carry propagate addition:

ci+1,0 = b(Xi + Y ∗i + 6 + Ci)/16c
Ci+1 = b(Xi + Y ∗i + Ci)/10c = ci+1,0

S∗i = mod16(Xi + Y ∗i + 6 + ci,0)

2. Decimal correction:

Si = mod10(Xi + Y ∗i + Ci) =

(
mod16(S∗i − 6) If Ci+1 == 0

S∗i Else

}

Figure 3.5. Decimal Speculative Algorithm.

Since the decimal carries are generated when Xi+Y ∗
i +Ci > 9, they have the same value as

the corresponding binary carries in the same position (ci+1,0), generated when Xi+Y ∗
i +6+Ci >

15 (hexadecimal carries). Thus, the addition of 6 in each digit position allows to use any high-
speed binary carry propagation technique for the evaluation of Ci+1, for instance, a prefix
carry tree.

For the evaluation of Si there are two possibilities:

• Using a full binary prefix carry tree to obtain all the binary carries. The speculative
sum digits S∗i are obtained from the XOR operation over the bit vectors of the +6 biased
input operands and the binary carries. A post-correction stage, placed after carry evalu-
ation, is necessary to obtain the appropriate BCD sum digits Si by correcting the wrong
speculative sum digits S∗i when Ci+1 is zero.

• Using an hybrid prefix carry tree/carry-select adder. For an efficient implementation, an
appropriate carry tree topology is a quaternary prefix tree (QT) [100], that is, a sparse
prefix carry tree that generates only one carry (decimal carry) for every 4 bits. In parallel
with the carry computation, the conditional BCD sum digits S1i and S0i are evaluated
in the pre-sum stage for each possible value of the decimal carry input (S1i for Ci == 1
and S0i for Ci == 0). In the final sum stage, the decimal carries Ci computed in the
quaternary tree select the appropriate sum digits as Si = S1i Ci ∨ S0i Ci.

The initial +6 digit additions are performed digitwise using a single level of combinational

3.1. Previous work on BCD addition/subtraction 35

logic as

Xi + 6 =





xi,3 ∨ xi,2 ∨ xi,1

xi,2 ⊕ xi,1

xi,1

xi,0

(3.23)

where Xi + 6 ∈ [6, 15] are represented in BCD excess-6.

Instead of biasing X, the +6 digitwise additions can also be implemented as a +6 digit
biased operand Y ∗, that is,

Y ∗
i + 6 =

{
Yi If(op == sub)

Yi + 6 Else
(3.24)

or alternatively, biasing X for decimal addition and Y ∗ for decimal subtraction. Another
proposal [136], computes the +6 digit additions representing the input digits in BCD excess-
3, as Xi + 3 ∈ [3, 12] and

Y ∗
i + 3 =

{
Yi + 3 If(op == sub)

Yi + 3 Else
(3.25)

Nevertheless, the resultant implementations are similar.

Fig. 3.6(a) shows a block diagram of a 10’s complement BCD prefix tree adder using
decimal speculative addition with a decimal post-correction scheme [117]. The architecture
is structured in operand setup, binary carry computation, pre-sum (a level of xor gates), sum
(another level of xor gates) and post-correction stages. The prefix carry tree computes the full
4p binary carries. The decimal carry-outs Ci+1 correspond to the binary caries ci+1,0. Post-
correction takes place after the sum using a row of multiplexes to select between Si = S∗i when
Ci+1 = 1 or Si = S∗i − 6 when Ci+1 is zero. The +6 digitwise subtractions (equivalent to +10
(modulo 16) additions) are implemented as

S∗i − 6 =





s∗i,3 s∗i,2 s∗i,1
s∗i,2 ⊕ s∗i,1
s∗i,1
s∗i,0

(3.26)

The critical path delay is composed of the delay of the operand setup, the binary carry com-
putation, the sum and the post-correction stages.

To speed up speculative decimal addition, the evaluation and correction of BCD sum
digits may be performed in parallel to the carry computation using an hybrid prefix tree/carry-
select adder. BCD and mixed binary/BCD hybrid adders are implemented in the fixed-point
units of the IBM z900 and z990 microprocessors [19, 20] (described in more detail in [14, 63]).

Fig. 3.6(b) shows the general block diagram of the BCD architecture and the layout of
a two-conditional BCD sum cell. The prefix tree is implemented as a sparse quaternary tree
which computes only the decimal carries Ci. In this case, the decimal correction is included
in the pre-sum stage out of the critical path (carry path). It is performed subtracting +6 to

36 Chapter 3. 10’s Complement BCD Addition

xor gates

S
DECIMAL CORRECTION

Mux2

Si
*-6

01

S*

X Y

Mux-2
10 sub

Yi+6

4p

OP. SETUP

ci,j

Ci+1=ci+1,0

p

SUM
s*

i,3

Si
*- 6

Si
*

s*
i,2 s*

i,1 s*
i,0

si,3 si,2 si,1 si,0

4p

xor gates

4p

4p

PRESUM pi,j

4p

4p

4p

bin carry-generate &
carry-alive

Full Binary Prefix Carry
Tree

gi,j ai,j CARRY COMPUTATION

(a) Full binary prefix carry tree.

Sparse Prefix Carry Tree
(Quaternary Tree)

S

X Y

Mux-2
10 sub

Yi+6
OP. SETUP

Ci
SUM Mux-2

PRESUM

01

4p
4p

Mux2

S0i
*-6

01

S0i
*

two-conditional
binary 4-bit adder

C0i+1
Mux2

S1i
*-6

01
C1i+1

C1i+1

C0i+1

S1i S0i

Two-conditional
BCD adder

(row of p BCD
sum cells)

S1 S0
4p 4p

4p

4p

p

CARRY COMPUTATION

Xi Y*i+6
4 4

4 4

1

1

Two-conditional BCD sum cell

S1i
* bin carry-generate & carry-alive

gi,j ai,j

(b) Quaternary prefix carry tree.

Figure 3.6. 10’s complement BCD speculative adders.

each conditional speculative sum digit S0∗i and S1∗i as indicated by the algorithm, that is,
S0i = S0∗i − 6 when C0i+1 is zero and S1i = S1∗i − 6 when C1i+1 is zero. The two-conditional
4-bit binary cells are the same as that shown in Fig. 3.4(c).

Fig. 3.7 shows the corresponding two architectures for the mixed binary/BCD imple-
mentations of decimal speculative addition. Binary and speculative decimal addition use the
same carry network, sharing the same carry path. For BCD subtraction, the simplification
Yi + 6 + 6 = Yi (with Yi ∈ [6, 15]) is taken into account. Control signal dec is enabled for decimal
operations while da is only enabled for decimal addition.

3.2. Proposed method: conditional speculative decimal addition 37

bin carry-generate & carry-alive

Mux-2 sub

da

dec

01

Full Binary Prefix Carry
Tree

xor gates

S

DECIMAL CORRECTION

Mux2

Si
*-6

01

S*

X Y

Mux-21 0

Yi+6

4p

OP. SETUP

ci,j

Ci+1=ci+1,0
p

SUM
4p

xor gates

4p

4p

PRESUM pi,j

4p

4p

4p

gi,j ai,j

CARRY COMPUTATION

p

(a) Full binary prefix carry tree.

dec Sparse Prefix Carry Tree
(Quaternary Tree)

S

X

OP. SETUP

Ci
SUM Mux-2

PRESUM

01

4p

Mux2

S0i
*-6

01

S0i
*

two-conditional
binary 4-bit adder

C0i+1

Mux2

S1i
*-6

01

C1i+1

C1i+1

C0i+1

S1i S0i

Two-conditional
BCD adder

(row of p BCD
sum cells)

S1 S0
4p 4p

4p

4p

p

CARRY COMPUTATION

Xi Y*i+6
4 4

4 4

1

1

Two-conditional BCD sum cell

S1i
*

Mux-2 sub

da

01

Y

Mux-21 0

Yi+6

4p

dec

bin carry-generate & carry-alive
gi,j ai,j

(b) Quaternary prefix carry tree.

Figure 3.7. Mixed binary/BCD speculative adders.

3.2 Proposed method: conditional speculative decimal addition

The direct decimal addition method provides high-performance implementations of 10’s com-
plement BCD adders at the expense of limiting the carry evaluation topology. This reduces the
choices to optimize the area/power-delay tradeoffs of resultant designs with respect to binary
adders. On the other hand, the speculative decimal addition method can be implemented
using any binary carry evaluation topology. However, its performance is highly dependent on
the adder topology due to the decimal post-correction of the binary sum, requiring the use of

38 Chapter 3. 10’s Complement BCD Addition

[Algorithm: Conditional speculative 10’s complement BCD Add/Sub]

Inputs: X :=
Pp−1

i=0 Xi · 10i :=
Pp−1

j=0 (XU
i 2 + xi,0) · 10i

Y :=
Pp−1

i=0 Yi · 10i :=
Pp−1

j=0 (Y U
i 2 + yi,0) · 10i

C0 :=

(
1 If(op == sub)

0 Else

For (i:=0;i<p;i++){

Y ∗i := (Y ∗i)U 2 + yi,0 =

(
Yi + 6 If(op == sub)

Yi Else

1. Conditional speculation:

AU
i =

(
1 If XU

i + (Y ∗i)U ≥ 8

0 Else

ZU
i = XU

i + (Y ∗i)U + 6 ·AU
i

2. Binary carry propagation:

ci+1,0 = b(ZU
i + xi,0 + y∗i,0 + ci,0)/16c

Ci+1 = b(Xi + Y ∗i + Ci)/10c = ci+1,0

3. Decimal digit addition:

si,0 = mod2(xi,0 + y∗i,0 + ci,0)

SU
i =

(
8 If

�
ZU

i == 14 AND ci,1 == 0
�

mod16(ZU
i + 2 · ci,1) Else

Si = mod10(Xi + Y ∗i + Ci) = SU
i + si,0

}

Figure 3.8. Proposed Conditional Speculative Algorithm.

hybrid prefix tree/carry-select configurations for low-latency implementations.

As in the speculative method, we propose to implement 10’s complement BCD addition
using any 2’s complement binary adder, but removing the decimal correction placed after the
binary carry evaluation. This allows for an efficient implementation of a mixed binary/BCD
adder using any existing binary prefix tree adder and a few additional hardware [144]. More-
over, our scheme presents a lower dependency on the carry tree topology than previous repre-
sentative methods for BCD addition, [118, 117], giving the designer more flexibility to choose
the adder architecture and area/latency trade-offs.

Our proposal is to use a simple condition for speculation (digit addition of +6) that re-
duces the cases for which the speculative sum digits S∗i (obtained from a binary addition)
do not correspond with the BCD sum digits Si. This results in a simpler decimal correction
scheme that can be placed out of the critical path (carry propagation path) independently of
the binary adder topology. The proposed algorithm is shown in Fig. 3.8. We structure it into
three different stages: conditional speculation, binary carry propagation and decimal digit
addition.

The control signal AU
i is used as a condition to speculate when a decimal carry-out Ci+1

is produced, that is, we state that Ci+1 is equal to AU
i . Then, when AU

i == 1 is verified, we
speculate that a decimal carry-out is produced and the digit position i is incremented in 6
units to compute the decimal sum digit as a binary sum, as described in Section 3.1.3 for the
speculative algorithm. An uncorrect sum digit is produced when the digit position i has been

3.2. Proposed method: conditional speculative decimal addition 39

incremented by +6 (AU
i == 1) and a decimal carry-out has not been produced (Ci+1 == 0).

The condition for speculation AU
i is obtained as follows. The decimal alive function Ai

defined as

Ai =

{
1 If Xi + Y ∗

i ≥ 9
0 Else

(3.27)

indicates a necessary (but not sufficient) condition for the generation or propagation of a
decimal carry from position i to i + 1. This means that a carry-out Ci+1 is produced only if Ai

is one, and in that case the digit position is incremented by 6. Therefore, we could use Ai for
speculation and then perform a binary addition to obtain the decimal carries.

However, the computation of Ai, performed in parallel with the +6 digitwise increment,
may contribute to the critical path delay. To minimize this delay, we derive a simpler condition
for speculation from expression (3.27).

For a decimal digit Xi, we call XU
i (upper part of Xi) the 3 left-most significant bits of the

BCD digit. Moreover, we have that

If Xi + Y ∗
i ≥ 9 ⇒ XU

i + (Y ∗
i)U ≥ 8 (3.28)

This simplified condition results in two implementations with different area-delay trade
offs:

• We can use AU
i defined by10

AU
i =

{
1 If XU

i + (Y ∗
i)U ≥ 8

0 Else
(3.29)

as the condition for speculation. We add +6 to the digit position i if AU
i is true, that is,

ZU
i = XU

i + (Y ∗
i)U + 6 ·AU

i , ZU
i ∈ {0, 2, 4, 6, 14, 16, 18, 20, 24} (3.30)

The conditional +6 digit additions are performed biasing digits Xi or Y ∗
i by 6 when AU

i is
one.

• To obtain a faster condition for speculation, we can check it separately for addition and
subtraction. For decimal addition, since Y ∗ = Y , the condition to check is XU

i + Y U
i ≥ 8.

We define a control signal AU+
i as

AU+
i =

{
1 If XU

i + Y U
i ≥ 8

0 Else
(3.31)

Similarly, the resultant condition for subtraction is XU
i + (Yi + 6)U ≥ 8. Since Yi + 6 =

15−(Yi+6), the condition is expressed as XU
i +(15−Yi)U−6 ≥ 8, resulting in XU

i +(Yi
U

) ≥ 14.
So we define the conditional speculation control signal for subtraction AU−

i as

AU−
i =

{
1 If XU

i + Y U
i ≥ 14

0 Else
(3.32)

10This definition corresponds with the upper direct decimal carry-alive AU given by equation (3.13).

40 Chapter 3. 10’s Complement BCD Addition

x100

Yi
*

+6 SPECULATION

BINARY SUM

8421

c1,1 = 0
pi,j

ci,j

0110 1001
0010 0111

8421
x101

op=add

1100 1111
0010 0111

Xi+6 AU
i (12 15)

(2 7)

1110 1000

1001 0110

0001 1110

(2 7)
(6 9)

(9 6)

AU
0=1

AU
1=1

si,j = p*i,j xor ci,j

ZU
1=14

ZU
1=8 1000 1000 p*i,j

correction

BCD SUM

Figure 3.9. Example: Conditional Speculative BCD Addition.

Therefore, the value of ZU
i (represented as two 3-bit vectors) is determined in terms of

AU+
i and AU−

i as follows:

ZU
i =

{
XU

i + Y U
i + 6 ·AU−

i If(op == sub)
XU

i + 6 ·AU+
i + Y U

i Else
(3.33)

We compute the 10’s complement BCD addition S = X ± Y as a modified binary sum.
An example of a two-digit addition is shown in Fig. 3.9. The value of the BCD sum digit Si

correspond with the binary sum mod16(ZU
i + xi,0 + y∗i,0 + Ci) when Ci+1 is equal to AU

i . In other
case, the +6 digit bias added in excess must be removed.

According to the direct decimal carry-propagate recurrence (Ci+1 = GU
i ∨ AU

i ci,1), the
carry-out Ci+1 differs from AU

i only when GU
i == 0, ci,1 == 0 and AU

i == 1, since in this case
Ci+1 = GU

i = 0. From the definition of GU
i and AU

i (equations (3.13) and (3.27)), we get that
this occurs for XU

i + (Y ∗
i)U == 8 and therefore

ZU
i = XU

i + (Y ∗
i)U + 6 ·AU

i = 8 + 6 = 14 (3.34)

To obtain the decimal carries Ci we compute the binary carry-propagate recurrence

ci+1,0 = b(ZU
i + xi,0 + y∗i,0 + ci,0)/16c (3.35)

It can be evaluated indistinctly in a full binary prefix tree (obtaining all the binary ci,j) or in
a sparse prefix tree, computing only ci,0 (quaternary carry tree). Decimal carries correspond
with binary carries at hexadecimal positions, that is Ci = ci,0.

Therefore, S = X±Y =
∑p−1

i=0 Si 10i is computed as the binary sum S∗ =
∑p−1

i=0 (SU
i +si,0) 16i,

with

SU
i =

{
8(= 14− 6) If

(
ZU

i == 14 AND ci,1 == 0
)

mod16(ZU
i + ci,1 2) Else

si,0 = mod2(xi,0 + y∗i,0 + ci,0) (3.36)

and ci,1 = b(xi,0 + y∗i,0 + ci,0)/2c.

3.2. Proposed method: conditional speculative decimal addition 41

In this way, the bit vector representations of S and S∗ are similar. Moreover, S∗ can be
computed in any conventional binary adder with a slight correction that does not affect to its
critical path. This decimal correction consists basically on the detection and replacement of
ZU

i == 14 (binary ’111-’) by 8 (binary ’100-’) when ci,1 == 0 as shown in Fig. 3.9.

The condition ZU
i == 14 can be detected examining the binary carry-propagate functions

pi,j, obtained by xoring the bits of ZU
i , since ZU

i == 14 ⇔ pi,3 pi,2 pi,1 == 1. To replace the value
(’111-’) by (’100-’) when ci,1 is zero, we define the modified binary carry-propagate functions
p∗i,j as

p∗i,j =

{
0 If

(
pi,3 pi,2 pi,1 ci,1 == 1 AND j ∈ {1, 2})

pi,j Else
(3.37)

and use them to compute the BCD sum bits as si,j = p∗i,j ⊕ ci,j. Depending on the carry tree
topology (binary or quaternary), the decimal sum digits Si are obtained from pi,j and ci,j (or
Ci) as follows:

• For a full binary prefix carry tree, sum bits are computed directly as si,j = p∗i,j ⊕ ci,j.
Expressing the p∗i,j ’s as a function of the pi,j ’s (equation (3.37)) and replacing them in the
previous expression, we have that the BCD sum digits Si are given by:

Si =





si,3 = pi,3 ⊕ ci,3

si,2 = pi,3 pi,2 pi,1(pi,2 ⊕ ci,2) = pi,2 ci,2 ∨ pi,3 pi,2 ci,2

si,1 = pi,3 pi,2 pi,1(pi,1 ⊕ ci,1) = pi,1 ci,1 ∨ pi,3 pi,2 pi,1 ci,1

si,0 = pi,0 ⊕ ci,0

(3.38)

Note that pi,3 pi,2 pi,1 ci,1 = 1 implies ci,2 = gi,2 ∨ pi,1 ci,1 = 0.

• For a quaternary prefix carry tree configuration, two modified conditional 4-bit binary
sums, S1i with input carry one (C1i = 1) and S0i input carry zero (C0i = 1), are com-
puted for each digit in parallel to the carry computation. After introducing expression
(3.37) in the 4-bit binary carry-propagate sum equations for each condition, the following
expression for S1i and S0i are obtained:

S1i =





s1i,3 = pi,3 ⊕ c1i,3

s1i,2 = pi,2 c1i,2 ∨ pi,3 pi,2 c1i,2

s1i,1 = pi,1 c1i,1 ∨ pi,3 pi,2 pi,1 c1i,1

s1i,0 = pi,0

S0i =





s0i,3 = pi,3 ⊕ c0i,3

s0i,2 = pi,2 c0i,2 ∨ pi,3 pi,2 c0i,2

s0i,1 = pi,1 c0i,1 ∨ pi,3 pi,2 pi,1 c0i,1

s0i,0 = pi,0

(3.39)

where the binary carries for each condition are computed in a carry-ripple form as:

c0i,1 = gi,0

c0i,2 = gi,1 ∨ ai,1 c0i,0

c0i,3 = gi,2 ∨ ai,2 c0i,1

c1i,1 = ai,0

c1i,2 = gi,1 ∨ ai,1 c1i,0

c1i,3 = gi,2 ∨ ai,2 c1i,1 (3.40)

42 Chapter 3. 10’s Complement BCD Addition

Each sum digit is selected from the conditional sum digits depending on the value of the
correspondent decimal carry input Ci as Si = S1i Ci ∨ S0i Ci.

Therefore, the decimal correction of the binary sum does not contribute to the critical
path delay of the adder, independently of its carry tree topology. In addition, any 2’s com-
plement adder can be used to compute the conditional speculative BCD sum introducing
only minor modification in the binary sum cells. In the next Section we present several 10’s
complement BCD and mixed binary/BCD adders implementing the proposed method.

3.3 Proposed architectures

There exists many topologies to implement carry-propagate addition, namely carry ripple,
carry skip, carry-select [9], conditional sum [128], CLA (carry look-ahead) [162], prefix tree (or
parallel prefix) [84, 86, 89] and Ling adders [95] among others.

Current high-speed (logarithmic-time) adders use variations of prefix tree schemes be-
cause they leads to efficient implementations in VLSI. They have simple cells and regular
structures providing high flexibility to implement adders in a wide range of design trade-
offs. Also, the prefix formulation describes, in a very flexible and simple way, different carry-
propagate addition schemes, including CLA addition [84] and Ling addition [147].

Thus, we have expressed the binary carry-propagate recurrence in terms of the following
three prefix tree schemes, which cover a wide range of state of the art designs:

• Full binary prefix tree adders (Kogge-Stone [86], Han-Carlson, Ladner-Fisher [89], Brent-
Kung, Knowles adders [84],...).

• Hybrid adders [100], combining a sparse prefix carry tree and a carry-select output stage.

• Ling adders reformulated in terms of a prefix tree computation [147]. This includes both
full binary Ling and hybrid Ling prefix carry tree/carry-select schemes.

Then, we implemented the conditional speculative decimal addition algorithm using these
adder topologies, resulting in three different architectures for both 10’s complement and
mixed 2’s complement/10’s complement addition. We detail next the resulting architectures.

3.3.1 Binary prefix tree architectures

Fig. 3.10(a) shows the proposed full binary prefix carry tree architecture for 10’s complement
BCD addition. It consists of operand setup, pre-sum, carry computation and sum stages.
Fig. 3.10(b) details a digit (4-bit) slice of the operand setup stage 11. It performs a conditional
speculation simultaneously with the 10’s complement of operand Y required for subtraction
(binary control signal sub is defined true for subtraction).

For a low latency implementation we opt for computing the conditions for speculation for
addition (AU+

i) and subtraction (AU−
i) separately. Thus, conditional speculation is performed

11We include in this stage all the operations previous to carry computation.

3.3. Proposed architectures 43

Operand Setup

Sum

cin

ci,j

S

X Y

sub

4p

4p

xor gate level

4p

4p

PRESUM pi,j

4p

4p

Full Binary Prefix
Carry Tree

CARRY COMPUTATION

Computation of
generate and alive

ai,j gi,j4p 4p

(a) Block diagram of the architecture.

Xi+6

Mux-2

Xi Yi

1 0

Cond. Spec.
signals

Mux-2
1 0

Ai
U+

sub

Yi+6

4

4

4

1
1

4

1Ai
U-

4

33
YU

iXU
i

xi,3 xi,2 xi,1 xi,0

x’
i,3 x’

i,2 x’
i,1 x’

i,0 y’
i,3 y’

i,2 y’
i,1 y’

i,0

yi,3 yi,2 yi,1 yi,0

(b) Operand setup stage (4-bit digit slice).
pi,3 pi,1 pi,0pi,2

Mux-2

ci,2ci,3 ci,1

si,3 si,2 si,1 si,0

Mux-2
1 0 1 0

ci,0

Critical path

(c) Digit (4-bit) sum cell (see (3.38)).

Figure 3.10. 10’s complement BCD adder using a binary prefix carry tree.

selecting the digit Xi + 6 when the control signal sub AU+
i is true or the digit Xi if the corre-

sponding control signal is false. By other hand, Yi + 6 is selected when control signal sub AU−
i

is true. In other case, the selected digit is Yi sub ∨ Yi sub. Signals AU+
i , AU−

i are implemented
in terms of the bits of XU

i and Y U
i as:

AU+
i = xi,3 ∨ yi,3 ∨ (xi,2 yi,2) ∨ (xi,2 ∨ yi,2) xi,1 yi,1)

AU−
i = xi,3 ∨ yi,3(xi,2 yi,2 ∨ (xi,2 ∨ yi,2)(xi,1 ∨ yi,1)) (3.41)

while digitwise operations Xi+6 and Yi + 6 are implemented as in (3.23) and (3.18) respectively.

The implementation of a 4-bit sum cell is shown in Fig. 3.10(c). It is basically a conven-
tional 4-bit binary sum cell, consisting of 4 XOR/MUX-2 gates, and three additional simple
gates, shown in black. BCD sum bits si,j are obtained from the binary carry-propagate sig-
nals pi,j and the binary carries ci,j as it is indicated by expression (3.38). The binary carry-
propagates pi,j are computed in the pre-sum stage. Note that the black gates, used for decimal
correction of uncorrect values (’111-’), are not in the critical path (the carry path, highlighted
in gray in Fig. 3.10(c)), because the carry-in dependency is at the very last stage (XOR or

44 Chapter 3. 10’s Complement BCD Addition

MUX-2 level) as in standard binary addition.

The computation of the binary carries ci,j is performed in a full binary prefix tree. For a
clear description of algorithms when dealing with binary variables, we represent the double
index (i, j) with a single index k as (i, j) → k = 4 · i + j. Thus, the conventional binary carry
recurrence is represented as ck+1 = gk ∨ ak ck, where gi = xi y∗i is the binary carry-generate
signal and ai = xi + y∗i is the binary carry-alive signal. Note that we assume g−1 = c0 = cin and
a−1 = 0. This recurrence is described as a prefix computation as follows,

(ck+1, ak:−1) = (gk:0, ak:0) • (cin, 0) =
k∏

q=−1

(gq, aq) (3.42)

where ak:−1 = ak:0 a−1 = 0, and the product
∏

uses the prefix operator • defined in (3.22).

This operator is associative and idempotent, so that highly parallel tree-like structures
can be used for the computation of the carries. For two arbitrary positions r and l the block
carry-generate signal (gr:l) and block carry-alive signal (ar:l) are

(gr:l, ar:l) =
l∏

k=r

(gk, ak) (3.43)

The block carry-generate and block carry-alive signals allow the computation of the output
carry from a block in terms of its input carry, that is, cr+1 = gr:l ∨ ar:l cl.

These terms can be grouped in many different ways, leading to prefix tree adders with
different area-delay tradeoffs. The minimum logic depth n-bit prefix adder requires log2 n

stages of prefix cells to compute the carries needed for the sum bits (or log2(n + 1) stages to
compute the carry output Cout).

For instance, Fig. 3.11(a) shows a graph representation of a 16-bit binary prefix tree
adder with minimum logic depth. It includes the computation of the binary carry-generate
and carry-alive signals. This configuration ([2221] Knowles adder [84]) presents a trade-off
between area and delay, by means of limiting the fanout and exploiting some idempotency
of the prefix nodes (black dots). The last level of the prefix tree computes the block generate
and alive signals (gk:−1, ak:−1) = (ci+1,0, 0). These prefix nodes (grey dots) are simpler, since the
logic for the block alive signals ak:−1 is not necessary (ak:−1 = 0).

Two minimum logic prefix trees in opposite points of the area-delay space design are the
Kogge-Stone [86] (Fig. 3.11(b)) and the Ladner-Fisher [89] (Fig. 3.11(c)) schemes. The Kogge-
Stone exploits idempotency in order to present the minimum possible fanout (output load
capacitance) at each prefix node, but at the expense of the cost in area (maximum number of
logic cells and high wiring). The Ladner-Fisher [89] scheme reduces the hardware complexity
by means of some high fanout nodes, incrementing the delay.

The mixed 2’s complement/10’s complement architecture is shown in Fig. 3.12. Binary
addition and subtraction can be integrated in the 10’s complement BCD adder datapath in-
troducing minor changes. Thus, the mixed architecture presents the same latency and prac-
tically the same area as the 10’s complement BCD adder of Fig. 3.10. For a better integration
of binary operations in the 10’s complement BCD adder, we make use of an extended set of
control signals. Decimal mode is indicated by signal dec = 1, while decimal addition is selected
with da = 1. The binary mode correspond to values of dec = da = ds = 0 while sub = 1 indicates
a binary or a decimal subtraction.

3.3. Proposed architectures 45

Text

T TextText

c0,3 c0,2 c0,1c1,3 c1,2 c1,1

Text

Text

cin

Text

C1=c1,0

TT Text Text TT Text Text

T

T

T

Cout C0=c0,0

y3,3

x3,3
y1,2

x1,2
y1,1

x1,1
y1,0

x1,0
y0,3

x0,3
y0,2

x0,2
y0,1

x0,1
y0,0

x0,0
y1,3

x1,3
y3,2

x3,2
y3,1

x3,1
y3,0

x3,0
y2,3

x2,3
y2,2

x2,2
y2,1

x2,1
y2,0

x2,0

c2,3 c2,2 c2,1c3,3 c3,2 c3,1

C3=c3,0 C2=c2,0

TextTextTextTextTextTextText

T

(a) 16-bit binary prefix tree adder.

c0,3 c0,2 c0,1c1,3 c1,2 c1,1

cin

Text

C1=c1,0 C0=c0,0

a1,3

g1,3
a1,2

g1,2
a1,1

g1,1
a1,0

g1,0
a0,3

g0,3
a0,2

g0,2
a0,1

g0,1
a0,0

g0,0

c2,3 c2,2 c2,1
c3,3 c3,2 c3,1

C3=c3,0

T

T

T

Cout C2=c2,0

a3,3

g3,3
a3,2

g3,2
a3,1

g3,1
a3,0

g3,0
a2,3

g2,3
a2,2

g2,2
a2,1

g2,1
a2,0

g2,0

Text Text

TT Text Text

TT Text TextTT Text Text

T

(b) Kogge-Stone carry tree.

c0,3 c0,2 c0,1c1,3 c1,2 c1,1

cin

Text

C1=c1,0 C0=c0,0

a1,3

g1,3
a1,2

g1,2
a1,1

g1,1
a1,0

g1,0
a0,3

g0,3
a0,2

g0,2
a0,1

g0,1
a0,0

g0,0

c2,3 c2,2 c2,1
c3,3 c3,2 c3,1

C3=c3,0

T

T

T

Cout C2=c2,0

a3,3

g3,3
a3,2

g3,2
a3,1

g3,1
a3,0

g3,0
a2,3

g2,3
a2,2

g2,2
a2,1

g2,1
a2,0

g2,0

Text Text

TT Text Text

TT Text TextTT Text Text

T

TextT T T T T T

TTTTTT

TT Text Text

(c) Ladner-Fisher carry tree.

Text

alar

Buffer

gr

glvalgr

ar

gr
al

gl
al

gl

Prefix cells

glvalgr

al=xi,j v yi,j

gl=xi,j yi,j

yi,j

xi,j

Generate and
alive cell

(d) Notation.

Figure 3.11. Graph representations of binary prefix tree adders.

The implementation of the operand setup stage is detailed in Fig. 3.12(b). The only
difference with respect to the same stage in Fig. 3.10(b) is the inclusion of control signals
da and ds to select operands X and Y (sub = 0) or Y (sub = 1) in case of binary operations
(da = ds = 0).

Fig. 3.12(c) shows the mixed 4-bit sum cell. The black gates replace the bit string (’111-’)
of the binary carry propagates pi,j by string (’100-’) when ci,1 = 0 and only for the decimal
mode (dec = 1). If dec is disabled, then the 4-bit sum cell is equivalent to a conventional 4-bit
binary sum cell composed of 4 xor gates.

3.3.2 Hybrid prefix tree/carry-select architectures

Hybrid sparse prefix tree/carry-select topologies minimize the power dissipation of full binary
prefix tree adders by reducing the wiring complexity, the logic density and the transistor sizes
of the carry tree [100]. Moreover, they are also appropriate for low-latency implementations.
On the contrary, they may require a little more area to compute two-conditional k-bit presums
in parallel with carry computation. However, since the evaluation of presum digits is not
usually in the critical path, design constraints can be relaxed, which leads to designs with
interesting area and delay tradeoffs. For decimal BCD addition, a suitable bit length for each
two-conditional presum is k = 4.

46 Chapter 3. 10’s Complement BCD Addition

sub

Operand Setup

Sum

cin

ci,j

S

X Y

ds

4p

4p

xor gate level

4p

4p

PRESUM pi,j

4p

4p

Full Binary Prefix
Carry Tree

CARRY COMPUTATION

Computation of
generate and alive

ai,j gi,j4p 4p

da

dec

(a) General architecture.

da sub
Xi+6

Mux-2

Xi Yi

1 0

Cond. Spec.
signals

Mux-2
1 0

Ai
U+

ds
Yi+6

4

4

4

1
1

4

1Ai
U-

4

33
YU

iXU
i

(b) Operand setup stage (4-bit digit
slice).

pi,3 pi,1 pi,0pi,2

Mux-2

ci,2ci,3 ci,1

si,3 si,2 si,1 si,0

Mux-2
1 0 1 0

ci,0

Critical path

dec

(c) Digit (4-bit) sum cell.

Figure 3.12. Mixed binary/decimal adder using a binary parallel prefix carry tree.

The conditional speculative decimal addition method can be easily implemented in a
quaternary prefix tree adder. The block diagram of the proposed hybrid prefix tree/carry-
select BCD adder is shown in Fig. 3.13. It consists of the following stages: operand setup,
carry computation, conditional presum and sum. The conditional presum stage computes the
BCD digit presums S1i and S0i given by expression (3.39). Fig. 3.14 shows the implementation
of a two-conditional BCD (4-bit) sum cell. It consists of a 4-bit two-conditional binary adder
and 3 additional simple gates (shown in black). The two-conditional binary adder computes
simultaneously the 4-bit pre-sums S1∗i (assuming Ci = 1), and S0∗i (assuming Ci = 0) and two
4-bit binary carry recurrences with c1i,0 = 1 (so c1i,1 = ai,0) and c0i,0 = 0 (so c0i,1 = gi,0). The
black gates replace the 4-bit binary values (’111-’) by the correct BCD digits (’100-’). For the
other cases, S1i = S1∗i and S0i = S0∗i . The appropriate sum digits S1i or S0i are then selected
by the corresponding decimal carries Ci in the sum stage using a level of MUX-2 gates.

For the operand setup stage, we propose the three implementations of Fig. 3.15, which
present different area and delay tradeoffs:

• Fig. 3.15(a) shows a digit slice of the operand setup stage when the decimal carries Ci

3.3. Proposed architectures 47

Two-conditional
BCD Presum

S1i S0i

Operand Setup

Sum (Mux-2 level)

cin

Ci

S

X Y

sub

4p

p

4p

4p

4p

4p

Quaternary prefix
tree or direct

decimal prefix tree

4p

4p
CARRY COMPUTATION

X*
Y*

Figure 3.13. Block diagram of the 10’s complement BCD hybrid adder.

Mux-21 0

ai,3gi,3 pi,3

x*i,
3

y*i,3

ai,2gi,2 pi,2

x*i,
2

y*i,2

ai,1gi,1 pi,1

x*i,
1

y*i,1

ai,0gi,0 pi,0

x*i,
0

y*i,0

carry cell

ai,jgi,j

ci,j

gi,j v ai,j ci,j

2
1

1

ai,jgi,j pi,j

x*i,
j

y*i,j

carry-generate/
carry-propagate/
carry-alive cell

pi,3
pi,1 pi,0

pi,2 gi,0
ai,0ai,1

gi,1

ai,2

gi,2

s1i,3 s0i,3 s1i,2 s0i,2 s1i,1 s0i,1 s1i,0 s0i,0

Mux-2
1 0Mux-21 0 Mux-2

1 0

pi,3
pi,2pi,3

Two-conditional BCD sum cell

Figure 3.14. Proposed two-conditional BCD (4-bit) sum cell.

are computed using the conditional speculative carry recurrence as

Ci+1 = b(Xi + Y ∗
i + 6 · (AU+

i sub ∨AU−
i sub) + Ci)/16c (3.44)

This configuration is similar to the one described in Fig. 3.10 for the full binary prefix
tree adder. It requires to evaluate AU+

i and AU−
i before the carry computation. For

carry computation, an appropriate topology is the quaternary prefix tree (QT), that is, an
sparse prefix tree which generates 1 in 4 carries.

For the quaternary configuration, the decimal carries Ci are obtained as

(Ci, 0) = (gi:−1, ai:−1) =
i∏

k=−1

(gk+3:k, ak+3:k) (3.45)

where
(gk+3:k, ak+3:k) = (gk,3, ak,3) • (gk,2, ak,2) • (gk,1, ak,1) • (gk,0, ak,0) (3.46)

48 Chapter 3. 10’s Complement BCD Addition

Xi+6

Mux-2

Xi Yi

1 0

Cond. Spec.
signals

Mux-2
1 0

Ai
U+

sub

Yi+6

4

4

4

1
1

4

1Ai
U-

4

33
YU

iXU
i

X*i
Y*i

(a) Basic configuration.

Xi+6

Mux-2

Xi Yi

1 0

Cond. Spec.
signal

Mux-2
1 0

Ai
U

sub

Yi+6

4

4

4

1

4

1

4
33

Y*U
iXU

i

X*i Y*i

4

Xi+6

to the carry tree

Y*i

to the presum

(b) Low-latency config.

Xi+6

Mux-2

Xi Yi

1 0

Mux-2
1 0

Ai
U

sub

Yi+6

4

4

4

1

4

1

4

X*i

Y*i

4

Xi

Direct decimal
carry tree

Y*i
to the presum

(c) Area-optimized config.

Figure 3.15. Proposed implementations for the operand setup stage (1-digit slices).

with g−1 = Cin and a−1 = 0. Therefore, to obtain all the decimal carries, only the block
carry generate and block carry alive (gk+3:k, ak+3:k) are necessary.

The block diagram of a 16-bit (two BCD-digit) quaternary prefix tree is shown in Fig.
3.16. The reduction in the number of nodes and wires is significant with respect to

T

alar

Buffer

gr

glvalgr

ar

gr
al

gl
al

gl

Prefix cells

glvalgral=xi,j v yi,j

gl=xi,j yi,j

yi,j

xi,j

Generate and
alive cell

cin

T

C1=c1,0C3=c3,0

Text

Cout C2=c2,0

Text

Text

C0=c0,0

T

T

T

y3,3

x3,3
y1,2

x1,2
y1,1

x1,1
y1,0

x1,0
y0,3

x0,3
y0,2

x0,2
y0,1

x0,1
y0,0

x0,0
y1,3

x1,3
y3,2

x3,2
y3,1

x3,1
y3,0

x3,0
y2,3

x2,3
y2,2

x2,2
y2,1

x2,1
y2,0

x2,0

Figure 3.16. Quaternary prefix carry tree.

the 16-bit full binary prefix trees of Fig. 3.11. There are multiple choices for the prefix
tree topology. The prefix carry tree of Fig. 3.16 obtains the block generate and block
alive signals (gk+3:k, ak+3:k) for each digit using the first two levels of prefix nodes. Then,
it computes the decimal carries using a Kogge-Stone scheme of log2 p levels for p = 4n

decimal digits.

• Fig. 3.15(b) shows the implementation (one digit) of the operand setup stage correspond-
ing to the carry recurrence Ci+1 = b(Xi+Y ∗

i +6+Ci)/16c. This carry recurrence is evaluated

3.3. Proposed architectures 49

as before in a quaternary prefix tree, where digits Xi + 6 and Y ∗
i = Yi sub ∨ Yi + 6 sub are

computed as inputs for the carry recurrence.

Thus, the condition for speculation is only required to obtain the inputs to the presum
stage as X∗

i = Xi + 6 ·AU
i and Y ∗

i = Yi sub∨ Yi + 6 sub. The main difference with respect to
the scheme of Fig. 3.15(a) is that the evaluation of the condition for speculation is now
out of the critical path. This allows to reduce the hardware complexity of the operand
setup by implementing signal AU

i (instead of two separate conditions AU+
i and AU−

i) in
terms of the bits of XU

i and (Y ∗
i)U as given by expression (3.13).

• Fig. 3.15(c) shows the configuration of the operand setup stage required to compute the
decimal carries Ci using the direct decimal carry recurrence. The inputs to the prefix
carry tree are Xi and Y ∗

i = Yi sub∨ Yi + 6 sub. Instead of a quaternary prefix tree, a direct
decimal prefix tree evaluates

Ci+1 = Gi ∨Ai Ci = GU
i ∨AU

i (gi,0 ∨ ai,0 Ci) (3.47)

where the GU
i and AU

i are the upper decimal carry generate and carry alive signals given
by expression (3.13). An example of an 8-bit (two digit) direct decimal prefix tree is shown
in Fig. 3.17. It performs the following operation:

T

alar

Buffer

gr

glvalgr

T

T
cin

T

ar

gr
al

gl
al

gl

Prefix cells

C1=c1,0

T T

T

glvalgral=xi,j v yi,j

gl=xi,j yi,j

Cout C0=c0,0

y1,3

x1,3

yi,j

xi,j

y1,2

x1,2
y1,1

x1,1
y1,0

x1,0
y0,3

x0,3
y0,2

x0,2
y0,1

x0,1
y0,0

x0,0

Generate and
alive cell

AU
1

GU
1

a1,0

g1,0
AU

0

GU
0

a0,0

g0,0

Decimal generate
and alive cell

y1,3

x1,3
y1,2

x1,2
y1,1

x1,1

AU
1

GU
1

Figure 3.17. Direct decimal prefix carry tree.

(Ci, 0) =
i∏

k=−1

(Gk, Ak) =
i∏

q=−1

(GU
k , AU

k) • (gk,0, ak,0) (3.48)

so that it requires a prefix tree level less than a quaternary tree to compute the same
number of carries. But, on the other hand, GU

i and AU
i are more costly to compute than

their binary counterparts.

An advantage of this scheme is that it reduces, even more, the hardware complexity of
the operand setup stage scheme of Fig. 3.15(b). The signals AU

i , computed in the first

50 Chapter 3. 10’s Complement BCD Addition

Two-conditional
binary/BCD

Presum

S1i S0i

Operand Setup

Sum (Mux-2 level)

Ci

S

X Y

sub

4p

p

4p

4p

4p

4p

4p

4p

X

cin

Quaternary Prefix
Carry Tree

CARRY COMPUTATION

Computation of
generate and alive

ai,j gi,j4p 4p

 4p

YA

da

YB

dec

(a) General block diagram.

Mux-2

Xi Yi

1 0

Cond. Spec.
signal

Mux-2
1 0

Ai
U

subYi+6

4

4

4 4
1

4
33 YA

U
i

XU
i

Xi YAi

to the carry treeto the presum

da

dec YAi-6

XiYBi

(b) Operand setup stage
(one digit).

Mux-21 0

ai,3gi,3 pi,3

x*i,
3

y*i,3

ai,2gi,2 pi,2

x*i,
2

y*i,2

ai,1gi,1 pi,1

x*i,
1

y*i,1

ai,0gi,0 pi,0

x*i,
0

y*i,0

carry cell

ai,jgi,j

ci,j

gi,j v ai,j ci,j

2
1

1

ai,jgi,j pi,j

x*i,
j

y*i,j

carry-generate/
carry-propagate/
carry-alive cell

pi,3 pi,1 pi,0pi,2 gi,0ai,0ai,1

gi,1
ai,2

gi,2

s1i,3 s0i,3 s1i,2 s0i,2 s1i,1 s0i,1 s1i,0 s0i,0

Mux-2
1 0Mux-21 0 Mux-2

1 0

Two-conditional binary/BCD sum cell

dec

(c) Two-conditional binary/BCD (4-bit) sum cell.

Figure 3.18. Mixed binary/BCD quaternary prefix tree/carry-select adder.

level of the direct decimal prefix tree, are reused to obtain the input digits X∗
i = Xi +6 ·AU

i

required for the presum stage.

In Fig. 3.18 we show the implementation of the mixed binary/decimal architecture. The
key issue is to incorporate the binary add/sub operations into a BCD hybrid adder without
introducing a latency overhead. For a good area-delay tradeoff, the preferred scheme com-
bines the operand setup stage of Fig. 3.18(b), a quaternary prefix tree and a presum stage
implementing the two-conditional binary/BCD 4-bit sum cell of Fig. 3.18(c). Input operand X
is passed through the setup stage to the carry prefix tree and the presum stage without mod-
ifications. Operand Y is modified to provide support for decimal addition (dec == 1, da == 1),
decimal subtraction (dec == 1, sub == 1), binary addition and binary subtraction (sub == 1).
Thus, in the operand setup stage we compute

Y A
i = (Yi + 6) da ∨ (Yi ⊕ sub) da

Y B
i = Y A

i AU
i dec ∨ (Y A

i − 6) AU
i dec (3.49)

where the XOR operator ⊕ acts on each bit of Yi. Digits Y A
i are passed to the quaternary

3.3. Proposed architectures 51

carry prefix tree to compute the recurrence Ci+1 = b(Xi + Y A
i + Ci)/16c. Note that these digits

are obtained faster than Y B
i and do not depend on AU

i . The condition for speculation AU
i is

obtained from the 3 most significant bits of Xi and Y A
i as follows:

AU
i = yA

i,3(xi,3 ∨ xi,2 xi,1) ∨ (xi,3 ∨ yA
i,3) (yA

i,2 yA
i,1) (3.50)

Digits Y B
i are passed to the two-conditional presum stage. The mixed binary/BCD sum

cell of Fig. 3.18(c) performs the computations S1i = mod16(Xi + Y B
i + 1) and S0i = mod16(Xi +

Y B
i + 0). The black gates perform the BCD digit correction only for decimal operations (dec ==

1). For binary operations (dec = da == 0) we have that Y A
i = Y B

i = (Yi ⊕ sub) and the sum cell
is equivalent to a conventional two-conditional 4-bit binary adder.

3.3.3 Ling prefix tree architectures

In 1981 Ling [95] proposed a new carry recurrence to reduce the logical depth for carry com-
putation in carry look-ahead structures. Not up to very recently, different research works
[43, 62, 168, 169] have proposed the formulation of the Ling recurrence as a prefix computa-
tion to obtain high performance parallel adder implementations.

In [147] we presented a reformulation of Ling addition, particularly suitable to implement
in any existing prefix adder topology. We obtain the Ling scheme directly from a standard pre-
fix formulation of the carry computation, and show that any prefix adder can be transformed
into a Ling adder with minor modifications and with the corresponding speed improvement.
In this Section we extend this formulation of Ling addition to include also decimal addition.
In fact, we have applied it to the 10’s complement BCD and mixed binary/BCD prefix tree
adders presented in Section 3.3.1 and Section 3.3.2.

Ling used an alternative carry hk instead of ck. The recurrence for the Ling carries is

hk+1 = gk ∨ ak−1 hk (3.51)

The relation between the two kind of carries is

ck+1 = ak hk+1 (3.52)

obtained from ck+1 = gk ∨ ak ck and (3.51) where we have used the property gk ak = gk, which
is the basis for the Ling approach.

The prefix operator can be used to obtain the Ling carries hk, resulting in fast parallel
tree-like implementations. The Ling carry recurrence can be formulated as a simple optimiza-
tion of the prefix computation. Using the following identity

(gk, ak) = (0 ∨ gk ak, ak 1) = (0, ak) • (gk, 1) (3.53)

the expression of the carry prefix computation (3.42) is transformed into

(ck+1, ak:−1) =
k∏

q=−1

(0, aq) • (gq, 1) = (0, ak) •
k∏

q=−1

(gq, aq−1) (3.54)

By other hand, since ck+1 = ak hk+1 this results in

(ck+1, ak:−1) = (akhk+1, ak:−1) = (0, ak) • (hk+1, ak−1:−1) (3.55)

52 Chapter 3. 10’s Complement BCD Addition

Therefore, examining both right sides of (3.54) and (3.55) we conclude that

(hk+1, 0) =
k∏

q=−1

(gq, aq−1) (3.56)

with a−2 = 0. The evaluation of the prefix operation over two consecutive terms of (3.56)
results in

(gq, aq−1) • (gq−1, aq−2) = (gq ∨ gq−1, aq−1aq−2) (3.57)

where we have used again aq−1gq−1 = gq−1. We define a simplified prefix operator ◦ as

(gl, al) ◦ (gr, ar) = (gl ∨ gr, alar) (3.58)

so the evaluation of the Ling carries is simplified as follows:

(hk+1, ak−1:−1) =





For k odd (even number of terms):∏bk/2c
q=−1(g2q, a2q−1) ◦ (g2q−1, a2q−2)

For k even (odd number of terms) pairing from the left:(∏bk/2c
q=0 (g2q, a2q−1) ◦ (g2q−1, a2q−2)

)
• (cin, 0)

For k even (odd number of terms) pairing from the right:

(gk, ak−1) •
(∏bk/2c−1

q=−1 (g2q+1, a2q) ◦ (g2q, a2q−1)
)

(3.59)

The binary sum bits sk are obtained as

sk = pk ⊕ ck = pk ⊕ (hk ak−1) = pk hk ∨ (pk ⊕ ak−1) hk (3.60)

Although the computation of the sum bits seems to be more complex, a carry-select structure
requires only one 2:1 multiplexer after the computation of hk+1, which is of similar delay as the
xor used in the conventional approach. The additional xor gate required to compute pk ⊕ ak−1

is out of the critical path (the carry path).

BCD prefix adders based on conditional speculative decimal addition may also use Ling
carries to compute the BCD sum digits. To obtain the expression of BCD sum digits Si as a
function of the Ling carries hi, we replace ck by hk ak−1 in equation (3.38). In this way, we get
the following expression (subscript k is changed by double subscript notation (i, j) as before):

Si =





si,3 = pi,3hi,3 ∨ (pi,3 ⊕ ai,2)hi,3

si,2 = pi,3 pi,2 pi,1 (pi,2hi,2 ∨ pi,3 (pi,2 ⊕ ai,1) hi,2)
si,1 = pi,3 pi,2 (pi,1hi,1 ∨ (pi,1 ⊕ ai,0) hi,1)
si,0 = pi,0hi,0 ∨ (pi,0 ⊕ ai−1,3)hi,0

(3.61)

A BCD sum cell implementing equations (3.61) is also of similar delay than a conventional
binary xor sum cell.

Therefore, we conclude that it is only necessary to introduce the following changes in any
of the proposed binary/BCD prefix adders to get the corresponding Ling prefix tree adder:

1. The prefix operations are performed over pairs (gj , aj−1) instead of (gj , aj).

2. The prefix operations at the first level of the tree are simplified since the ◦ operator is
used.

3.3. Proposed architectures 53

p1,3

T Text T Text

T TextT Text

Text

 Prefix sum cell Prefix sum cell

Text

alar
glvgr

TransformationsPrefix Tree Adder Ling Adder

T T

T TT

c0,3

alar
glvalgr

Buffer

c0,2 c0,1c1,3 c1,2 c1,1

gr

glvalgr

T

T

cin

T

ar

gr
al

gl
al

gl

a1,0

g1,0
a1,1

g1,1
a1,2

g1,2
a0,0

g0,0
a0,3

g0,3
a0,1

g0,1
a0,2

g0,2

c0,0

Prefix cells

c1,0

T

p1,1 p0,3 p0,1 p0,0p0,2p1,0p1,2

s1,3 s1,1 s0,3 s0,1 s0,0s0,2s1,0s1,2 s1,3 s1,1 s0,3 s0,1 s0,0s0,2s1,0s1,2

Ling sum cell

h1,3 h1,1 h0,3 h0,1 h0,0h0,2h1,0h1,2

Ling sum cell

p1,3 p1,1 p0,3 p0,1
p0,0p0,2

p1,0p1,2

a1,0a1,1a1,2 a0,0
a0,3 a0,1a0,2

cin
a0,3

g1,0
a1,0

g1,1
a1,1

g1,2 g0,0
a0,2

g0,3
a0,0

g0,1
a0,1

g0,2

al

gl
ar

gr

gr

glvgr

gl

Figure 3.19. Transformation of a prefix adder into a Ling adder.

Mux-2

hi,2hi,3
hi,1

si,3 si,2 si,1 si,0

Mux-2
1 0 1 0

hi,0

Mux-2
1 0

Mux-2
1 0

ai,2 ai-1,3

ai,0
pi,0

pi,1

pi,3

pi,2pi,3 pi,1

ai,1

pi,2

(a) BCD Ling sum cell.

Mux-2

hi,2hi,3
hi,1

si,3 si,2 si,1 si,0

Mux-2
1 0 1 0

hi,0

Mux-2
1 0

Mux-2
1 0

ai,2 ai-1,3

ai,0
pi,0

pi,1

pi,3
ai,1

pi,2
pi,2pi,3 pi,1dec

(b) 4-bit Binary/BCD Ling sum cell.

Figure 3.20. Implementation of Ling digit sum cells.

3. The sum digits are expressed as a function of the Ling carries hk instead of the conven-
tional carries ck. Thus, for a binary adder, the sum bits are obtained as indicated by
(3.60). For a 10’s complement BCD adder based on the conditional speculative decimal
addition method, the BCD sum digits are obtained as indicated by (3.61).

In Fig. 3.19 we show an example of the transformation process for a prefix tree adder
into a Ling prefix tree adder. The prefix operators • at the first level of the tree are replaced
by ◦ operators. The transformation process is completed replacing the prefix sum cell of Fig.
3.10(c) by the BCD Ling sum cell of Fig. 3.20(a). Black-filled gates represent the additional
hardware with respect to a binary Ling sum cell which implements (3.60). The equivalent
binary/BCD Ling sum cell is shown in Fig. 3.20(b). Control signal dec is activated only for
decimal operations.

For the hybrid prefix tree/carry-select architectures of Section 3.3.2, the transformation
sequence is straightforward:

54 Chapter 3. 10’s Complement BCD Addition

Mux-21 0

ai,3gi,3 pi,3

x*i,
3

y*i,3

ai,2gi,2 pi,2

x*i,
2

y*i,2

ai,1gi,1 pi,1

x*i,
1

y*i,1

ai,0gi,0 pi,0

x*i,
0

y*i,0

carry cell

ai,jgi,j

ci,j

gi,j v ai,j ci,j

2
1

1

ai,jgi,j pi,j

x*i,
j

y*i,j

carry-generate/
carry-propagate/
carry-alive cell

pi,3
pi,1 pi,0

pi,2 gi,0

ai,0
ai,1

gi,1

ai,2

gi,2

sh1i,3 s0i,3 sh1i,2 s0i,2 sh1i,1 s0i,1 sh1i,0 s0i,0

Mux-2
1 0Mux-21 0 Mux-2

1 0

pi,3
pi,2pi,3

Two-conditional BCD Ling sum cell

gi,0

ai-1,3
(Ai-1)

(a) BCD Ling sum cell.

Mux-21 0

ai,3gi,3 pi,3

x*i,
3

y*i,3

ai,2gi,2 pi,2

x*i,
2

y*i,2

ai,1gi,1 pi,1

x*i,
1

y*i,1

ai,0gi,0 pi,0

x*i,
0

y*i,0

carry cell

ai,jgi,j

ci,j

gi,j v ai,j ci,j

2
1

1

ai,jgi,j pi,j

x*i,
j

y*i,j

carry-generate/
carry-propagate/
carry-alive cell

pi,3 pi,1 pi,0pi,2 gi,0ai,0
ai,1

gi,1
ai,2

gi,2

sh1i,3 s0i,3 sh1i,2 s0i,2 sh1i,1 s0i,1 sh1i,0 s0i,0

Mux-2
1 0Mux-21 0 Mux-2

1 0

Two-conditional binary/BCD sum cell

dec

gi,0

ai-1,3 (Ai-1)

(b) 4-bit binary/BCD Ling sum cell.

Figure 3.21. Implementation of two-conditional Ling digit sum cells.

• For the quaternary sparse prefix tree of Fig. 3.16, the Ling carries at decimal positions
Hi are computed introducing the same transformations as in Fig. 3.19, since Ci = ci,0 =
ai−1,3 hi,0 = ai−1,3 Hi.

• For the direct decimal prefix tree of Fig. 3.17 it is also possible to define a Ling direct
decimal carry recurrence as Hi+1 = Gi ∨ Ai−1 Hi. Gi and Ai−1 are the decimal carry
generate at position i and the decimal carry alive at position i − 1. Using the relation
Gi Ai = Ai and Ci+1 = Gi ∨ Ai Ci , we have that Ci = Ai−1 Hi. Therefore the same
transformation process of Fig. 3.19 is also valid for the direct decimal prefix tree using
Gi and Ai−1 instead of the equivalent binary functions gk and ak−1.

• The two-conditional BCD sum cell of Fig. 3.14 is replaced by the two-conditional Ling
BCD sum cell of Fig. 3.21(a).

This digit addition is computed using the decimal Ling carries Hi as

Si = Hi ai−1,3S1i ∨Hi ai−1,3S0i

3.4. Sum error detection 55

Parity Checher

Adder

S Z

=1 if S=Z

Adder

X Y

(a) General layout.

Parity Bit

s0,3 s0,2 s0,1 s0,0z0,3 z0,2 z0,1 z0,0s1,3 s1,2 s1,1 s1,0z1,3 z1,2 z1,1 z1,0

(b) Parity checker.

Figure 3.22. Sum error checking using unit replication.

=
(
S1i ai−1,3 ∨ S0iai−1,3

)
Hi ∨ S0iHi

= SH1i Hi ∨ S0iHi (3.62)

while Ci = ci,0 = hi,0 ai−1,3 = Hi ai−1,3. For the direct decimal prefix tree the term ai−1,3

corresponds to Ai−1. S1i and S0i are the two-conditional BCD digit sums given by (3.39). The
term SH1i = S1iai−1,3 ∨ S0iai−1,3 is efficiently computed using ai−1,3 as a carry input instead
of the logical one in the corresponding two-conditional adder (this is performed by the black
prefix cell in Fig. 3.21). Therefore, we do not expect any significant increase in hardware
complexity of an hybrid sparse prefix tree/carry-select adder due to the Ling transformation.

S1i and S0i can also represent two-conditional 4-bit binary sums. For this case, the
mixed binary/BCD two-conditional Ling sum cell is shown in Fig. 3.21(b).

3.4 Sum error detection

Users of financial and e-commerce services demand a high degree of reliability. By other
hand, VLSI circuits are increasingly becoming very sensitive to noise and transient particles
due to the higher densities and reduced sizes of transistors on a chip. This fact may cause
frequent transient upsets in a circuit producing a failure (soft error) that can lead to an
incorrect result. Therefore, high-end microprocessors support RAS (reliability-accessibility-
serviceability) features for soft error detection and recovery [4, 98, 102, 105].

Adders are specially sensitive to soft errors because of their intensive use and the high
clock frequencies of operation. To protect the arithmetic units of high-end microprocessors
against soft errors, they are replicated and the output of both units compared using parity
checking [102]. Fig. 3.22(a) shows a conventional layout based on unit replication to detect a
soft error in an addition. It consists on two adders that evaluate the same operation in parallel
and a parity checker (see Fig. 3.22(b)) to compare the output of the adders.

Due to the high cost in area of this solution, the fixed and floating-point units incorporate
some other mechanisms for error detection such as parity prediction [105], residue checking
[4, 98] or use dual-rail logic circuit technologies with parity checking [105] (by XOR-ing the
true and the complement outputs). However, the parity prediction algorithms for the arith-
metic functions are expensive both in terms of area and speed while residue checking is only

56 Chapter 3. 10’s Complement BCD Addition

Proposed sum error detector
(carry-save adder)

Adder

S

=1 when S =X+Y or 2*CV=SV

X Y

Parity checker

SV

Parity bit

CV

Figure 3.23. Proposed scheme for sum error checking.

efficient for multiplication and division.

Another approach, proposed in [166], is the use of a simple lazy unit for sum error detec-
tion. It consists of a fast carry-save adder and a parity checker, which has a negligible impact
on performance in ”out-of-order” microprocessors (the instruction’s results are speculative
for one or more cycles). Input operands X and Y and the sum result S are the inputs of a
modified carry-save adder, which performs the following bit-level operations:

svk = xk ⊕ yk ⊕ sk = pk ⊕ pk ⊕ ck = ck

cvk = xk yk ∨ (xk ∨ yk) svk = xk yk ∨ (xk ∨ yk) ck = ck+1 (3.63)

Each output svk is compared with cvk−1 to check if

err =
n−1∑

k=0

svk ⊕ cvk−1 = 0 (3.64)

where
∑n−1

k=0 stands for the logical OR operation. A logical one means an error in some bit of
the sum.

In a similar way, we consider a simple algorithm to check possible errors in BCD and
combined binary/BCD addition/subtraction by using only a fast carry-save adder and a parity
checker. Fig. 3.23 shows the diagram of the proposed method.

The main difference with respect to the previous proposal for binary addition/subtraction
is that we compare with the complement of the sum S, and that we use the conventional binary
carry-save addition equations as

svk = xk ⊕ yk ⊕ sk = pk ⊕ pk ⊕ ck = ck

cvk = xk yk ∨ (xk ∨ yk) sk = xk yk ∨ (xk ∨ yk) ck = ck+1 (3.65)

Therefore, to detect an error in the sum we have to check if

n−1∏

k=0

svk ⊕ cvk−1 =
n−1∏

k=0

(ck ⊕ ck) (3.66)

3.4. Sum error detection 57

is zero, where
∑n−1

k=0 stands for the AND operation.

The advantage of this second approach is that it can be formulated in terms of word-
length operands X, Y and S, obtaining also a simple condition for BCD 10’s complement and
sign-magnitude BCD addition/subtraction. Next, we describe the application of this method
to 2’s complement binary, 10’s complement BCD and mixed binary/BCD adders.

3.4.1 2’s complement binary addition

To check the correctness of a 2’s complement addition we use the following condition:

X + Y = S ⇒ X + Y + S + 1 = 0 ⇒ X + Y + S = −1 (3.67)

This was used by other authors [32] to check conditions of the type A + B = K.

For n + 1 precision bits (including a sign bit), the two’s complement of 1 is an array of
n + 1 ones. In this way, the condition (3.67) is transformed into:

X + Y + S = −2n +
n−1∑

k=0

2k (3.68)

In the case of 2’s complement subtraction we have

X − Y = S ⇒ X + Y + S = −2 ⇒ X + Y + S = −2n +
n−1∑

k=1

2k (3.69)

Conditions (3.68) and (3.69) are formulated in a single expression as

X + Y ∗ + S = −2n +
n−1∑

k=1

2k + sub (3.70)

where sub points out a subtraction and Y ∗ = Y for addition or Y ∗ = Y for subtraction. Using a
binary carry-save addition to compute X +Y ∗+S = 2 ·C +SV , condition (3.70) is only verified
if all the XORed carry and sum bits at each position are one, that is

X + Y ∗ + S = SV + 2 · C = −2n +
n−1∑

k=1

2k + sub ⇔
∏n

k=0
(svk ⊕ ck−1) == 1 (3.71)

where c−1 = sub and
∏

is a product of logical AND gates. Fig. 3.24 shows the proposed sum
error detector for an 8-bit 2’s complement binary addition/subtraction. Before 2’s complement
subtraction, operand Y is inverted and a ’hot one’ is used as a carry input. Thus, a 2’s
complement binary addition/substraction can be checked using a level of 3:2 CSA (carry-save
adder or full adder) and a parity checker which performs the XOR of each pair of bits at each
position and a subsequent logical AND over all the XOR’s output bits.

3.4.2 10’s complement BCD addition

A similar verification scheme can be applied for 10’s complement addition and subtraction. In
this case, for p + 1-digit precision we have the following condition,

X + Y = S ⇒ X + Y − sp · 10p +
p−1∑

i=0

(9− Si) · 10i = −1 ⇒

58 Chapter 3. 10’s Complement BCD Addition

x1,3

sv0,3 sv0,2 sv0,1 sv0,0

parity bit

sv0,0

y*1,3 s1,3 x1,2 y*1,2 s1,2 x1,1 y*1,1s1,1 x1,0 y*1,0 s1,0 x0,3 y*0,3 s0,3 x0,2 y*0,2 s0,2 x0,1 y*0,1 s0,1 x0,0 y*0,0 s0,0

sub

cv1,3 sv1,3 sv1,2 sv1,1 sv1,0

sv1,3 sv1,2 sv1,1 sv1,0cv1,2 cv1,1 cv1,0 cv0,3 cv0,1cv0,2 cv0,0sv0,3 sv0,2 sv0,1

Parity checker

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

cv1,2 cv1,1 cv1,0 cv0,3 cv0,1cv0,2 cv0,0

Figure 3.24. Proposed architecture for the detection of 2’s complement sum errors (8-bits).

X + Y + S −
p−1∑

i=0

6 · 10i = −1 (3.72)

where we have used 9− Si = Si − 6 and sp ∈ {0, 1}. The 10’s complement of 1 is represented as
an array of p 9’s and a leading sign bit one. Introducing this value in the previous expression
we obtain

X + Y + S = −10p +
p−1∑

i=0

(9 + 6) · 10i ⇒

X + Y + S = −20 · 10p +
p−1∑

i=0

3∑

j=0

2j · 10i (3.73)

The condition of correctness for 10’s complement substraction is given by

X + ¬Y + S = −10p +
p−1∑

i=1

15 · 10i + 14 ⇒

X + ¬Y + S = −20 · 10p +
p−1∑

i=1

3∑

j=0

2j · 10i +
3∑

j=1

2j (3.74)

where ¬Y =
∑p−1

i=0 Yi + 6 10i is the 9’s complement of Y .

Expressions (3.73) and (3.73) are reformulated in a single condition as

X + Y ∗ + S = −20 · 10p +
p−1∑

i=1

3∑

j=0

2j · 10i +
3∑

j=1

2j + sub (3.75)

where

Y ∗
i =

{
Yi If(sub == 0)
¬Yi = Yi + 6 Else

(3.76)

3.4. Sum error detection 59

Thus, since n = 4p, an error in the 10’s complement BCD addition S = X ± Y can be detected
comparing the result of X + Y ∗ + S with a n + 1-bit row of ones, as in 2’s complement binary
addition.

Condition (3.75) is stated for a digit 0 < i < p as

Xi + Y ∗
i + Si + C∗i = 10 · C∗i+1 + 15 (3.77)

where C∗i and C∗i+1 are the decimal input and output carries of X + Y ∗ + S at position i.
Introducing in (3.77) the following relations,

Si = mod10(Xi + Y ∗
i + Ci)

Si = 15− Si

Xi + Y ∗
i + Ci = 10 · Ci+1 + Si (3.78)

we have that the decimal carries C∗i are equal to the decimal carries Ci of S = X+Y ∗. Therefore,
condition (3.75) is equivalent to

Xi + Y ∗
i + Si + Ci = 10 · Ci+1 + 15 (3.79)

for 0 < i < p and

X0 + Y ∗
0 + S0 = 10 · C1 + 14 + sub (3.80)

for i = 0.

To perform this comparison using decimal carry-save arithmetic we propose to use a
conventional binary carry-save addition over the three BCD operands obtaining a sum word
SV and a carry word CV as

svi,j = xi,j ⊕ y∗i,j ⊕ si,j

cvi,j = (xi,j y∗i,j) ∨ (xi,j ∨ y∗i,j) si,j (3.81)

Condition (3.75) is expressed in terms of SV and CV as

X + Y ∗ + S = SV + L1shift[H] = −10p +
p−1∑

i=1

15 10i + 14 + sub (3.82)

where L1shift denotes a 1-bit binary wired left shift and

HVi =

{
CVi + 3, CVi ∈ [5, 12] If(Ci+1 == 1)
CVi ∈ [0, 7] Else

(3.83)

The term HVi is introduced to correct the 4-bit vector representation of CVi when a decimal
carry-out Ci+1 is generated at position i, as stated in (3.79). That is, Ci+1 is 1 when the
sum Xi + Y ∗

i + Si + Ci = SVi + (L1shift[HV])i is equal to 10 · hvi,3 + 15 = 25. Note that Ci+1 =
hvi,3 = (L1shift[HV])i+1,0. In this case, a +3 is added (digitwise) to CVi to get the correct BCD
representation after the left shifting 12.

12This is equivalent to shift CVi 1-bit to the left and then add +6.

60 Chapter 3. 10’s Complement BCD Addition

The boolean expressions for hvi,j are given by

hvi,3 = Ci+1

hvi,2 = cv3 (cvi,2 ∨ cvi,1 ∨ cvi,0) Ci+1 ∨ cvi,2 Ci+1

hvi,2 = cvi,1 ⊕ cvi,0 Ci+1 ∨ cvi,1 Ci+1

hvi,0 = cvi,0 Ci+1 ∨ cvi,0 Ci+1 (3.84)

Therefore, in terms of SV and HV , condition (3.80) is verified when

n∏

k=0

(svk ⊕ hvk−1) = 1 (3.85)

where
∏

stands for the logical AND operation, n = 4p, k = 4i + j and hv−1 = sub.

Fig. 3.25 shows the proposed error checking architecture for 10’s complement addi-
tion/subtraction (2-digit slice). The architecture consists of a binary 3:2 CSA with inputs X,

parity bit

mux-20 1 mux-20 1 mux-20 1
sub

cv0,0cv0,1cv0,2

sv1,3 sv1,2 sv1,1
sv1,0 sv0,3 sv0,2 sv0,1

sv0,0

Parity checker

C1cv0,3

mux-20 1 mux-20 1 mux-20 1

cv1,0cv1,1cv1,2 C2cv1,3

hv1,2 hv1,1 hv1,0 hv0,2
hv0,3 hv0,1 hv0,0

x1,3

sv0,3 sv0,2 sv0,1 sv0,0

y*1,3 s1,3 x1,2 y*1,2 s1,2 x1,1 y*1,1s1,1 x1,0 y*1,0 s1,0 x0,3 y*0,3 s0,3 x0,2 y*0,2 s0,2 x0,1 y*0,1 s0,1 x0,0 y*0,0 s0,0

cv1,3
sv1,3 sv1,2 sv1,1 sv1,0

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

cv1,2 cv1,1 cv1,0 cv0,3 cv0,1cv0,2 cv0,0

Figure 3.25. Proposed architecture to check BCD addition/subtraction errors (2 digits).

Y ∗ and S, a block to compute HV from the carry bit vector CV , which implements (3.84) and
a parity checker. Control signal sub indicates a subtraction.

3.4. Sum error detection 61

3.4.3 Mixed binary/BCD addition

The extension of the sum checker architecture to support the mixed 2’complement binary/10’s
complement BCD addition is straightforward. Fig. 3.26 shows an scheme for the proposed
error detector.

parity bit

mux-20 1 mux-20 1
mux-20 1

sub

cv0,0cv0,1cv0,2

sv1,3
sv1,2 sv1,1 sv1,0 sv0,3 sv0,2 sv0,1

sv0,0

Parity checker

C1cv0,3

mux-20 1 mux-20 1
mux-20 1

cv1,0cv1,1cv1,2 C2cv1,3

hv1,2 hv1,1 hv1,0 hv0,2hv0,3 hv0,1 hv0,0

dec

cv0,3

dec

x1,3

sv0,3 sv0,2 sv0,1 sv0,0

y*1,3 s1,3 x1,2 y*1,2 s1,2 x1,1 y*1,1s1,1 x1,0 y*1,0 s1,0 x0,3 y*0,3 s0,3 x0,2 y*0,2 s0,2 x0,1 y*0,1 s0,1 x0,0 y*0,0 s0,0

cv1,3 sv1,3 sv1,2 sv1,1 sv1,0

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

cv1,2 cv1,1 cv1,0 cv0,3 cv0,1cv0,2 cv0,0

Figure 3.26. Proposed architecture to detect decimal and binary sum errors (8-bits)

The only significant change with respect to the decimal architecture of Fig. 3.25 affects
to equations (3.84) for hvi,j. A control signal dec is used to indicate a decimal operation, so the
equations of hvi,j for the mixed binary/10’s complement BCD checker are given by

hvi,3 = cv3 ∨ Ci+1 dec

hvi,2 = cv3 (cvi,2 ∨ cvi,1 ∨ cvi,0) (Ci+1 dec) ∨ cvi,2 Ci+1 dec

hvi,2 = cvi,1 ⊕ cvi,0 (Ci+1 dec) ∨ cvi,1 Ci+1 dec

hvi,0 = cvi,0 (Ci+1 dec) ∨ cvi,0 Ci+1 dec (3.86)

The other minor difference affect to the input Y ∗. For compatibility of both binary and BCD
operations, Y ∗ is defined as

Y ∗
i =





Yi If(sub == 0)
¬Yi = Yi + 6 Else If(sub == 1 AND dec == 1)
Yi Else

(3.87)

62 Chapter 3. 10’s Complement BCD Addition

3.5 Evaluation results and comparison

The area and delay figures used in this work for evaluation and comparisons have been esti-
mated from gate level descriptions of the architectures. For this purpose, we have developed
a rough evaluation model for CMOS logic circuits to obtain area and delay estimations just
performing simple hand calculations. This method allows us to explore the advantages and
costs of the different algorithms and architectures in a faster and more flexible way than us-
ing time-consuming synthesis tools, limited also by the target technology. The area and delay
evaluation model is detailed in Appendix A.

The delay model is based on the logical effort method [131]. It has been widely used to
evaluate and improve critical timings in many designs [54, 126]. We introduce some simpli-
fications to allow for faster hand calculations. We consider input and output loads, but gate
sizing optimizations and the effect of interconnections are beyond the scope of this model.
Instead, we assume gates with the drive strength of the minimum sized (1x) inverter using
buffers for high loads. This assumption is supported by the results presented a in recent pa-
per [111], that deals with the evaluation of CMOS adders. In order to provide fair comparison
results, we consider that the output load (Cout) of each architecture is equal to its input load
(Cin). The delay is given in FO4 units (delay of a 1x inverter with a fan-out of four 1x inverters).
The area or hardware complexity of a design is given as the number of equivalent minimum
size two-input NAND gates (NAND2 units).

We do not expect this rough model to give absolute area and delay figures, due to the
high wiring complexity of current deep sub-micron technologies [68]. However we consider
that it is good enough for making design decisions at gate level and that it provides quite
accurate area and delay ratios to compare different designs. Moreover, it is expected that two
architectures with similar structures scale in the same way when implemented in the same
technology.

To extract fair conclusions from comparison results, we must be aware of that the com-
parative advantages are not due to a better circuit logic implementation, but a faster algorithm
or a more advanced architectural design. Therefore, for each algorithm we provide the best
possible architecture, and for each architecture, several implementations with representative
circuit topologies.

In this way, we have estimated the area and delay of the different binary, decimal BCD
and mixed binary/BCD adders discussed in this Chapter, using several representative prefix
tree topologies: Kogge-Stone (K-S) [86], Ladner-Fischer (L-F) [89], a quaternary-tree (Q-T)
[100] and the Ling scheme [95]. We provide area-delay figures for the operand lengths of most
common use in decimal arithmetic: 64-bit or 16-BCD digit coefficients (Decimal64 format)
and 136-bit or 34-BCD digit coefficients (Decimal128 format). We have also evaluated the
area and delay of the sum error check architectures of Section 3.4. Next, we present the
results of this evaluation and a comparative study among the different proposals.

3.5.1 Evaluation results

The area and delay estimations are presented in three separate groups:

3.5. Evaluation results and comparison 63

Prefix tree Total Stages
topology Delay Area Setup∗ Pre-sum Carry∗ Sum∗

(# FO4) (Nand2) Delay/Area Delay/Area Delay/Area Delay/Area

16-BCD digit adders

Prefix K-S 16.9 2400 6.3/880 2.0/240 7.6/1000 3.0/280
Prefix L-F 18.5 2030 6.3/880 2.0/240 9.2/630 3.0/280
Prefix Q-T 15.9 2220 4.0/760 5.6/820 8.4/370 3.5/230
Ling K-S 16.6 2590 6.3/880 2.0/240 7.3/940 3.0/530
Ling L-F 18.2 2250 6.3/880 2.0/240 8.9/600 3.0/530
Ling Q-T 15.6 2260 4.0/760 5.6/930 8.1/340 3.5/230

34-BCD digit adders

Prefix K-S 19.3 5630 6.3/1880 2.0/510 10.0/2650 3.0/590
Prefix L-F 20.7 4800 6.3/1880 2.0/510 11.4/1820 3.0/590
Prefix Q-T 18.1 4920 4.0/1610 5.6/1760 10.6/1050 3.5/500
Ling K-S 19.0 6020 6.3/1880 2.07510 9.7/2520 3.0/1150
Ling L-F 20.4 5260 6.3/1880 2.0/510 11.1/1750 3.0/1150
Ling Q-T 17.8 4950 4.0/1610 5.6/1950 10.3/890 3.5/500
∗ Stages in the critical path.

Table 3.2. Delay and area figures for 10’s complement adders.

• 10’s complement adders.

• Mixed 2’s complement/10’s complement adders.

• Architectures for sum error checking.

We have considered the following stages for the adders: i) operand setup (hardware to
prepare operands for binary addition/subtraction), ii) pre-sum (logic to compute the two-
conditional pre-sums or the binary carry-propagate signals) iii) carry computation (including
the evaluation of the carry-generate and carry-alive signals and the carry tree logic), iv) sum
(determination of final sum digits depending on carries).

Table 3.2 presents the evaluation results for the 10’s complement architectures of Section
3.3.

We have analyzed six different configurations for both 16 and 34 BCD digits. Below each
column, we present the delay and area estimations for each adder or the corresponding stage
in number of FO4 and NAND2 units. For 16-digit and 34-digit operand lengths, the pre-sum
stage (constant delay) does not contribute to the total delay. The critical path delay is the
sum of the delays of the operand setup stage, carry computation (logarithmic delay) and sum
stage.

The adders based on the Kogge-Stone (Prefix K-S, Ling K-S) and Ladner-Fischer (Prefix
L-F, Ling L-F) carry tree topologies implement the architecture of Fig. 3.10. The critical path
delay of the setup stage (Fig. 3.10(b)) is given by the computation of the selection signal AU−

i

plus the delay required to distribute this signal to three 2:1 multiplexes.

64 Chapter 3. 10’s Complement BCD Addition

The Prefix K-S adder uses the high-density logic prefix tree topology of Fig. 3.11(b) while
the Prefix L-F adder implements the reduced logic prefix tree of Fig. 3.11(c). The equivalent
Ling K-S and Ling L-F adders were obtained applying the transformation method of Section
3.3.3 to the corresponding K-S and L-F prefix topologies.

In the case of the quaternary tree configurations (Prefix Q-T and Ling Q-T), the general
architecture is shown in Fig. 3.13 and the carry tree in Fig. 3.16. The preferred configuration
for the operand setup stage is the one shown in Fig. 3.15(b). The critical path goes through
the Yi + 6 block and a level of 2:1 muxes. The stage delay is reduced from the 6.3 FO4 of the
configurations of Fig. 3.10(b) or Fig. 3.15(a) to 4 FO4. This leads to the fastest Q-T adder with
a moderate area overhead with respect to the configuration of Fig. 3.15(c).

The pre-sum stage of the Prefix Q-T and Ling Q-T adders implements the BCD two-
conditional adders of Fig. 3.14 and Fig. 3.20(b) respectively.

The carry computation includes the generation of carry-generate and carry-alive signals
and the computation of the carries in the prefix tree. The binary carry-generate and carry-
alive signals are evaluated in a single level of NAND2–NOR2 CMOS gates. The nodes of the
prefix tree are implemented in CMOS logic alternating logical levels of AOI–NAND2 and OAI–
NOR2 gates. The number of levels of the minimum logical-depth prefix trees for 16 and 34
digits are 6 and 8 respectively. The graph representations of the prefix trees show that the
critical path goes from the top-right corner to the bottom-left corner, which corresponds with
the largest wire delay. We have neglected the impact of wire delay, which could favor, at first
glance, the K-S topology with respect to the L-F and Q-T topologies. However, the fanout of
the last level of the Q-T is higher than the K-S one (minimum fanout at each level), and thus,
the quaternary carry tree is slightly slower than the K-S carry tree.

The critical path delay of the sum stage is equivalent to the delay of an XOR gate (as-
suming an output load equal to the input capacitance of each adder).

From the area and delay estimations of Table 3.2, we conclude that the better configu-
ration for a 10’s complement BCD adder is the quaternary tree. It is the fastest alternative
(more than 1 FO4 faster) and presents the better area and delay trade-offs. Moreover, the
Ling scheme applied to the Prefix Q-T adder (Ling Q-T adder) leads to a slightly faster adder
(about 3 % faster) with a similar area.

The area and delay evaluation results for the mixed 2’s complement/10’s complement
architectures are presented in Table 3.3. Fig. 3.12 shows the mixed binary/BCD architecture
for the full binary prefix tree topologies (K-S and L-F). For the Q-T topologies, the architecture
is shown in Fig. 3.18. Comparing the estimated area and delay figures with those of Table Ta-
ble 3.2, it can be seen that, extending the 10’s complement BCD adders to mixed binary/BCD
adders, only affects to the area figures. Thus, the area overhead ranges from 3% in the case
of Prefix K-S and Prefix L-F adders to less than 10% in the case of the Ling Q-T adder.

In Table 3.4 we present the estimated area and delay figures for the different sum check-
ers of Section 3.4: 2’s complement (Fig. 3.24), 10’s complement (Fig. 3.25) and mixed 2’s
complement/10’s complement (Fig. 3.26). The contribution of the carry-save adder and the
parity checker blocks to the overall area and delay is also detailed. The proposed sum check-
ers cost approximately half the area and have less latency than the fastest adder of each type.
Since the sum checkers are separated from the adders, these units have no impact in the

3.5. Evaluation results and comparison 65

Prefix tree Total Stages
topology Delay Area Setup∗ Pre-sum Carry∗ Sum∗

(# FO4) (Nand2) Delay/Area Delay/Area Delay/Area Delay/Area

64-bit/16-BCD digit adders

Prefix K-S 17.1 2470 6.3/880 2.0/240 7.6/1000 3.2/350
Prefix L-F 18.7 2100 6.3/880 2.0/240 9.2/630 3.2/350
Prefix Q-T 16.1 2460 4.0/990 5.6/870 8.4/370 3.7/230
Ling K-S 16.8 2650 6.3/880 2.0/240 7.3/940 3.2/590
Ling L-F 18.4 2310 6.3/880 2.0/240 8.9/600 3.2/590
Ling Q-T 15.8 2520 4.0/990 5.6/960 8.1/340 3.7/230

136-bit/34-BCD digit adders

Prefix K-S 19.5 5730 6.3/1880 2.0/510 10.0/2650 3.2/690
Prefix L-F 20.9 4900 6.3/1880 2.0/510 11.4/1820 3.2/690
Prefix Q-T 18.3 5420 4.0/2110 5.6/1760 10.6/1050 3.7/500
Ling K-S 19.2 6120 6.3/1880 2.0/510 9.7/2520 3.2/1250
Ling L-F 20.6 5360 6.3/1880 2.0/510 11.1/1750 3.2/1250
Ling Q-T 18.0 5500 4.0/2110 5.6/2000 10.3/890 3.7/500
∗ Stages in the critical path.

Table 3.3. Delay and area figures for 2’s complement/10’s complement adders.

Architecture Total Stages
Carry-save adder Parity checker

Delay Area Delay Area Delay Area
(# FO4) (Nand2) (# FO4) (Nand2) (# FO4) (Nand2)

16-BCD digit architectures

2’s complement 9.0 1000 3.4 700 5.6 300
10’s complement 12.6 1260 7.0 960 5.6 300
Mixed bin/dec 12.6 1300 7.0 1000 5.6 300

34-BCD digit architectures

2’s complement 9.6 2160 3.4 1480 6.2 680
10’s complement 13.2 2720 7.0 2040 6.2 680
Mixed bin/dec 13.2 2790 7.0 2110 6.2 680

Table 3.4. Evaluation results for sum error checkers.

processor cycle time, usually determined by the adder latency. Moreover, the sum checking
takes at most one cycle after the sum execution. Thus, in some microprocessors13, it could
be performed in the time interval between the sum completion (obtention of result) and the
instruction commit, removing error detection from the critical path. In this case, this sum
checking would have no effect on the microprocessor performance.

13For instance, in superscalar ”out-of-order” microprocessors, such as the Intel Pentium4 or the IBM Power5.

66 Chapter 3. 10’s Complement BCD Addition

Prefix tree Binary Decimal addition method
topology Adders Proposed Speculative/†Direct

Delay Area Delay Area Delay Area
#FO4/ratio Nand2/ratio #FO4/ratio Nand2/ratio

64-bit/16-BCD digit adders

Prefix K-S 12.7 1720 16.9/1.35 2400/1.40 18.7/1.45 2200/1.30
Prefix L-F 14.3 1350 18.5/1.30 2030/1.50 20.3/1.40 1750/1.30
Prefix Q-T 13.9 1640 15.9/1.15 2220/1.35 15.9/1.15 2370/1.45
†Prefix Q-T 16.6/1.20 2050/1.25

Ling K-S 12.4 1880 16.6/1.35 2590/1.40 18.4/1.50 2400/1.30
Ling L-F 14.0 1540 18.2/1.30 2250/1.45 20.0/1.40 1950/1.25
Ling Q-T 13.6 1670 15.6/1.15 2260/1.35 15.6/1.15 2450/1.50
†Ling Q-T 16.3/1.20 2150/1.30

136-bit/34-BCD digit adders

Prefix K-S 15.1 4180 19.3/1.30 5630/1.35 21.1/1.40 5150/1.25
Prefix L-F 16.5 3350 20.7/1.25 4800/1.45 22.5/1.35 4300/1.30
Prefix Q-T 16.1 3690 18.1/1.10 4920/1.35 18.1/1.10 5250/1.40
†Prefix Q-T 18.9/1.20 4570/1.25

Ling K-S 14.8 4500 19.0/1.30 6020/1.35 20.8/1.40 5520/1.20
Ling L-F 16.2 3740 20.4/1.25 5260/1.40 22.2/1.40 4750/1.25
Ling Q-T 15.8 3730 17.8/1.15 4950/1.30 17.8/1.15 5280/1.40
†Ling Q-T 18.5/1.20 4800/1.30

Table 3.5. Delay and area figures for 10’s complement BCD adders.

3.5.2 Comparison

In this Section we present the results of comparative study among the different decimal ad-
dition methods analyzed in this Chapter. Table 3.5 presents the area and delay figures for
16-digit and 34-digit 10’s complement BCD adders. We have implemented each method using
several full binary (Kogge-Stone and Ladner-Fischer), quaternary and Ling prefix tree topolo-
gies. As a reference we also show the results for the corresponding binary adders. Beside each
absolute value (area in NAND2 or delay in # FO4) we present a ratio value as the quotient of
the area or delay for the decimal adder over the corresponding magnitude for the equivalent
binary adder topology. This ratio represents how many times is more costly or slower the
decimal adder with respect to a binary (2’s complement) adder with a similar prefix or Ling
topology (for instance, 1.30 means 30% more area or 30% slower).

The two rightmost columns may contain the area-delay figures for the speculative or for
the direct decimal adders. We mark with a † symbol only the rows containing the area-delay
figures for the direct decimal architectures. Note that the direct decimal addition method is
not implementable in a full binary prefix tree topology, since only the decimal carries and not
the binary carries are defined.

To extract easily conclusions from the comparison, we represent this area-delay values
graphically in Fig. 3.27(a) for 16 digits and in Fig. 3.27(b) for 34 digits. We also provide the
area-delay curve of binary adders as a reference.

3.5. Evaluation results and comparison 67

 1000

 1500

 2000

 2500

 3000

 10 12 14 16 18 20 22 24

A
re

a
(#

 N
an

d2
 G

at
es

)

Delay (# FO4)

K-S Ling

K-S
Q-T Ling

Q-T
L-F Ling

L-F

Binary

Q-T Ling
Q-T

K-S Ling

K-S

L-F Ling

L-F
Proposed

Q-T Ling
Q-T K-S Ling

K-S

L-F Ling

L-F

Speculative

Q-T Ling

Q-T

Direct

(a) 16-BCD digits.

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 10 12 14 16 18 20 22 24

A
re

a
(#

 N
an

d2
 G

at
es

)

Delay (# FO4)

K-S Ling

K-S

Q-T Ling
Q-T

L-F Ling

L-F

Binary

Q-T Ling
Q-T

K-S Ling

K-S

L-F Ling

L-F
Proposed

Q-T LingQ-T

K-S Ling

K-S

L-F Ling

L-F

Speculative

Q-T Ling

Q-T
Direct

(b) 34-BCD digits.

Figure 3.27. Area/delay space of 10’s complement BCD adders.

Speculative adders with a full binary prefix or Ling carry tree (Prefix K-S, Prefix L-F,
Ling K-S and Ling L-F) need an additional stage after carry computation for decimal post-
correction (see Fig. 3.6(a)). Thus, thought the operand setup stage is slightly faster than
the corresponding stage in the proposed full binary prefix architectures, the overall latency is
about 10% higher (for example, 18.7 FO4 vs. 16.9 FO4 for the proposed 16-digit Prefix K-S
adder). However, the hardware required to evaluate the signals for conditional speculation
(Fig. 3.10(b)) makes the proposed architecture to be at least 10% more complex in area (for
example, 2200 NAND2 vs. 2400 NAND2 for the 16-digit Prefix K-S adder). The Ling scheme
applied to these adders leads from 2% to 3% faster adders but a cost of about 5% increment
in area.

For the Q-T based schemes, the speculative (Fig. 3.6(b)) and conditional speculative
(proposed) architectures present a similar latency, since the BCD sum digits are computed
speculatively out of the critical path, in the pre-sum stage. Now, the area is dramatically
increased in the speculative Prefix Q-T and Ling Q-T adders since the hardware for the

68 Chapter 3. 10’s Complement BCD Addition

decimal correction is required in each one of the two-conditional pre-sum paths. By other
hand, in the proposed Q-T architecture (Fig. 3.13), the evaluation of the conditional signals
for speculation is out of the critical path, so the hardware is further simplified (Fig. 3.13(b)).
This results in a reduction in area ranging from 5% to 15% for the proposed Q-T adders with
respect to the speculative ones. Furthermore, the Ling Q-T adders have an additional 3%
speedup with respect to the Prefix Q-T adders with practically no increment in area. This
makes very interesting the use of the Ling scheme for the Q-T architectures.

The direct decimal addition method can be efficiently implemented using the architecture
of Fig. 3.3. The resulting adder is slightly slower than the speculative and the proposed Q-T
adders, but presents better area ratio (more than 5%), since the sum cell is optimized for BCD
addition.

From our comparison, we conclude that for low latency the Ling Q-T based schemes are
the best choice. In this case our proposal requires slightly less hardware than the decimal
speculative adder and is slightly faster than the direct decimal adder. For low hardware cost,
the speculative adder with a Prefix L-F topology for carry generation fits the requirement
(requires 0.80 times the hardware complexity of the proposed Prefix Q-T adder). For the case
of trading-off hardware complexity and latency, the proposed or the direct decimal Ling Q-T
adders are a good alternative. Note that the K-S based schemes are not the best choice in
any case, although they are close in terms of the estimated hardware complexity and latency.
However, it is expected that real implementations with aggressive technologies and circuit
techniques result in a significant degradation of its figures of merit due to its high routing
complexity and the high amount of logic involved in critical paths.

Note that the fastest Q-T based decimal schemes are only 1.15 slower than the corre-
spondent Q-T binary adder, although the hardware complexity increases by a factor of more
than 1.30.

The area and delay estimations for the combined binary/decimal adders are shown in
Table 3.6 and in Fig. 3.28(a) for 16 digits and Fig. 3.28(b) for 34 digits. Binary addi-
tion/subtraction can be incorporated into BCD speculative and decimal conditional specula-
tive (proposed) adders with no significant increment in latency. In addition, practically all the
hardware is shared by binary and BCD operations. Thus, in full binary prefix topologies (K-S
and L-F) the area overhead is not significant (some additional gates or buffering for control
signals). For Q-T topology the area overhead for combined binary/BCD adders is around 5%.

The mixed binary/direct decimal adders (Fig. 3.4) have no apparent advantage in com-
parison with the speculative and conditional speculative with Q-T topology (25% more hard-
ware than our proposals and 10% more latency). The rows which contain the area-delay
figures for the direct decimal architectures are signaled with a † symbol.

An additional level of multiplexes is introduced in the the critical path to perform both
the direct decimal recurrence and the binary recurrence sharing the most part of the prefix
carry tree. Thus, the use of direct decimal based adders is only competitive for decimal specific
applications.

For low latency or trading-off area-delay implementations a good choice is the proposed
Ling Q-T adder, which is only 1.15 slower than the corresponding binary implementation (but
requires 40% more area). For low hardware cost a better option is the speculative Prefix L-F,

3.5. Evaluation results and comparison 69

 1000

 1500

 2000

 2500

 3000

 10 12 14 16 18 20 22 24

A
re

a
(#

 N
an

d2
 G

at
es

)

Delay (# FO4)

K-S Ling

K-S
Q-T Ling

Q-T
L-F Ling

L-F

Binary

Q-T Ling

Q-T

K-S Ling

K-S

L-F Ling

L-F

Proposed

Q-T Ling
Q-T

K-S Ling

K-S

L-F Ling

L-F

Speculative

Q-T Ling

Q-TDirect

(a) 16-BCD digits.

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 10 12 14 16 18 20 22 24

A
re

a
(#

 N
an

d2
 G

at
es

)

Delay (# FO4)

K-S Ling

K-S

Q-T Ling
Q-T

L-F Ling

L-F

Binary

Q-T Ling
Q-T

K-S Ling

K-S

L-F Ling

L-F

Proposed

Q-T Ling
Q-T K-S Ling

K-S

L-F Ling

L-F

Speculative

Q-T Ling
Q-TDirect

(b) 34-BCD digits.

Figure 3.28. Area/delay space of mixed binary/BCD adders.

which requires about 30% less area than the proposed Ling Q-T adder.

In conclusion, incorporating the binary add/sub operation in an existing BCD adder
based on the speculative or conditional speculative methods is inexpensive. Thus, it is com-
mon that commercial decimal ALUs implement both binary integer and BCD addition or sub-
traction operations [19, 20].

Finally, we also compare the two alternatives for sum error checking: using replication
of the primary adder and a parity checker (Fig. 3.22) against the use of the proposed sum
error checker (Fig. 3.23). Table 3.7 shows the area and delay estimations for the two con-
figurations and a primary adder of each type (2’s complement, 10’s complement, mixed 2’s
complement/10’s complement) as a reference. The area-delay figures of the primary adders
correspond with the proposed Prefix Q-T adders.

Observe that the replicated adder+parity checker scheme requires about 50% more area
than the proposed sum checker. Though the replication scheme is in some cases two times

70 Chapter 3. 10’s Complement BCD Addition

Prefix tree Binary Decimal addition method
topology Adders Proposed Speculative/†Direct

Delay Area Delay Area Delay Area
#FO4/ratio Nand2/ratio #FO4/ratio Nand2/ratio

64-bit/16-BCD digit adders

Prefix K-S 12.7 1720 17.1/1.35 2430/1.40 18.9/1.50 2230/1.30
Prefix L-F 14.3 1350 18.7/1.30 2060/1.50 20.5/1.45 1860/1.40
Prefix Q-T 13.9 1700 16.1/1.20 2450/1.40 16.1/1.20 2530/1.50
†Prefix Q-T 18.3/1.30 2800/1.65

Ling K-S 12.4 1880 16.8/1.35 2610/1.40 18.6/1.50 2430/1.30
Ling L-F 14.0 1540 18.4/1.30 2270/1.50 20.2/1.45 2050/1.30
Ling Q-T 13.6 1740 15.8/1.15 2510/1.45 15.8/1.15 2590/1.50
†Ling Q-T 17.8/1.30 2850/1.65

136-bit/34-BCD digit adders

Prefix K-S 15.1 4180 19.5/1.30 5690/1.35 21.3/1.40 5260/1.25
Prefix L-F 16.5 3350 20.9/1.25 4860/1.45 22.7/1.40 4430/1.30
Prefix Q-T 16.1 3800 18.3/1.15 5370/1.40 18.3/1.15 5560/1.45
†Prefix Q-T 20.6/1.30 6150/1.60

Ling K-S 14.8 4500 19.2/1.30 6060/1.35 21.0/1.40 5580/1.25
Ling L-F 16.2 3740 20.6/1.25 5300/1.40 22.4/1.40 4680/1.25
Ling Q-T 15.8 3860 18.0/1.15 5500/1.40 18.1/1.15 5600/1.45
†Ling Q-T 20.1/1.30 6250/1.60

Table 3.6. Delay and area figures for mixed binary/BCD adders.

Adder Type of sum checker
Proposed Adder+Parity checker

Delay/Area Delay Area Delay Area
(#FO4/Nand2) (tfo4/ratio) (Nand2/ratio) (tfo4/ratio) (Nand2/ratio)

16-BCD digit architectures

Binary 13.9/1640 9.0/0.65 1000/0.60 5.6/0.40 1940/1.20
Decimal 15.9/2220 12.6/0.80 1260/0.55 5.6/0.35 2520/1.15
Mixed 16.1/2450 12.6/0.80 1300/0.55 5.6/0.35 2750/1.10

34-BCD digit architectures

Binary 16.1/3800 9.6/0.60 2160/0.60 6.2/0.40 4480/1.20
Decimal 18.1/4920 13.2/0.75 2720/0.55 6.2/0.35 5600/1.15
Mixed 18.3/5370 13.2/0.70 2790/0.50 6.2/0.35 6050/1.15

Table 3.7. Comparison results for sum checkers.

faster than the proposed sum checker, it would require to increment the cycle time14 about
35% in case of performing addition and error detection in the same cycle, which is not realistic.
Thus, the parity checking should be computed one cycle latter than the sum execution, as in
the case of the sum checker. Therefore, there is no advantage in using unit replication and

14We assume a cycle time equal to the adder latency.

3.6. Conclusions 71

parity checking instead of the sum checker in real applications.

3.6 Conclusions

In this Chapter we have presented a new high-performance decimal addition algorithm that
allows the computation of 10’s complement and binary addition and subtraction operations.
The proposed algorithm computes the decimal carries using the conventional binary carry
propagate recurrence. For this purpose, each BCD digit of one input operand is conditionally
incremented +6 units. Unlike other methods based on an initial +6 BCD digit speculation,
this condition also simplifies the evaluation of the BCD sum from the resultant binary sum,
avoiding the use of decimal post-correction schemes that increments the critical path.

Thus, any 2’s complement adder can be used to compute 10’s complement additions and
subtractions with a little delay overhead due to the initial +6 conditional BCD digit specu-
lations. This leads to very efficient combined 2’s complement/10’s complement adders. We
have implemented the proposed method using representative high-performance prefix tree
adders with different area and delay trade-offs. We have applied the Ling scheme to prefix
tree adders, resulting in faster adders but only requiring a few modifications in the prefix tree
adder.

The rough evaluations performed show that the proposed algorithm leads to adders with
interesting area-delay figures. For example, we have shown that a very interesting adder
topology for low latency applications with good area and delay trading-off is a Ling quaternary
tree adder (Ling Q-T). The proposed Ling Q-T architecture present better area than other
representative previous proposals.

Moreover, the proposed algorithm might be of industrial interest since it is very competi-
tive in comparison with commercial and patent-protected ones [14, 19, 20, 25, 63]. Moreover,
it opens new alternatives for exploring optimizations with aggressive circuit level techniques.

Finally, we have proposed a unit for sum error detection for 10’s complement and mixed
2’s complement/10’s complement. It extends a previous architecture for binary sum detec-
tion. These units can replace the schemes of soft error protection based on parity checking
and replication of arithmetic units used in commercial processors, reducing the hardware
complexity without a performance penalty.

72 Chapter 3. 10’s Complement BCD Addition

Chapter 4

Sign-Magnitude BCD
Addition

Sign-magnitude arithmetic simplifies some key operations such as multiplication and division.
Thus, IEEE DFP formats use a sign-magnitude representation for signed BCD coefficients
instead of the 10’s complement or 9’s complement formats. However, sign-magnitude BCD
addition/subtraction is more complex to implement than 10’s complement BCD addition,
since the result, when negative, requires an additional conversion from 10’s complement to a
sign-magnitude form.

In this Chapter we present a new sign-magnitude BCD adder, which is based on an
extension of the conditional speculative method introduced in Chapter 3. Section 4.1 contains
an overview of the basic concepts of sign-magnitude BCD addition. Section 4.2 describes two
recent proposals of sign-magnitude BCD adders [136, 157].

Our method to improve sign-magnitude BCD addition/subtraction is detailed in Section
4.3. In Section 4.4 we propose several architectures of a sign-magnitude BCD adder using
different high-performance prefix tree and hybrid carry-select/prefix tree adders [86, 89, 100].
We also present the resulting implementations using the Ling prefix tree topologies [147].
In Section 4.5 we discuss a new unit to detect soft errors in sign-magnitude BCD adders.
Section 4.6 presents the area and delay evaluation results and a comparison among different
representative proposals. Finally, Section 4.7 contains the conclusions.

4.1 Basic principles

A sign-magnitude BCD adder computes both the magnitude and the sign of two operands
FX = (−1)sX X and FY = (−1)sY Y separately, as

FS = X + (−1)sub Y = (−1)sX
(
X + (−1)sY +sub−sX Y

)
= (−1)sign(S) CS (4.1)

where sub is the operation specified by the instruction (sub = 0 for addition sub = 1 for sub-
traction). The magnitude addition CS consists on the computation of CS = |X + (−1)eop Y |,
where eop is the effective operation (eop = sX ⊕ sY ⊕ sub). It is performed as an addition
X + Y if eop = 0 and as a magnitude subtraction |X − Y | if eop = 1. The sign is computed as

73

74 Chapter 4. Sign-Magnitude BCD Addition

10’s complement
adder

Mux

X Y

Cout

+ -

1 0

10’s complement

(Y-X)+1

sign(S)

sX sY

Sign
computation

sub

CS

eop

X Y+-

(a) Using a 10’s complement
BCD adder.

10’s complement
adder

Mux

++ - -

1 0

10’s complement
adder

Cout

Sign
computation

X Y
sub

CS

eop

X Y
+- Y X

+-

sign(S)

sX sY

(b) Using a dual 10’s complement BCD addi-
tion.

BCD compound
adder

Cout

+ -

S+1

Sign
computation

S

Mux2
inc 1 0

X Y

9’s complement

sub

CS

eop

X-Y
cmp

Mux1 0
X+Y(Y-X)

sign(S)

sX sY

(c) Using a BCD compound adder.

9’s complement
EAC adder

Mux

X Y

Cout

+ -

1 0

9’s complement

Sign
computation

cmp

(Y-X)

sign(S)
CS

eop

sX sYsub

Cout

X Y+-

(d) Using an 9’s complement EAC
adder.

Figure 4.1. Implementation of sign-magnitude BCD addition.

sign(S) = sX eop ∨ sign(X − Y) eop, where sign(X − Y) is defined for effective subtractions as

sign(X − Y) =

{
0 If(X ≥ Y)

1 Else
(4.2)

Fig. 4.1 shows four approaches15 to compute CS and sign(X − Y) using different con-
figurations of 10’s complement and 9’s complement adders. Fig. 4.1(a) uses a single 10’s
complement BCD adder to compute X ±Y . The carry-out of the adder determines sign(X −Y)
in case of effective subtraction (sign(X − Y) = Cout). Thus, if Cout == 0 and eop = 1, then
Y > X, and the output of the adder needs to be 10’s complemented to obtain the absolute
magnitude result CS = |X − Y |. This implies an additional carry propagation from the LSD
(least significant digit).

To avoid the additional carry-propagation, Fig. 4.1(b) (”dual adder” approach) uses a pair
of 10’s complement BCD adders to compute two speculative results X ± Y and Y ±X. For the
left adder we have that sign(X − Y) = Cout, so it can be used to select the appropriate result.
For instance, if Cout = 0 and eop = 1, then X < Y and CS = Y − X. This configuration leads
to low-latency implementations but with high hardware complexity. Due to area constraints,
the IBM Power6 DFPU [45] uses a single 10’s complement BCD hybrid carry-select/prefix tree

15Extrapolated from well-known techniques used to implement binary sign-magnitude adders [142].

4.2. Sign-magnitude BCD speculative adder 75

adder based on speculative decimal addition (see Section 3.1.3) to compute both X ± Y and
Y ±X sequentially in case of effective subtractions.

A more efficient alternative for low latency consists on implementing a compound adder
that computes both sum and sum+1 simultaneously. Compound adders [15, 116, 167] are
widely used in binary floating-point units to implement significand addition and to merge it
with rounding [16, 54]. The advantage of these implementations is that a ”late increment” or
a ”late complement” can be incorporated into a 1’s complement carry-propagate adder in an
additional small constant time [53].

Thus, 1’s complement carry-select and conditional adders (and hybrid implementations)
can be easily modified to accommodate the sum and sum+1 operations [116, 167]. A more
efficient VLSI implementation of low-latency binary compound adder is the flagged prefix
adder [15]. It can perform two related sums (X + Y and X + Y + 1) or subtractions (X − Y =
X + Y + 1 and Y − X = X + Y) with a slightly increment of hardware complexity and delay
respect the corresponding 1’s complement adders.

This scheme can be easily extended to implement a BCD compound adder using any 9’s
complement adder, as shown in Fig. 4.1(c). A 9’s complement adder computes S = X + Y (for
eop = 0) or S = X + (¬Y) (for eop = 1) and the decimal output carry Cout. In case of an effective
subtraction, we have that X−Y = X+(¬Y)+1 = S+1. On the other hand, Y −X is obtained as
the 9’s complement of S, since Y −X = −(X−Y) = ¬(X−Y)+1 = ¬(S +1)+1 = ¬S). Therefore,
the magnitude result CS = |X − Y | is implemented selecting S + 1 for Cout = 1 (X ≥ Y) and
¬S for Cout == 0 (Y > X). The control signal inc = eop Cout indicates a S + 1 operation. For
effective addition, CS = X + Y = S.

A more aggressive implementation of compound addition is the EAC (End Around Carry)
adder described in [120]. An advantage of this EAC adder is that it mitigates the delay due
to the high fanout of the selection signal inc by introducing the “end around carry” Cout into
the carry propagate recurrence. Thus, for effective subtractions, the magnitude CS = |X − Y |
is obtained just complementing the EAC sum output when Cout is zero (Y > X) (the +1 ulp
increment when Cout is one (X ≥ Y) is included into the carry propagation). For addition,
the carry input must be set to 0. The propagation of the EAC is known to be limited to
the operands length [8], so the EAC tree has the same logical depth as the equivalent 2’s
complement adder carry tree. A general diagram of sign-magnitude BCD addition using a 9’s
complement EAC adder is shown in Fig. 4.1(d). However, up to date, no implementation of a
9’s complement EAC adder has been proposed.

In the next Section we describe two recent proposals [136, 157] that implement a BCD
flagged prefix adder based on the decimal speculative addition method (see Section 3.1.3). In
Section 4.3 we extend our conditional speculative method to support sign-magnitude BCD
addition, while in Section 4.4 we show the resulting prefix tree implementations.

4.2 Sign-magnitude BCD speculative adder

The binary flagged prefix adder [15, 16] has been recently extended by Thompson, Karra and
Schulte [136], and by Wang and Schulte [157], to support BCD compound addition. Fig. 4.2
shows the architecture of this 9’s complement BCD flagged prefix tree adder. It implements

76 Chapter 4. Sign-Magnitude BCD Addition

Decimal post-correction

X Y

Mux-2
10 eop

Xi+6

4p

OP. SETUP

4p

4p
4p

bin carry-generate &
carry-alive

Flagged Binary Prefix
Carry Tree

gi,j ai,j

CARRY COMPUTATION

ak-1:0

xor gatesSUM

xor gates

PRESUM pi,j

4p

4p

ci,j

4p 4p

Cout

S*4p

1

ci,j

CS

DECIMAL CORRECTION

eop

cmp
inc

eop

(a) General Architecture.

Flag bits computation

CSi

lci+1,0
Mux201

ak-1:0

Mux3

ci+1,0

4

4

ci,j

4 4

4
xor gates

Si
*+1

4

-6-6

Si
*

Mux201

-6

Mux201

fi+1,0

ci+1,0

fi,j = ci,j ak-1:0

1

1

1
4

cmpinc eop

Si LSiSi

(b) Decimal post-correction (4-bit slice).

Figure 4.2. 9’s complement prefix tree adder [136, 157] using speculative decimal addition.

the speculative decimal addition method (Section 3.1.3) in four stages: operand setup, binary
carry propagation (implemented in a full binary Kogge-Stone flagged prefix tree), sum and
decimal post-correction.

The operand setup stage is similar to that of the 10’s complement adder of Fig. 3.6(a).
The Y operand is 9’s complemented for decimal subtraction. Every BCD digit of one in-
put operand is unconditionally biased by 6 to compute the decimal carries using a binary
carry propagation. The BCD sum is estimated from the binary sum of the input biased BCD
operands.

A carry propagation due to a +1 ulp (unit in the last place) increment of the sum is
determined by the trailing chain of 9’s of the BCD sum. The trailing chain of 9’s of the BCD
sum corresponds to a trailing chain of 15’s (’1111’) of the binary sum. This trailing chain of

4.2. Sign-magnitude BCD speculative adder 77

15’s is detected using the flagged bits signals fk (k = 4i + j), computed in the binary flagged
carry prefix tree along with the binary carries ck.

A flagged bit fk+1 indicates if the possible carry generated due to incrementing the sum
one ulp is propagated from lsb (least significant bit) to position k + 1. By definition, it is equal
to the block carry propagate signal pk:−1 given by

fk = pk−1:−1 =
k−1∏

q=−1

pq = pk−1 . . . p1 p0 p−1 = ck ak−1:−1 (4.3)

where ck = gk−1:−1,
∏

means here the logic AND operation. That is, a carry generated due a
+1 ulp increment of sum is propagated to bit k only if pk−1:−1 is one. The carry alive group
ak:−1 can be computed in parallel to the carries ck+1 as

(ck+1, ak:−1) = (gk:0, ak:0) • (0, 1) = (gk:0, ak:0) =
k∏

q=0

(gq, aq) (4.4)

where we assume g−1 = c0 = cin = 0 and a−1 = 1. The difference of this scheme with respect
to a conventional prefix tree is that now the terms ak:−1 = ak:0 a−1 are not necessarily zero,
since a−1 = 1. These terms can be computed in any prefix tree where the prefix cells of its last
level are full logic (the flagged prefix carry tree [15, 16]). The flag bits are computed using an
additional level of simple gates as fk = ck ak−1:−1.

Next, the binary sum bits are computed as s∗i,j = pi,j ⊕ ci,j. In the post-correction stage,
shown in Fig. 4.2(b), the BCD sum is obtained correcting the binary sum S∗ using the flag
bits fi,j as follows:

• For effective decimal addition (eop = 0), BCD sum digits are obtained subtracting -6 (dig-
itwise) from each 4-bit binary sum S∗i , if the decimal carry-out Ci+1 is zero, as described
for 10’s complement BCD speculative addition (Section 3.1.3).

• For effective subtraction operations (eop = 1), decimal digit correction is performed as:

– If X ≥ Y , then (sign(X − Y)) is positive (Cout = 1) and the result is given by LS =
S + 1 = X + (¬Y) + 1. In this case, the bits of the binary sum LS∗ = S∗ + 1 are
computed inverting the bits of S∗ when the corresponding flag bit is one, that is,
ls∗i,j = s∗i,j ⊕ fi,j. The BCD digits of LS = S + 1 are obtained subtracting 6 (digitwise)
from each 4-bit binary sum vector LS∗i at position i when the corresponding signal
ci+1,0 ⊕ fi+1,0 is zero.

– If Y > X, then (sign(X − Y)) is negative (Cout = 0) and the result is given by ¬(X +
(¬Y)) (9’s complement of sum). The 9’s complement of X + (¬Y) is obtained by bit
inverting the binary sum S∗ and then subtracting 6 from each 4-bit digit S∗i whose
corresponding decimal carry output Ci+1 is one.

The different cases, i.e., effective decimal addition X + Y , effective subtraction for X ≥ Y

and effective subtraction for Y > X, are selected by control signals eop, inc = eop Cout and
cmp = eop Cout using the final 3 to 1 multiplexer.

78 Chapter 4. Sign-Magnitude BCD Addition

4.3 Proposed method for sign-magnitude addition

We have extended the conditional decimal speculative algorithm presented in Section 3.2
to support sign-magnitude BCD addition. An advantage of a BCD adder based on condi-
tional decimal speculation is that the BCD sum digits are obtained from a minor modification
of the binary sum. This results in a simpler and faster scheme for sign-magnitude addi-
tion/subtraction than the speculative BCD compound adders of Section 4.2.

Fig. 4.3 shows the proposed algorithm for sign-magnitude addition of BCD operands X

and Y . We opt for the BCD compound addition scheme of Fig. 4.1(c). A future objective is
to extend the conditional speculative method to implement the 9’s complement EAC addition
scheme of Fig. 4.1(d).

[Algorithm: Conditional Speculative BCD Compound Addition]

Inputs: X :=
Pp−1

i=0 Xi · 10i :=
Pp−1

j=0 (XU
i 2 + xi,0) · 10i

Y :=
Pp−1

i=0 Yi · 10i :=
Pp−1

j=0 (Y U
i 2 + yi,0) · 10i

C0 := 0 LC0 := 1

For (i:=0;i<p;i++){

Y ∗i := (Y ∗i)U 2 + yi,0 =

(
¬Yi = Yi + 6 If(eop == 1)

Yi Else

1. Conditional speculation:

AU
i =

(
1 If XU

i + (Y ∗i)U ≥ 8

0 Else

ZU
i = XU

i + (Y ∗i)U + 6 ·AU
i

2. Binary carry-propagate computation:

Ci+1 = ci+1,0 = b(ZU
i + xi,0 + y∗i,0 + ci,0)/16c

LCi+1 = lci+1,0 = b(ZU
i + xi,0 + y∗i,0 + lci,0)/16c

}

3. Decimal digit addition:

Cout := Cp

For (i:=0;i<p;i++){

si,0 = mod2(xi,0 + y∗i,0 + ci,0)

SU
i =

(
8 If

�
ZU

i == 14 AND ci,1 == 0
�

mod16(ZU
i + 2 · ci,1) Else

lsi,0 = mod2(cxi,0 + cy∗i,0 + lci,0)

LSU
i =

(
8 If

�
ZU

i == 14 AND lci,1 == 0
�

mod16(ZU
i + 2 · lci,1) Else

CSi =

8><>: ¬Si = SU
i + 6 + si,0 Else If(eop == 1 AND Cout == 0)

LSi = LSU
i + lsi,0 Else If(eop == 1 AND Cout == 1)

Si = SU
i + si,0 Else

}

Figure 4.3. Proposed method for sign-magnitude BCD addition/subtraction.

The computation is divided in 3 stages: operand setup (includes 9’s complement of
operand Y and the +6 conditional digit speculation), binary carry propagate computation and
BCD digit addition. The operation of the setup stage is similar to that described in Section
3.2 for 10s complement addition: an input digit (either Xi or Y ∗

i = Yi + 6 eop ∨ Yi eop) is biased

4.4. Architectures for the sign-magnitude adder 79

by 6 when the condition AU
i is verified. The effective operation is indicated by eop (eop = 1 for

subtraction).

The BCD compound addition method evaluates both S = X + Y ∗ and LS = S + 1 =
X + Y ∗ + 1. The main difference with respect to the 10’s complement algorithm is the need
to compute a dual binary carry propagation. In addition to the chain of binary carries ck of
S∗, we evaluate the binary carries of LS∗, or binary late carries lck, assuming carry inputs
cin = g−1 = 0 (for the primary carry chain) and lcin = a−1 = 1 (for late carry chain). Actually, a
late carry lck is produced due to a carry ck or a trailing chain of k−1 ones in S∗, which indicate
that an increment of one ulp in S is propagated up to position k. Hence, the late binary carries
lck may be computed from the binary carries ck in an additional single gate delay time using
the block binary alive signals ak−1:−1 = ak−1:0 a−1 = ak−1 . . . a0 of S as

lck = ck ⊕ pk−1:−1 = ck ⊕ ck ak−1:−1 = ck ∨ ak−1:0 (4.5)

Decimal carries Ci and late decimal carries LCi correspond to the binary carries ci,0 and
lci,0 = ci,0 ∨ a4i−1:−1 at hexadecimal positions (1 each 4). Therefore, we can use either a binary
or a quaternary flagged prefix tree [15, 16] to evaluate signals ci,0 and a4i−1:0.

The digits of the BCD magnitude result CS are obtained as follows:

• For effective addition (eop = 0), the BCD sum S = X + Y is computed as detailed in
Section 3.2 for the 10’s complement algorithm. Therefore, CSi = Si, where the logical
expressions for Si are given by (3.38) for the full binary prefix adders and by equation
(3.39) for the hybrid prefix/carry-select architectures.

• In case of effective subtraction X − Y (eop = 1), the decimal carry output Cout = Cp = cp,0

determines the sign of X − Y :

– If Cout = 1, then X ≥ Y , and the magnitude result is given by LS = X + (¬Y) + 1.
That is, CSi = LSi, where the logical expressions for the sum digits LSi are obtained
introducing the late carries lci,j = ci,j ∨ a4i+j−1:0 in (3.38) or (3.39) instead of the
conventional carries ci,j.

– If Cout = 0, then X < Y and the magnitude result is computed as ¬S = ¬(X + ¬Y).
Magnitude digits CSi are then given by the 9’s complement of Si, that is, CSi =
9− Si = Si + 6.

The gate level implementations of these sum cells is detailed in the next Section for the full
binary prefix and the hybrid prefix/carry-select topologies. Additionally, we introduce the
Ling scheme into the flagged prefix tree adders to speedup the evaluation of the carries.

4.4 Architectures for the sign-magnitude adder

This Section presents several architectures for the proposed sign-magnitude BCD adder. The
main component of each architecture is a binary flagged prefix adder modified to support the
conditional speculative algorithm of Section 4.3. A key point is that any binary prefix adder
can be used by introducing some simple transformations. We show the architectures for the
full binary prefix tree, the hybrid prefix/carry-select and the Ling prefix topologies.

80 Chapter 4. Sign-Magnitude BCD Addition

Cout

a4i+j-1:0

Operand Setup

Sum

ci,j

CS

X Y

eop

4p

4p

xor gate level

4p

4p

PRESUM pi,j

4p

4p

Full Binary Prefix Carry Tree

CARRY COMPUTATION

Computation of generate and alive
ai,j gi,j4p 4p

4p

eop

inc

1

(a) Block diagram.

0

a4i+2:-1

csi,3

1

inc

csi,2 csi,1 csi,0

pi,3 ci,3

01 Mux2

ci,0pi,1pi,2

Mux2

a4i-1:-1pi,0

Mux2

1 0

ci,1a4i:-1a4i+1:-1

01 Mux2
01 Mux2

Mux21 0Mux21 0Mux21 0

ci,2

si,2

si,3

lsi,3 lsi,2 lsi,0si,1 si,0

Mux21 0

si,2

eop

si,0si,1

Mux21 0

si,3

s*i,2 s*i,0s*i,1s*i,3

lsi,1

s*i,2 s*i,0s*i,1s*i,3

si,3 si,2

eop
9’s complement

(b) BCD magnitude sum cell (4-bit digit slice).

Figure 4.4. Proposed sign-magnitude BCD prefix tree adder.

4.4.1 Binary prefix tree architecture

Fig. 4.4(a) shows the block diagram of the proposed sign-magnitude BCD adder for the full
binary prefix carry tree topology. The different blocks implement the computational stages
of the algorithm of Fig. 4.3. The operation setup, decimal correction and prefix carry tree
blocks are similar as those described for the proposed 10’s complement BCD prefix adders of
Section 3.3. The only difference is that, in a flagged prefix tree, the prefix nodes of the last
level implement full logic 16 and the carry input Cin is always 0.

Thus, the differences with respect to the 10’s complement adder are inside the sum
block that computes the BCD magnitude result. A signal inc is used to select the appropriate
BCD magnitude digits of the result. It is computed from the effective operation control bit
eop and the carry output of the prefix carry tree as inc = eop Cout. Fig. 4.4(b) shows a gate
level implementation of this sum block for one digit. The computation of the resultant BCD
magnitude digit is separated in two logical paths for the BCD data and one additional path for
the selection signal inc:

• The first path (inc = 0) computes the BCD sum bits Si according to the conditional
decimal speculative addition method as

Si =





si,3 = pi,3 ⊕ ci,3

si,2 = pi,2 ci,2 ∨ pi,3 pi,2 ci,2

si,1 = pi,1 ci,1 ∨ pi,3 pi,2 pi,1 ci,1

si,0 = pi,0 ⊕ ci,0

(4.6)

The black gates in Fig. 4.4(b) performs the replacement of values Si = {14, 15} by BCD
digits Si = {8, 9} as it was detailed in Section 3.2.

16In a conventional carry prefix tree, the final alive groups are not computed.

4.4. Architectures for the sign-magnitude adder 81

Moreover, to reduce the hardware complexity, the 9’s complement of Si, given by

Si + 6 =





si,3 ∨ si,2 ∨ si,1

si,2 ⊕ si,1

si,1

si,0

(4.7)

is computed along with Si as S∗i = Si eop∨ Si + 6 eop. The boolean equations for this path
can be simplified as

S∗i =





s∗i,3 = si,3eop ∨ si,3 ∨ si,2 ∨ si,1 eop

s∗i,2 = si,2eop ∨ (si,2 ⊕ si,1)eop
s∗i,1 = si,1

s∗i,0 = si,0 ⊕ eop

(4.8)

In this way, S∗i = Si is computed for effective addition and S∗i ¬Si = Si + 6 for effective
subtraction.

• The second path (inc = 1) implements the operation LS = S + 1. The following expression
for LSi was obtained replacing ci,j in (4.6) by lci,j = ci,j ∨ a4i+j−1:−1:

LSi =





lsi,3 = pi,3 ⊕ ci,0 ∨ a4i+2:−1

lsi,2 = pi,2 (ci,2 ∨ a4i+1:−1) ∨ pi,3 pi,2 ci,2 ∨ a4i+1:−1

lsi,1 = pi,1 (ci,1 ∨ a4i:−1) ∨ pi,3 pi,2 pi,1 ci,1 ∨ a4i:−1

lsi,0 = pi,0 ⊕ ci,0 ∨ a4i−1:−1

(4.9)

The black gates are also used to replace values LSi = {14, 15} by BCD digits LSi = {8, 9}.
Both binary carries ci,j and alive groups a4i+j−1:−1 are computed in the full binary prefix
tree. Note that this path is selected only in case of effective subtraction.

• The signal inc controls the final level of 2:1 multiplexes, selecting between LSi (path
inc = 1) or S∗i = ¬Si in case of effective subtraction. For effective addition (eop = 0), inc

is zero and S∗i = Si is always selected. Therefore, the BCD magnitude digits of the result
are selected according to

CSi = LSi inc ∨ S∗i inc (4.10)

Due to the huge load of the 2:1 multiplexes driven by inc, it is necessary to put a chain
of buffers to distribute the signal inc. Thus, the actual latency of the sum block depends not
only on the delay of paths Si and LSi but also on the delay of signal inc. This configuration
optimizes the latency of the whole sum block for large word lengths (16 BCD digits and above)
since it balances the delay of the logic in the BCD sum datapath with the delay of signal inc.

With respect to the implementation of Fig. 4.2 (based on speculative decimal addition),
our proposal uses a faster and simpler scheme to obtain the BCD magnitude sum from the
signals computed in the binary tree adder. This advantage comes not only from a different
reorganization of the final logic, but from the fact that the correction of the binary sum does
not depend on each decimal carry output.

82 Chapter 4. Sign-Magnitude BCD Addition

S1i S0i

4p

4p

Cout

a4i-1:0

Operand Setup

Sum

Ci

CS

X Y

eop

4p

p

Two-conditional
BCD Presum

4p

4p

SUM

4p

4p

Quaternary Prefix Carry Tree

CARRY COMPUTATION

Computation of generate and alive
ai,j gi,j4p 4p

p

eop

inc

1

(a) General diagram.

0

a4i-1:-1

1 inc

Ci

CSi

S1i

Ci

eop

S0i

Mux2

01 Mux2

Mux21 0

s0i,2

9’s complement9’s complement

S1*i S0*i

01 Mux2

LSi S*i

eop

s0i,0s0i,1

Mux21 0

s0i,3

s0*i,2 s0*i,0s0*i,s0*i,3

4

4
4

4 4

(b) Sum block (4-bit digit slice).

Figure 4.5. Proposed sign-magnitude BCD quaternary-tree adder.

4.4.2 Hybrid prefix/carry-select architecture

The diagram of the proposed hybrid quaternary prefix tree/carry-select architecture is shown
in Fig.4.5(a). Basically, this sign-magnitude BCD adder differs from the 10’s complement
adder of Fig. 3.13 in the implementation of the sum stage. The gate level implementations
for the other stages corresponds to the blocks presented for the 10’s complement adder17: the
operand setup (Fig. 3.15), the two-conditional presum stage (Fig. 3.14) and the prefix carry
tree (Figs. 3.16 and 3.17).

The gate level implementation of the sum block (one digit slice) is shown in Fig. 4.5(b).
This sum block performs the 9’s complement of presums S1i, S0i (out of the critical path).
Then, the true or complement form is selected depending on the effective operation eop. In
this way, the two-conditional digits S1∗i , S0∗i are computed as

S1∗i = S1i eop ∨ S1i + 6 eop

S0∗i = S0i eop ∨ S0i + 6 eop (4.11)

The BCD digits S∗i and LSi, which correspond to sum and sum+1 respectively, are se-
lected in parallel from the two-conditional presum pairs (S1∗i , S0∗i) and (S1i, S0i) depending on
the decimal carry Ci and group alive signals a4i−1:−1 as

S∗i = S1∗i Ci ∨ Ci

LSi = S1i (Ci ∨ a4i−1:−1) ∨ S0i Ci ∨ a4i−1:−1 (4.12)

The final level of 2:1 muxes is required to obtain the BCD magnitude digits of the result
depending on the signal inc = eop Cout as

CSi = LSi inc ∨ S∗i inc (4.13)

17Except that, for the sign-magnitude adder, the prefix nodes of the last level of the carry tree are full logic.

4.4. Architectures for the sign-magnitude adder 83

The additional delay of this BCD sign-magnitude adder with respect to the equivalent
hybrid prefix tree/carry-select 10’s complement adder (Fig. 3.13) is equal to the maximum of
the delay of a 2:1 mux or the propagation delay of the buffered inc signal with a load of 4p 2:1
muxes.

4.4.3 Ling prefix tree architectures

The Ling scheme can be incorporated into a BCD sign-magnitude prefix tree adders to speedup
the carry propagate evaluation using the same 3 transformations presented in Section 3.3.3,
that is:

1. The prefix operations are performed over pairs (gj , aj−1) instead of (gj , aj).

2. The prefix operations at the first level of the tree are simplified.

3. The BCD magnitude digits are obtained as a function of the Ling carries hi,j instead of
conventional carries ci,j.

The two first transformations are straightforward while the transformation of the BCD magnitude-
sum cell requires more detail. We separate the cases for the full binary prefix tree and the
hybrid prefix tree/carry-select adders:

• For a binary prefix carry tree configuration, the expression for the BCD magnitude
digits is stated as

csi,j = lsi,j inc ∨ s∗i,j inc (4.14)

where signals s∗i,j are defined in (4.8) in terms of signals si,j and eop. The signal inc is
computed in terms of the Ling carry output hout as

inc = (eop ap−1,3) hout (4.15)

The implementation of the Ling sum block (for one digit) is shown in Fig. 4.6(a). The
difference with respect to the prefix sum cell of Fig. 4.4(b) is limited to the evaluation of
lsi,j and si,j. The expression of signals lsi,j and si,j as a function of the Ling carries hi,j

is obtained introducing the following expressions

ci,j = ak−1 hi,j

lci,j = ci,j ∨ ak−1:−1 = ak−1(hi,j ∨ ak−2:−1) (4.16)

with k = 4i + j in (4.6) and (4.9), that is

Si =





si,3 = pi,3hi,3 ∨ (pi,3 ⊕ ai,2)hi,3

si,2 = pi,3 pi,2 pi,1 (pi,2hi,2 ∨ pi,3 (pi,2 ⊕ ai,1) hi,2)
si,1 = pi,3 pi,2 (pi,1hi,1 ∨ (pi,1 ⊕ ai,0) hi,1)
si,0 = pi,0hi,0 ∨ (pi,0 ⊕ ai−1,3)hi,0

(4.17)

and

LSi =





lsi,3 = pi,3hi,3 ∨ a4i+1:−1 ∨ (pi,3 ⊕ ai,2)(hi,3 ∨ a4i+1:−1)
lsi,2 = pi,3 pi,2 pi,1 (pi,2hi,2 ∨ a4i:−1 ∨ pi,3 (pi,2 ⊕ ai,1) (hi,2 ∨ a4i:−1))
lsi,1 = pi,3 pi,2 (pi,1hi,1 ∨ a4i−1:−1 ∨ (pi,1 ⊕ ai,0) (hi,1 ∨ a4i−1:−1))
lsi,0 = pi,0hi,0 ∨ a4i−2:−1 ∨ (pi,0 ⊕ ai−1,3)(hi,0 ∨ a4i−2:−1)

(4.18)

84 Chapter 4. Sign-Magnitude BCD Addition

0

a4i+1:-1

csi,3

1 inc

csi,2 csi,1 csi,0

pi,3 hi,3

01 Mux2

hi,0pi,1pi,2

Mux2

a4i-2:-1 pi,0

Mux2

1 0

hi,1a4i-1:-1a4i:-1

01 Mux2
01 Mux2

Mux21 0
Mux21 0Mux21 0

hi,2

si,2

si,3

lsi,3 lsi,2 lsi,0si,1 si,0

Mux21 0

si,2

eop

si,0si,1

Mux21 0

si,3

s*i,2 s*i,0s*i,1s*i,3

lsi,1

s*i,2 s*i,0s*i,1s*i,3

si,3 si,2

eop
9’s complement

ai-1,3ai,0ai,1

Mux21 0 Mux21 0Mux21 0 Mux21 0

ai,2

(a) Full binary tree adder.

0

A4i-1:-1

1 inc

Hi

CSi

SH1i

Hi

eop

S0i

Mux2

01 Mux2

Mux21 0

s0i,2

9’s complement9’s complement

SH1*i S0*i

01 Mux2

LSi S*i

eop

s0i,0s0i,1

Mux21 0

s0i,3

s0*i,2 s0*i,0s0*i,s0*i,3

4

4
4

4 4

From the two-conditional presum stage

(b) Quaternary tree adder.

Figure 4.6. Digit sum block of BCD sign-magnitude Ling prefix adders.

The black gates detect the wrong values {14, 15} for both Si and LSi replacing them by the
correct BCD result digits {8, 9}. The grey striped gates represent the additional hardware
with respect to the prefix sum cell of Fig.4.4(b). Observe that the critical path (carry
paths or inc path) of Figs. 4.4(b) and 4.6(a) is similar. Thus, the computation of the
BCD magnitude result CS is faster using the Ling carries hi,j and the group alive ak−2:−1

instead of ci,j and ak−1:−1, as it is stated by equations (4.17) and (4.18).

• For the quaternary prefix carry tree configuration, the BCD magnitude digits of the re-
sult, CSi, are computed using the sum cell of Fig. 4.6(b) and a row of the two-conditional
4-bit BCD adders of Fig. 3.21(a) in three steps: First, computation of two-conditional pre-
sums SH1i (with carry input ai−1,3) and S0i (with carry input 0), using the two-conditional

4.5. Sum error detection 85

4-bit BCD adder of Fig. 3.21(a), where

SH1i = S1i ai−1,3 ∨ S0iai−1,3 (4.19)

Next, the sum digits S∗i and LSi are computed from the presums SH1i and S0i, the
decimal Ling carries Hi = hi,0 and the group alive signals Ai−1:−1 = a4i−1:−1 as

Si = SH1i Hi ∨ S0i Hi

S∗i = Si + 6 eop ∨ Si eop

LSi = SH1i (Hi ∨Ai−1:−1) ∨ S0iHi ∨Ai−1:−1 (4.20)

and finally, the CSi digits are evaluated from LSi and S∗i as

CSi = LSi inc ∨ S∗i inc (4.21)

where inc = (eop ap−1,3) hout.

Therefore, this Ling adder is of similar complexity as the quaternary prefix tree BCD
adder of Fig. 4.5 while a gain in latency is obtained due to a slightly faster computation
of Ling carries Hi with respect to the conventional carries Ci.

4.5 Sum error detection

We propose a single sum checker to protect all the sum paths of the sign-magnitude BCD
adder. This sum checker is based on the method for error detection in a 10’s complement
BCD addition/subtraction presented in Chapter 3. Depending on the effective operation eop

and on inc = eop Cout, we have to check these three sum paths:

CS =





X + Y If(eop == 0)
¬(X + ¬Y) Else If(eop == 1 AND inc == 0)
X + ¬Y + 1 Else

(4.22)

For the first path (eop = 0), the condition to check for each digit is (see Section 3.4.2 for
more detail):

Xi + Yi + CSi + Ci = 10 · Ci+1 + 15 (4.23)

where the bit vector of 1510 is (1111)2 and the Ci’s corresponds with the decimal carries of
X + Y .

For the second path (eop = 1, Cout = 0), the sum computed is given by CS = ¬(X + ¬Y),
so the condition to detect an error is obtained as

CS − ¬(X + ¬Y) = 0 ⇒ CS + (X + ¬Y) = −1 (4.24)

Replacing in (4.24) the values ¬Y and −1 by

¬Y = Y −
p−1∑

i=0

6 10i

−1 = −10p +
p−1∑

i=0

9 10i (4.25)

86 Chapter 4. Sign-Magnitude BCD Addition

we get the following condition for CS

CS + X + Y = −10p +
p−1∑

i=0

15 10i (4.26)

or equivalently,

CSi + Xi + Yi + Ci = 10 · Ci+1 + 15 (4.27)

for each digit, where the Ci’s are the decimal carries of X + ¬Y .

For the third path (eop = 1, Cout = 1), the sum is computed as CS = X + ¬Y + 1, and the
condition for correct result is stated as

X + ¬Y + ¬CS + 2 = 0 ⇒ X + ¬Y + CS = −10p +
p−1∑

i=1

15 10i + 14 (4.28)

To obtain the condition for each digit, we need to know the carry input to each digit position.
The decimal carries of X +¬Y + CS coincide with the decimal carries of CS = X +¬Y + 1, that
is, the late decimal carries LCi = Ci ∨ a4i−1:−1, where a4i−1:−1 =

∏4i−1
k=−1 ak are the group alive

signals at decimal positions. Therefore, we have the following condition for CSi:

Xi + ¬Yi + CSi + LCi = 10 · LCi+1 + 15 (4.29)

Conditions (4.23), (4.27) and (4.29) for the BCD magnitude digit CSi can be summarized
in a single expression as

Xi + Y ∗
i + CS∗i + (Ci ∨ a4i−1:−1 inc) = 10 · (Ci+1 ∨ a4i+3:−1 inc) + 15 (4.30)

for 0 < i < p and

X0 + CY ∗
0 + CS∗0 = 10 · (C1 ∨ a3:−1 inc) + 14 + inc (4.31)

for i = 0, where

Y ∗
i =





Yi If(eop == 0)
¬Yi = Yi + 6 Else If(eop == 1 AND inc == 1)
Yi Else

CS∗i = CSi (eop ∨ inc) ∨ CSi eop ∨ inc (4.32)

The resulting architecture is shown in Fig. 4.7. As for the previous designs, the sum
checker uses a binary parity checker to compare the outputs of a modified binary 3:2 CSA
with inputs CX, CY ∗, CS∗. Two control signals, the effective operation eop and the increment
condition inc = eop Cout are used as selection signals for the different paths. Each decimal
carry-out LCi+1 = Ci+1 ∨ a4(i+1)−1:−1 inc indicates whether it is necessary to modify the carry
digit CVi to obtain the corrected carry HVi, as stated by

hvi,3 = LCi+1

hvi,2 = cv3 (cvi,2 ∨ cvi,1 ∨ cvi,0) LCi+1 ∨ cvi,2 LCi+1

hvi,2 = cvi,1 ⊕ cvi,0 LCi+1 ∨ cvi,1 LCi+1

hvi,0 = cvi,0 LCi+1 ∨ cvi,0 LCi+1 (4.33)

4.6. Evaluation results and comparison 87

Full
Adder

x1,3
y*1,3

cs1,3

x1,2

y*1,2

cs1,2

x1,1

y*1,1

cs1,1

x1,0

y*1,0

cs1,0

sv0,3 sv0,2 sv0,1 sv0,0cv1,3 sv1,3 sv1,2 sv1,1 sv1,0cv1,2 cv1,1 cv1,0 cv0,3 cv0,2 cv0,0cv0,1

Full
Adder

Full
Adder

Full
Adder

parity bit

mux-20 1 mux-20 1 mux-20 1

inccv0,0cv0,1cv0,2

sv1,3
sv1,2 sv1,1

sv1,0 sv0,3 sv0,2 sv0,1
sv0,0

Parity checker

C1

cv0,3

mux-20 1 mux-20 1 mux-20 1

cv1,0cv1,1cv1,2

C2

cv1,3

hv1,2 hv1,1 hv1,0 hv0,2
h0,3 hv0,1 hv0,0

Full
Adder

x0,3

y*0,3

cs0,3

x0,2

y*0,2

cs0,2

x0,1

y*0,1

cs0,1

x0,0

y*0,0

cs0,0

Full
Adder

Full
Adder

Full
Adder

mux-20 1 mux-20 1 mux-20 1 mux-20 1 mux-20 1 mux-20 1 mux-20 1 mux-20 1 eop

inccy1,3 y1,2 y1,1 y1,0 y0,3 y0,2 y0,1 y0,0y1,3 y1,2 y1,1 y1,0 y0,3 y0,2 y0,1 y0,0

y1,3 y1,2 y1,1 y1,0 y0,0y0,1y0,2y0,3

a3:-1a7:-1

Figure 4.7. Proposed checker for BCD sign-magnitude addition/subtraction errors (2 digits).

4.6 Evaluation results and comparison

We have use our evaluation model for CMOS circuits (Appendix A) to estimate the area
and delay figures of the different architectures discussed in this Chapter. First, we show
the evaluation results of the proposed sign-magnitude BCD adder for different prefix tree
topologies: Kogge-Stone (Prefix K-S) [86], Ladner-Fischer (Prefix L-F) [89], hybrid carry-
select/quaternary-tree (Prefix Q-T) [100], and the corresponding Ling prefix tree adders (Ling
K-S, Ling L-F, Ling Q-T). The word lengths of the BCD coefficients considered are 16 and 34
digits (64-bit and 134-bit respectively) with a 1-bit sign. We have also evaluated the area and
delay of the sum error check architecture of Section 4.5. We finally present a comparative
study with the different proposals of sign-magnitude BCD adders [136, 157].

88 Chapter 4. Sign-Magnitude BCD Addition

Prefix tree Total Stages
topology Delay Area Setup∗ Pre-sum Carry∗ Sum∗

(# FO4) (Nand2) Delay/Area Delay/Area Delay/Area Delay/Area

16-BCD digit adders

Prefix K-S 20.2 3300 6.3/880 2.0/240 7.6/1060 6.3/1120
Prefix L-F 21.8 2930 6.3/880 2.0/240 9.2/690 6.3/1120
Prefix Q-T 19.2 3200 4.0/760 5.6/820 8.4/430 6.8/1070
Ling K-S 19.9 3490 6.3/880 2.0/240 7.3/1000 6.3/1370
Ling L-F 21.5 3150 6.3/880 2.0/240 8.9/660 6.3/1370
Ling Q-T 18.9 3240 4.0/760 5.6/930 8.1/400 6.8/1070

34-BCD digit adders

Prefix K-S 23.3 7530 6.3/1880 2.0/510 10.0/2780 7.0/2360
Prefix L-F 24.7 6700 6.3/1880 2.0/510 11.4/1950 7.0/2360
Prefix Q-T 22.1 7010 4.0/1610 5.6/1760 10.6/1050 7.5/2460
Ling K-S 23.0 7960 6.3/1880 2.0/510 9.7/2650 7.0/2920
Ling L-F 24.4 7140 6.3/1880 2.0/510 11.1/1830 7.0/2920
Ling Q-T 21.8 7040 4.0/1610 5.6/1950 10.3/1020 7.5/2460
∗ Stages in the critical path.

Table 4.1. Delay and area figures for sign-magnitude BCD adders.

4.6.1 Evaluation results

Table 4.1 presents the estimated area and delay figures for the sign-magnitude BCD architec-
tures of Section 4.4. The area (in NAND2) and delay (in # FO4) figures included in the first
two columns are for the whole architectures. The remaining columns include the area and
delay for each stage: operand setup, pre-sum, carry computation and sum.

The architecture for the full binary based trees (Prefix K-S, Prefix L-F, Ling K-S, Ling
L-F) is shown in Fig. 4.4(a), while the blocks used in the sum stage are outlined in Fig. 4.4(b)
for the conventional prefix scheme, and in Fig. 4.6(a) for the Ling scheme. The architecture
diagram for the quaternary tree adders is shown in Fig. 4.5(a). Fig. 4.5(b) and Fig. 4.6(b)
detail the sum blocks for the Prefix Q-T and the Ling Q-T sign-magnitude BCD adders.

Like as in the 10’s complement and mixed binary/BCD architectures, the quaternary tree
topologies are faster and present better area-delay trade-offs. The area and delay overheads
with respect to the 10’s complement architectures come from the sum stage. The critical path
delay in the sum stage is increased because of the huge chain of buffers inserted to distribute
the signal inc = eop Cout to the final level of 2:1 muxes (3.3 FO4 delay for 64 bits and 4 FO4
delay for 136 bits). The increase in area for each adder topology is around 30%.

Table 4.2 shows the estimated area (in NAND2 units) and delay (in # FO4) figures for
the sum checker of Fig. 4.7). We also provide the delay/area ratio figures with respect to
the proposed 16-digit and 34-digit sign-magnitude BCD Ling Q-T adders. The delay/area
figures for the reference adder are included the second and fourth data rows of Table 4.2. For
comparison, in the third and sixth data rows we have included the delay/area figures for the
error detection scheme that uses unit replication and parity checking (Fig. 3.22).

4.6. Evaluation results and comparison 89

Architecture Delay Area
(#FO4/ratio) (Nand2/ratio)

16-BCD digit architectures

Proposed checker 14.6/0.75 1730/0.55
Sign-magnitude BCD adder 19.2/1.00 3200/1.00
2nd Adder + Parity checker 5.6/0.30 3500/1.10

34-BCD digit architectures

Proposed checker 15.2/0.70 3710/0.55
Sign-magnitude BCD adder 22.1/1.00 7010/1.00
2nd Adder + Parity checker 6.2/0.30 7690/1.10

Table 4.2. Delay-area figures for sign-magnitude BCD sum checkers.

The proposed sum checker requires half the area of the replication scheme. It has from
0.75 to 0.70 times the latency of the sign-magnitude BCD adder. Thus, each sum error detec-
tion can be completed in one cycle without modifying the add/sub instruction performance,
taking advantage of the time gap between the end of the sum execution and the instruction
completion. Moreover, although the replication scheme is more than 2.5 times faster than the
proposed sum checker, placing it with sum execution, it would require to increment the cycle
time about 30%.

4.6.2 Comparison

Table 4.3 presents the area and delay figures of the comparative study among the sign-
magnitude BCD adders analyzed in this Chapter. In addition, these results are represented
graphically in Fig. 4.8(a), for 16 digits, and in Fig. 4.8(b), for 34 digits.

We include in the comparison the BCD adders based on the proposed method (Section
4.3) and those based on the speculative method [136, 157] (Fig. 4.2). These adders use a full
binary flagged prefix K-S tree [15]. We also provide the area-delay curve of the sign-magnitude
binary adders as a reference. The ratio values of Table 4.3 were obtained as a quotient of the
delay or area of the BCD adder over the corresponding magnitude of the binary adder with an
equivalent topology.

The BCD adder proposed in [157] also incorporates hardware for decimal floating-point
addition and rounding, thought this was removed from the evaluation. To complete the com-
parison we have extended the original K-S architecture proposed in [136], obtaining area and
delay estimations for the other topologies: prefix L-F and Q-T and Ling L-F and Q-T. However,
we have not included in the comparison the direct decimal method, since there is no known
implementation of a sign-magnitude BCD adder based on that method.

Basically, the sign-magnitude BCD architectures differ from the 10’s complement ar-
chitectures in the sum stage, which computes the BCD magnitude result depending on the
effective operation, the decimal carry output and the signals computed in the flagged pre-
fix tree. The main conclusion we extract from Table 4.3 is that the sum stage proposed
in [136, 157] (Fig. 4.2(b)) is significantly more complex than our proposed sum stage (Fig.

90 Chapter 4. Sign-Magnitude BCD Addition

Prefix tree Binary Decimal addition method
topology Adders Proposed Speculative

Delay Area Delay Area Delay Area
#FO4 Nand2 #FO4/ratio Nand2/ratio #FO4/ratio Nand2/ratio

64-bit/16-BCD digit adders

Prefix K-S 16.0 2350 20.2/1.25 3300/1.40 22.3/1.40 3750/1.60
Prefix L-F 17.6 1980 21.8/1.25 2930/1.50 23.9/1.40 3250/1.65
Prefix Q-T 17.2 2330 19.2/1.10 3200/1.35 19.2/1.10 3850/1.65
Ling K-S 15.7 2510 19.9/1.25 3490/1.40 22.0/1.40 3950/1.55
Ling L-F 17.3 2170 21.5/1.25 3150/1.45 23.6/1.35 3450/1.60
Ling Q-T 16.9 2370 18.9/1.10 3240/1.35 18.9/1.10 3900/1.65

136-bit/34-BCD digit adders

Prefix K-S 19.1 5520 23.3/1.20 7530/1.35 24.7/1.25 8150/1.50
Prefix L-F 20.5 4690 24.7/1.20 6700/1.40 26.1/1.25 7300/1.55
Prefix Q-T 20.1 5140 22.1/1.10 7010/1.35 22.1/1.10 8250/1.60
Ling K-S 18.8 5840 23.0/1.20 7960/1.35 24.4/1.30 8520/1.45
Ling L-F 20.2 5080 24.4/1.20 7140/1.35 25.8/1.30 7750/1.55
Ling Q-T 19.8 5200 21.8/1.10 7040/1.35 21.8/1.10 8350/1.60

Table 4.3. Delay and area figures for sign-magnitude BCD adders.

4.4(b)). For this reason, the full binary prefix tree implementations (K-S and L-F) based on
the speculative method require at least 15% more area and are between 15% (16-digit) and
5% (34-digit) slower than our proposals for sign-magnitude BCD addition.

In the case of Q-T architectures both proposals have the same latency, but our imple-
mentations require between 25% and 30% less area depending on the number of digits and if
they use the Ling scheme. Therefore, for low latency and trading-off area-delay applications,
the preferred sign-magnitude BCD adder is the proposed Ling Q-T implementation, while for
low hardware cost a better choice is the proposed Prefix L-F implementation (it uses 20% less
area).

With respect to the binary sign-magnitude adders, the proposed Ling Q-T is only 10%
slower but cost 35% more area than the corresponding binary Ling Q-T implementation.
With respect to the proposed 10’s complement BCD Ling Q-T adders (for both 16-digit and
34-digit), the proposed 16-digit and 34-digit sign-magnitude BCD Ling Q-T adders are 20%
slower and require 40% more area.

Thus, due to their complexity in terms of area and latency, the use of sign-magnitude
BCD adders is limited to certain applications. One of the most important uses is in a floating-
point unit for magnitude addition/subtraction of integer coefficients. To get an efficient im-
plementation of a decimal floating-point adder, the decimal rounding of the magnitude BCD
result should be performed in additional little constant time. As we show in the next Chapter,
decimal rounding may be incorporated to the proposed sign-magnitude BCD adders with a
slightly penalty in latency.

4.7. Conclusions 91

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 12 14 16 18 20 22 24

A
re

a
(#

 N
an

d2
 G

at
es

)

Delay (# FO4)

K-S Ling

K-S Q-T Ling
Q-T

L-F Ling

L-F

Binary

Q-T Ling

Q-T

K-S Ling

K-S

L-F Ling

L-F
Proposed

Q-T Ling
Q-T

K-S Ling

K-S

L-F Ling

L-F

Speculative

(a) 16-BCD digits.

 4000

 5000

 6000

 7000

 8000

 9000

 16 18 20 22 24 26 28 30

A
re

a
(#

 N
an

d2
 G

at
es

)

Delay (# FO4)

K-S Ling

K-S

Q-T Ling
Q-T
L-F Ling

L-F

Binary

Q-T Ling

Q-T

K-S Ling

K-S

L-F Ling

L-F

Proposed

Q-T Ling Q-T
K-S Ling

K-S

L-F Ling

L-F

Speculative

(b) 34-BCD digits.

Figure 4.8. Area/delay space of BCD adders.

4.7 Conclusions

We have presented a new method and a high-performance architecture to compute sign-
magnitude BCD addition and subtraction. This operation is used in many applications, such
as in decimal floating-point addition to add/subtract the BCD coefficients. The proposed
algorithm is an extension of the method presented in Chapter 3 for 10’s complement BCD
addition. These methods use a conditional +6 digit increment of input BCD operands to allow
the computation of the BCD addition as a conventional binary carry-propagate addition. In
this way, sign-magnitude BCD addition/subtraction can be implemented using any sign-
magnitude binary adder.

In case of subtraction, the carry-out of the adder determines the sign of the result, so
the sum result must be complemented or incremented +1 ulp to obtain the correct BCD
magnitude result. The previous most representative proposals [136, 157], require a complex
post-correction of the binary sum to obtain the BCD magnitude result. In addition to the

92 Chapter 4. Sign-Magnitude BCD Addition

carry-out, this correction also depends on the decimal carries and a set of flag bits computed
in the carry tree. Our sign-magnitude BCD adder obtains the BCD magnitude result from
the binary sum bits independently of the decimal carries or the flag bits, which results in a
simpler and faster scheme.

We provide different high-performance implementations of the proposed architecture us-
ing several prefix tree and Ling adders. Using an area-delay model for CMOS gates, we have
evaluated the different sign-magnitude BCD adders. Independently of the adder topology, the
proposed architecture presents better area and delay than the other representative proposals.
For low latency applications, a very interesting design with good area and delay trading-off is
the Ling quaternary-tree adder (Ling Q-T).

Finally, we have proposed a unit to detect error in sign-magnitude BCD additions and
subtractions. This unit presents roughly half the area of other solutions used in commercial
microprocessors (such as unit replication), while it does not affect to the performance of the
processor.

Chapter 5

Decimal Floating-Point
Addition

In this Chapter we present a IEEE 754-2008 compliant high-performance decimal floating-
point (DFP) adder. Specifically, we concentrate on significand (or sign-magnitude) BCD addi-
tion and decimal rounding due to their significative contribution to the total delay of DFP ad-
dition [136]. Furthermore, we improve the latency and area of two previous high-performance
implementations:

• Thompson, Karra and Schulte [136] perform decimal rounding after significand BCD
addition, which requires an additional word length carry propagation. The significand
BCD addition consists of a pre-correction of the BCD input operands, a binary compound
addition and a decimal post-correction.

• Wang and Schulte [157] combine part of the BCD addition and rounding by overlapping
the evaluation of some signals required for rounding and the decimal post-correction.
Besides other components, their implementation uses two parallel trees of gates (delay
proportional to the logarithm of the operands size) to obtain a set of flag bits for rounding.

The key component of our proposal is a new BCD compound adder that performs sign-
magnitude BCD addition and S+1 and S+2 operations. This allows to merge IEEE 754-2008
decimal rounding with significand BCD addition in little constant time delay. We incorporate
IEEE 754-2008 decimal rounding into the enhanced sign-magnitude BCD adder using two
schemes: one based on a direct implementation of the IEEE 754-2008 rounding modes and
an injection based rounding technique adapted from binary [54]. We have performed an
area and delay analysis of our designs and a comparison with current proposals using our
area-delay model for static CMOS logic (see Appendix A). We show that the resultant DFP
adder has less latency and reduces significatively the area of the significand computation
and rounding with respect to two previous representative proposals [136, 157]. Moreover, a
Decimal64 implementation (16 precision digits) presents a moderate fixed overhead (roughly
5.7 FO4) with respect to a high-performance IEEE 754-1985 double precision binary adder
with rounding [125].

The Chapter is organized as follows. Section 5.1 contains some important issues about
IEEE 754-2008 DFP addition and describes three recent implementations of IEEE 754-2008
compliant DFP adders [45, 136, 157]. It also outlines the most representative methods to
implement significand BCD addition and decimal rounding. In Section 5.2 we introduce a

93

94 Chapter 5. Decimal Floating-Point Addition

method which allows to incorporate decimal rounding into significand BCD addition in lit-
tle constant delay time. In Section 5.3 we present the proposed architecture of the sign-
magnitude BCD adder with decimal rounding using two different rounding schemes. Eval-
uation results are shown in Section 5.4. We also provide a comparison among the different
schemes for significand addition and rounding implemented in the DFP adders analyzed. Fi-
nally, the conclusions are summarized in Section 5.5.

5.1 Previous work on DFP addition

This Section provides an overview of IEEE 754-2008 decimal floating-point addition and de-
scribes some proposals of IEEE 754-2008 compliant decimal adders [45, 136, 157]. Next, we
describe the different implementations of significand BCD addition and decimal rounding.

5.1.1 IEEE 754-2008 compliant DFP adders

Decimal arithmetic operations are computed as if they first produced a result correct to infi-
nite precision and then rounded to the destination format precision according to the rounding
mode. The standard defines a preferred exponent to select a representation of an operation
result among all the members of its cohort (see Chapter 2). For decimal addition and subtrac-
tion (FR = FX ± FY), the preferred exponent ER is the least possible for inexact results (to
allow for minimum loss of precision) and min(EX , EY) for exact results.

A DFP addition/subtraction is carried out as follows. Operands FX and FY , stored in
DPD (densely packed decimal) format, are unpacked as

FX = (−1)sX ·X · 10EX

FY = (−1)sY · Y · 10EY (5.1)

where sX ,sY are the sign bits, EX , EY are the biased binary integer exponents and X, Y are
the p-digit BCD coefficients (or significands).

After unpacking the DPD operands, the exponents are compared and one of these cases
occurs [45]:

1. The exponents are equal. The BCD coefficients X and Y are added and the carry out
from the adder is examined. If there is a carry out, the exponent is incremented and the
resultant coefficient is shifted one digit right and rounded (inexact result).

2. The exponent difference ED = |EX − EY | is not zero. The operands are swapped if
EX < EY (requires computation of sign(EX − EY)) and the number of leading zeroes (lzU)
in the operand with the larger exponent is examined. Two cases can occur:

(a) ED ≤ lzU . The coefficient of the operand with the larger exponent is shifted left ED

digits and then added to the other unshifted coefficient. The exponent of the result
(preferred exponent) is the smallest exponent of the two operands. Similar to the
previous case, the coefficient result is shifted one digit right if there is a carry out
from the adder. In this case, a rounding is performed and the preferred exponent
incremented (inexact result).

5.1. Previous work on DFP addition 95

(b) ED > lzU . Both operands are shifted. The operand with the larger exponent is
shifted left lzU digits and the operand with the smaller exponent ED − lzU digits
right. Both shifts can be replaced by single shift right of ED digits if the adder is 2p
digits wide. The aligned coefficients are then added and rounded. No normalization
is necessary. At most, a shift by one digit right or left, depending on the effective
operation (subtraction requires a guard digit) and rounding.

Design efforts in current IEEE 754-2008 DFP commercial adders are focused on pro-
viding support for the widest format in a reduced area. Therefore, performance is sacrificed
by the reuse of hardware in different parts of the DFP computation. For instance, the adder
implemented in the DFP units of the IBM Power6 [45] and z10 [160] microprocessors is a
144-bit (36 BCD digit) adder with a 13 FO4 cycle time that completes a Decimal128 floating-
point addition in 19 cycles for the worst case. Shift operations are performed sequentially in
a two-cycle pipelined rotator (performs both right and left shifts).

Implementations from academic research aim for high-performance by exploiting paral-
lelism without caring about area constraints [136, 157]. Fig. 5.1 shows the block diagram
of the DFP adder proposed in [136]. The architecture was implemented only for the IEEE
754-2008 Decimal64 format but can be easily extended for the Decimal128 format. DPD in-
put operands FX and FY are first unpacked and their binary biased exponents, EX and EY ,
compared using a binary comparator of few bits (10 bits for the Decimal64 format). This unit
computes sign(EX −EY) from the carry output of EX −EY to determine the operand with the
higher exponent, that is EU = max(EX , EY). Operands are exchanged if EY > EX .

Then, before being added, BCD coefficients U (higher exponent EU) and L (lower exponent
EL) are aligned, so both operands have the same exponent. This implementation includes an
extra digit buffer to the left of operand U. Thus, U can be shifted up to lzU +1 decimal positions
to the left without a loss of precision as explained before (case 2(a)). The leading zeroes of U,
lzU , are detected using a leading zero detector (LZD). In parallel, when necessary, L is shifted
to the right to complete the alignment process (case 2(b)). The left (sla) and right shift amounts
(sra) are determined as

sla = min(EU − EL, lzU + 1)

sra = min
(
max(EU − EL − (lzU + 1), 0), p + 3

)
(5.2)

using binary comparators. The alignment is performed using two barrel shifters, which shift
by multiples of 4 bits.

The result of the addition/subtraction of the aligned BCD coefficients (significand BCD
addition) is a BCD magnitude CS = |U + (−1)eopL| and a sign bit sign(S). The effective oper-
ation, eop, is determined by eop = sU ⊕ sL ⊕ sub, where sU ,sL are the signs of input operands
after operand swapping and sub indicates the operation specified by the instruction (sub = 0
for addition, sub = 1 for subtraction). In order to get correctly rounded results, the addi-
tion/subtraction is carried out with three extra precision digits (rounding digit RD, guard
digit GD, and sticky bit st). Two extra buffers are placed to the right of operand L for the
round digit and the sticky bit. The extra buffer placed to the left of operand U accounts for
the guard digit. We detail this implementation in the next Section.

The p + 4-digit BCD coefficient CS (including the carry-out of the adder) needs to be

96 Chapter 5. Decimal Floating-Point Addition

lzU

Decoding from DPD (Significand digits in BCD)
X

SWAP

Operand FX Operand FY

Y

U L

EY

Comp

EX

LZD

sX sY

Encoding to DPD

sign(EX-EY)

Shift control

L-Shift

R-Shift

 Significand BCD
Add/Sub

R1/R2-Shift

R1-Shift

Round

ER R sign(R)

Rounding
mode

FR

Add +1/+2

sU sL

Sign
Unit

Add +1

eop

Shift and Round

EU EL

EU -sla

CS

sub

Post-processing unit for IEEE-754r special cases

sign(S)

sra

sla

Eff.
operation

sU

RX

SX

RXMSD>0

Figure 5.1. Block diagram of the DFP adder proposed in [136].

shifted at most two decimal position to the right, but normalization is not required. Rounding
is performed after significand addition by selecting RX = SX (coefficient CS shifted and
truncated to p-digit precision digits) or RX = SX + 1, depending on the rounding digit, the
sticky bit and the rounding mode. The sign of the result is computed as

sign(R) = eop sU ∨ eop sign(S) (5.3)

An additional right shift of one digit may be necessary to obtain the final p-digit rounded
result R in case of a carry-out from rounding. The post-processing unit handles special input
operands in IEEE 754-2008 such as infinities, NaNs and other exceptions.

Fig. 5.2 shows an improved implementation proposed in [157]. It combines significand
BCD addition with rounding using an enhanced sign-magnitude BCD adder to reduce the
delay. The scheme for significand BCD addition and decimal rounding is discussed in the
next Section.

Other minor modifications are introduced to speedup the computation of the previous

5.1. Previous work on DFP addition 97

lzU

Decoding from DPD (Significand digits in BCD)

X

SWAP

Operand FX Operand FY

Y

U L

EY

Sub (sign-mag)

EX

LZD

sX sY

sign(EX-EY)

Shift
control

L-Shift

R-Shift

Significand BCD
adder with

decimal rounding

R1-Shift

ER
R sign(R)

Rounding
mode

Sub

Mux

Add +1

sU sL

EU

eop

LZD

Mux
Eff.

operation

Encoding to DPD

FR

Post-processing unit for IEEE-754r special cases

ED= EX-EY

sign(S)

EU -lsa

sralsa

sla

RX

RXMSD>0

Sign
Unit

sub

sU
R1-Shift

Figure 5.2. Block diagram of the DFP adder proposed in [157].

DFP adder. For instance, it uses a 10-bit binary sign-magnitude adder to compute both the
exponent difference (ED = |EX − EY |) and sign(EX − EY). In addition, two LZDs compute the
number of leading zeroes of X and Y (lzX , lzY), in order to determine speculatively the number
of leading zeroes lzU as

lzU =

{
lzX If EX ≥ EY

lzY Else
(5.4)

Thus, the shift amounts for operand alignment are obtained faster as

sla = min(ED, lzU)

sra = min
(
max(ED − lzU , 0), p + 3

)
(5.5)

In case of effective addition operations (eop = 0), U and L are shifted one extra digit to the right
before addition to simplify rounding operations.

By other hand, the biased exponent of the result ER is computed as

ER =

{
EU − sla If RXMSD = 0
EU − sla + 1 Else

(5.6)

98 Chapter 5. Decimal Floating-Point Addition

where RXMSD is the MSD of RX (the p + 1-digit rounded result before the final 1-digit right
shift). Finally, to obtain R, the operand RX is shifted one digit to the right if RXMSD is not
zero and the guard digit discarded.

5.1.2 Significand BCD addition and rounding

In low-performance implementations [45, 160], significand BCD addition is evaluated using a
single 10’s complement BCD adder, which computes both U −L (or U + L) and L−U sums se-
quentially. The magnitude result CS is then obtained by selecting the positive sum. The sign
of the result is negative (sign(S) = 1) only when L−U is positive and in case of effective subtrac-
tion. By other hand, high-performance DFP adders [136, 157] include a sign-magnitude BCD
adder, which compute sign(S) and the BCD coefficient CS directly. However, while the sign-
magnitude BCD adder may be implemented using a single compound adder (S, LS = S + 1),
rounding requires an additional +1 ulp increment of the BCD magnitude CS.

Fig. 5.3 shows the implementation for significand addition and rounding proposed in
[136], which uses the sign-magnitude BCD adder described in Section 4.2 (see Fig. 4.2 for a
detailed implementation of the decimal post-correction unit) and a separate decimal rounding
unit. This sign-magnitude BCD adder uses a binary (compound) flagged prefix adder to com-
pute the BCD sums S = U + L (S = U + ¬L for eop = 1) and LS = S + 1. Operands U and L are
aligned as shown in Fig. 5.3. The sticky bit Lst is obtained as the logical OR of the bits of L

placed to the right of the round digit LRD (up to 4(p − 2) bits). These bits are discarded and
replaced by18 Lst. The result CS is a p + 4-digit BCD coefficient obtained as CS = S if eop = 0,
CS = LS if eop = 1 and U ≥ L (Cout = 1), or CS = ¬S if eop = 1 and U < L (Cout = 0). In case
of effective addition (eop = 0), the carry-out Cout is the MSD (most significant digit) of CS. The
sign sign(S) of the sign-magnitude BCD addition is computed as sign(S) = Cout eop. The sign
of the result sign(R) is given by equation (5.3).

Once the addition is complete, CS may need to be shifted two positions to the right if
CSMSD = Cout eop is not zero or one position to the right if CSMSD−1 is not zero.

The decimal rounding unit of Fig. 5.3 is placed after the significand BCD addition and
the R1/R2 shifter. Thus, it receives the BCD p-digit truncated and shifted coefficient SX,
the round digit (SXRD) and the sticky bit (SXst). It uses a straightforward implementation
of IEEE 754-2008 rounding. This involves detecting a condition for each rounding mode in
order to increment or not SX by one ulp. Each increment condition (inc) is determined from
the rounding digit, the sticky bit, the sign of the result sign(R) and SXlsb, the least significant
bit of SX, as shown in Table 5.1. In addition to the five IEEE 754-2008 decimal rounding
modes, it also implements two additional rounding modes, round to nearest down and away
from zero.

The +1 ulp increment can generate a new carry propagation from the LSD (least signifi-
cant digit) up to the MSD of SX. This carry propagation is determined examining the number
of consecutive 9’s starting from the LSD of SX. A prefix tree of AND gates detects this chain

18Actually, the sticky bit is expanded to a 4-bit BCD digit which depends on its value and the effective operation
eop.

5.1. Previous work on DFP addition 99

Rounding
conditions

Mux-3

4p+9 CS

Prefix tree of
AND gates

Mux-2

GD RD st

p+1 digits

U

L

2 digitsExtra
buffer

X X

CS

Addition (eop=0)

Subtraction (eop=1)

MSD
X

GD RD st
X X

MSD-1

p+2 digits

X X

GD RD st
0 X

MSD

p+1 digits

X X

Rounding
mode

sign(R)

2 digits

2 digits

MSD-1 4

Select
logic

eop

4 14p

SXi +1

SX
4p+5

4(p+1) 4p

4(p+1)

1p+1 f2i

p
inc

R1-shiftR2-shift

Rounding unit

R2/R1-shifter

1 0

p digits

p digits

p digits

MSD-1

RX
Critical path

3
1SXRD SXst

4(p-2)

sticky bit
computation

1

U L

Binary flagged-prefix
adder

4(p+1)-bits

Decimal post-correction

S*

4p+12 4p+12

4p+4

4p+12

eop

 f1i
p+3

Cout

Ui+3

4p+8

4p+12

eop
Cout

Cout

CS

Sign-magnitude BCD adder

Ci

Li+3

Figure 5.3. Significand BCD addition and rounding unit [136].

by computing the following flag bits

f2i =
i−1∏

k=0

(sxk,3 sxk,0) (5.7)

where sxk,3 and sxk,0 are the msb and the lsb of each digit SXk, and
∏

represents the product
of logical AND operators. When the increment condition for the selected rounding mode is
true (inc = 1), rounding is performed adding one unit to each BCD digit if the corresponding
f2i is one, that is,

RXi = mod10

(
SXi + f2i inc

)
(5.8)

The additional right shift after rounding only occurs when all the digits of SX are nines and
f2p inc = 1, so RX is a one followed by p zeroes. Therefore, this shift can be implemented as
RMSD = RXMSD ∨ f2p inc and Ri = RXi for i = 0, . . . , MSD − 1.

The implementation proposed in [157] reduces the latency of the scheme of Fig. 5.3

100 Chapter 5. Decimal Floating-Point Addition

Rounding mode Increment condition (inc)

To nearest even SXRD > 5 ∨ (SXRD = 5 (SXlsb = 1 ∨ SXst = 1))

To nearest up SXRD ≥ 5

To nearest down SXRD > 5 ∨ (SXRD = 5 Sst = 1)

Toward +∞ sign(R) = 0 (SXRD > 0 ∨ (SXRD = 0 SXst = 1))

Toward −∞ sign(R) = 1 (SXRD > 0 ∨ (SXRD = 0 SXst = 1))

Toward zero 0
Away from zero SXRD > 0 ∨ (SXRD = 0 SXst = 1)

Table 5.1. Rounding modes implemented in [136].

Rounding mode sign(R∗) inj injcor

(RD,st) (GD,RD)

To nearest even (5,0) (4,5)

To nearest up (5,0) (4,5)

To nearest down (4,9) (4,5)

Toward +∞ 0 (9,9) (9,0)
1 (0,0) (0,0)

Toward −∞ 0 (0,0) (0,0)
1 (9,9) (9,0)

Toward zero (0,0) (0,0)

Away from zero (9,9) (9,0)

Table 5.2. Injection values for the rounding modes implemented in [157].

combining part of significand BCD addition with decimal rounding. Fig. 5.4 shows the block
diagram of the architecture. Although the implementation was originally proposed for the
Decimal64 format (16 digits), we also consider an implementation for Decimal128 (34 digits).
It uses the sign-magnitude BCD adder of Fig. 3.23 and a decimal variation of the rounding
by injection algorithm [54]. This method is based on adding an injection value (inj) to the
input operands that reduces all the rounding modes to round towards zero (truncation by the
round digit position). However, when the truncated result has more significant digits than the
format precision p, it is necessary to inject a correction amount injcor to obtain the correctly
rounded result.

The layout of the p + 3-digit coefficients U and L after operand alignment is shown in
Fig. 5.4. The 3 extra positions to the right of L are for the guard digit(LGD), the round digit
(LRD) and the sticky bit (Lst). Note that for effective addition (eop = 0) the MSD of U and L

is zero, so the carry-out of the addition is the MSD digit of the p + 3-digit magnitude result
CS = |U + (−1)eopL + inj|. Therefore, only a 1-digit right shift of RX (p + 1 digit result after
rounding) is required when RXMSD is not zero.

The decimal injection values inj are inserted into the RD and st positions of U . The
injection values inj and injcor for IEEE 754-2008 decimal rounding modes are shown in Table
5.2. The value

sign(R∗) = eop sU (5.9)

5.1. Previous work on DFP addition 101

p digits

U

L

3 digits

Inj. values

Sign-magnitude BCD adder

X X

p digits 3 digits

Inj. values

0 X X

0

0
MSD LSD

X X X

U

L

GD RD st GD RD stMSD

X X

LSD
Extra
buffers

Extra
buffers

Addition (eop=0) Subtraction (eop=1)

GD RD st
X

MSD

p+1 digits

X X

2 digits

p digits

Binary Compound Adder
4(p+3)-bits

Decimal post-correction

S*

8

4p+12

Injection Correction
(2 BCD digit adder)

CS

Injection values
Rounding mode

4p+12

4p+4

4p+12

4p+12

4(p+1)

p+1

f2+ i

8

12

f2- i Mux21 0

 f2i

p+1 Ci

MSD>0

U L

eop

CSGD

Mux-2

4p+

CSi +1
CS

4p+

4p+4

p+1
inc2

Decimal rounding unit

1 0

RX

Prefix tree of
AND gates

Prefix tree of
AND gates

S*i

4p+4
p+1 p+1

1
1

4

eop

injcor

inj

sign(R*)

 f1i
p+3

Critical path

CSRDCSst

Cout

Ui+6

4p+12

eop
Cout

4(p-2)

sticky bit
computation

CS

Figure 5.4. Significand addition and rounding unit [157].

is the expected sign of the result sign(R) assuming that U − L is always positive. When U − L

is negative, there is no need to perform rounding since R is guaranteed to be at most a p-digit
operand.

When the MSD of CS is not zero, the corresponding injection correction value injcor,
shown in Table 5.2, is used to compute the correctly rounded result R. The injcor value is
added to CSGD and CSRD using a 2-digit BCD adder. The increment signal inc is true if a
carry-out is generated to the LSD position of CS.

This correction can generate a decimal carry propagation from the LSD of CS, determined
by the trailing chain of 9’s of S. To reduce the critical path delay of the unit, the trailing
9’s detection (logarithmic delay, depends on the number of precision digits) is performed
examining the uncorrected binary sum digits S∗i and the decimal carries Ci, obtained before
the BCD correction in the sign-magnitude BCD adder (see Fig. 3.23 in Section 3.4.2). A pair

102 Chapter 5. Decimal Floating-Point Addition

of prefix trees (one for addition and one for subtraction) compute the flags f2+
i and f2−i as

f2+
i =

i−1∏

k=0

((S∗k == 15) ∨ (S∗k == 9) Ck+1)

f2−i =
i−1∏

k=0

(S∗k == 15) (5.10)

The digits of the p + 1-digit correctly rounded result RX are selected from CSi + 1 (digitwise
increment) or CSi, depending on these flags (f2+

i for eop = 0, f2−i for eop = 1) and the signal
inc.

In the next Section we present the proposed method for significand BCD addition and
rounding. The resulting architecture presents the following advantages with respect to the
two previous implementations [136, 157]:

1. Decimal rounding does not require any additional carry propagation for trailing 9’s de-
tection. The signals required for rounding the significand BCD result, CS, are computed
in an enhanced compound BCD adder.

2. The modifications introduced into the compound BCD adder to support decimal round-
ing only increments its critical path delay a little constant amount, independently of the
number of input digits.

3. The BCD sums are obtained from a binary compound adder using a simple and fast
decimal post-correction.

5.2 Proposed method for combined BCD significand addition and
rounding

This method is an extension of the conditional speculative algorithm for sign-magnitude BCD
addition proposed in Section 3.5. We use a single compound BCD adder to perform both sign-
magnitude BCD addition and +1/+2 ulp increments of the significand for IEEE 754-2008
decimal rounding.

Input BCD significands X and Y are swapped and aligned as described in [157] (Fig. 5.2).
The layout of operands U and L before significand addition is shown in 5.5. As a difference
with respect to Fig. 5.2, operand alignment is performed in a single step, replacing the left
and right shift amounts defined in expression (5.5) by

lsaU = min(ED + eop, lzU + eop)

rsaL = min
(
max(ED − lzU + eop, eop), p + 3

)
(5.11)

while expression (5.6) is still valid to compute the biased exponent ER.

A digit buffer is placed to the left of U (p+1-digit operand) to allow for the extra 1-digit left
shift in case of effective subtractions. Operand L includes two extra digits to the right (GD,
RD) and the sticky bit st, computed as the logical OR of the bits of L placed to the right of RD.
We describe the proposed method independently of the implementation of rounding. Hence,

5.2. Proposed method for combined BCD significand addition and rounding 103

Mux-2

X

U L

L-Shift

sign (EX-EY)

Swap
1

sla

Mux-2

Y

010

R-Shift sra
Alignment

p digits

U

L

2 digits + 1 bit p digits

0

0
MSD LSD

X X X

U

L

GD RD st GD RD stMSD

X X

LSD
Extra
buffers

Addition (eop=0) Subtraction (eop=1)

Extra
buffers

0

2 digits + 1 bit

4(p-2)

sticky bit computation4(p+2)

1
4(p+1)

Figure 5.5. Alignment and layout of input operands.

the layout of Fig. 5.5 does not include the extra buffers for rounding by injection. We provide
the implementations for two different rounding methods (direct rounding and rounding by
injection) in Section 5.3.

A diagram with the proposed method to compute significand BCD addition with IEEE
754-2008 decimal rounding is detailed in Fig. 5.6. The result is the p + 1-digit BCD rounded
coefficient RX. Each computation consists of five stages: pre-correction stage, modified binary
addition, rounding decision, increment decision and selection.

BCD operands U and L are split in two parts, a p-digit most significant one (UD, LD) and
a least significant one, which includes the digits/bits placed at the guard (UGD, LGD), round
(LRD) and sticky (Lst) positions. The least significant part is used by the rounding decision
stage. The rounding decision stage may produce at most a +2 ulp increment (inc1 + inc2) of
the BCD sum SD = UD + LD (or SD = UD + ¬LD), which would require the computation of SD

(¬SD), SD + 1 and SD + 2.

We use a single compound BCD adder (computes SD and SD + 1) to perform both signif-
icand BCD addition and decimal rounding. To support the additional SD + 2 operation, we
perform a carry-save addition before the compound adder. This technique has been widely
used in binary floating-point adders [8, 16, 125]. Moreover, to simplify the increment logic,
we split the evaluation of SD in a most significant part SH and a lsb (least significant bit) SD

lsb,
such that SD = SH + SD

lsb (note that the lsb of SH is zero). In this way, an increment of +0,+1
or +2 ulp in SD is equivalent to an increment inc of +0 or +2 ulp in SH .

Thus, operands UD and LD are first processed (in the pre-correction stage) using a carry-
save adder which produces two p-digit operands Ops = OpsH + SD

lsb and Opd. Both p-digit
operands OpsH and Opd have the lsb set to zero. SD

lsb is delivered together with inc1 and inc2

to the increment decision stage to compute a control signal inc and the lsb Rlsb. Furthermore,
the pre-correction stage uses a scheme based on conditional decimal speculative addition (see

104 Chapter 5. Decimal Floating-Point Addition

inc

X x

MSD GD RD st

p digits

Selection

9 bits

LSD

Rounding
decision

U

Rnd mode

Modified Binary
Compound Adder

(4p-1 bits)

L

Pre-correction
(p digits)

eop
C1out

increment
decision

cmp

RX

inc1
inc2

UGD

UD LD

Opd
Ops SD

lsb

Rlsb

C2out

S*MSD
LS*MSD

eop
Cout

C1out C2outS*

S*MSD

LS*MSD

LS*

OpsH

0

0

Addition (eop=0) Subtraction (eop=1)

0
X x

MSD GD RD st

9 bits

LSD
U

L

LGD LRD Lst

eop sU

sign(R*)

(UD,LD) p digits (UD,LD)

Figure 5.6. Proposed method for significand BCD addition with rounding.

Section 4.3) which allows to obtain the BCD sums SH and LSH = SH + 2 from a (4p − 1)-bit
binary compound addition of OpsH and Opd (shifted 1-bit to the right since their lsb’s are
zero).

Finally, the 4p − 1 most significant bits of RX are selected from the binary sums S∗ and
LS∗ = S∗+1 depending on the values of cmp = eop Cout and inc, as detailed in Section 4.4. The
p-digit rounded result R is obtained from the p least significant digits of RX after performing
a 1-digit right shift and removing the digit RXGD if RXMSD is not zero.

The whole computation is carried out as follows:

1. Pre-correction stage. To allow the use of binary operations, p-digit BCD operands UD

and LD are processed in the pre-correction stage as detailed in Fig. 5.7.

The carry-save addition of UD and LD (or ¬LD) produces a 4p-bit sum operand Ops =
OpsH + Opslsb and a 4p-bit carry operand Opc, such that SH = OpsH + 2 Opc and SD

lsb =
Opslsb. To compute this operation using a binary carry-save adder, each decimal digit
position is first incremented +6 units. Hence, instead of multiplying Opc by 2, we only
shift Opc 1-bit to the left (Opb = L1shift[Opc]), as in a binary carry-save addition. The
resultant 4-bit vector Opbi represents the BCD i-digit of 2 Opc if Opbi+1,0 (bit 20 of Opbi) is
one. In other case, Opbi is the BCD excess-6 representation of (2 Opc)i.

Due to the initial +6 addition, the decimal carries of SH corresponds with the binary
carries of OpsH +L1shift[Opc] at hexadecimal positions (1 out of 4). After the binary carry-
save addition, a value Ui + Li + 6 = 24 (or Ui + Li = 24) at position i, results in a value 8

5.2. Proposed method for combined BCD significand addition and rounding 105

bit inversion

4p-1

eop

Opc Ops

To the binary
compound adder

SH

4p-1

4p

4p4p

To the rounding
and increment
stages

1C1out
1

x
lsb

4p bits

Ops

Opd
4p-1 bits 1 bit

Gi

eop
4p

4p

p

Opd
OpsH

SIH

UD LD

SD
lsb

SD
lsb

SH=OpsH+Opd

Binary 3:2 CSA

+6 eop

+6 Gi

Figure 5.7. Pre-correction stage.

or 9, since a carry output with a value of 16 is passed to the next significant digit, and
a carry 0 or 1 comes from the previous significant digit. An increment of +2 ulp in SH

could produce a new decimal carry propagation. Thus, to obtain the decimal carries (late
carries) of the incremented sum LSH = SH + 2 by means of the binary addition of OpsH

and L1shift[Opc], we would need to add an additional +6 to each position i if Ui + Li = 18.

Moreover, to avoid a complex post-correction, we also add this additional +6 under cer-
tain conditions, so the resultant binary sum vectors S∗ and LS∗ = S∗ + 1 represents the
BCD sums SH and LSH but coded in BCD excess-6 (except in a single case, corrected as
shown below).

Therefore, to obtain the BCD sums SH and LSH using a binary compound addition, we
propose to replace the operand 2 Opc by Opd, obtained by incrementing conditionally +6
units each digit of L1shift[Opc]. We use the decimal generate function

Gi = G+
i eop ∨G−i eop (5.12)

as the condition for the additional +6 digit increment of L1shift[Opc], where G+
i and G−i

are defined as

G+
i =

{
1 If Ui + Li ≥ 10
0 Else

G−i =

{
1 If Ui + Li ≥ 16
0 Else

(5.13)

Hence, a +6 is added to the digit i of L1shift[Opc] if Gi is true, or equivalently,

Opd = L1shift[
p−1∑

i=0

(Opci + 3 Gi) 10i] (5.14)

Since the digits of Opci are in the range [0, 10] (we assume 6 ≤ Ui + Li + 6 ≤ 24), the
sum Opci + 3 Gi may be represented in 4 bits. However, the subsequent 1-bit left shift
generates a decimal carry-out C1i+1 = Opdi+1,0 from decimal position i. Note that another

106 Chapter 5. Decimal Floating-Point Addition

decimal carry-out C2i+1 is produced at decimal position i due to the subsequent carry-
propagate addition of Ops and Opd, but they cannot have simultaneously a value ’1’,
so

Ci+1 = C1i+1 ∨ C2i+1 (5.15)

The carry-out Cout = C1out∨C2out (see Fig. 5.7) is used to determine the sign of the result
in case of effective subtraction, so if cmp = eop Cout = 1, then U − L < 0.

2. Modified binary carry-propagate compound addition. In this way, we evaluate the
BCD sum SH by means of a modified (4p − 1)-bit binary carry-propagate addition S∗ =
R1shift[OpsH] + R1shift[Opd], where R1shift is a fixed 1-bit right shift. The binary carries
of S∗ are computed as ck+1 = gk ∨ ak ck, where gk and ak are the conventional binary
carry-generate and carry-alive functions.

We define a digit S∗i as

S∗i =
3∑

j=0

s∗i,j 2j =
4i+3∑

k=4i

s∗k−1 2k−4i (5.16)

where s∗k (k = 4i + j = 0, . . . , 4p − 2) are the bits of the modified binary sum and s∗−1 = 0.
Depending on the value of the decimal carry output at position i (Ci+1) and the increment
of the input digits (+6 /+12), S∗i is related with the BCD sum digit SH

i as follows:

• If Ci+1 is zero (so19 Gi = 0), a +6 has been added in excess to position i. Thus, S∗i
represents the value SH

i in BCD excess-6 (S∗i = SH
i + 6).

• If Ci+1 = 1 and Gi = 0, the +6 initially added compensates for the +6 digit correction
(since Ci+1 = 1), so S∗i is equal to the BCD sum digit SH

i . However, to avoid a post-
correction that would depend on Ci+1, S∗i should be equal to SH

i + 6. This case only
occurs when Ui +Li = 9 (that is, the decimal carry-alive Ai = 1) and Ci = 1, so SH

i = 0
(’0000’) and S∗i = 6 (’0110’). This case is detected by checking the following boolean
expression

pi,3 pi,2 pi,1 ci,1 = 1 (5.17)

where the pi,j = pk−1 (k = 4i + j), are the binary xor propagate functions and ci,1 =
ck−1. Replacing the conventional binary sum equation s∗k = pk ⊕ ck by

s∗i,3 = pi,3 ⊕ ci,3

s∗i,2 = pi,2 ci,2 ∨ (pi,2 ∨ pi,3 pi,1) ci,2

s∗i,1 = pi,1 ci,1 ∨ (pi,1 ∨ pi,3 pi,2) ci,1

s∗i,0 = pi,0 ⊕ ci,0 (5.18)

then, the value SH
i = 0 (’0000’) is transformed into its BCD excess-6 representation

S∗i = 6 (’0110’) when (5.17) is true. This modification does not affect to the critical
path (the carry path).

• If Ci+1 = 1 and Gi = 1, the sum digit is incremented in +12 units but only +6 units
are required for digit correction (since Ci+1 = 1), so the resulting S∗i is the BCD
excess-6 representation of the BCD sum digit SH

i .

19Gi is related to Ci+1 as Ci+1 = Gi ∨Ai Ci, where Ai is the decimal carry-alive.

5.2. Proposed method for combined BCD significand addition and rounding 107

By other hand, the length of the decimal carry propagation due to a late +1/+2 ulp
increment of the BCD sum SH is determined by a trailing chain of k 9’s or (k− 1) 9’s and
an 8. Since S∗i = SH

i + 6 and s∗0,0 = 0, then the previous chains corresponds to

p−1∑

i=k

S∗i 10i + 15 10k−1 + . . . + 15 101 + 14 (5.19)

that is, to a trailing chain of bits ’1’ in the (4p− 1)-bit binary sum S∗.

As we have shown in Section 4.2, a carry due a +1 ulp increment of S∗ is propagated
from the lsb to bit k if the binary carry-alive group ak−1:0, computed in a prefix tree as

ak−1:0 = ak−1 ak−2 . . . a0 (5.20)

is true. The late binary carries lck, given by

lck = ck ∨ ak−1:0 (5.21)

correspond to the binary carries of LS∗ = S∗ + 1. We define the digits LS∗i from the sum
bits of LS∗ as

LS∗i =
3∑

j=0

ls∗i,j 2j =
4i+3∑

k=4i

ls∗k−1 2k−4i (5.22)

with ls∗−1 = 0 and k = 4i + j.

Hence, the expressions for the digits LS∗i are obtained replacing the carries ci,j by the
late carries lci,j in equation (5.18), that is

ls∗i,3 = pi,3 ⊕ lci,3

ls∗i,2 = pi,2 lci,2 ∨ (pi,2 ∨ pi,3 pi,1) lci,2

ls∗i,1 = pi,1 lci,1 ∨ (pi,1 ∨ pi,3 pi,2) lci,1

ls∗i,0 = pi,0 ⊕ lci,0 (5.23)

The digits LS∗i represents the digits of the BCD sum LSH = SH + 2 but coded in BCD
excess-6.

3. Rounding decision stage. In the rounding decision step, we determine the value of
signals inc1, inc2 and RGD, the guard digit of the magnitude result. Each one of the
bit signals inc1 and inc2 represent an increment of +1 unit at the lsb position of S =
UH + (−1)eop LH .

Apart from the rounding mode, the rounding decision depends on the effective operation
eop, the guard digits UGD, LGD, the round digit LRD, the sticky bit Lst, the MSD and
the carry-out Cout (always zero for effective addition) of S∗ and the MSD of LS∗. Some
rounding modes also require the lsb of Ops (SD

lsb), or the expected sign of the result,

sign(R∗) = eop sign(U) (5.24)

It is obtained considering only the cases where rounding is necessary, and it is equal to
sign Sinj of expression (5.9). The rounding logic has to manage the following five cases:

108 Chapter 5. Decimal Floating-Point Addition

• Case 1: Addition (eop = 0) and S∗MSD = 6 (SH
MSD = 0). The addition of the guard

digits SGD = UGD + LGD produces a carry-out inc1. The second carry-out inc2 is
obtained, depending on the rules of the rounding mode, from the digit in the guard
and round positions (SGD, LRD), the sticky bit Lst, the lsb bit (SD

lsb ⊕ inc1), and
sign(R∗). An exception can occur when LS∗MSD = 7 (SH

MSD = 1), which corresponds
to SH = 0999 . . . 98 and LSH = 1000 . . . 00. In this case if SD

lsb + inc1 = 2, then the digit
in the round position is SGD, not LRD, and the rounding conditions to obtain inc2

are similar as those in Case 2.

• Case 2: Addition (eop = 0) and S∗MSD > 6 (SH
MSD > 0). The addition of the guard

bits SGD = UGD + LGD also produces a carry-out inc1. A second carry-out inc2 is
produced from rounding. But now, SGD is the digit in the round position and a new
sticky bit is computed as LRD ∨ Lst.

• Case 3: Subtraction (eop = 1) and Cout = 0. This case corresponds with U − L < 0
(EU ≥ EL). In this case, only operand U is shifted to the left if the leading zeroes of
U lz ≥ EU − EL > 0 or EU = EL. Therefore, no rounding is required if cmp = eop Cout

is one.

• Case 4: Subtraction (eop = 1), Cout = 1 and S∗MSD = 6 (SH
MSD = 0). This corresponds

with U − L = U + ¬L + 1 ≥ 0. A +1 ulp must be added to ¬L to form the 10’s
complement. This unit is incorporated into the sticky bit calculation. If Lst = 0,
then the digits of ¬L placed to the right of ¬LRD are all 9’s. In this case a carry-out
’1’ is propagated to ¬LRD and the sticky bit of ¬L is unchanged (¬Lst = Lst = 0). If
Lst = 1, then, at least one of the digits of ¬L+1 placed to the right of LRD is different
from zero, so ¬Lst = Lst = 1 and no carry-out is propagated to ¬LRD. Therefore, the
sticky bit is equal to Lst and a bit Lst is added to ¬LRD, which generates a carry-out
inc1 = 1 if ¬LGD = 9.

A second carry-out inc2 is produced applying the rounding rules, with SRD = ¬LRD +
Lst (the rounding digit) and Lst (the sticky bit). Note that, if LS∗MSD = 7 (LSH

MSD = 1),
then inc1 = 1 and SGD = SRD = Lst = 0, so we can use the rounding rules of case
Case 4 or Case 5 indifferently.

• Case 5: Subtraction (eop = 1), Cout = 1 and S∗MSD > 6 (SH
MSD > 0). The sticky bit Lst,

the guard digit SGD, the round digit SRD and inc1 are evaluated as in the previous
case. However, the digit in the rounding position is now SGD and the sticky bit is
SRD ∨ Lst.

The implementation of the rounding decision stage is detailed in Section 5.3.1, for direct
decimal rounding, and in Section 5.3.2 for decimal rounding by injection.

4. Increment decision stage. SD
lsb is added to bits inc1 and inc2, producing a carry bit inc

and a sum bit RXlsb. Signal inc represents an increment of +2 ulp of SH , and it is used
as a control signal to select between SH or SH + 2.

5. Selection stage. The block diagram of this stage is shown in Fig. 5.8. The p + 1-digit
rounded significand result RX is formed as follows:

• If cmp = 1 then U−L < 0 (no rounding required), and the magnitude result R is given
by the 9’s complement of S = SH + SD

lsb. Since the 9’s complement of the BCD sum

5.3. Architecture of the significand BCD adder with rounding 109

inc

4(p+1)

LS*i-6

cmp

RX

RXlsb

S*

4p-1

4p-1

4

4p-1 4p-1

RXGD

inc=1 cmp=1

RXMSD

SD
lsb

SD 1

LS*

Selection

4p

inc=0
4p

cmp=0 cmp=0

4p

4p

1

LSH SH

eop
Cout

C1out C2out

S*i-6 1

Decod.
&

Buffer
1

4p

4p
4p

Figure 5.8. Proposed selection stage.

digits SH
i = S∗i − 6 is given by

¬SH
i = (SH

i + 6) = S∗i − 6 + 6 = S∗i (5.25)

then RX is obtained by bit inverting S∗ and SD
lsb and concatenating them with

RXGD = 0 (the guard digit computed in the rounding decision stage).

• If inc = 1 and cmp = 0 then RX is obtained concatenating LSH , RXlsb and RXGD,
where RXlsb was computed in the increment decision stage. The BCD sum LSH is
obtained from the digits LS∗i after a +6 digit subtraction, that is

LS =
p−1∑

i=0

(LS∗i − 6) 10i (5.26)

• If inc = 0 and cmp = 0, then RX = (SH , RXlsb, RXGD), where SH is obtained from the
S∗i digits as

SH =
p−1∑

i=0

(S∗i − 6) 10i (5.27)

The p-digit coefficient result R is obtained from the p least significant digits of RX after per-
forming a 1-digit right shift and removing the digit RXGD if RXMSD is not zero, as described
in Section 5.1.1.

5.3 Architecture of the significand BCD adder with rounding

In this Section we detail the architecture of the significand BCD adder with IEEE 754-2008
decimal rounding. First, we describe the general block diagram depicted in Fig. 5.9. The
implementation of the rounding logic is detailed in Section 5.3.1 for the direct scheme and
in Section 5.3.2 for the injection scheme. The proposed architecture accepts a (p + 1)-digit
BCD operand U , a (p+2)-digit BCD operand L and a sticky bit Lst, pre-aligned as described in
Section 5.2. Actually, the input digits Ui and Li are allowed to be in the range [0, 15] (overloaded

110 Chapter 5. Decimal Floating-Point Addition

4p-1

eop

UD

LD

Opc Ops

+6 Gi

Binary 3:2 CSA

+6 eop

4p-1

4p

4p

4p

1

C1out 1

-6

Mux-3
cmp

-6

4p-1 4p-1

4p-1 4p-1

4p-1

UGD

inc=1 cmp=1

RX

inc

Rounding
logic

Rnd mode

Modified Binary Compound
Adder

(4p-1 bits)

Full
adder

RXGD

inc1 inc2

SD
lsb

RXlsb

4p

U L

4

SD

4p

1

11

4p 9

4p

4(p+1)

4

LGDLRD Lst

Gi

eop
4p

p

4p

UD
LD

sign(R*)

Pre-correction

LSH

eop

Cout

C1out C2out

4(p+1)
4(p+2)+1

Critical path

Opd

C2out

SH

S*MSD

S*MSD

LS*MSD

LS*MSD

OpsH

LS*
S*

eop sU

SD
lsb

Figure 5.9. Proposed sign-magnitude BCD adder with rounding.

BCD) under the following constraints:

0 ≤ Ui + Li ≤ 18 If(eop=0)

0 ≤ Ui + ¬Li ≤ 18 Else (5.28)

UD and LD (the p most significant digits of U and L) are first processed in the pre-
correction stage. For effective addition (eop = 0), we perform the digit additions Ui + Li + 6 in
a 4p-bit binary 3:2 CSA, obtaining the 4p-bit sum and carry operands Ops and Opc. The +6
digits are coded in BCD as (0, eop, eop, 0) and are connected to an input of each 4-bit block of
the binary 3:2 CSA. The 4p-bit vectors UD and LD are introduced into the other two inputs.

For effective subtraction (eop = 1), the +6 digit additions are performed together with the
9’s complement of L by inverting the bits of Li, that is, Ui + ¬Li + 6 = Ui + Li.

Next, the 4p-bit vectors UD and LD are introduced in the binary 3:2 CSA. The evaluation
of LD eop∨LD eop is performed in a level of 4p XOR gates, which is connected to the fast input
of the 3:2 binary CSA.

The operand Ops is split in the p-digit operand OpsH (ops0,0 = 0) and in the bit SD
lsb.

The operand Opd is obtained in the +6 Gi block from the digits of Opc and the decimal carry
generates Gi as stated in (5.14). This block implements the following logical equations for

5.3. Architecture of the significand BCD adder with rounding 111

pi,3 ci,3 ci,0

pi,1

Mux21 0 ci,1

s*i,3 s*i,2

Mux21 0

s*i,1

pi,0

s*i,0

ci,2

pi,2

pi,1pi,2pi,3

(a) For full binary prefix tree
adders.

Mux21 0

s*i,3 s*i,1
s*i,0

ripple-carry cell

ai,jgi,j

ci,j

gi,j v ai,j ci,j

2
1

1

pi,3 pi,1 pi,0pi,2 gi,0ai,0ai,1

gi,1
ai,2

gi,2

Mux21 0

s*i,2

Mux21 0

Mux21 0

Mux21 0

Mux21 0

Mux21 0

Mux21 0

Ci

(b) For hybrid carry-select/prefix tree adders.

Figure 5.10. Modified binary 4-bit sum cells.

each digit i:

Opdi,3 = Opci,2 ⊕ (Opci,1 ∨Opci,0) Gi

Opdi,2 = Opci,1 ⊕Opci,0 Gi

Opdi,1 = Opci,0 ⊕Gi

Opdi,0 = Opci−1,3 ∨Opci−1,2(Opci−1,1 ∨Opci−1,0) Gi−1 (5.29)

The decimal carry generates Gi are evaluated in parallel with Opc to reduce the critical
path delay. The critical path is indicated as a discontinuous thick line in Fig. 5.9. The block
Gi implements equations (5.12) and (5.13) as

G+
i = a+

i,3(g
+
i,3 ∨ a+

i,2) ∨ (a+
i,3 ∨ g+

i,2)(a
+
i,1 ∨ g+

i,0)

G−i = a−i,3
(
g−i,3 ∨ g−i,2 ∨ a−i,2 a−i,1 (g−i,1 ∨ g−i,0)

)

Gi = G+
i eop ∨G−i eop (5.30)

with g+
i,j = ui,j li,j, a+

i,j = ui,j ∨ li,j, g−i,j = ui,j li,j and a−i,j = ui,j ∨ li,j.

Despite the logic depth of both parallel paths is practically similar (4 logic levels vs. 2
XOR gate levels), the computation of the Gi is slightly slower than the computation of Opc and
Ops due to the higher loads. A quantitative delay analysis is presented in Section 5.4.1.

The operands R1shift[OpsH] and R1shift[Opd] are introduced in the (4p − 1)-bit binary
compound adder obtaining S∗ and LS∗ = S∗ + 1. The adder implements a prefix carry tree
of log2(4p− 1) levels. The sum cells are modified as shown in Fig. 5.10(a). This 4-bit sum cell
evaluates expression (5.18) from the binary carries ci,j and carry-propagates pi,j. The black
gates represent additional hardware with respect to a conventional 4-bit XOR sum cell. These
gates, placed out of the critical path (the carry path), replace the values S∗i = 0 (’0000’) by
S∗i = 6 (’0110’). Equivalent 4-bit sum cells are required to evaluate the bits of the incremented
sum LS∗, as shown in (5.23). In this case, a level of OR gates computes the binary late carries
as lci,j = ci,j ∨ ak−1:−1 (k = 4i + j) from the binary carries and the carry-alive groups obtained
previously in the prefix tree.

112 Chapter 5. Decimal Floating-Point Addition

An hybrid binary carry-select/sparse prefix-tree adder can be used instead of a full bi-
nary prefix tree adder to reduce the power consumption [100]. In this case, a row of the 4-bit
carry-select sum cells of Fig. 5.10(b) is used to obtain the presum digits S1∗i (assuming Ci = 1)
and S0∗i (assuming Ci = 0). A quaternary (sparse) prefix tree computes in parallel the carries
Ci (1 each 4 bits). The digits of the sum S∗ are then selected as S∗i = S1∗i Ci ∨ S0∗i Ci. Only the
binary presum S1∗ requires the digit correction performed by the black gates (replacement of
’0000’ by ’0110’).

The decimal rounding unit computes the increment signals inc1 and inc2 and the guard
digit of the result RXGD. The most part of this evaluation is overlapped with the binary sum.
However, as described in Section 5.2, the evaluation of inc2 and RXGD depends on the MSDs
of the binary sums S∗ and LS∗. The implementation of the rounding unit is detailed in the
next Sections (Section 5.3.1 for the direct scheme and Section 5.3.2 for injection scheme).

The signal inc and the lsb of the rounded result RXlsb are computed adding inc1, inc2 and
SD

lsb in a full adder as

RXlsb = (Slsb ⊕ inc1)⊕ inc2

inc = SD
lsb (SD

lsb ⊕ inc1) ∨ inc2(SD
lsb ⊕ inc1) (5.31)

This full adder contributes with an XOR gate delay to the total delay of the critical path (inc2

signal).

The 4p− 1 most significant bits of RX are selected from the BCD sums SH , ¬SH and LSH

using a level of 3:1 muxes, as explained in Section 5.2. Since for a fast implementation of
rounding we have assumed that, for subtraction, the sign of (U−L) is positive (Cout = 1), then,
when cmp = eop Cout is true, the value of inc does not care. Therefore the decoded selection
signals for the 3:1 muxes are cmp, (inc cmp) and (inc cmp), and must be buffered due to the
high load.

By other hand, to obtain the BCD sums SH and LSH , a +6 is subtracted digitwise from
digits S∗i and LS∗i . The blocks labeled as ’-6’ in Fig. 5.9 implement this digit subtraction as

sH
i,3 = s∗i,3 s∗i,2 s∗i,1

sH
i,2 = s∗i,2 ⊕ s∗i,1

sH
i,1 = s∗i,1

sH
i,0 = s∗i,0 (5.32)

The BCD sum ¬SH is obtained inverting the bits of S∗. The lsb of RX is obtained as SD
lsbcmp ∨

RXlsbcmp in a 2:1 mux. Finally, the guard digit RXGD is concatenated to the right of the lsb
to form the rounded p + 1-digit significand RX.

5.3.1 Direct implementation of decimal rounding

We propose two different implementations for the rounding unit. The first implementation is
shown in Fig. 5.11. It uses combinational logic to implement directly a rounding condition
for each decimal rounding mode (Rnd mode). Moreover, different conditions must be applied
when the MSD of the significand result (before rounding) is zero or not zero.

5.3. Architecture of the significand BCD adder with rounding 113

Rnd
mode

S*MSD

8
4

1

2-digit BCD
adder

1

RXGD1

MSD>0

2

1

LRD

Lst

LGD

SGD SRD

inc1

Rounding
conditions

1

eop

4

inc2

UGD

1

sign(R*)

SD
lsb

1

Half
adder

LS*MSD
2

88

eop Lst

eop=0 (1-digit add)

UGDLGD LRD Lst

SGD SRD Lst

9-LGD 9-LRD

Lst

SGD SRD

Lst

Lst

eop=1 (2-digit add)

mux-2

mux-2

3

SGD

SGD+1
+1

4

1
1

1 0

10

5

1

MSD>0 MSD=0

Figure 5.11. Diagram of direct decimal rounding.

To simplify this logic, the guard and round digits of U and L are previously assimilated
in a 2-digit BCD adder, producing two sum digits SGD, SRD and a decimal carry-out inc1. This
bit represents a +1 ulp increment of S = UH + LH . The layout of the input operands differs if
the effective operation is addition (eop = 0, top left corner of Fig. 5.11) or subtraction (eop = 1,
top right corner of Fig. 5.11). For eop = 0, inc1 and SGD are the result of the 1-digit BCD
addition UGD + LGD, while SRD = LRD. For eop = 1, the addition of ¬(LGD 10 + LRD) and the
bit Lst produces two BCD sum digits SGD, SRD, while the decimal carry-out inc1 is 1 only if
LGD = LRD = Lst = 0. Therefore, the logic of the 2-digit BCD adder can be simplified in order
to obtain inc1 faster.

In addition to the five IEEE 754-2008 decimal rounding modes (see Section 2.1), we
implement two additional rounding modes: round to nearest down and away from zero. The
conditions for each decimal rounding mode are summarized in Table 5.3, where sign(R∗) is
the expected sign of the rounded result, given by expression (5.24) and sGD,0 is the lsb of SGD.
Depending on the MSD of the unrounded result, the roundoff may produce an increment of +1
unit in SLSD or SGD. The first case (MSD > 0) corresponds with a +1 ulp increment of S (inc2).
In the second case (MSD = 0), inc2 is true if the corresponding rounding condition is verified
and SGD = 9. To obtain RXGD and inc2 faster, we compute SGD +1 (module 10) in parallel with
the rounding conditions, and then SGD or SGD +1 is selected from the corresponding rounding
condition for MSD = 0.

The condition MSD > 0 occurs when SH
MSD > 0 or SH = 099 . . . 98 and SD

lsb + inc1 = 2. This
is determined from S∗MSD and LS∗MSD (coded in BCD excess-6) as

MSD > 0 ⇐⇒ (S∗MSD > 6) ∨ (LS∗MSD > 6) (inc1 SD
lsb) (5.33)

The comparisons with 6 are implemented examining if the msb or the lsb of S∗MSD (or LS∗MSD)
are ’1’. The critical path goes from LS∗MSD to inc2 (4 gate delays).

114 Chapter 5. Decimal Floating-Point Addition

Rnd mode MSD > 0 Rounding condition

To nearest even 0 SRD > 5 ∨ (SRD = 5 (sGD,0 = 1 ∨ Lst = 1))

1 SGD > 5 ∨ (SGD = 5 ((SD
lsb ⊕ inc1) = 1 ∨ SRD > 0 ∨ Lst = 1))

To nearest up 0 SRD ≥ 5

1 SGD ≥ 5

To nearest down 0 SRD > 5 ∨ (SRD = 5 st = 1)

1 SGD > 5 ∨ (SGD = 5 (SRD > 0 ∨ Lst = 1))

Toward +∞ 0 sign(R∗) = 0 (SRD > 0 ∨ (SRD = 0 Lst = 1))

1 sign(R∗) = 0 (SGD > 0 ∨ (SGD = 0 (SRD > 0 ∨ Lst = 1)))

Toward −∞ 0 sign(R∗) = 1 (SRD > 0 ∨ (SRD = 0 Lst = 1))

1 sign(R∗) = 1 (SGD > 0 ∨ (SGD = 0 (SRD > 0 ∨ Lst = 1)))

Toward zero {0, 1} 0

Away from zero 0 SRD > 0 ∨ (SRD = 0 Lst = 1)

1 SGD > 0 ∨ (SGD = 0 (SRD > 0 ∨ Lst = 1))

Table 5.3. Conditions for the decimal rounding modes implemented.

3-digit BCD
adder

Injection values

eop

1

inj
UGD

Rnd mode

4 9

LGDLRDLst

inc1

inc2

8

injcor8

12

1

2-digit BCD
adder

1

4

2

1

injUGD

LGDLRD Lst

sign(R*)

S*MSDMSD>0
LS*MSD2

inc1

3

1

RXGDRXRDRXST

SD
lsb

1

RXGD

npdGD

npdlsb

Mux-2

npdGD

Not pull-down
signals

Rnd mode
3

RXST8 RXRD

4
1

4

Figure 5.12. Diagram of decimal rounding by injection.

5.3.2 Decimal rounding by injection

The rounding unit of Fig. 5.12 reduces all the decimal rounding modes to truncation (round-
ing towards zero) by injecting an 2-digit value (inj) in the sticky and round digit positions. This
allows the reuse of the same logic for the different rounding modes. The inj values injected
for each decimal rounding mode (see Table 5.2) are obtained using a table look-up. Moreover,
the expected sign of the rounded result sign(R∗) = eop sign(U) is also required to determine
the injection for the rounding modes toward ±∞.

The injection is added to the guard and round digits of U and L and to the sticky bit
Lst using a 3-digit BCD adder. This adder produces a 3-digit BCD sum operand (RXGD,
RXRD,RXST) and a carry-out inc1 to the lsb of S. The layout of the input operands is shown in

5.4. Evaluation results and comparison 115

the top left of Fig. 5.12. For effective subtraction (eop = 1), the operand (LRD, LGD, Lst) must
be complemented.

However, as we have explained in Section 5.1.2, when the MSD of the addition U +L+ inj

is not zero (MSD > 0), an 2-digit injection correction value injcor (see Table 5.2) must be
added to (RXGD, RXRD) to compute the correctly rounded result RX. This second BCD adder
produces a carry-out which represents an increment of an additional +1 ulp of S (inc2) for
MSD > 0. The signal MSD > 0 is implemented as stated in (5.33). Moreover, in the case of
rounding to nearest even and MSD = 0, the lsb of RXGD needs to be pulled down (R goes from
odd to even) if RXRD = 5 and RXST = 0 (signal npdGD = 0), as shown in Fig. 5.12. If MSD > 0
and the rounding mode is nearest even, then the bit SD

lsb⊕ inc1 is pulled down when RXGD = 5
and RXRD and RXST are zeroes. This is done in the increment stage placing an additional
AND gate inside the full adder, that is, (SD

lsb ⊕ inc1) npdlsb.

The critical path goes from LS∗MSD to inc2. Thus, it is one gate delay less than in the
previous implementation (3 gate delays).

5.4 Evaluation results and comparison

In this Section we analyze the area and the delay of our DFP adder using the evaluation
model for CMOS technology of Appendix A. In particular, we focus on the proposed signifi-
cand BCD adder with decimal rounding for the IEEE-754 Decimal64 (16 precision digits) and
Decimal128 (34 precision digits) formats. We compare this results with the two previous high-
performance designs described in Section 5.1 [136, 157] and with a binary implementation
for IEEE 754-1985 double precision (53-bits) [125].

5.4.1 Evaluation results

The general block diagram of our architecture is depicted in Fig. 5.9. The critical path is
indicated as a discontinuous thick line. In terms of logic levels (XOR gate=2 logic levels) the
critical path goes through 4+2 levels of the pre-correction stage, 4+log2(4p) levels of the binary
compound adder, 3 levels of the rounding logic, 1 level in the increment stage, and though a
chain of buffers (with a load of 4p muxes) plus 2 levels of the selection stage. The total number
of levels (excluding the buffering) is 22 for Decimal64 (p = 16) and 24 for (p = 34).

In Table 5.4 we present the delay (in # FO4) and area (in # NAND2 gates) estimated for
the IEEE-754 Decimal64 (p = 16) and Decimal128 (p = 34) implementations of the architecture
proposed in Fig. 5.9.

The delay figures correspond with the critical path delay of each stage. The area and
critical path delay of the rounding unit corresponds with the injection scheme of Fig. 5.12.
For the binary compound adder, the figures correspond with a 63-bit Kogge-Stone prefix tree
adder. Note that an important contribution to the delay of the selection stage is due to the
buffering chain. In addition, most of the hardware cost comes from the pre-correction stage.
For instance, the implementation of Gi costs about 33 NAND2 gates per digit, while the cost of
the block +6 Gi is about 18 NAND2 gates per digit. However, this simplifies significatively the
logic required to merge rounding with the significand addition and the decimal post-correction

116 Chapter 5. Decimal Floating-Point Addition

Stage Delay (# FO4) Area (Nand2)

IEEE 754-2008 Decimal64

Pre-correction 6.5 1010
63-bit binary compound adder 10.5 1800
Rounding logic 2.5 200
Increment logic 1.5 10
Selection 5.1 560

Total 26.7 3580

IEEE 754-2008 Decimal128

Pre-correction 6.5 2140
135-bit bin. compound adder 12.7 4300
Rounding logic 2.5 200
Increment logic 1.5 10
Selection 5.9 1150

Total 29.1 7800

Table 5.4. Delay-area figures for the significand BCD adder with rounding.

of the binary sum.

5.4.2 Comparison

We first examine the critical path of the implementations proposed in [136] (separate signifi-
cand addition and rounding) and in [157] for merging significand BCD addition with decimal
rounding. Although both architectures were originally proposed for the Decimal64 format (16
digits), we consider also a precision of p = 34 digits.

For the separate sign-magnitude BCD adder and decimal rounder [136] (Fig. 5.3), the
critical path (the discontinuous thick line) have 7 + log2(4p + 4) + 8 logic levels (significand
BCD adder) plus log2(4p + 3) + 6 (rounding unit, including the intermediate R1/R2-shifter). In
addition, there are two chains of buffers with a load of 4p muxes each one. For Decimal64,
the number of logic levels is 34 and 37 for Decimal128.

For the combined adder and rounding unit of [157] (Fig. 5.4), the critical path (the
discontinuous thick line) goes through 2 logic levels for the pre-correction, 3 + log2(4p + 12)
levels of the binary compound adder, 8 logic levels of the post-correction unit, 3 levels of the
rounding logic, a chain of buffers loading 4p muxes and 2 levels for the final selection. This
gives a total delay of 28 logic levels for Decimal64 and 29 gate levels for Decimal128.

Using our model, we have evaluated the area and delay of this architecture for both
Decimal64 and Decimal128 formats. Table 5.5 shows these results and presents the corre-
sponding ratios with respect to our proposals. The high hardware cost of implementations
[136, 157] is mainly due to the decimal post-correction unit (85 NAND2 gates per digit). Thus,
for the proposed architecture we estimate improvements between 11% and 16% in delay and
area reductions of 25% and 27% with respect to the architecture with the best performance
[157].

5.5. Conclusions 117

Adder Delay Area
(# FO4) Ratio (Nand2) Ratio

IEEE 754-2008 Decimal64

Proposed 26.1 1.00 3580 1.00
Thompson& Karra& Schulte [136] 37.5 1.44 4300 1.20
Wang& Schulte [157] 30.3 1.16 4490 1.25

IEEE 754-2008 Decimal128

Proposed 29.1 1.00 7800 1.00
Thompson& Karra& Schulte [136] 43.5 1.50 9700 1.24
Wang& Schulte [157] 32.2 1.11 9950 1.28

Table 5.5. Comparison figures for significand adders with rounding.

We also have analyzed the critical path delay of the significand adder and rounding unit
of a double precision (53-bit) binary floating-point adder [125]. It has 18 logic levels in the
critical path with an estimated delay of 20.4 FO4 (28% faster) and a hardware complexity of
2280 NAND2 gates (57% less area).

5.5 Conclusions

A new method and architecture for merging significand (sign-magnitude) BCD addition and
decimal rounding was presented. This is of interest to improve the efficiency of high perfor-
mance IEEE 754-2008 DFP units, namely, DFP adders and multipliers. The IEEE 754-2008
Decimal64 (16 precision digits) and Decimal128 (34 precision digits) implementations present
speedups of about 15% and 10% in performance while reduce the area of significand computa-
tion and rounding more than 25% with respect to a previous representative high-performance
DFP adder [157]. Furthermore, the performance improvements are over 45% in the case of
the DFP adder with separate significand addition and rounding [136] while the area is still
reduced about 20%. With respect to the 53-bit binary floating-point adder, the significand
BCD computation and decimal rounding for 16 precision digits is 20% slower and requires
55% more area.

This significant reduction in area lie in a simplification of the logic for decimal post-
correction and rounding. To compute sign-magnitude BCD addition using a binary compound
adder, the architecture implements an algorithm based on a conditional +6 digit addition of
the BCD input digits [144]. This simplifies the post-correction logic required to obtain the BCD
sum digits from the binary sums. Decimal rounding of the BCD magnitude result requires
the computation of the BCD sums S, S + 1 and S + 2. To incorporate the rounding in the
significand BCD addition we provide support for an additional +2 ulp increment of the sum
result. This is performed by a previous binary carry-save addition of the +6 biased input BCD
digits, which frees a 1-bit room in the lsb and allows the reuse of the binary compound adder
to compute also S + 2.

118 Chapter 5. Decimal Floating-Point Addition

Chapter 6

Multioperand Carry-Free
Decimal Addition

Multioperand addition is used in several algorithms for multiplication, division and square-
root. In the previous two Chapters we considered methods and hardware implementations for
addition of two decimal BCD operands. However, the recursive application of these algorithms
is not efficient for multioperand addition, due to the carry propagation (logarithmic delay) of
each two-operand addition.

Thus, several carry-free addition algorithms were proposed to speedup the addition of q

(q > 2) decimal operands, reducing the q operands to a two-operand in a time independent
of the word length. These algorithms consider decimal operands coded in BCD. However, the
resulting implementations are quite complex due to the inefficiency of BCD for representing
decimal numbers.

In this Chapter we introduce a decimal multioperand carry-save addition algorithm [148]
that uses unconventional (non BCD) decimal coded number systems. We further detail this
technique and present the new improvements to reduce the latency of the previous designs
which include: optimized digit recoders for the generation of 2n multiples (and ×5 multiples),
decimal 3:2 and 4:2 CSAs (carry-save adders) and carry-free adders implemented by special
designed bit-counters. Moreover, we detail a design methodology that combines all these
techniques to obtain efficient multioperand decimal CSA trees with different area and delay
tradeoffs.

The Chapter is organized as follows. Section 6.1 outlines the previous work on multi-
operand decimal addition. In Section 6.2 we introduce the proposed technique for fast dec-
imal carry-save addition. In Section 6.3 we describe the implementation of decimal 3:2 and
4:2 carry-save adders based on this method. Section 6.4 introduces a set of decimal carry-
free adders implemented with counters. Different decimal and combined binary/decimal CSA
trees are proposed in Section 6.5. First, we present a basic scheme and then we introduce two
new proposals, one optimized for area and the other for delay. Section 6.6 presents the area
and delay figures estimated for the proposed 64-bit (16 decimal digits) decimal and combined
binary/decimal CSA trees. We also compare these results with some other representative
works in decimal multioperand addition. We finally summarize the main conclusions and
contributions of this Chapter in Section 6.7.

119

120 Chapter 6. Multioperand Carry-Free Decimal Addition

6.1 Previous Work

Proposals to perform a carry-free addition of several BCD operands were first suggested in
[94] (carry-save) and [132] (signed-digit). Recently, several techniques have been proposed
that improve these previous works. In [51] a signed-digit (SD) decimal adder based on [132]
is used. Redundant binary coded decimal (RBCD) adders [127] can also perform decimal
carry-free additions using a SD representation of decimal digits (∈ [−7, 7]).

Decimal carry-save addition methods use a two BCD word to represent sum and carry
[81, 82, 94, 109] or a BCD sum word and a carry bit per digit [50, 91]. The first group imple-
ments decimal addition mixing binary CSAs with combinational logic for decimal correction.
In [109] a scheme of two levels of 3:2 binary CSAs is used to add the partial products itera-
tively. Since it uses BCD to represent decimal digits, a digit addition of +6 or +12 (Modulo 16)
is required to obtain the decimal carries and to correct the sum digit.

In order to reduce the contribution of the decimal corrections to the critical path, three
different techniques for multioperand decimal carry-save addition were proposed in [81]. Two
of them perform BCD corrections (+6 digit additions) using combinational logic and an array
of binary carry-save adders (speculative adders), although a final correction is also required.
A sequential decimal multiplier using these techniques is presented in [82]. It uses BCD
invalid combinations (overloaded BCD representation) to simplify the sum digit logic. The
other approach (non-speculative adder) uses a binary CSA tree followed by a single decimal
correction. In the non-speculative adder, preliminary BCD sum digits are obtained using a
level of 4-bit carry propagate adders after the binary CSA tree. Finally, decimal carry and sum
digit corrections are determined from the preliminary sum digit and the carries passed to the
next more significant digit position in the binary CSA tree20. Decimal correction is performed
using combinational logic (its complexity depends on the number of input operands added)
and a 3-bit carry propagate adder per digit. Among these proposals, the non-speculative
adders present the best area-delay figures and are suited for tree topologies.

A recent proposal [41] uses a binary carry-free tree adder and a subsequent binary to
BCD conversion to add up to N p-digit BCD operands. The binary carry-free adder consists of
a network of full adders and a level of 4-bit CLAs that add the values for each decimal column
separately. Then, each binary column sum is converted to BCD, obtaining, after the alignment
of the resultant BCD column sum digits, three p-digit BCD operands for 11 < N ≤ 111. These
three rows are finally reduced to a two operand BCD word by applying the same algorithm (in
this case, the network of full adders is just a 3:2 CSA).

The second group of methods [50, 91] uses different topologies of 4-bit radix-10 carry-
propagate adders to implement decimal carry-save addition. Each digit adder takes two BCD
digits and a 1-bit carry input and generates a 1-bit carry output and the BCD sum digit. This
addition can be implemented using a direct decimal carry lookahead adder (CLA) [118]. In [50]
a serial multiplier is implemented using an array of radix-10 CLAs. A CSA tree using these
radix-10 CLAs is implemented in the decimal parallel multiplier proposed in [91]. To optimize
the partial product reduction, they also use an array of decimal digit counters. Each counter
adds 8 decimal carries of the same weight and produces a BCD digit.

20A +6 must be added each time a carry is passed to the next more significant digit position.

6.2. Proposed method for fast carry-save decimal addition 121

7

3:23:2 3:2 3:2

2
9 1 10 0

x 2

0 0 1 1 06

3 00 11
12 1 0

BCD (8421 weight bits)

1 0

Decimal
values

Not BCD

00 1 0
1110

1100

9

12
7

1001
0111

0

2 0010

26

13 1101

10 011−

x 2

Overflow: Carry digit not represented within 4 bits!!

Must be corrected to avoid
overflows in future additions

Sum
Carry

x 2

New addition

From
prev. digit

To next digit (x10)

Figure 6.1. BCD carry-save addition using a 4-bit 3:2 CSA.

The addition of all decimal operands in parallel requires the use of efficient multioperand
decimal tree adders. Among the different schemes, the most promising ones for fast parallel
addition seem to be those using binary CSA trees or some parallel network of full adders
[40, 81], due to their faster and simpler logic cells (full adders against SD adder cells or radix-
10 CLAs). These methods assume that decimal digits are coded in BCD. However, BCD is
highly inefficient for implementing decimal carry-save addition by means of binary arithmetic,
because the need to correct the invalid 4-bit combinations (those not representing a decimal
digit). Fig. 6.1 shows an example of the addition of 3 BCD digits using a 4-bit binary 3:2
CSA directly. In this case, the 4-bit representation (1100) of the decimal sum digit (’12’) is an
invalid BCD value and must be corrected to avoid overflows in subsequent BCD carry-save
additions. The previous methods use different schemes to perform these BCD corrections.
Moreover, the BCD carry digit must be multiplied by 2, which requires additional logic. We
also implement multioperand decimal tree adders using a binary CSA tree, but with operands
coded in decimal codings that are more efficient than BCD, as we show in the next Section.
These multioperand decimal CSA trees are detailed in Section 6.5.

6.2 Proposed method for fast carry-save decimal addition

We propose the use of non-conventional (not BCD) decimal codings for an efficient implemen-
tation of decimal carry-save addition in a binary CSA tree or a full adder network. The use
of these codes avoids the decimal corrections, so we only need to focus on the ×2 decimal
multiplications. We present first the set of preferred decimal codings, and next, the method
for decimal carry-save addition.

122 Chapter 6. Multioperand Carry-Free Decimal Addition

Zi BCD Zi(4221) Zi(5211) Zi(4311) Zi(3321)

0 0000 0000 0000 0000 0000

1 0001 0001 0001 0010 0001 0010 0001

2 0010 0100 0010 0100 0011 0011 0010

3 0011 0101 0011 0101 0110 0100 0100 1000 0011

4 0100 0110 1000 0111 1000 0110 0101 1001 0101

5 0101 0111 1001 1000 1001 0111 1010 1010 0110

6 0110 1010 1100 1010 1001 1011 1100 1011 0111

7 0111 1011 1101 1011 1100 1100 1101

8 1000 1110 1110 1101 1110 1101 1110

9 1001 1111 1111 1111 1111

Table 6.1. Decimal codings

6.2.1 Alternative Decimal Digit Encodings

A decimal digit Zi of an integer operand Z =
∑p−1

i=0 Zi 10i is coded as a positive weighted 4-bit
vector as

Zi =
3∑

i=0

zi,j rj (6.1)

where Zi ∈ [0, 9] is the ith decimal digit, zi,j is the jth bit of the ith digit and rj ≥ 1 is the weight
of the jth bit. The previous expression represents a set of coded decimal number systems
that includes BCD (with rj = 2j), shown in Table 6.1. We refer to these codes by the weight
of each binary position as (r3r2r1r0). The 4-bit vector that represents the decimal value Zi

in a decimal code (r3r2r1r0) is denoted as Zi(r3r2r1r0). Among all the possible decimal codes
defined by expression (6.1), there is a subset more suitable for decimal carry-save addition.
This family of coded decimal number systems verifies that the sum of their weight bits is nine,
that is

3∑

j=0

rj = 9 (6.2)

which includes the (4221), (5211), (4311) and (3321) codes, shown in Table 6.1. Some of these
decimal codings are already known [163], but we use them in a different context, to design
components for decimal carry-save arithmetic. Moreover, they are redundant codes, since two
or more different 4-bit vectors may represent the same decimal digit. These codes have the
following two properties:

• All the sixteen 4-bit vectors represent a decimal digit (Zi ∈ [0, 9]). Therefore any bit-
level logical operation (AND, OR, XOR,. . .) over the 4-bit vector representation of two or
more input digits produces a 4-bit vector that represents a valid decimal digit (input and
output digits represented in the same code).

• The 9’s complement of a digit Zi can be obtained by inverting their bits (as a 1’s comple-
ment) since

9− Zi =
3∑

j=0

rj −
3∑

j=0

zi,j rj =
3∑

j=0

(1− zi,j) rj =
3∑

j=0

zi,j rj (6.3)

6.2. Proposed method for fast carry-save decimal addition 123

Negative operands can be obtained by the 2’s complement of the bit vector representa-
tion, that is

−Z(r3r2r1r0) = Z(r3r2r1r0) + 1 (6.4)

Next, we show how these codes can be used to improve multioperand decimal carry-save
addition/subtraction using these two properties.

6.2.2 Algorithm

Using the first property of these alternative decimal codings, we perform fast decimal carry-
save addition using a conventional 4-bit binary 3:2 CSA as

Ai + Bi + Ci =
3∑

j=0

(ai,j + bi,j + ci,j) rj =
3∑

j=0

(si,j + 2hi,j) rj

=
3∑

j=0

si,j rj + 2
3∑

j=0

hi,j rj = Si + 2 Hi

with (r3r2r1r0) ∈
{

(4221), (5211), (4311), (3321)
}

, si,j and hi,j are the sum and carry bit of a full
adder and Hi ∈ [0, 9] and Si ∈ [0, 9] are the decimal carry and sum digits at position i. No
decimal correction is required because the 4-bit vector expressions of Hi and Si represent
valid decimal digits in the selected coding.

However, a decimal multiplication by 2 is required before using the carry digit Hi for
later computations. Here we restrict the analysis of decimal carry-save addition to only (5211)
and (4221) decimal codes, since the generation of multiples of 2 for operands coded in (4311)
and (3321) seems, in principle, more complex. To simplify the implementation of the ×2
computation we use the following property,

2Z(4221) = 2× Z(4221) = L1b[Z(5211)] (6.5)

where L1shift denotes a 1-bit wired left shift. The resultant bit vector after shifting one bit
to the left an operand Z coded in (5211) represents the double of the operand value (2Z) but
coded in (4221), since their weight bits are multiplied by 2. Fig. 6.2 shows an example of ×2
multiplication for decimal operands represented in (4221) and (5211) decimal codes. For a
decimal operand Z represented by a bit vector Z(4221), a ×2 multiplication can be performed
by a digit recoding of Zi(4221) into Zi(5211) followed by a L1b[Z(5211)]. The resultant bit vector
represents 2 × Z coded in (4221). If the decimal operand Z is represented by Z(5211), 2Z

is obtained as L1shift[Z(5211)] but coded in (4221). To obtain 2Z(5211) a digit recoding from
2Z(4221) to 2Z(5211) is required.

To subtract a decimal operand coded in (4221) or (5211) using a carry-save adder, we
first invert the bits of the operand and add one ulp (unit in the last place). This ulp can be
placed in the free room at the least significant bit position that results from the left shift of
the carry operand H.

In the following Sections, we describe how to design decimal CSAs of any number of
input operands coded in (4221) or (5211). We first detail the implementation of decimal 3:2
and 4:2 CSAs using the proposed method. Next, in Section 6.4, we present a different family

124 Chapter 6. Multioperand Carry-Free Decimal Addition

25

x10
4221 4221

Z(4221)

Digit recoding

0100 1001

50

25

x10
5211 5211

0100 1000

x2
4221 4221

1001 0000

x10

Z(5211)

2Z(4221)

Multiplication by 2

50

x10
5211 5211

2Z(5211)

Digit recoding

1000 0000

50

25

x10
5211 5211

0100 1000

x2
4221 4221

1001 0000

x10

Z(5211)

2Z(4221)

L1shift

L1shift

Figure 6.2. Calculation of ×2 for decimal operands coded in (4221) and (5211).

of decimal carry-free adders made up of bit counters. Finally, in Section 6.5 we use these
components as the building blocks of decimal and combined binary/decimal CSA trees of an
arbitrary number of input operands.

6.3 Decimal 3:2 and 4:2 CSAs

In this Section we detail the proposed implementations of a decimal 3:2 and 4:2 CSAs. We also
describe the gate level implementation of the digit recoders required to perform conversions
between different decimal codings. These recoders are the core logic components to compute
×2n multiplications, which are also required for partial product generation in multiplication.

6.3.1 Gate level implementation

The proposed decimal 3:2 CSAs adds three decimal operands (A,B,C) coded in (4221) or (5211)
and produce a decimal sum word (S) and a carry word (H) multiplied by 2 (2 × H) coded in
(4221) or (5211), such that A + B + C = S + 2H. Depending on the decimal coding of the
operands, we have three possible implementations of a decimal digit 3:2 CSA using a 4-bit
binary 3:2 CSA, as shown in Fig. 6.3:

• Input operands and output operands (S, H, 2H) coded in (4221) (Fig. 6.3(a)). The weight
bits in Fig. 6.3 are placed in brackets above each bit column. In this case, the decimal
digit 3:2 CSA consists of a 4-bit binary 3:2 CSA and a digit recoder from (4221) to (5211).
In Fig. 6.3 we show two gate level implementations of a 1-bit 3:2 CSA: one with a fast
carry output (Fig. 6.3(d)) and one with a fast input (Fig. 6.3(e)). The output of the digit
recoder (Hi(5211)) is then left shifted by one bit position (L1shift[Hi(5211)]). The recoder is
placed in the carry path, so choosing an appropriate gate implementation of the binary
3:2 CSA, in this case the fast carry output configuration (Fig. 6.3(d)), part of the recoder
delay can be hidden.

• Input and output operands coded in (5211) (Fig. 6.3(b)). The implementation of the
(5211) decimal digit 3:2 CSA is similar to the (4221) case, except that here the 4-bit
carry vector Hi(5211) is 1-bit left shifted before the digit recoding.

6.3. Decimal 3:2 and 4:2 CSAs 125

Ai(4221)

3:23:2 3:2 3:2

(4221) to (5211) digit recoder

ai,3 ai,0ai,2 ai,1bi,3 bi,0bi,2 bi,1c i,3 c i,0c i,2 c i,1Ci(4221)

Bi(4221)

s i,0

(4) (2) (2) (1)

s i,1s i,2s i,3
Si(4221)

Hi(4221)
hi,3 hi,2 hi,1 hi,0

Hi(5211)

2Hi(4221)

(4) (2) (2) (1)

(5) (2) (1) (1) (0.5)

(10) (4) (2) (2) (1)w i,3
w i,2 w i,1 w i,0 w i−1,3

L1−SHIFT

(a) Operands coded in (4221).

Ai(5211)

3:23:2 3:2 3:2

(4221) to (5211) digit recoder

ai,3 ai,0ai,2 ai,1bi,3 bi,0bi,2 bi,1c i,3 c i,0c i,2 c i,1Ci(5211)

Bi(5211)

s i,0

(5) (2) (1) (1)

s i,1s i,2s i,3

Si(5211)
Hi(5211)

hi,3 hi,2 hi,1 hi,0

2Hi(4221)

2Hi(5211)

(5) (2) (1) (1) (0.5)

(10) (4) (2) (2) (1)

w i,3 w i,2 w i,1 w i,0

hi−1,3

(5) (2) (1) (1)

L1−SHIFT

(b) Operands coded in (5211).

Ai(5211)

3:23:2 3:2 3:2

ai,3 ai,0ai,2 ai,1bi,3 bi,0bi,2 bi,1c i,3 c i,0c i,2 c i,1Ci(5211)

Bi(5211)

s i,0

(5) (2) (1) (1)

s i,1s i,2s i,3

Si(5211)
Hi(5211)

hi,3 hi,2 hi,1 hi,0

2Hi(4221)

(5) (2) (1) (1) (0.5)

(10) (4) (2) (2) (1)

hi−1,3L1−SHIFT

hi,2 hi,1 hi,0 hi−1,3

hi,3

(c) Mixed (5211)/(4221) coded output operands.

ai,j bi,j ci,j

hi,j si,j

Fast
output

(d) Full adder with
fast carry output.

Mux2

hi,j

0

si,j

1

ai,j bi,j ci,j

fast
input

(e) Full adder with
fast input.

Figure 6.3. Proposed decimal digit (4-bit) 3:2 CSAs.

• Input operands coded in (5211), S, H coded in (5211) but 2H coded in (4221) (Fig. 6.3(c)).
The decimal digit 3:2 CSA consists only of a level of 4-bit 3:2 CSA with the carry output
shifted 1-bit to the left.

The gate level implementation of two decimal 4:2 CSAs for input and output operands
coded in (4221) is shown in Fig. 6.4. The first decimal 4:2 CSA (Fig. 6.4(a)) uses a specialized
gate configuration. The carry bit-vector H is computed as in binary from operands A, B and
C coded in (4221). The intermediate decimal carry operand W is then obtained as 2 × H.
The sum operand S (coded in (4221)) is obtained by XOR-ing the bits of A, B, C, D and W

(approximately in 4 XOR gate delays). The decimal carry operand V is obtained (approximately
in 6 XOR gate delays) by selecting the appropriate bits of D or W , depending on the xor of A,
B, C and D, and multiplying the resulting bit vector (coded in (4221)) by 2.

The second decimal 4:2 CSA (Fig. 6.4(b)) is designed by interconnecting two decimal
3:2 CSAs (Fig. 6.3(a)). The blocks labeled as 3:2 represent a 4-bit binary 3:2 CSA. The
intermediate decimal carry W is connected to a fast input of the second full adder (indicated
by a letter F in Fig. 6.4(b)) to reduce the delay of the critical path. Thus, both implementations
present a similar critical path delay (6 XOR gate delays in the carry path).

6.3.2 Implementation of digit recoders

The design of efficient digit recoders is a critical issue, due to their high impact on the perfor-
mance and area of a decimal multiplier. Due to the redundancy of (4221) and (5211) decimal

126 Chapter 6. Multioperand Carry-Free Decimal Addition

x2

x2

CARRY

Mux2 01

CARRY

Mux2 01

CARRY

Mux2 01

CARRY

ai,3

Mux2 01

bi,3ci,3di,3

Carry−in

ai,2 bi,2ci,2di,2 ai,1 bi,1ci,1di,1 ai,0 bi,0ci,0di,0

hi,3 hi,2 hi,1 hi,0

wi,1wi,3 wi,0wi,2

vi,3 vi,2 vi,1 vi,0si,3 si,2 si,1 si,0

Carry−out
wi−1,3

(a) Using a specialized gate configuration.

x2

Carry-out

hi,3 hi,1 hi,0hi,2

wi,1wi,2
wi,3

wi-1,3

Carry-in

wi,0

CARRY

ai,j bi,j ci,j

hi,j

3:2

3:2

x2

F

F

Ai Bi Ci Di

x2

Vi Si

Wi

Hi

wi,3 wi-1,3

4

4

11

4

44

(b) Using two decimal 3 : 2 CSAs.

Figure 6.4. Proposed decimal (1-digit slice) 4:2 CSAs.

codes, there are many choices for the digit recoding between (4221) and (5211). The sixteen
4-bit vectors of a coding can be mapped (recoded) into different subsets of 4-bit vectors of the
other decimal coding representing the same decimal digit. These subsets of the (4221) and
(5211) codes are also decimal codings. Among all the subsets analyzed, we have selected the
non-redundant decimal codes (subsets of ten 4-bit vectors) shown in Table 6.2 to represent
the recoded digits. These codes lead to two different configurations of digit recoders (S1 and
S2) for the recoding from (4221) to (5211):

• The first group of codes, S1 = {(4221−S1), (5211−S1)} leads to a simpler implementation
of a digit recoder when all the sixteen 4-bit input combinations are possible. Therefore,
in general, a ×2 block is implemented by digit recoding Z(4221) into Z(5211 − S1) and
shifting the output one bit to the left. The gate level implementation of a S1 digit recoder
is shown in Fig. 6.5(a). This operation can be seen as a two-step digit recoding of Zi(4221)
to Zi(4221−S1) and Zi(4221−S1) into Zi(5211−S1). The digit recoding between Zi(4221−S1)
and Zi(5211 − S1) is very simple, since the 4-bit vectors representing each decimal digit
value in both decimal codes are almost similar.

• The second group of codes, S2 = {(4221− S2), (5211− S2)} verifies

2Z(4221− S2) = L1shift[Z(5211− S2)] (6.6)

6.3. Decimal 3:2 and 4:2 CSAs 127

Zi Zi(4221− S1) Zi(5211− S1) Zi(4221− S2) Zi(5211− S2)

0 0000 0000 0000 0000

1 0001 0001 0001 0001

2 0100 0100 0010 0100

3 0101 0101 0011 0101

4 0110 0111 1000 0111

5 1001 1000 1001 1000

6 1010 1010 1010 1001

7 1011 1011 1011 1100

8 1110 1110 1110 1101

9 1111 1111 1111 1111

Table 6.2. Selected decimal codes for the recoded digits.

AOI

OAIOAI

OAI

Zi(4221)

Zi(5211−S1)

(5) (2) (1) (1)

(4) (2) (2) (1)

(a) S1 digit recoder.

Zi(4221)
(2) (1)(4) (2)

AOI

OAI OAI

(5)

Zi(4221−S2)

Zi(5211−S2)
(2) (1) (1)

OAI

(b) S2 digit recoder.

Figure 6.5. Gate level implementation of the (4221) to (5211) digit recoders.

that is, after shifting one bit to the left an operand represented in (5211−S2), the resultant
digits are represented in (4221 − S2). This fact simplifies the implementation of ×2n

operations with |n| > 1. Specifically, 2n × Z can be implemented recoding each digit
Zi(4221) to Zi(4221−S2) followed by n stages of Zi(4221−S2) to Zi(5211−S2) digit recoders.
The implementation of this S2 digit recoder is shown in Fig. 6.5(b) (the Zi(4211 − S2) to

128 Chapter 6. Multioperand Carry-Free Decimal Addition

Zi(5211)

Zi(4221)

(4) (2) (2) (1)

(5) (2) (1) (1)

Mux2
01

full
adder

Figure 6.6. Implementation of a (5211) to (4221) digit recoder.

Zi(5211 − S2) recoder is shown inside the dashed line box). Moreover, when input digits
into a 4-bit binary 3:2 CSA are coded in a S2 decimal coding then the resultant carry
digit Hi is represented in the same S2 coding. In this case, 2×H is implemented as a row
of the simpler Hi(4211 − S2) to Hi(5211 − S2) digit recoders with outputs or inputs 1-bit
left shifted.

Additionally, the inverse digit recoding (from (5211) to (4221)) is easily implemented using a
single full adder as shown in Fig. 6.6, since

Zi(5211) = zi,3 (4 + 1) + zi,2 2 + zi,1 + zi,0 = zi,3 4 + zi,2 2 + z∗i,1 2 + z∗i,0 (6.7)

with z∗i,1 2+z∗i,0 = (zi,3 +zi,1 +zi,0) ≤ 3. This recoder is used in mixed (4221/5211) multioperand
CSAs to convert a (5211) decimal coded operand into the equivalent (4221) coded one.

6.4 Decimal carry-free adders based on reduction of bit columns

We have designed efficient 9:4, 8:4 and 7:3 decimal carry-free adders based on reduction by
bit columns for decimal operands coded in (4221) or (5211). These adders consists of a row of
bit counters which add a column of 9, 8 or 7 bits and produce a decimal digit coded in (4221).
Next, we detail the gate level implementation of these bit counters and the architecture of the
proposed carry-free decimal adders.

6.4.1 Bit counters

The proposed bit counters sum a column of up to q = 9 bits (same weight) and produce a t-bit
vector (t = dlog2(q + 1)e ≤ 4) with weights (4221) which represents a decimal digit Zi ∈ [0, 9].
In Fig. 6.7(a) we show an implementation of a (4221) decimal counter that adds up to 9 bits
using two levels of binary full adders (an F indicates the fast input). The binary weight of each
output is indicated in brackets. The path delay varies approximately from 2 to 4 XOR gate
delays for output (1), from 2 to 3 XORs for outputs (2) and is about 2 XORs for output (4). The

6.4. Decimal carry-free adders based on reduction of bit columns 129

F

x3

Zi(4221)
(4)

3:2 F3:2 3:2
FF

x4 x6x5 x7 x8x0 x1 x2

3:2
F

3:2

(2) (2) (1)

(a) (4221) counter for 9 bits.

(4) (2) (1)(2)

x3

Zi(4221)

x4x6 x5x7 x0x1x2

q1i,2
q0i,2

q1i,0
q0i,0

q0i,1

HA

HA

HAHA

HA

HA

HAHA

HAHA

q1i,1

(b) (4221) counter for 8 bits.

(4) (2) (1)

x3x4x6 x5 x0x1x2

q1i,0

q0i,0q0i,1

3:2

HA

HA

HA

HA

HA

q1i,1

q1i,2

3:2
F

F

(c) 7:3 binary counter.

Figure 6.7. Gate level implementation of digit counters

8-bit counter of Fig. 6.7(b) only sums up to 8 bits but presents a similar critical path delay as
a binary 4:2 CSA (3 XOR gate delay for output (1)). Basically, the first two levels of half adders
(HA) and the two OR gates perform the computation

Q0i = q0i,2 4 + q0i,1 2 + q0i,0 1 =
3∑

k=0

xk

Q1i = q1i,2 4 + q1i,1 2 + q1i,0 1 =
7∑

k=4

xk (6.8)

Since Q0i, Q1i ∈ [0, 4], the total sum Zi(4221) = Q1i +Q0i ∈ [0, 8] is implemented in a simple way
in the final logic level of Fig. 6.7(b) as

Zi(4221) =





zi,3 = q1i,2 q0i,2 ∨ q1i,1 q0i,1

zi,2 = q1i,2 q0i,2 ∨ q1i,0 q0i,0

zi,1 = q1i,2 q0i,2 ∨ (q1i,1 ⊕ q0i,1)
zi,0 = q1i,0 ⊕ q0i,0

In addition, a conventional 7 : 3 binary counter, shown in Fig. 6.7(c), reduces a column of 7
bits into a 3-bit vector with weights (421). Other high-performance implementations of 7 : 3

130 Chapter 6. Multioperand Carry-Free Decimal Addition

x100

x1

Row of (4221) counters

x101x102

x2

x2

x4

5 2 1 15 2 1 15 2 1 1

4

1

2
2

 (4221) digit

(4221) counter

Binary
weights

9:4

(x4) (x2) (x2) (x1)

9 (5211) input operands

4 (5211) output operands
with multiplicative factor

Figure 6.8. 9:4 reduction of (5211) decimal coded operands.

bit counters can be found in [48, 143]

6.4.2 Architecture

These counters can be used to reduce 9 or 8 p-digit decimal operands (coded in (4221) or
(5211)) into 4 or 7 p-digit operands into 3. An example of this procedure is described in
Fig. 6.8 for nine input operands coded in (5211). The procedure is similar for (4221) input
operands. A row of p (4221) decimal counters of Fig. 6.7(a) sums the values of each bit
column producing a (4221) digit per bit column. The four bits of each (4221) digit are placed
in column from the most significant (top) to the least significant (bottom) and aligned in four
rows according to the weight bit of their column (5× 10i, 2× 10i, 1× 10i, 1× 10i). This generates
4 decimal operands coded in (5211) that must be multiplied by a different factor (given by the
binary weights of (4221)) before being added together. This organization causes all the bits
of an output operand to have the same latency. The ×2 and ×4 operations can be performed
as described in Section 6.3.2. The 9:4 decimal carry-free adder is represented by the labeled
box of Fig. 6.8 where the multiplicative factor of each output is indicated in brackets. The 8:4
and 7:3 decimal carry-free adders are implemented using a row of counters of Fig. 6.7(b) and
Fig. 6.7(c) respectively. By other hand, the 3:2 decimal CSA presented in Section 6.3.1 is a
3:2 decimal carry-free adder implemented using a row of 3-bit counters (a level of full adders)
with the carry output multiplied by a factor ×2.

6.5 Decimal and combined binary/decimal CSA trees

A q : 2 decimal CSA tree reduces q (q > 2) p-digit input operands coded in (4221) or (5211)
into two decimal operands H and S, as

∑q−1
l=0 Z[l] = 2H + S = W + S, with Z[l] =

∑p−1
i=0 Zi[l] 10i.

A diversity of multioperand decimal CSA trees with different area-delay trade-offs can be im-

6.5. Decimal and combined binary/decimal CSA trees 131

17 operands coded in (4221)

S (4221)

H (4221)

W (4221)

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

3:2

x2

(a) Decimal 17:2 CSA.

Decimal 4:2 CSA

32 decimal (4221) operands

Decimal 16:2. CSADecimal 16:2. CSA

S (4221)W (4221)

(b) Decimal 32:2 CSA.

Figure 6.9. Basic implementation of decimal (4221) q:2 CSAs.

plemented combining binary 3:2 CSAs, digit recoders and the q:t decimal carry-free adders of
Section 6.4. Next, we present several examples of multioperand decimal CSAs: basic imple-
mentations, optimized for area and optimized for delay. For the examples, we use 17 and 32
input operands coded in (4221), since these values correspond with the maximum number of
operands to be added in the different 16-digit BCD parallel multipliers proposed in Chapter
7. Though we consider input and output operands coded in (4221), the resulting implemen-
tations are similar for the case of all decimal operands coded in (5211). We also present an
example of a mixed delay-optimized decimal 32:2 CSA tree, with half of the operands coded
in (4221) and the other half coded in (5211). Finally, we show the design of a combined
binary/decimal CSA tree.

6.5.1 Basic implementations

Fig. 6.9 shows two examples of a q:2 decimal CSA trees that reduce q=17 and q=32 rows of
decimal digits to 2. The blocks labeled as 3:2 are a 4p-bit binary 3:2 CSA. The blocks labeled
×2 represent a row of (4221) to (5211) S1 digit recoders (Fig. 6.5(a)) with the inputs (for 5211
coded operands) or outputs (for 4221 coded operands) 1-bit left shifted.

In this basic implementation, a multioperand decimal CSA tree is built using the decimal

132 Chapter 6. Multioperand Carry-Free Decimal Addition

3:2 CSAs of Fig. 6.3(a) (binary 3:2 CSA + ×2 block). Since the carry path of a decimal 3:2 CSA
has more delay than the sum path (3 vs. 2 XOR delays), it is connected to a fast input of the
next level of decimal 3:2 CSAs to reduce the critical path delay of the CSA tree. We also use
the most suitable implementation of a full adder (Fig. 6.3(d) or Fig. 6.3(e)) in every particular
case to minimize the critical path delay. In this way, the 17:2 decimal CSA tree of Fig. 6.9(a)
consists of 6 levels of decimal 3:2 CSAs with a critical path delay of 15 and 17 XOR delays for
the sum S and carry W respectively.

This methodology allows to design decimal CSAs of a higher number of input operands
in a hierarchical way. For example, the 32:2 decimal CSA tree of Fig. 6.9(b), is built using
two decimal 16:2 CSA trees (very similar to the 17:2 CSA tree of Fig. 6.9(a)) and a level of the
decimal 4:2 CSAs of Fig. 6.4. The critical path delay of this 32:2 decimal CSA tree is of about
20 XOR delays for the sum S and of 22 XOR delays for the carry W operand.

6.5.2 Area-optimized implementations

The area-optimized implementations reduce the hardware complexity by adding operands
with the same multiplicative factor, that is

2n A + 2n B + 2n C = 2n (A + B + C) = 2n S + 2n+1 H (6.9)

This simplifies the hardware complexity since the overall number of ×2 operations is reduced.

In Fig. 6.10 we show the architecture of an area-optimized 17:2 decimal CSA tree. Each
intermediate operand is associated with a multiplicative factor power of two. For instance,
the carry bit-vectors of the first level of binary 3:2 CSAs, before being multiplied by 2, have
a multiplicative factor of (2). We indicate in brackets, beside each interconnection, the mul-
tiplicative factor of the corresponding intermediate (4221) decimal coded operand. Thus, it
may be necessary to perform ×2n (n > 1) operations for some paths. The implementation of
these blocks is detailed in Section 6.3.2. For example, the 17:2 decimal CSA tree of Fig. 6.10
also requires ×8 and ×4 blocks. Moreover, since the total number of ×2 operations is reduced
in each path, the critical path delay of this area-optimized 17:2 decimal CSA is less (14 XOR
delays for the sum S and 16 XOR delays for the carry W) than the one in the basic scheme.

The proposed implementation for an area-optimized 32:2 decimal CSA tree is shown in
Fig. 6.11. The ×16 block consists of 4 levels of the digit recoders of Fig. 6.5(b). Thus, each
path goes through 5 levels of digit recoders at most, instead of 8, as in the basic scheme (Fig.
6.9(b)). Therefore, the critical path delay is also reduced to 19 XOR delays for the sum S and
to 21 XOR delays for the carry W .

6.5.3 Delay-optimized implementations

We combine some of the strategies used for basic and area-optimized implementations to
obtain delay-optimized implementations. In addition, we make use of the decimal carry-free
adders of Section 6.4 to improve the latency of the decimal q:2 CSA trees. We aim to minimize
the critical path delay by balancing the delay of the different paths.

A delay-optimized decimal 17:2 CSA tree for operands coded in (4221) is shown in Fig.

6.5. Decimal and combined binary/decimal CSA trees 133

(2)

3:23:23:23:23:2

3:2

3:23:2

3:2

3:2

3:2

3:2

x2

x8

3:2

x4

x2

x2

3:2

(1)

(4)

(2) (2) (2)(2) (2)(1) (1) (1) (1) (1) (1)

(1)
(1)

(8) (4)

(1)

(2) (1)

(1)

(2)

(1)

(2)

(1)

(2)(4)

(2)

(2)

(4)

(2) (1)

17 decimal operands coded in (4221)
 (in brackets required multiplicative factor)

x2

3:2

x2

(1)

(2) (1)

(1)

S (4221)

H (4221)

W (4221)

Figure 6.10. Area-optimized implementation of a decimal (4221) 17:2 CSA.

6.12. The 17 p-digit input operands Z[l] are reduced in a first level of b 17
k c k : t decimal carry-

free adders and a decimal modk(17) : 2 CSA. The index k ∈ {7, 8, 9} is set to keep modk(17) ≤ 4
and balance the delay of the different paths. For 17 operands, a good choice is to use a 9 : 4
and a 8 : 4 decimal carry-free adders. The reduction of the resultant intermediate operands
into H and S is performed by a decimal CSA tree. Each intermediate operand is associated
with a multiplicative factor power of two. Operands may be multiplied by its factor before
being added, or added in a binary 3:2 CSA with another two operands with the same factor.
The critical path is reduced to 13 XOR delays for the sum path S and to 15 XOR delays for
the carry path W .

Implementations of decimal CSA trees with operands in mixed (4221) and (5211) decimal
codings may be used to speedup the reduction of partial products in decimal multiplication.
For instance, the decimal SD radix-5 multiplier we introduce in Chapter 7 generates half of
the decimal partial products coded in (5211) and the other half in (4221). In particular, the
(5211) decimal coded operands are generated faster than the (4221) operands.

Fig. 6.13 shows an delay-optimized decimal 32:2 CSA with mixed coded operands: 16
input operands are coded in (5211) and the other half in (4221). For (5211) coded operands,
×2 is implemented as a 1-bit wired left shift, with the result coded in (4221). The block

134 Chapter 6. Multioperand Carry-Free Decimal Addition

(2)

3:23:23:23:23:2

3:2 3:2

3:2 x2

3:2

x4

x2

x2

(1)

(4)

(2) (2) (2)(2) (2)(1) (1) (1) (1)

(1)

(1)

(8) (4)

(1)
(2)

(1)

(1) (2)

(1)

(2)

(2)(4)

(2)(2) (1)

32 decimal operands coded in (4221)
 (required multiplicative factor in brackets)

x2
(1)

(1)

S (4221)

H (4221)

W (4221)

(2)

3:23:23:23:23:2

3:23:2

(1)(2) (2) (2)(2) (2)(1) (1) (1) (1) (1) (1)

(2) (2) (1)

3:2 3:2 3:2 3:2
(4) (4) (2) (1)

3:2
(2)(4)

3:2
(1)(2)

3:2
(4)(8)

3:2
(4) (2)

3:2

x2

(2)

(1)

3:2
(4) (2)

3:2

x8

x16

(4)

3:2

(8)

(1)

3:2

3:2

(8)(16)

(1)

(1)

(1)

Figure 6.11. Area-optimized implementation of a decimal (4221) 32:2 CSA.

labeled 2:2 represents a row of half adders. A row of (5211) to (4221) digit recoders (Fig.
6.6) is required to reduce the remaining intermediate (5211) decimal coded operand with two
(4221) coded operands in a binary 3:2 CSA.

We have used the same strategies as before to balance the delay of the different paths of
the mixed decimal 32:2 CSA tree. Moreover, to speedup the evaluation, mixed (4221/5211)
implementations use the fact that a 1-bit left shift (operation without delay) performed over an
operand coded in (5211) is equivalent to multiplying it by ×2 and recoding to (4221). Therefore,
the critical path delay of this delay-optimized mixed (4221/5211) decimal 32:2 CSA is of about
18 XOR delays for the sum S and of 20 XOR delays for the carry W .

A different rearrangement of a decimal (4221) CSA tree optimized for delay was proposed

6.5. Decimal and combined binary/decimal CSA trees 135

8:4

3:2

3:23:2 F

F

F

F

x4

(x4) (x2)

9:4

x4

3:2

3:2

x2

x4

F

x2

x2

3:2F

x2

x2

W(4221) S(4221)

Z[0]-Z[16](4221)

(x1)

(x4)

(x2)

(x1)

(x2) (x2)

(x2)

(x2)

(x2)

(x1)

(x1)

(x1)

(x1)

(x1)(x4)

(x4)

(x2)

(x2)

(x2)

(x1)

(x1)

(x1)

(x2)

(x1)

x2

Figure 6.12. Delay-optimized 17:2 decimal (4221) CSA tree.

by Castellanos and Stine [23]. They use a regular structure of 4:2 decimal compressors (made
of binary 3:2 CSAs and ×2 blocks) to build 16:2 and 32:2 (4221) decimal CSAs. However, the
resulting structures are of similar delay than our area-optimized proposals and have more
area.

6.5.4 Combined binary/decimal implementations

The different decimal CSAs proposed in the previous Sections can be extended to support
binary carry-save addition in a simple way. We assume decimal operands coded in (4221),
but this is also valid for operands coded in (5211). An example of a combined binary/decimal
3:2 CSA is shown in Fig. 6.14. The only modification affects to the ×2 block, detailed in Fig.
6.14(b). A 2:1 multiplexer controlled by a bit signal dM (dM = 1 for decimal operations) is used
to select between the carry operand W = 2 × H coded in binary (W obtained as a 1-bit left
shift of bit-vector H =

∑p−1
i=0 Hi 16i) or in decimal (4221) code (W obtained as a digit recoding

of H =
∑p−1

i=0 Hi 10i plus a 1-bit left shift). Note that for compatibility between the binary and
decimal paths, the weight bits of decimal digits are reorganized as (2421), so Hi =

∑3
j=0 hi,j 2j

136 Chapter 6. Multioperand Carry-Free Decimal Addition

(x2)

8:4

Z[16]−Z[23] (5211)

5211

Z[24]−Z[31] (5211)

L1−shift

(x1)

(x1)

Recoder

Z[8]−Z[15] (4221)

8:4

x2

4221

2:2

3:2F 5211

4221

8:4

(x2)
x2

(x2)

(x2) (x2) (x1)(x4)

Z[0]−Z[7] (4221)

8:4

x2 x2

9:4
(x1)

x4

3:2F

(x4)
(x2)

3:2

x2

(x4) (x2)

3:2

3:2
(x4)

3:2

3:2

3:2

x8 x4

x2

x2

x2

3:2

x2

(x2) (x1)

(x4)(x8)

W(4221) S(4221)

(x1)(x2)

(x2) (x2) (x1)(x4) (x2) (x2) (x1)(x4) (x2) (x2) (x1)(x4)

(x2)

(x2)

(x2)

(x2) (x1)

(x1) (x1) (x1)(x1)(x1)(x1)(x1)

(x1)

(x1)

(x1)

(x1) (x1)

(x1)

(x1)

(x2)

(x4)

(x2)

(x4)

(x2) (x2)

(x2)

F

F

F

F

F

F

F

Figure 6.13. Delay-optimized 32:2 decimal mixed (4221/5211) CSA tree.

for binary and

Hi = hi,3 2 + hi,2 4 + hi,1 2 + hi,0 1 (6.10)

for decimal.

Hence, to transform the different decimal q:2 CSA trees into the equivalent combined
binary/decimal CSA tree, we have to replace the ×2 blocks with the implementation of Fig.
6.14(b). By other hand, the ×2n (n > 1) blocks only require one level of 2:1 multiplexes,
controlled by dM , placed after the n levels of digit recoders. This scheme could also be applied
to the delay-optimized implementations, but after introducing a slight modification, shown in
Fig. 6.15, into the 9-bit and 8-bit counters of Section 6.4: the 4-bit vectors 1111 and 1110
representing the sum of columns of 9 and 8 bits must be replaced by 1001 and 1000 for binary
operations.

6.6. Evaluation results and comparison 137

3:23:2 3:2 3:2

ai,3 ai,0ai,2 ai,1bi,3 bi,0bi,2 bi,1ci,3 ci,0ci,2 ci,1

si,0

(4)(2) (2) (1)

si,1si,2si,3

Binary weights

Decimal (4221) weights

hi,3 hi,2 hi,1 hi,0

(4)(8) (2) (1)

x2 dM
(10)/(16)

wi,1wi,2

wi+1,0
(2)(8)/(2) (4)

wi,0

(1)

wi,3

wi−1,0

(a) 4-bit (digit) slice.

(2)

(10)/(16)

hi,3 hi,1 hi,0hi,2

wi,1wi,2

wi,3

(2) (4) (1)

(2)(8)/(2) (4)

wi−1,3wi,0

(1)

BCD−4221 to BCD−5211 Recoder

1−bit left shift

(5) (2)(1) (1)

(0.5)
wi−1,3

Mux−2

hi,3 hi,1 hi,0hi,2

wi,3 wi,0wi,2 wi,1

(8) (4) (2) (1)
binary decimal dM

(8)/(5) (2)(4)/(1) (1)

(b) ×2 block.

Figure 6.14. Combined binary/decimal 3:2 CSA.

6.6 Evaluation results and comparison

We present in this Section an estimation of the area and delay for the different 17:2 and 32:2
CSA trees shown in Section 6.5 using the evaluation model for CMOS technology described in
Appendix A.

Also, we have analyzed several decimal carry-free tree adders for sixteen 64-bit (16-digit)
operands based on different methods described in Section 6.2. We have evaluated and com-
pared these implementations with our proposals. We show the results of these comparisons
in Section 6.6.2.

6.6.1 Evaluation results

Table 6.3 shows the evaluation results for the proposed 17:2 and 32:2 CSA trees for 16-digit
operands: the basic implementations (Fig. 6.9), the area-optimized implementations (Fig.
6.10 and Fig. 6.11) and the delay-optimized implementations (Fig. 6.12 and Fig. 6.13). We
include the area and delay figures of the equivalent binary CSA trees for 64-bit operands and
two basic implementations of combined binary/decimal 17:2 and 32:2 CSA trees. The 17:2

138 Chapter 6. Multioperand Carry-Free Decimal Addition

dM

Zi(2421) for decimal (dM=1)

(4)

9−bit/8−bit counter

(2) (2) (1)

x3 x4 x6x5 x7 x8x0 x1 x2

Zi(8421) for binary (dM=0)

Figure 6.15. Combined binary/decimal carry-free adders.

Architecture Delay (tFO4) Area (NAND2) Delay Ratio Area Ratio

Bin. 17:2 CSA 21.0 10800 1 1
Basic Dec. 17:2 CSA 34.0 14500 1.60 1.35
Area-Opt. Dec. 17:2 CSA 32.0 13000 1.50 1.20
Delay-Opt. Dec. 17:2 CSA 30.5 14200 1.45 1.30
Area-Opt. Bin/Dec. 17:2 CSA 26.0/37.0 14300 1.25/1.75 1.30

Bin. 32:2 CSA 28.0 21200 1 1
Basic Dec. 32:2 CSA 44.0 30000 1.60 1.40
Area-Opt. Dec. 32:2 CSA 42.0 25500 1.50 1.20
Delay-Opt. Dec. 32:2 CSA 40.5 28000 1.45 1.30
Area-Opt. Bin/Dec. 32:2 CSA 34.0/47.0 27000 1.20/1.70 1.30

Table 6.3. Evaluation results for the proposed CSAs (64-bit operands).

binary CSA tree consists of 2 levels of binary 3:2 and 2 levels of binary 4:2 compressors. The
binary 32:2 CSA is a tree of 4 levels of 4:2 compressors. Area and delay ratios for the proposed
q:2 CSA trees are given with respect to the equivalent q:2 binary CSA tree.

Delay ratios are close to 1.45 (45% more latency) in the case of the delay-optimized dec-
imal CSAs and 1.20 for binary vs. 1.70 for decimal in the case of combined binary/decimal
CSA trees optimized for area. For area ratios, figures are close to 1.20 (20% more area) in the
case of area-optimized decimal implementations and around 1.30 for combined implementa-
tions (area-optimized).

6.6.2 Comparison

The methods analyzed can be grouped in decimal signed-digit (SD) trees [51, 127], decimal 4-
bit CLA trees [50, 91] and based on binary CSA trees [41, 81, 109]. We have also implemented
a binary 16:2 CSA using a 3-level tree of binary 4:2 compressors. Table 6.4 shows the area and
delay estimations for these different decimal tree adders and sixteen 64-bit operands. Area

6.7. Conclusions 139

Architecture Delay (#FO4) Area (NAND2) Delay Ratio Area Ratio

Binary CSA 21.0 10100 0.65 0.85

SD tree adder [51, 127] 61.0 31300 1.90 2.55

BCD CLA tree adders
Ref. [50] 46.2 16700 1.45 1.40
Ref. [91] 42.9 16700 1.35 1.40

Based on binary tree adders
Ref. [109] 48.5 31000 1.50 2.55
Ref. [81] 40.7 17600 1.30 1.45
Ref. [41] 38.4 18400 1.20 1.50

Proposed decimal CSAs
Basic 34.0 13600 1.05 1.10
Delay-optimized 30.5 13400 0.95 1.10
Area-optimized 32.0 12200 1 1
Mixed (4221/5211) 31.0 12600 0.95 1.05

Results for 64-bit or 16-digit operands.

Table 6.4. Area-delay figures for 16:2 carry-free tree adders.

and delay ratios are given with respect to our area-optimized decimal 16:2 CSA. Thus, a binary
CSA tree of 4:2 compressors is 35% faster (delay ratio 0.65) and requires 15% less area (area
ratio 0.85) than the proposed area-optimized decimal CSA. The proposed delay-optimized
decimal CSA is slightly faster than the area-optimized decimal CSA (roughly 5% faster) but
requires 10% more area. In the case of the (4221/5211) decimal mixed implementation, the
figures are close to the area-optimized decimal CSA. The basic implementation presents the
worst area and delay figures of our proposed decimal CSAs.

The complexity of the signed-digit decimal adder [132] leads to decimal signed-digit tree
adders [51, 127] with high area and delay figures, inappropriate for high speed multioperand
addition. The decimal CSA tree proposed in [109] also presents high area and delay figures,
due to the multiple and complex corrections and digit additions performed in the critical path.
BCD trees [50, 82] present good area/delay tradeoffs, but for high speed multioperand decimal
addition the schemes based on binary trees [81] or [41] are a better choice. When compared
with [41], our decimal CSA is at least 20% faster and requires about 50% less hardware and
is, therefore, a good choice for high performance multioperand addition with moderate area.

6.7 Conclusions

We have developed a hardware algorithm to improve multioperand decimal carry-free addition.
This method performs a decimal carry-save addition by means of a binary carry-save addition
over three decimal operands represented not in BCD, but in non-conventional (4221) and
(5211) decimal encodings. Each binary carry-save addition produces a sum and a carry
operands represented in the same decimal code as the input operands, that is (4221) or
(5211). The carry operand must be multiplied ×2. This decimal operation is implemented
as a digit recoding (no carry propagation between digits). This algorithm makes possible the

140 Chapter 6. Multioperand Carry-Free Decimal Addition

construction of q:2 decimal CSA trees that outperform the area and delay figures of existing
proposals.

We have introduced three decimal carry-free adders to reduce 9 to 4, 8 to 4 and 7 to 3
decimal operands coded in (4221) or (5211). We use them to reduce the critical path delay of
decimal q:2 CSAs. Hence, we have presented basic, area-optimized and delay-optimized im-
plementations of decimal q:2 CSA trees combining different design strategies. We have also de-
signed mixed CSAs admitting input operands coded in both (4221) and (5211) simultaneously.
Moreover, the proposed method also allow the computation of combined binary/decimal mul-
tioperand addition with a moderate area and delay overhead.

The area and delay figures from a comparative study show that the proposed decimal CSA
trees are a very interesting option for high performance with moderate area. With respect to
a binary CSA tree, our decimal CSA trees are about 45% slower and have 20% more area.

Chapter 7

Decimal Multiplication

The new generation of high-performance DFUs (decimal floating-point units) is demanding
efficient implementations of decimal multiplication. Although this is an important and fre-
quent operation, current hardware implementations suffer from lack of performance. Parallel
binary multipliers [108, 124] are used extensively in most of the binary floating-point units
for high performance. However, decimal multiplication is more difficult to implement due to
the complexity in the generation of multiplicand multiples and the inefficiency of representing
decimal values in systems based on binary signals. These issues complicate the generation
and reduction of partial products.

In this Chapter we present the architectures of two parallel DFX (decimal fixed-point)
multipliers and a combined binary/decimal fixed-point multiplier. They were introduced in
[148, 150], and use new techniques for partial product generation and reduction. The par-
allel generation of partial products is performed using SD (signed-digit) radix-10, radix-5 or
radix-4 recodings of the multiplier and a simplified set of multiplicand multiples. The reduc-
tion of partial product is implemented in a tree structure based on the decimal multioperand
carry-save addition methods presented in Chapter 6. Moreover, SD radix-4 and radix-5 recod-
ings allow efficient implementations of parallel combined binary/decimal multipliers. Design
decisions are supported by the area-delay model for static CMOS technology described in
Appendix A.

All of the previous designs are combinational fixed-point multipliers. A pipelined IEEE
754-2008 compliant DFP (decimal floating-point) multiplier based on one of our DFX archi-
tectures [148] was proposed in [67]. We introduce two new different and faster proposals to
support IEEE 754-2008 DFP multiplications using our parallel DFX multipliers and the sign-
magnitude BCD adder with decimal rounding presented in Chapter 5. In addition, we also
propose a parallel scheme for a decimal FMA (fused-multiply-add).

The rest of this Chapter is organized as follows. Section 7.1 outlines the previous (most
representative) work on decimal multiplication. In Section 7.2 we introduce the proposed
techniques for an efficient implementation of decimal parallel multiplication. The generation
of decimal partial products is detailed in Section 7.3, while the reduction of partial products
is discussed in detail in Section 7.4. We present the fixed-point architectures in Section 7.5
and the floating-point architectures in Section 7.6. We show the area and delay figures for the
64-bit (16-digit) combinational fixed-point architectures in Section 7.7. We also compare the

141

142 Chapter 7. Decimal Multiplication

two proposed designs with some representative binary and decimal fixed point multipliers. We
finally summarize the main conclusions in Section 7.8.

7.1 Overview of DFX multiplication and previous work

Integer and fixed-point multiplication (both binary and decimal) consists of three stages: gen-
eration of partial products, reduction (addition) of partial products to two operand words and
a final conversion (usually a carry propagate addition) to a non redundant representation.
Extension to decimal floating-point multiplication involves exponent addition, rounding of the
integer product to fit the required precision and sign calculations.

Decimal multiplication is more complex than binary multiplication mainly for two rea-
sons: the higher range of decimal digits ([0, 9]), which increments the number of multiplicand
multiples and the inefficiency of representing decimal values in systems based on binary logic
using BCD (since only 9 out of the 16 possible 4-bit combinations represent a valid decimal
digit). These issues complicate the generation and reduction of partial products.

Commercial implementations of decimal integer and fixed-point multiplication [19, 20,
45, 109] are based on iterative algorithms and therefore present low performance and a re-
duced area cost. Several sequential decimal multipliers were proposed in recent academical
research [50, 51, 82], which improve the latency of commercial ones. More recently, the first
known proposal of a parallel fixed-point decimal multiplier is described in [91].

Proposed methods for the generation of decimal partial products follow two approaches.
The first alternative performs a BCD digit-by-digit multiplication of the input operands, using
lookup table methods [94, 141] or combinational logic [77]. In a recent work [51], a magnitude
range reduction of the operand digits by a signed-digit radix-10 recoding (from [0,9] to [-
5,5]) is suggested. This recoding of both operands speeds-up and simplifies the generation of
partial products. Then, signed-digit partial products are generated using simplified tables and
combinational logic. This class of methods is only suited for serial implementations, since the
high hardware demands make them impractical for parallel partial product generation (see
[148]).

The second approach generates and stores all the required multiplicand multiples [113].
Next, multiples are distributed to the reduction stage through multiplexers controlled by the
BCD multiplier digits ([0, 9]). This approach requires several wide decimal carry-propagate ad-
ditions to generate some complex BCD multiplicand multiples (3X,6X,7X,8X,9X). In [20], only
even multiples {2X, 4X, 6X, 8X} are computed and stored in the register file before multiplying.
Odd multiples {3X, 5X, 7X, 9X} are obtained on demand from the corresponding even multiple
as mX + X, m = {2, 4, 6, 8}. A reduced set of BCD multiples {X, 2X, 4X, 5X} is precomputed
in [50] without a carry propagation over the whole number. All the multiples can be obtained
from the sum of two elements of this set. To avoid complicated multiples and reduce the
complexity, the multiplier can be recoded to a signed digit (SD) representation. In [91] each
multiplier digit is recoded as Yi = YH 5 + YL, with YH ∈ {0, 1} and YL ∈ {−2,−1, 0, 1, 2}. The
2X and 5X multiples are computed in few levels of combinational logic. Negative multiples
require an additional 10’s complement operation.

The reduction of decimal partial products is performed, in most of the commercial proces-

7.2. Proposed techniques for parallel DFX multiplication 143

sors [19, 20, 45, 160], sequentially, by shifting and adding each partial product to the accu-
mulated partial product sum, using a BCD carry-propagate adder [118]. To improve the
reduction of decimal partial products, several sequential [50, 51, 82, 109] and parallel [91]
multipliers use arrays or trees of decimal carry-free adders. Multioperand carry-free addition
techniques were detailed in Chapter 6. The result of this carry-free reduction is finally assim-
ilated to a non-redundant BCD operand (final product) in a BCD carry-propagate adder or in
a conversion unit (O(log(p)) delay).

7.2 Proposed techniques for parallel DFX multiplication

We consider that multiplicand X =
∑p−1

i=0 Xi 10i and multiplier Y =
∑p−1

i=0 Yi 10i are unsigned
decimal integer p-digit BCD words. The final product

P = X × Y =
2p−1∑

i=0

Pi 10i (7.1)

is a non-redundant 2p-digit BCD operand.

We opt for recoding the BCD multiplier to compute only a reduced set of decimal multi-
plicand multiples. Each recoded digit produces a partial product by selecting the appropriate
multiple. In this way, all the partial products are generated in parallel. We have developed
three different SD (signed-digit) recodings for Y with good trade-offs between fast generation
of partial products and the number of partial products generated.

A minimally redundant radix-10 recoding (with digits in [−5, 5]) produces only p + 1 par-
tial products but requires a carry propagate addition to generate complex multiples 3X and
−3X. Minimally redundant signed-digit (SD) radix-4 and radix-5 recodings (with digits in
[−2, 2]) produce 2p partial products (two per each BCD digit of the multiplier) but multiplicand
multiples are produced faster in a few levels of combinational logic.

For a fast carry-free reduction, we propose to represent the decimal partial products in
the (4221) or (5211) decimal encodings. Thus, we can use the decimal CSA trees introduced in
Chapter 6 to reduce the p + 1 or 2p partial products to 2. Partial product reduction is detailed
in Section 7.4.

In this way, the multiplicand multiples are not generated in BCD, but in (4221) or (5211)
decimal codes. Furthermore, another advantage of using (4221) or (5211) to represent the
multiplicand multiples is that their 9’s complement is obtained by bit inversion. This simpli-
fies the generation of the negative multiples. The generation and selection of (4221) or (5211)
decimal coded multiples is detailed in Section 7.3.

For the final decimal carry-propagate addition we use a 2p-digit BCD Q-T (quaternary
prefix tree) adder, similar to the one proposed in Section 3.3.2. Decimal Q-T adders based on
conditional speculative decimal addition [144] present low latency (about 15% more than the
fastest binary adders) and require less hardware than other alternatives.

144 Chapter 7. Decimal Multiplication

7.3 Generation of partial products

We aim for a parallel generation of a reduced number of partial products coded in (4221) or
(5211). In this Section we present three schemes for a fast generation of all partial products.
These schemes are based on different SD recodings of the BCD multiplier and require a
different set of decimal multiplicand multiples.

The minimally redundant SD radix-10 recoding of the multiplier uses the set of decimal
multiples {−5X,−4X, . . . , 0, . . . , 4X, 5X}. It produces only p + 1 partial products but requires a
carry propagate addition to generate complex multiples 3X and −3X.

The second scheme, named SD radix-5 recoding, recodes each BCD digit Yi of the
multiplier into two digits YU ∈ {0, 1, 2} YL ∈ {−2,−1, 0, 1, 2}, such as Yi = YU 5 + YL. It
generates 2p partial products (2 digits per BCD digit), but the required decimal multiples
{−2X,−X, 0, X, 2X, 5X, 10X} are computed faster. Furthermore, some of the proposals based
on the decomposition Yi = YU 5 + YL [91, 148] require combinational logic to generate the 5X
multiple. We use mixed (4221/5211) decimal codings to remove this logic, so we only need to
compute {−2X,−X, X, 2X} coded in (4221), as proposed in [150].

Finally, the SD radix-4 recoding scheme also generates 2p partial products but uses a
different set of multiples, that is, {−2X,−X, 0, X, 2X, 4X, 8X}. This recoding is quite similar as
the conventional SD radix-4 recoding for binary (or Booth radix-4 recoding). Both SD radix-5
and radix-4 schemes could be of interest for combined binary/decimal implementations.

In the next subsections, we detail the generation of the decimal multiplicand multiples
coded in (4221) or (5211) and the different schemes for the selection of multiples.

7.3.1 Generation of multiplicand’s multiples

The BCD multiplicand X is recoded to the (4221) code in a simple way using the following
logical equations:

wi,3 = hi,3 ∨ hi,2

wi,2 = hi,3

wi,1 = hi,3 ∨ hi,1

wi,0 = hi,0 (7.2)

where Xi(4221) =
∑3

j=0 wi,j rj and Xi(BCD) =
∑3

j=0 hi,j 2j. In particular, this recoding maps
the BCD representation into the subset (4221-S2), shown in Table 6.2.

Decimal multiplicand multiples 2X and 5X are obtained in a few levels of logic using
a digit recoding and a binary wired left shift. The generation sequence of 2X is as follows.
Each BCD digit is first recoded to the (5421) decimal coding shown in Table 7.1 (the mapping
is unique). The complexity of this digit recoder is similar to the (4221-S2) to (5211-S2)
digit recoder (Fig. 6.5(b)). A 1-bit wired left shift is performed to the recoded multiplicand,
obtaining the 2X multiple in BCD. Then, the 2X multiple is easily recoded from BCD to (4221)
using the logical expressions (7.2).

The 5X multiple is obtained by a simple 3-bit wired left shift of the (4221) recoded mul-
tiplicand, with resultant digits coded in (5211). Then, a digit recoding from (5211) to (4221)

7.3. Generation of partial products 145

Zi BCD Zi(5421)

0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

Table 7.1. Decimal codings

25
4221 4221 4221

X(4221)

Digit recoding

0000 0010 1001

125

125

x5

5X(5211)

5X(4221)

Multiplication by 5

0001 0100 1000

4221 4221 4221

5211 5211 5211

0001 0100 1001

x101 x100x102

L3shift

Figure 7.1. Calculation of ×5 for decimal operands coded in (4221).

is performed (Fig. 6.6). Fig. 7.1 shows an example of this operation. Decimal multiple 4X is
obtained as 2 × 2X. The second ×2 operation is implemented as a digit recoding from (4221-
S2) to (5211-S2) followed by a 1-bit left shift. Multiple 3X is evaluated by a carry propagate
addition of multiples X and 2X in a p-digit BCD carry-propagate adder. The BCD sum digits
are recoded to (4221-S2).

Fig. 7.2(a) shows the block diagram for the generation of positive multiplicand multiples
for SD radix-10 recoding. The latency of the partial product generation for the SD radix-10
scheme is constrained by the generation of 3X. The generation of multiples for the SD radix-5
recoding is shown in Fig. 7.2(b). The BCD multiplicand is first recoded to (4221-S2). The 2X

multiple is implemented as a digit recoding from (4221-S2) to (5211-S2) followed by a 1-bit
wired left shift. The negative multiples {−X,−2X}, coded in (4221), are obtained inverting the
bits of the (4221-S2) decimal coded positive multiples and encoding the sign as described in
Section 7.3.2. Fig. 7.2(c) shows the generation of multiples for the case of the decimal SD
radix-4 recoding. Decimal multiple 8X is obtained as 2×4X, so the generation of multiplicand
multiples is almost 3 times faster in the SD radix-5 scheme (Fig. 7.2(b)).

146 Chapter 7. Decimal Multiplication

BCD to 4221 recoder

X (BCD)

X(4221)

x5

x2

5X(4221) 2X(4221)4X(4221)

x2

d−digit BCD
CLA

3X(4221)

BCD to 4221 recoder

BCD to 4221 recoder

2X (BCD) BCD to 5421 + L1−SHIFT

L3−SHIFT + 5211 to 4221

4221 to 5211 + L1−SHIFT

(a) Multiples for SD radix-10.

BCD to 4221 recoder

X (BCD)

x2

2X(4221)−X(4221) −2X(4221)X(4221)

4221 to 5211
+

L1−SHIFT

(b) Multiples for SD radix-5.

BCD to 4221 recoder

X (BCD)

x2

2X(4221)−X(4221) −2X(4221)X(4221)

4221 to 5211 +L1−SHIFT

x2

x2

4X(4221) 8X(4221)

(c) Multiples for SD radix-4.

Figure 7.2. Generation of multiplicand multiples.

4X

BCD to SD radix-10 Recoder

Mux-5

5X

ysi

y1i

y2i

ysi

y1i

y2i

SD digit {-5...5}

Yi-1 (BCD)

y3i

y4i

y5i

3X X2X y5i

 y4i

 y3i

hot one code

Multiplicand multiples in (4221) decimal code

Yi (BCD)

{-5X,-4X,-3X,-2X,-X,0,X,2X,3X,4X,5X}

PPi(4221)

Figure 7.3. Partial product generation for SD radix-10.

7.3.2 Signed-digit multiplier recodings

A. SD Radix-10 Recoding.

Fig. 7.3 shows the block diagram of the generation of one partial product using the SD
radix-10 recoding. This recoding transforms a BCD digit Yi ∈ {0, . . . , 9} into a SD radix-10
Y bi ∈ {−5, . . . , 5}. As shown in Table 7.2, the value of the recoded digit Y bi depends on the

7.3. Generation of partial products 147

decimal value of Yi and on a signal ysi−1 (sign signal) that indicates if Yi−1 is greater or equal
than 5. Thus, the p-digit BCD multiplier Y is recoded into the (p + 1)-digit SD radix-10

Dec. BCD Yi−1 ≥ 5 SD radix-10 digit Hot one code signals
value Yi ysi−1 Y bi ysiy5iy4iy3iy2iy1i

0 0000 0 0 000000
1 1 000001

1 0001 0 1 000001
1 2 000010

2 0010 0 2 000010
1 3 000100

3 0011 0 3 000100
1 4 001000

4 0100 0 4 001000
1 5 010000

5 0101 0 -5 110000
1 -4 101000

6 0110 0 -4 101000
1 -3 100100

7 0111 0 -3 100100
1 -2 100010

8 1000 0 -2 100010
1 -1 100001

9 1001 0 -1 100001
1 0 100000

Table 7.2. SD radix-10 selection signals.

multiplier Y b =
∑p

i=0 Y bi 10i with Y bp = ysp−1 ∈ {0, 1}21. Each digit Y bi generates a partial
product PP [i] selecting the proper multiplicand multiple coded in (4221).

The selection of the multiplicand multiples {−5X, . . . , 5X} is then performed in a similar
way to a modified Booth recoding: five ’hot one code’ signals (y1i, y2i, y3i, y4i and y5i) are
used as selection control signals for the 5:1 muxes to select the positive (p + 1)-digit multi-
ples {0, X, 2X, 3X, 4X, 5X}. These ’hot-one code’ signals are obtained directly from the BCD
multiplier digits Yi using the following logical expressions:

ysi = yi,3 ∨ yi,2 · (yi,1 ∨ yi,0)

y5i = yi,2 · yi,1 · (yi,0 ⊕ ysi−1)

y4i = ysi−1 · yi,0 · (yi,2 ⊕ yi,1) ∨ ysi−1 · yi,2 · yi,0

y3i = yi,1 · (yi,0 ⊕ ysi−1)

y2i = ysi−1 · yi,0 · (yi,3 ∨ yi,2 · yi,1) ∨ ysi−1 · yi,3 · yi,0 · yi,2 ⊕ yi,1

y1i = yi,2 ∨ yi,1 · (yi,0 ⊕ ysi−1)

Table 7.2 shows the value of the ’hot one code’ selection signals for the SD radix-10 recoding.
The sign signal ysi determines if the negative multiple should be produced by the 10’s com-
plement of the corresponding positive multiple. This is performed simply by a bit inversion

21The most significant partial product is just 0 or the multiplicand X.

148 Chapter 7. Decimal Multiplication

X

BCD to SD radix-5 recoder

Mux-2

2X

hot one code
y1i

U

y2i
U

yi,3

yi,2

yi,1

yi,0

y1i
U

y2i
U

-X

Mux-4

-2X

y(-1)iL

y(-2)iL

 SD {-2,..2}

PPL
i(4221)

x5L3-shift

(4221)

{0,1,2}

Yi (BCD)

{-2X,-X,0,X,2X}{0,5X,10X}

PPU
i(5211)

y(-1)iL

y(-2)iL

y(+1)iL

y(+1)iL

 y(+2)iL

y(+2)iL

X 2X

(5211)

Multiplicand multiples in (4221) decimal code

Figure 7.4. Decimal partial product generation for SD radix-5.

of the positive (4221) decimal coded multiple using a row of XOR gates controlled by ysi. The
addition of one ulp (unit in the last place) is performed enclosing a tail encoded bit ysi to the
next significant partial product PP [i + 1], since it is shifted a decimal position to the left from
PP [i]. Therefore, the p + 1 partial products generated have the following expression:

PP [i] =





−ys0 10p+1 +
∑p

j=0(|Y bi X|j ⊕ ys0)10j) if(i == 0)
−ysi 10p+1 +

∑p
j=0(|Y bi X|j ⊕ ysi)10j + ysi−110−1 if(0 < i < d)

ysp−1 X if(i == p)

where |Y bi X|j is the jth digit of the positive multiple selected. To avoid a sign extension and
thus to reduce the complexity of the partial product reduction tree, the partial product sign
bits ysi are encoded at each leading digit position as

PP [i]p+1 =





(0, 0, 0, ys0)10 + (ys0, ys0, ys0, ys0) If(i == 0)
(1, 1, 1, ysi) If(0 < i < p− 1)
(0, 0, 0, 0) If(i = p− 1)

Therefore, each partial product is at most of p + 3-digit length.

B. SD Radix-5 Recoding.

Fig. 7.4 shows the diagram of decimal partial product generation using the SD radix-5
recoding scheme.

Each BCD digit of the multiplier is encoded into two digits Y U
i ∈ {0, 1, 2} and Y L

i ∈
{−2,−1, 0, 1, 2} as Yi = Y U

i · 5 + Y L
i . The specific mapping along with the ’hot one code’ control

signals for selection of multiples is shown in Table 7.3. SD radix-5 ’hot one code’ selection
signals are obtained from the BCD input digits using the following expressions:

(Y U
i)

{
y2U

i = yi,3

y1U
i = yi,2 ∨ yi,1 · yi,0

(Y L
i)





y(+2)L
i = yi,1 · (yi,2 · yi,0 ∨ yi,2 · yi,0)

y(+1)L
i = yi,3 · yi,2 · yi,1 · yi,0 ∨ yi,2 · yi,1 · yi,0

y(−1)L
i = yi,3 · yi,0 ∨ yi,2 · yi,1 · yi,0

y(−2)L
i = yi,3 · yi,0 ∨ yi,2 · yi,1 · yi,0

7.3. Generation of partial products 149

Dec. BCD Recoded digits Hot one code signals Sign
value (Yi) (Y U

i) (Y L
i) y2U

i y1U
i y(+2)L

i y(+1)L
i y(−1)L

i y(−2)L
i ysL

i

0 0000 0 0 0 0 0 0 0 0 0
1 0001 0 1 0 0 0 1 0 0 0
2 0010 0 2 0 0 1 0 0 0 0
3 0011 1 -2 0 1 0 0 0 1 1
4 0100 1 -1 0 1 0 0 1 0 1
5 0101 1 0 0 1 0 0 0 0 0
6 0110 1 1 0 1 0 1 0 0 0
7 0111 1 2 0 1 1 0 0 0 0
8 1000 2 -2 1 0 0 0 0 1 1
9 1001 2 -1 1 0 0 0 1 0 1

Table 7.3. SD radix-5 selection signals.

Each multiplier digit Yi generates two partial products PP [i]U and PP [i]L. Therefore, this
scheme generates 2p partial products for a p-digit multiplier. The advantage of this recoding
is that it uses a simple set of multiplicand multiples {−2X,−X, X, 2X} coded in (4221). Par-
tial product generation is comparable in latency with binary Booth radix-4, due to a faster
generation of multiples.

Moreover, the generation of PP [i]U only requires positive multiples {X, 2X}. To obtain
the correct value of PP [i]U , the (4221) decimal coded multiple selected by Y U

i ({0, X, 2X}) must
be multiplied by 5 before being aligned and reduced. This is performed by shifting 3 bits to
the left the bit vector representation of the selected multiple22, producing a ×5 operand coded
in (5211).

The negative multiples {−X,−2X} are the two’s complement of the bit vector representa-
tion of {X, 2X} coded in (4221). The sign bits ysL

i , given by

ysL
i = yi,3 ∨ yi,2 · yi,1 · yi,0 ∨ yi,2 · yi,1 · yi,0 (7.3)

are encoded to the left of PP [i]L and PP [0]U as

PP [i]Lp+1 =

{
(1, 1, 1, ysL

i) If(0 ≤ i < p− 1)
(0, 0, 0, 0) If(i = p− 1)

PP [0]Up+1 = (0, 0, 0, ysL
0) (7.4)

The hot ones produced by the 10’s complement of the partial products, (0, 0, 0, ysL
i), are just

enclosed at the least significant digit of PP [i]U (PP [i]U0), which has a value of 0 or 5 coded in
(5211). The 2p partial products generated are at most of p + 2-digit length, p of them coded in
(5211) (PP [i]U) and the other half in (4221) (PP [i]L).

A combined binary Booth radix-4/decimal SD radix-5 block diagram for the partial prod-
uct generation is proposed in Fig. 7.5. Multiplexes controlled by dM select the operands
required by binary or decimal multiplications.

C. SD Radix-4 Recoding.
22Shifting three bits to the left a (4221) decimal coded bit vector is equivalent to multiply its binary weights by 5 to

obtain a (5211) coded operand.

150 Chapter 7. Decimal Multiplication

BCD to SD radix-5
recoder

Mux-2

X4221

 Partial Product i-upper

Combined 4-bit SD radix-4/radix-5 recoder

dM

Yi
U

Yi
L

Yi

y1i
U

y2i
U

Mux-2

ysi
L

y1i
L

y2i
L

 Partial Product i-lower

Binary to SD
radix-4 recoder

yi-1,3

Yi
U

Yi

L

4

3 3 3 3

1

Mux-2 Mux-2

Yi
U

Yi
L

ysi
U

Mux-2 Mux-2

8XBIN

Mux-2 Mux-2

dM

dM

dMdM
dM

Multiplicand multiples selection

4XBIN
2XBIN XBIN

2X4221

X42212X4221

x5
L3-shift

x5
L3-shift

Figure 7.5. Combined binary SD radix-4/decimal SD radix-5 scheme.

Two SD radix-4 digits Y U
i ∈ {0, 1, 2} (upper), Y L

i ∈ {−2,−1, 0, 1, 2} (lower) are generated per
each BCD digit (Yi = Y U

i · 4 + Y L
i). We obtain the SD radix-4 selection signals directly from the

BCD digits as

(Y U
i)





ysU
i = yi,3

y2U
i = yi,3 · yi,2 · yi,1

y1U
i = yi,3 · yi,2 ⊕ yi,1

(Y L
i)





ysL
i = yi,3 ∨ yi,1

y2L
i = ysL

i · yi,0 · yi−1,3 ∨ ysL
i · yi,0 · yi−1,3

y1L
i = yi,0 ⊕ yi−1,3

Though the SD radix-4 recoder is of similar complexity than the SD radix-5 recoder, the
computation of decimal multiples 4X and 8X requires double and triple latency with respect
to the evaluation of 2X (see Fig. 7.2). Therefore, this scheme only seems of interest for
combined binary/decimal implementations.

The block diagram of a 4-bit combined binary/decimal recoder and the corresponding
multiplicand multiple selector are shown in Fig. 7.6 where control signal dM is true for decimal
multiplication. The combined SD radix-4 recoder implements the decimal selection signals
and the conventional Booth radix-4 selection signals. Upper signals select multiples ±8X and
±4X while lower signals select multiples {−2X,−X,X, 2X}.

7.4 Reduction of partial products

After the generation, the decimal partial products are aligned according to their decimal
weights as

P = X × Y =
p∑

i=0

PP [i] 10i (7.5)

and

P = X × Y =
p∑

i=0

(PPU [i] + PPL[i]) 10i (7.6)

7.4. Reduction of partial products 151

 BCD to SD radix-4 Recoder

Mux-2

ysi
U

 Partial Product i-upper

Selection of multiplicand multiples

ysi
L

y1i

U

y2i
U

y1i
L

y2i
L

yi,3

yi,2

yi,1

yi,0

yi-1,3

ysi
U

y1i
U

y2i
U

Mux-2

ysi
L

y1i
L

y2i
L

2 SD digits {-2,...,2}
 Partial Product i-lower

Binary/BCD to SD radix-4

8X4221

Mux-2 Mux-2

8XBIN

Mux-2 Mux-2
dM dMdM dM

4XBIN 2XBIN XBIN
4X4221

2X4221 X4221

Figure 7.6. Partial product generation for SD radix-4.

S S F X X X X X X X X X X X X X X X X
S F X X X X X X X X X X X X X X X X H

S F X X X X X X X X X X X X X X X X H
S F X X X X X X X X X X X X X X X X H

 X X X X X X X X X X X X X X X X H

S F X X X X X X X X X X X X X X X X H
S F X X X X X X X X X X X X X X X X H

S F X X X X X X X X X X X X X X X X H
S F X X X X X X X X X X X X X X X X H

S F X X X X X X X X X X X X X X X X H
S F X X X X X X X X X X X X X X X X H

S F X X X X X X X X X X X X X X X X H
S F X X X X X X X X X X X X X X X X H

S F X X X X X X X X X X X X X X X X H
S F X X X X X X X X X X X X X X X X H

 F X X X X X X X X X X X X X X X X H Highest column: p+1 digits

S F X X X X X X X X X X X X X X X X H

Final product: 2p−digit wide

 p+1 partial products: p+3 digits length max.

(a) SD radix-10 DFX multiplier.

 S S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

Highest column: 2p digits

Final product: 2p−digit wide

 2p partial products: p+2 digits length max.

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

 S F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

F V V V V V V V V V V V V V V V V
B B B B B B B B B B B B B B B B H

(b) SD radix-5 DFX multiplier.

Figure 7.7. Partial product arrays of the DFX multipliers.

for the SD radix-10 and SD radix-5 schemes respectively. These alignments do not require
any logic, since they are performed as 4i-bit wired left shifts. The resultant partial product
arrays after alignment are shown in Fig. 7.7. For the SD radix-10 architecture, the array
of p + 1 decimal partial products is shown in Fig. 7.7(a). Each partial product, coded in
(4221) is at most of p + 3-digit length. In the diagram, X indicates a (4221) decimal digit,
S is an encoded sign digit, H is the ’hot one’ encoding required for negative multiples and
F represents the extra digit position required to represent the magnitude of the (p + 1)-digit
multiplicand multiples (note that the multiplicand is a p-digit operand).

The decimal partial products are reduced using one of the proposed decimal CSA trees
for input operands coded in (4221), described in Section 6.5. We had considered that the
size of the decimal CSA tree was constant for each digit position. However, the height of the
partial product array varies for each digit column: from (p+1) digits for the highest columns
to 2. Therefore, the partial product reduction tree consists of a row of decimal q:2 CSA digit
trees, where q is at most p + 1 for the SD radix-10 scheme.

152 Chapter 7. Decimal Multiplication

For the decimal SD radix-5 architecture, the array of 2p partial products (after alignment)
is shown in Fig. 7.7(b). The digits of the p decimal partial products coded in (5211) (the upper
partial products PPU [i]) are represented as B. The digits of the p partial products coded in
(4221) are indicated with a V, while S is an encoded sign digit, H is the ’hot one’ digit encoding
and F is the extra digit required to support the length of the multiplicand multiples. In this
case, the partial product reduction tree is implemented using mixed (4221/5211) decimal q:2
CSA digit trees, where q is at most 2p.

In the binary case, the Booth radix-4 recoding generates an array of dn+1
2 e partial prod-

ucts for an n-bit binary multiplier, where p = 4n, so the number of partial products generated
is 2p. Therefore, we can use the same tree to reduce the partial products generated by the
Booth radix-4 recoding for binary and by the SD radix-4 or SD radix-5 recodings for decimal.
This reduction tree is implemented by a row of the combined binary/decimal q:2 CSA digit
trees (with q = 2p at most), detailed in Section 6.5.4.

7.5 Decimal fixed-point architectures

In this Section we present the architecture of two DFX parallel multipliers for 16-digit (64-
bit) BCD operands based on the SD radix-10 and SD radix-5 recodings. We also detail the
architecture of two combined binary/BCD fixed-point multipliers, which use a Booth radix-4
recoding for binary and the SD radix-4 or the SD radix-5 recodings for decimal.

7.5.1 Decimal SD radix-10 multiplier

The architecture of the 16-digit SD radix-10 multiplier is shown in Fig. 7.8. The generation
of the 17 partial products is performed by an encoding of the multiplier into 16 SD radix-10
digits and an additional leading bit as described in Section 7.3.2. Each SD radix-10 digit
controls a level of 76-bit 5:1 muxes and 76 XOR gates that select the corresponding multiple
coded in (4221). The 17 partial products are aligned (see Fig. 7.7(a)) and reduced to two 32-
digit (128-bit) operands S and H coded in (4221). The number of digits to be reduced varies
from q = 17 to q = 2. The partial product reduction tree consists of a row of (4221) decimal
coded digit q:2 CSAs, as described in Section 7.4. In particular, the highest columns can be
reduced with a decimal 17:2 CSA digit tree: see Fig. 6.9(a) for a basic implementation, Fig.
6.10 for an area-optimized design, or Fig. 6.12 for a delay-optimized design. The final product
is a 32-digit BCD word given by P = W + S = 2H + S. This addition is performed in a 128-bit
BCD carry propagate adder. The adder architecture is described in Section 5.3. Note that the
logic for decimal subtraction is not needed. One of the adder operands is represented in BCD
and the other in BCD excess 6 (BCD value plus 6). Thus, S is recoded from (4221) to BCD
excess 6 (this has practically the same logical complexity as recoding to BCD). The W = 2×H

multiplication is performed in parallel with the recoding of S. This ×2 block uses a (4221) to
(5421) digit recoder and a 1-bit wired left shift to obtain the operand coded in BCD.

7.5. Decimal fixed-point architectures 153

X
SD Radix-10

Recoder

Mux-5

76-bit x 17 pp.

32-digit BCD Q-T
Adder

17 Partial Product
Reduction Tree

128

128 128

17 SD radix-10 digits

Y (BCD)
64

3X 2X4X

Y2i

Ysi

Y1i

Y3i

Y4i

Y5i

5X

x2 +6
128 128

P (BCD)

PP[i] (4221)

BCD to 4221 recoder

X (BCD)

X(4221)

x5

x2

5X(4221) 2X(4221)4X(4221)

x2

16-digit BCD
Q-T Adder

3X(4221)

BCD to 4221 recoder

BCD to 4221 recoder

64

+6

68 64 68 68
68

76
(x17 rows)

S (4221)H (4221)

2H (BCD) S (BCD excess-6)

Figure 7.8. Combinational SD radix-10 architecture.

7.5.2 Decimal SD radix-5 multiplier

The dataflow of the 16-digit SD radix-5 architecture is shown in Fig. 7.9. It implements the
SD radix-5 recoding described in Section 7.3.2, which generates 32 partial products, half
coded in (4221) and the other half in (5211). After alignment, the reduction of digit columns
is carried out using a row of the mixed (4221/5211) decimal digit q:2 CSAs (2 ≤ q ≤ 32),
described in Section 6.5.3. The worst case corresponds to a column of 32 digits, which can
be reduced using the delay-optimized decimal 32:2 CSA of Fig. 6.13. As in the SD radix-10
architecture, the 32-digit operands S and H coded in (4221) are assimilated in the 128-bit
BCD carry-propagate adder as P = S + 2×H.

7.5.3 Combined binary/decimal SD radix-4/radix-5 multipliers

The proposed architecture for the combined binary/decimal multipliers is shown in Fig. 7.10.
We have different multipliers depending on the scheme used to generate the partial products.

154 Chapter 7. Decimal Multiplication

SD radix-5 Recoder

Yi
U

72-bit x 16 pp.

32 Partial Product
Reduction Tree

SD radix-5 digits

64

32-digit BCD Q-T
Adder

128

Yi
L

 hot one
code signals

-X

Mux-4

-2X

y(-1)iL

y(-2)iL

PP[i]L(4221)

{-2X,-X,0,X,2X}

y(+1)iL

 y(+2)iL

X 2X

BCD to 4221 recoder

X (BCD)

x2

2X(4221)-X(4221) -2X(4221)X(4221)

X

Mux-2

2X

y1i
U

y2i
U

x5L3-shift

(4221)

{0,5X,10X}
PP[i]U(5211)

128 128

x2 +6
128 128

Y (BCD)

P (BCD)

64

(x16 rows)

(x16 rows)

64 72
7268

72 72

ysi
L

x 16

2 4 1

S (4221)H (4221)

2H (BCD) S (BCD excess-6)

72-bit x 16 pp.

sign for
encoding

Yi
L

Yi
U

Figure 7.9. SD radix-5 DFX multiplier.

A combined binary Booth radix-4/decimal SD radix-4 multiplier can be implemented using
the recoder of Fig. 7.6 and the multiplicand multiples of Fig. 7.2(c). The combined binary
Booth radix-4/decimal SD radix-5 architecture is implemented using the partial product gen-
eration scheme of Fig.7.5, where the generation of multiples is shown in Fig.7.2(b).

In all cases, 32 partial products are generated. The array of 32 partial products is
reduced using a combined binary/decimal 32:2 CSA digit tree (see Section 6.5.4) for the
highest columns or simpler CSAs for the other columns. The final carry-propagate addition is
performed with a 128-bit combined binary/BCD Q-T adder (see Section 3.3.2).

7.6 Decimal floating-point architectures

Older designs of DFP multipliers present low performance [12, 29] and do not conform to the
IEEE 754-2008 standard. The IEEE 754-2008 DFP units incorporated in current commercial
processors, such as the IBM Power 6 [45] and z10 [160], implement multiplication iteratively.
These units implement a 36-digit BCD adder and some hardware shared with other decimal
instructions, such a generator of ×2 and ×5 multiples and a 36-digit rotator (which performs

7.6. Decimal floating-point architectures 155

X

SD radix-4/5 Encoder

Mux-2

Yi
U

64-bit x 32 pp.

32 Partial Product
Reduction Tree

(Decimal 32:2 CSA)

32 SD radix-4 digits/
32 SD radix-5 digits

Y

64

128-bit Q-T Adder

64

128 128

x2 +6
128 128

Multiplicand multiple generation

{X, 2X, 5X, 10X} for radix-5 Yi
L

64

{X, 2X, 4X, 8X} for radix-4

Partial product generation

Figure 7.10. Combined binary/decimal radix-4 (radix-5) multiplier.

both left and right variable shifts). Therefore, the performance of a decimal multiplication
is low (up to 35 cycles of 13 FO4 for Decimal64 and up to 89 cycles for Decimal128) when
compared with a binary multiplication (7 cycles for a 64-bit multiplication in the fast parallel
Power6 implementation [137]).

More recently, Erle, Schulte and Hickman reported two different IEEE 754-2008 compli-
ant DFP multipliers [97, 67] for Decimal64 (16-digit) operands. The sequential DFP multiplier
proposed in [97] is based in a previous fixed-point iterative design [50], described in Section
7.1. It performs a Decimal64 floating-point multiplication in 25 cycles of 15 FO4 (43 cycles
with support for gradual underflow).

The scheme of the high-performance parallel DFP multiplier presented in [67] is shown
in Fig. 7.11. The fixed-point multiplier block (DFX multiplier) implements our SD radix-10
parallel architecture [148], described in Section 7.5.1.

The decimal carry and sum operands from the partial product reduction must be normal-
ized before rounding. This normalization is carried out as a left shift of sla = min(lzX + lzY , p)
digits to remove the leading zeroes of the result (only p at most). The DFP dataflow uses
the rounding scheme from the sequential implementation [97]. The (4221) carry and sum
operands are recoded to BCD and added in a 2p-digit BCD adder before being normalized
(2p-digit left shift). Thus, rounding is performed separately from the 2p-digit BCD carry-
propagate addition, which requires another decimal carry propagation of p digits. The fully
combinational implementation performs a Decimal64 multiplication in 80 FO4. It can be

156 Chapter 7. Decimal Multiplication

+1 ulp increment
(p-digit carry propagation)

DFX Multiplier

X

Double L-Shifter (p-digit)

BCD to IEEE-754r DFP packing

IEEE-754r DFP to BCD unpacking

4p

sign
processing

sY EX EY
sX

FX

Y

sP

eP

1

FY

P

Binary Add

ieP

Add +1

MSD1

Mux2

Rounding
logic

4p

01

FP

BCD carry-propagate adder
(2p digits)

LZD
lzx

control unit

LZD
lzy

sla = min{lzX+lzY,p}

4p

MSD0

MSD1

MSD0

R1-shifter
MSD0<>0

MSD<>0

Rounding

8p

4p 4p

Figure 7.11. Scheme of the DFP multiplier proposed in [67].

pipelined in 12 stages of 15 FO4.

To reduce the latency of this scheme we propose to perform the normalization before the
combined addition and rounding of the decimal carry-save product. We present two schemes
(optimized for area and for delay) in Section 7.6.1.

Moreover, in Section 7.6.2 we propose a scheme for decimal FMA (fused-multiply-addition).
This operation (R = X × Y ± Z) has two advantages over the case of a separate floating-point
adder and multiplier: it is performed with only one rounding operation instead of two (reduces
the overall delay and error), and several components are shared for two different instructions
(area reduction). On the other hand, it is not possible to concurrently perform additions and
multiplications (the overall throughput is reduced). However, separate add and multiply op-
erations can be transformed in multiply-add instructions, following the Horner,s rule [120].
High-performance implementations of binary FMA units can be found in [137, 90, 120] among
others. Specifically, our scheme is a DFP extension of the high-performance binary FMA unit
proposed by Lang and Bruguera [90].

7.6. Decimal floating-point architectures 157

BCD adder with
rounding

(p+2 digits)

DFX Multiplier

X

L−Shifter
(p−digit)

BCD to IEEE−754r DFP packing

FP

IEEE−754r DFP to BCD unpacking

4p

LZD
lzx

sign
processing

sY EX EY
sX

FX

Y

sP

eP

1

FY

P

Binary Add

control unit

slax

ieP

Add +1

4p

MSD<>0

14

LZD
lzy

slay

Mux2

4p

L−Shifter
(p−digit)

Carry and sticky bit
computation
(prefix tree)

8p 8p

4(p+2) 4(p+2)

4(p−2)

4(p−2)

01
1−digit right shift

Cout

sticky bit

sla = min{lzX+lzY,p}

Figure 7.12. Proposed area-optimized scheme for DFP multiplication.

7.6.1 DFP multipliers

In a DFP multiplication FP = FX × FY = (−1)s
P P 10EP , the sign sP , the biased exponent EP

and the product coefficient P are evaluated in three separate paths. Thus, the DFP IEEE 754-
2008 multiplicand FX and multiplier FY are first unpacked as (sX , X, EX) and (sY , Y, EY).
EP is the least possible exponent for inexact computations and the closest to the preferred
exponent EX + EY − bias for exact computations.

As in binary, the sign is computed straightforwardly as sP = sX ⊕ sY . However, DFP mul-
tiplication presents a slight difference with respect to binary multiplication: since p-BCD digit
coefficients X and Y are not normalized and have leading zeroes, the rounding position (the
decimal point) is not fixed. Therefore, to combine the final decimal carry-propagate addition
with rounding, a normalization of the 2p-digit product must be previously performed. This
normalization is carried out by removing the leading zeroes (up to p, due to the requirements
of exact computation) from the input coefficients or the decimal carry-save product.

In Figs. 7.12 and 7.13 we present the two proposed high-performance schemes for DFP
multiplication, one optimized for area and the other for delay.

158 Chapter 7. Decimal Multiplication

BCD adder with
rounding

(p+2 digits)

DFX Multiplier

X

Double L-Shifter (p-digit)

BCD to IEEE-754r DFP packing

IEEE-754r DFP to BCD unpacking

4p

LZD
lzx

sign
processing

sY EX EY
sX

FX

Y

sP

eP

1

FY

P

Binary Add

control unit

p (format precision)

ieP

Add +1

4p

MSD<>0

14

LZD
lzy

Mux2

4p

Carry and sticky bit
computation
(prefix tree)

8p

8p

4(p+2) 4(p+2)

4(p-2)

4(p-2)

01
1-digit right shift

Cout

sticky bit

FP

Double L-Shifter (p-digit)
sla sla

sla

8p

sla = min{lzX+lzY,p}

Figure 7.13. Proposed delay-optimized scheme for DFP multiplication.

The only difference between the two schemes is the placement of the left shifters for
normalization. When they are placed before the DFX multiplication (area-optimized scheme,
Fig. 7.12), the width of both shifters is of p digits. The shift left amounts for operands X and
Y are computed as

slaX = min(p− lzy, lzx)

slaY = lzy (7.7)

where lzX and lzY are the number of leading zeroes of X and Y determined using two LZDs
(leading zero detectors). Thus, in this case, the evaluation of slaX and slaY is in the critical
path.

In the optimized-delay scheme (Fig. 7.13), the left shifters are placed after the reduction
of partial products. The 2p-digit decimal sum and carry operands are left shifted an amount
of digits equal to

sla = min(lzx + lzy, p) (7.8)

Thus, thought the width of the left-shifters is doubled (2p digits) with respect to the area-

7.6. Decimal floating-point architectures 159

optimized scheme, the number of digit positions shifted is p at most. Moreover, the computa-
tion of sla is not in the critical path.

The final assimilation and rounding is performed using the combined (p+2)-digit BCD
adder with decimal rounding presented in Chapter 5 (see Fig. 5.8). This architecture only
requires a minor modification into the rounding logic to support correct rounding of decimal
multiplications. For example, the Cin from the 2(p − 2) least significant digits of the decimal
carry-save product is incorporated as a carry-in into the BCD sum of the guard and round
digits (see Figs. 5.9(a)-(b)). The sticky bit is also computed from the (p − 2) LSDs in a tree
of OR gates. A final normalization (1-digit right shift) is required if the MSD of the rounded
product P is not zero, that is

sr1 =

{
0 IfMSD(P) = 0
1 Else

(7.9)

The exponent EP is computed in both schemes as

EP = (EX + EY − bias)− sla + sr1 (7.10)

where sla and sr1 are given by expressions (7.8) and (7.9) respectively.

7.6.2 Decimal FMA: Fused-Multiply-Add

The objective of this Section is to describe, at high level, a feasible high-performance imple-
mentation of a decimal FMA. As we have commented before, the proposed scheme is based on
a previous implementation of a high-performance binary FMA [90].

To reduce the latency we combine decimal addition/subtraction with rounding. The main
problem in a (binary and decimal) FMA computation (R = FX × FY ± FZ) is that the radix
point position is not known until normalization, due to a possible cancelation of some leading
digits in the subtraction of coefficient X × Y and Z. Thus, we have to place normalization
before rounding. Though this is also true for (binary and decimal) floating-point addition, in
this case, the digits to the right of the LSD of the result are all zeroes.

Moreover, as we have seen for DFP multiplication, the product X × Y is not normalized.
Therefore the leading zeroes of lzX and lzY also have to be taken into account to align operand
P = X × Y and Z before being added/subtracted. The different alignment cases are sum-
marized in Fig. 7.14. The biased exponent of the result ER is the least possible for inexact
computation and the closest to the preferred exponent min(EZ , EP) (EP = EX + EY − bias) for
exact computations. Thus, when EZ ≥ EP the operand Z is shifted EZ − EP positions to the
left of the 2p-digit product P . This shift is of 2p + 2 digits maximum (two extra positions are
required for the guard and round digits when EZ − EP > 2p).

On the other hand, when EZ < EP , the alignment depends on the value lzP = lzX + lzY .
The product P is shifted to the left min(lzP , p, EP −EZ) positions. If EP −EZ > lzP the operand
Z is shifted EP −EZ − lzP positions to the right. In this way, the digits of Z shifted to the right
of the decimal point only contributes to the computation of the sticky bit.

This alignment is equivalent to perform at most a 3p + 2-digit right shift of Z and a left
shift of P of p digits at most. The normalization consists then on removing the leading zeroes

160 Chapter 7. Decimal Multiplication

2p digits

2p+2 digit buffers

Z

P

p digits

Case EZ = EP

2p digits

p digits

Case EZ > EP

2 extra digit
buffers

2p-lzP digits

p digits

Cases EZ < EP

lzP zeroes

EP-EZ < lzP

p digits

to the
sticky
bit

Z

P

Z

P

Z

P

2p-lzP digitslzP zeroes

EP-EZ > lzP

Figure 7.14. Operand alignment for the decimal FMA operation.

of R. Note that if lzP > EP − EZ > p, then the result is exact and it has (lzP − p leading
zeroes. Therefore, to be conformed to decimal IEEE 754-2008 standard specifications, this
normalization is a left shift of 2p + 2 digits at most.

To combine decimal addition and rounding we perform the normalization before the
addition/subtraction. The resultant scheme is shown in Fig. 7.15. The complement of Z for
effective subtractions eop = 1 and the subsequent wide 3p + 2-digit right shifter are placed in
parallel with the DFX multiplier.

As in [90], a LZA (leading zero anticipator) is used to determine the normalization amount
(number of leading zeroes of the addition/subtraction) from the decimal carry-save product
and the operand Z (or ¬Z). A decimal 3:2 CSA reduces in parallel these three operands to a
two decimal operand.

To reduce the delay of the decimal FMA, some part of the logic of the decimal adder (the
initial operand setup, see Fig. 5.8) could be placed before the normalization and overlapped
with the LZA to reduce the overall delay (similar to [90]). We only detail the high level structure.
A more detailed description would require a gate-level analysis to balance the delay of the
different paths.

Note that for the IEEE 754-2008 Decimal128 format (34 digits or 136 bits) the datapath

7.7. Evaluation results and comparison 161

4p

DFX Multiplier

X

R−Shifter
(3p+2)−digits

BCD to IEEE−754r DFP packing

FR

IEEE−754r DFP to BCD unpacking

Sign

sY EX EYsX

FX

Y

sR

eR

1

FY

Exponent
Processing

ieR

Add +1

4p

FZ

Z
sz EZ

4p

LZD

sra

LZD
lzy

sna

lzx

Double L−Shifter
(p−digit)

BCD adder with
rounding

(p+2 digits)

4p R

MSD<>0

Mux2

Decimal 3:2 CSA

Carry and sticky bit
computation
(prefix tree)

8p 8p

4(p+2) 4(p+2)

4(p−2)

4(p−2)

01
1−digit right shift

Cout

sticky bit

L−Shifter (2p+2−digit) L−Shifter (2p+2−digit)

LZA

Double L−Shifter
(p−digit)

MSDs LSDs
4(p+2) 8p

sla

8p8p

8p8p

Exp.
norm.

BCD adder (operand setup)

normalization

9’s Complement

eop

eop

4(3p+2)
8p

4(3p+2) 4(3p+2)

Figure 7.15. Proposed high-performance scheme for decimal FMA operation.

length of a parallel architecture is very huge for the standard of current implementations. For
instance, the right shifter in Fig. 7.15 is of 576 bits (144 decimal digits), while commercial
DFPUs (IBM Power6 [45] and z10 [160]) use a pipelined (two-stage) decimal rotator of 36 digits.
Thus, the right shift of 144 digits could be performed sequentially in 4+1 cycles using a 36-
digit rotator. Nevertheless, a parallel implementation of a decimal FMA could be possible in
future technologies.

7.7 Evaluation results and comparison

We have used our area-delay evaluation model for static CMOS technology of Appendix A to
estimate the area and delay figures of the proposed 16-digit (64-bit) fixed-point multipliers
(decimal and combined binary/decimal) detailed in Section 7.5. We show these evaluation
results in Section 7.7.1. We have also applied this model to compare our multipliers with
other representative proposals for decimal fixed-point multiplication (sequential and parallel)

162 Chapter 7. Decimal Multiplication

SD Radix-10 SD radix-5

Component Delay Area Delay Area
(# FO4) (#NAND2) (# FO4) (#NAND2)

Multiplier recoding+buffering 4.8+3.3 450∗ 3.6+3.3∗ 550∗

Generation of multiples 17.2∗ 2700∗ 3.5∗ 350∗

Selection of multiples 3.8∗ 14850∗ 1.8 11500∗

PPG stage 21.0 18000 8.7 12400

PPR tree 30.0 17000 38 27500

BCD operand’s adder setup 4.2 1050 4.2 1050

128-bit BCD Q-T adder 14.1 3700 14.1 3700

Total stage 69.3 39750 65 44650
∗These terms contribute to the area or the delay of PPG.

Table 7.4. Area and delay for the proposed 16-digit BCD DFX multipliers.

Booth radix-4/SD Radix-4 Booth radix-4/SD radix-5

Component Delay (bin/dec) Area Delay (bin/dec) Area
(# FO4) (#NAND2) (# FO4) (#NAND2)

PPG stage 9.0/15.5 16500 10.5/11.0 16200

PPR tree 34/45 29500 34/45 29500

Operand’s adder setup 4.4 1600 4.4 1600

Bin./BCD Q-T adder 14.1 3700 14.1 3700

Total stage 61.5/79 51300 63.0/74.5 51000

Table 7.5. Area and delay for the combined binary/decimal architectures.

and with two representative binary fixed-point parallel multipliers [108, 124]. In Section 7.7.2
we present the results of these comparisons.

7.7.1 Evaluation results

The area and delay figures for the 16-digit SD radix-10 and SD radix-5 DFX multipliers de-
scribed in Section 7.5.1 and Section 7.5.2 are shown in Table 7.4.

The partial product generation (PPG) includes the recoding of the multiplier and the
generation and the selection of multiples. For the SD radix-10 architecture, we provide the
area and delay figures of an area-optimized implementation. Thus, the delay of the partial
product reduction (PPR) is the critical path delay of the decimal 17 : 2 CSA of Fig. 6.10 (the
area-optimized design). For the SD radix-5 architecture, we opt for an area-delay tradeoff
implementation. In this case, the delay of PPR corresponds to the critical path delay of the
mixed (4221/5211) decimal 32:2 CSA of Fig. 6.13. The operand’s BCD adder setup includes
the W = 2×H multiplication and the conversion of S(4221) to BCD excess 6.

The evaluation results for the combined binary/decimal parallel multipliers are shown
in Table 7.5. The delay figures are given as #FO4 for binary/decimal for area-optimized
implementations. When a combined binary/decimal implementation is required, the preferred

7.7. Evaluation results and comparison 163

Architecture Delay Latency Throughput Area
#FO4 # Cycles #FO4 Ratio Mult./Cycle NAND2 Ratio

Combinational multipliers:

Bin. radix-4 [108] 51 1 51 1.00 1 43000 1.00
Bin. radix-8 [124] 57 1 57 1.15 1 39500 0.90
Dec. Ref. [91] 93 1 93 1.80 1 69000 1.60
Dec. SD Radix-5 65 1 65 1.25 1 45000 1.05
Dec. SD Radix-10 69 1 69 1.35 1 40000 0.90

BCD sequential multipliers:

Ref. [51] 16 20 320 6.30 1/17 16000 0.40
Ref. [50] 14.7 20 294 5.80 1/17 18550 0.45
Ref. [82] 12.7 24 305 6.00 1/17 31500 0.75

Table 7.6. Area-delay figures for 64-bit binary/16-BCD digit decimal fixed-point multipliers.

option is the radix-5 architecture for low latency decimal multiplication (74.5 FO4 vs. 79 FO4)
and the radix-4 architecture for low latency binary multiplication (61.5 FO4 vs. 63 FO4). With
respect to the decimal SD radix-5 multiplier, the combined architectures have 14% more area
and are between 15% and 20% slower for decimal multiplications.

7.7.2 Comparison

Table 7.6 shows the evaluation results for some representative sequential and combinational
multipliers and the comparison ratios with respect to the binary Booth radix-4 multiplier.

So far, the other known implementation of a decimal fixed-point parallel multiplier is
[91]. The recoding and the generation of partial products is similar to our SD radix-5 recoding
scheme except that the 10’s complement operation to obtain the negative BCD multiples −2X

and −X is more complex than a simple bit inversion. Moreover, they require combinational
logic to generate the 5X multiple. For 16 decimal digits, 32 partial products are generated. The
partial product reduction tree uses seven levels of decimal CSAs (implemented by arrays of
4-bit decimal CLAs) in parallel with two levels of decimal digit counters. The final assimilation
consists of a simplified direct decimal carry-propagate adder. Synthesis results given in [91]
using a 90 nm CMOS standard cells library, show a critical path delay of 2.65ns (88 FO4)
and an equivalent area of 68.000 NAND2 gates, while ratios are 1.90 for delay and 1.50 for
area with respect to a radix-4 binary multiplier. Using our model we have obtained area and
delay figures very close to their evaluation. We observe that our decimal multipliers have a
speed-up between 1.25 and 1.40 with respect to [91] using at most 0.65 times its area.

To extract fair conclusions from the comparison between sequential and parallel imple-
mentations we have included the throughput of each multiplier. Sequential multipliers are
more than two times smaller than parallel multipliers, but have higher latency and reduced
throughput. For instance, the proposed SD radix-5 parallel multiplier is about 5 times faster
than the best sequential implementation proposed in [51], but requires 2.8 times more area.
In addition, it can issue a 16-digit BCD multiplication every cycle instead of one every 17
cycles.

164 Chapter 7. Decimal Multiplication

7.8 Conclusions

We have presented several techniques to implement parallel decimal fixed-point multiplication
in hardware. We have proposed three different SD encodings for the multiplier that lead to a
fast and simple parallel generation of partial products in (4221) or (5211) decimal encodings.
This makes possible the efficient reduction of all partial products using the proposed q:2
decimal CSA trees presented in Chapter 6. We have proposed two architectures for decimal
SD radix-10 and SD radix-5 parallel multiplication and two combined binary Booth radix-
4/decimal SD radix-4 and SD radix-5 fixed-point multipliers.

The area and delay figures from a comparative study including conventional parallel bi-
nary fixed-point multipliers and other representative decimal proposals show that our decimal
SD radix-10 multiplier is an interesting option for high performance with moderate area. For
higher performance the choice is the SD radix-5 architecture, although the SD radix-10 de-
sign has very close delay figures. For combined binary/decimal multiplications the choices
are the Booth radix-4/SD radix-4 for low latency in binary multiplication or the Booth radix-
4/SD radix-5 multiplier for low latency in decimal multiplication. Moreover, results can be
further improved applying aggressive circuit and gate level techniques proposed for binary
multipliers [109, 165].

Finally, we have proposed novel schemes for decimal floating-point multiplication and
for decimal fused multiply-addition. The key components of these proposals are the BCD
sign-magnitude adder with decimal rounding introduced in Chapter 5 and the SD radix-10
and SD radix-5 decimal fixed-point multipliers presented in this Chapter.

Chapter 8

Decimal Digit-by-Digit
Division

We present the algorithm and architecture of a radix-10 floating-point divider based on a SRT
non-restoring digit-by-digit algorithm. The algorithm uses conventional techniques developed
to speed-up radix-2k division such as signed-digit (SD) redundant quotient and digit selection
by constant comparison using a carry-save estimate of the partial remainder. To optimize
area and latency for decimal, we include novel features such as the use of alternative BCD
codings to represent decimal operands, estimates by truncation at any binary position inside
a decimal digit, a single customized fast carry propagate decimal adder for partial remain-
der computation, initial odd multiple generation and final normalization with rounding, and
register placement to exploit advanced high fanin mux-latch circuits.

The Chapter is organized as follows: in Section 8.1 we outline the previous work on
decimal division. A dataflow for decimal floating-point division is described in Section 8.2.
In Section 8.3 we present the proposed algorithm and determine the selection constants and
a suitable decimal digit encoding for a fast and a simple implementation of the selection
function. In Section 8.4 we describe the architecture and the operation sequence of the
divider for the preferred decimal encoding. We also detail the decimal adder used for residual
assimilation, normalization and rounding. In Section 8.5 we present the area-delay evaluation
results. We compare our design with two recent radix-10 SRT designs [92, 106] and with a
software implementation [30]. In Section 8.6 we summarize the main conclusions of this
work.

8.1 Previous work

Radix-10 division algorithms which are found in the literature are usually classified in multi-
plicative and restoring or non-restoring (SRT) digit-by-digit methods. Digit-by-digit methods
have the characteristic of producing one digit per iteration. Good examples of radix-2k based
division algorithms can be found in [5, 47]. Recently, several algorithms have been proposed
for decimal division [22, 83, 92, 106, 122] using a non-restoring digit-by-digit algorithm.
These implementations outperform older restoring digit-by-digit proposals [19, 164], since
they incorporate recent advances developed for binary division. On the other hand, decimal
division based on multiplicative algorithms with quadratic convergence have been proposed in
[26, 156]. These methods use a look-up table mechanism to obtain an initial approximation of

165

166 Chapter 8. Decimal Digit-by-Digit Division

the decimal reciprocal of the divisor. Several Newton-Raphson iterations are then performed
to obtain the reciprocal with the required accuracy. These iterations are computed using dec-
imal multiply, square and subtract operations. A final decimal multiplication by the dividend
is required to complete the division operation.

Regarding the digit-by-digit algorithms, two of the above mentioned designs are repre-
sentative of the design space [92, 122]. Specifically, Schwarz and Carlough [122] proposed a
low-cost implementation for the decimal floating-point unit of the IBM Power6 microproces-
sor. They use a radix-10 SRT algorithm with digit set {−5, . . . , 0, . . . , 5} and prescaling of the
operands so that the digit selection only depends on the residual. For a low cost implementa-
tion the recurrence is implemented with a carry-propagate BCD adder shared with the other
floating-point operations (addition and multiplication among others). Therefore the residual
has a non-redundant representation and the quotient digit is obtained by simple truncation.

Lang and Nannarelli [92] proposed a high-performance implementation. The radix-10
digits of the result are in the set {−7,−6, . . . , 0, . . . , 6, 7} which are decomposed into two simpler
digits to ease the implementation (qu 5 + ql, with qu ∈ {−1, 0, 1} and ql ∈ {−2,−1, 0, 1, 2}). The
implementation uses two overlapped stages with redundant carry-save decimal arithmetic
to speedup the cycle time. Of particular interest is the use of redundant binary carry-save
arithmetic in the most significant part of the datapath, which involves the digit selection, to
have a cycle time comparable to a radix-16 binary implementation [93].

By other hand, the radix-10 SRT divider proposed by Nikmehr, Phillips and Lim [106]
is also a high-performance implementation. They use the maximally redundant digit set
{−9, . . . , 0, . . . , 9} to represent both the quotient digits and the digits of the partial remainder.
Thus, a decimal signed-digit adder is used to compute the partial remainder. The quotient
digits are selected by comparing the truncated partial remainder with 18 selection constants.
These constants are obtained from reduced precision multiples of the divisor. However, this
implementation requires significantly more area than the radix-10 SRT divider proposed by
Lang and Nannarelli [92] while the latency is not improved.

8.2 Decimal floating-point division

A IEEE 754-2008 DFP division FQ = FX
FD is computed as shown in Fig. 8.1.

The DFP result (quotient) is of the form

FQ = (−1)sQ Q 10EQ−bias (8.1)

and the DFP dividend and divisor have the following value:

FX = (−1)sX X 10EX−bias

FD = (−1)sD D 10ED−bias (8.2)

The biased exponent EQ and the sign sQ = sX⊕sD are computed separately from the coefficient
quotient Q = X

D .

The coefficients of the DFP formats defined by the IEEE 754-2008 standard are decimal
integer numbers not normalized (that is, they can have leading zeroes). However, to ensure

8.2. Decimal floating-point division 167

sQ

Binary sub

lzD

LZD

Radix−10
digit−recurrence

division

IEEE−754r to BCD unpacking

X

Q

D
L−shifter

(p−1 digits)
L−shifter

(p−1 digits)

lzX

Sub +1

IEEE−754r to BCD packing

EX ED

sX

sD

FX FD

EQ

FQ

Normalization &
Rounding

qi

sign−zero
exact
detect

w

EX−ED

div−by zero
detect

Radix−10
fixed−point
dividersign

zero

Add p−(i+1)

Add

lzD−lzx

Sub

lzXlzD

div by 0
exact

p−(i+1)

lzXlzD

Figure 8.1. Architecture of a IEEE 754-2008 DFP divider unit.

convergence, the SRT digit-recurrence algorithms require fractional input operands normal-
ized in a certain known range.

Therefore, a pre-processing stage is necessary to have the values of the BCD operands
X and D normalized in the range [1, 10). Operands X and D are shifted to the left an amount
equal to the number of their leading zeroes, that is, lzX and lzD. The exponent EQ is precom-
puted as EX −ED + bias+ lzD− lzX . In case of exact result, EQ is the closest possible exponent
equal to the preferred exponent, EX − ED + bias.

The significand division of the normalized operands is performed in a decimal fixed-point
digit-by-digit divider. We detail the algorithm and the architecture of this unit in Section 8.3
and Section 8.4 respectively. In case of division by zero (lzD = p), the computation is stopped
and an exception is signaled. The radix-10 fixed-point divider produces iteratively a quotient
Q ∈ [0.1, 10) of p + 2 digits (an extra round and guard digits are required). The quotient is
normalized to the range [1, 10) and rounded to p digits. The final reminder is used to compute
the sticky bit and to determine when the computation is exact.

In case of exact result, we have to shift the normalized quotient min(max(lzD− lzX , 0), trQ)
positions to the right, where trQ is the number of trailing zeroes of Q. To avoid this right shift,
we stop the computation when i ≥ p− (lzD − lzX)− 1 > 0 if the partial remainder w[i + 1] is zero
(exact result). The exponent is incremented an amount p− (i + 1). This is computed on-the-fly
together with the quotient digits qi. Finally, the result is packed to an IEEE 754-2008 DFP
format.

168 Chapter 8. Decimal Digit-by-Digit Division

8.3 SRT radix-10 digit-recurrence division

The starting point of our proposal is the application of well-known radix-2k methods to improve
radix-10 division. Among these methods are the use of a symmetrical redundant digit set for
the quotient digits (−a ≤ qi ≤ a, with a ∈ {5, . . . , 10}), quotient digit selection using estimates of
the residual and the divisor and preloaded constants, and the use of a carry-save format to
represent the residual.

This work is not just a simple transposition to radix-10 of radix-2k methods, at least
because while on one hand the algorithm operating radix is 10, on the other side, the rep-
resentation index is binary. For this reason, it is necessary to bridge this gap and, in line
of principle it is not ensured that the currently well known methodologies of the literature
correspond to the best solution.

To adapt these radix-2k techniques to radix-10 division we follow a different approach
than [92] (implementation with the highest performance to date). Instead of splitting the digit
selection and residual updating into two overlapped stages, we opt for a digit set, similar to the
one used in [122], that minimizes the complexity of generating divisor multiples. Specifically,
this work presents the following contributions:

• Implementation with a suitable digit set that minimizes the complexity of generating
divisor multiples.

• A study of alternative BCD codings to represent decimal digit operands. The dividend X,
divisor D and quotient Q require a decimal range-complement non redundant representation,
while the residual w[i] requires a redundant representation (carry-save or signed digit). The
preferred coding leads to the simpler implementation of the selection function and divisor
multiples generation in terms of area-latency trade-offs.

• Obtention of the selection constants as estimates of different truncated multiples of the
divisor, avoiding tables.

• Design of a decimal adder to compute the required odd divisor multiples, the as-
similation of the previous residual (in parallel with the selection of the next quotient digit),
and normalization and rounding, thus sharing the same hardware for different parts of the
floating-point division.

Before going to the representation issues, let us tackle the problem by exploiting the
common points with radix-2k based division algorithms, which are directly derived from the
general concept of SRT non restoring division.

8.3.1 SRT non restoring division

The division algorithm is regulated by the following recurrence

w[i + 1] = rw[i]− qi+1 D (8.3)

and
Q[i + 1] = Q[i] + qi+1 r−(i+1) (8.4)

where w[i] is the partial remainder at iteration i, r is the radix of the algorithm, D is the
divisor, qi+1 is the digit of the quotient with weight r−(i+1) and Q[i] is the partial result after i

8.3. SRT radix-10 digit-recurrence division 169

iterations. A convenient choice is to have the residual w[i] in redundant representation, since
this implies a simpler and faster updating hardware. For binary based division algorithms,
common representations are carry-save and signed-digit.

The determination of the digit qi+1 is carried out by inspecting the value of the residual
w[i]. The use of a redundant digit set for qi+1, avoids full length comparisons and then, allows
an estimate of the residual ŵ[i] and of the divisor D̂ to be used in place of the full precision
residual w[i] and divisor D. The choice of the representation used for the residual is directly
related to the value of the truncation error, which, in turn, affects the working parameters of
the algorithm, such as number of digits of residual and divisor to be considered for performing
correct computations.

As the computations continue, it is possible on-the-fly (see [46] for binary representa-
tions) to convert the partial result Q[i] into non-redundant form, in order to have the conven-
tional representation of the final quotient value Q ready after just one additional iteration.

8.3.2 Decimal representations for the operands

The coding of decimal digits is a key issue to provide fast implementations. By extending to
radix-10 the classical requirements of radix-2k division, we see that:

• The dividend X, divisor D and quotient Q require a decimal nonredundant representa-
tion.

• The quotient digit qi+1 requires a signed-digit decimal (redundant) representation.

• The residual w[i] requires a signed-digit or carry-save (redundant) representation, having
the possibility to represent also negative values.

The choice of the type of representation for the residual is the most critical. By assuming
a BCD 10’s complement carry-save representation of the residual we observe that there are
basically two alternatives for the representation:

• Digit carry-save: in this case the sum word is composed of BCD digits in the full range
{0, ..., 9}, and the carry word is composed of digits in the range {0, 1}.

• Full carry-save: in this case, both the sum and carry words are composed of BCD digits
in the full range {0, ..., 9}.

We use the second approach (full carry-save), since this allows to obtain faster division units
with a small increase in hardware cost.

In addition, the use of an estimate ŵ[i] to obtain the quotient digits, instead of the full
precision residual w[i], introduces an error which plays a relevant role in the definition of
the other implementation parameters of the algorithm. This error has to be the smallest as
possible, related to the truncation position.

If we limit us by assuming that a truncation of the residual can occur only in correspon-
dence of exactly the k-th fractional decimal digit, then it is easy to compute a bound for the
truncation error due to the sum word, as 10−k. It should be noted that this resulting error

170 Chapter 8. Decimal Digit-by-Digit Division

is independent on the type of representation used for the decimal digits. Clearly, to have the
truncation in correspondence of the decimal digits, except for the fact that it is straightfor-
ward, presents very low flexibility, especially if we consider that we have access to the single
bits of each binary digit, and therefore theoretically the truncation point could be everywhere.

Let us relax this constraint and compute the error in case the truncation occurs inside a
decimal digit. For this purpose, we define −t the fractional bit position where the truncation
occurs, and −(k + 1) the decimal weight of the decimal digit hosting the truncation. Then,
excluding the trivial case k = t/4, since it corresponds with a decimal digit, we have three
possible cases: t− 4k = 3, 2, 1.

Unfortunately, there are not only the fractional bits of the truncated residual, but also
the need to be able to represent the integer part of the residual with the smallest number of
bits. With respect to the problem of having a small truncation error, this is a symmetrical
issue (but in the opposite direction), in the sense that in order to have a small number of
integer bits, then it is necessary that the possibility to represent values has to be the largest
as possible. A uniform behavior as binary number system would imply that each integer bit
that we add on the left (integer part) it is expected that we almost double the range of values
which can be represented.

Finally, there is also another aspect that has to be considered when examining a potential
coding for representing decimal digits: the efficiency of the coding, defined as the number of
different useful representations divided by the number of possible representations. For BCD
this is a relatively small value and therefore it is more than justified to look for different
representations with increased efficiency of representation.

In Table 8.1 we list the alternatives that we have explored, sorted by decreasing efficiency.
Starting from left to right, here is the explanation of the different columns: in column 1 we
report the coding weight of the 4 bits that we consider. In column 2 it is shown the efficiency.
In columns from 3 to 7 we have the maximum truncation error (refereed only to the sum word,
must be multiplied by 10−(k+1)), for different positions of the truncation point, i.e. values of
t − 4k. Again, with reference to columns 3 to 7, to have t − 4k = 0 means that the truncation
holds exactly in correspondence of decimal digit of weight 10−k, t − 4k = 1, 2, 3 stand for 1, 2,
or 3 bits on the right with respect to that point, and t − 4k = 4 (only for further reference)
stands for a truncation in correspondence of decimal weight 10−(k+1). On the rightmost part
of the table, i.e. columns 8 to 12, we report the maximum possible integer value which can be
represented in each case, when the number of integer bits is from 0 to 4 (i.e. a whole decimal
digit).

It is easy to observe and also straightforward to prove mathematically, that the five
columns, 3 to 7, are symmetrical to columns 8 to 12. This means that if a coding has good
capabilities to be able to represent a ”large” integer value with a small number of bits, then
the same coding has large truncation error in some cases. For this reason, although a uni-
form behavior could be a good tradeoff, it is still not sufficient to justify a choice of a coding
different from BCD (8421).

From the results of Table 8.1, we have chosen to analyze the codings with the largest
values for efficiency and uniform error behavior. The attention has therefore fallen to (3321),
(4221), (5211), being the latter the one with a uniform behavior, well balanced and with

8.3. SRT radix-10 digit-recurrence division 171

Code Effic. Max. truncation error Max. representable int. not used codings
×16 = 0 =1 =2 =3 =4 = 0 =1 =2 =3 =4

8421 10 10 8 4 2 1 1 2 4 8 10
3321 16 10 7 4 2 1 1 2 4 7 10
4221 16 10 6 4 2 1 1 2 4 6 10
5211 16 10 5 3 2 1 1 2 3 5 10
4321 15 10 7 4 2 1 1 2 4 7 10
5221 15 10 6 4 2 1 1 2 4 6 10
5311 15 10 6 3 2 1 1 2 3 6 10
4321 14 10 6 4 2 1 1 2 4 6 10 0111
5221 14 10 5 4 2 1 1 2 4 5 10 0111
5321 14 10 7 4 2 1 1 2 4 7 10
5311 14 10 5 3 2 1 1 2 3 5 10
6221 14 10 6 4 2 1 1 2 4 6 10
5321 13 10 6 4 2 1 1 2 4 6 10 0111
6311 13 10 6 3 2 1 1 2 3 6 10
6321 13 10 7 4 2 1 1 2 4 7 10
5221 12 10 5 3 2 1 1 2 3 5 10 0111, 0011, 1011
5321 12 10 5 4 2 1 1 2 4 5 10 0111, 0110
6321 12 10 6 4 2 1 1 2 4 6 10

Table 8.1. Decimal digit encodings and their characteristics

good capabilities to represent integer values. We have shown (see Chapter 6) that the (4221)
and (5211) codes lead to efficient decimal carry-save adder implementations, which might be
important for the implementation of the division algorithm. The implementations with (3321)
codes will not be discussed since we have verified that they are less efficient. While doing the
implementations we will then consider the (4221) and (5211) codes.

If the truncation of the residual occurs only in correspondence of exactly the k-th frac-
tional decimal digit, then for digit carry-save representation, it is easy to determine a bound
for the truncation error due to the carry word as (1/9)10−k. In case the truncation occurs
inside a decimal digit, we have k = bt/4c and the same expression as above still holds. Thus,
we have to add (1/9)10−bt/4c to the truncation error due to the sum word indicated in Table
8.1 to obtain the global error.

For full carry-save representation the truncation error due to the carry word is the same
as the truncation error due to the sum word. Then, the values found in the Table 8.1 have
to be multiplied by 2× 10−(k+1) in order to obtain the exact value of the maximum truncation
error.

8.3.3 Proposed algorithm

We assume that the dividend X, the divisor D and the quotient Q are in the range [1, 10). The
radix-10 division algorithm implements the following recurrence

w[i + 1] = 10 w[i]− qi+1 D (8.5)

where w[i] is the partial remainder at iteration i, D is the divisor and qi+1 is the digit of the
quotient with weight 10−(i+1). In order to converge, it is necessary to select qi+1 so that the

172 Chapter 8. Decimal Digit-by-Digit Division

resulting residual is bounded by

−ρD ≤ w[i + 1] ≤ ρD (8.6)

where ρ = a/9 is the redundancy factor.

The main drawback of recurrence (8.5) is the generation of odd multiples of D. One sim-
ple approach consists of implementing the recurrence as two simpler overlapped recurrences
of lower radix [92]. In this work we explore an alternative, a direct implementation of (8.5)
with the minimally redundant set23 {−5, . . . , 0, . . . , 5} (ρ = 5/9). This choice minimizes the com-
plexity of the generation of decimal divisor multiples ({−5D,−4D, . . . ,−D, 0, D, . . . , 5D}) while
having a single recurrence. We only need to compute the odd multiple 3D using a decimal
carry-propagate adder. The other multiples can be generated with simple digit recodings.

Since we need a carry-propagate adder for multiple generation, we designed the algorithm
and the architecture to reuse this adder. Specifically, the addition required by the recurrence
(8.5) is implemented with this adder, so that we keep the residual in non-redundant form.
To make the determination of qi+1 independent of this carry-propagate addition (which would
result in a large cycle time) we perform the digit selection using an estimation of w[i], ŵ[i],
obtained from the leading digits of 10 w[i− 1] and −qi D (this is allowed by the redundancy of
the digit set for qi+1). From the point of view of the estimation, this is similar to the standard
practice of keeping the residual in carry-save.

For convergence it is necessary to assure −(5/9)D ≤ w[0] ≤ (5/9)D. This is achieved by
the following initialization

w[0] =

{
X/20 if (X −D) ≥ 0
X/2 else

(8.7)

and q0 = 0. Under this initialization 0.05 ≤ Q < 0.5, so it is necessary to multiply the resultant
quotient by 20 to produce the normalized quotient in the appropriate interval [1, 10). For a p-
digit precision rounded quotient the algorithm requires p+2 quotient digits qi (i > 0) (including
a guard and round digits). This initialization requires the computation of the sign of X − D,
which is performed by the decimal carry-propagate adder. Moreover, the same adder is also
used for the final conversion from redundant to non-redundant representation and rounding
of the result quotient.

To convert the p+2 signed-digit quotient into the non-redundant p-digit rounded quotient,
each qi value is recoded as qi = −10 si + q∗i where

(si, q
∗
i) =

{
(0, qi) qi ≥ 0
(1, 10− qi) else

(8.8)

(si, q
∗
i) ∈ ({0, 1}, {0, . . . , 9}). This digit recoding is performed after each digit selection, so after

p + 2 iterations of (8.5) we have Q∗ =
∑p+2

i=1 q∗i 10i and S =
∑p+3

i=2 si 10i, where sp+3 = sign(w[p +
2]) is introduced to correct the quotient when the last residual is negative. The quotient is
obtained as Q = round[Q∗ − 10 · S]p, which requires a decimal subtraction and rounding to p

digits according to the rounding specifications. This operation is performed by the decimal
carry-propagate adder, adapted to include the rounding (see Section 8.4.4).

23This digit set is also used in the IBM Power6 decimal divider [122].

8.3. SRT radix-10 digit-recurrence division 173

8.3.4 Selection function

As mentioned before, the quotient digit qi+1 is obtained from an estimation 1̂0w[i] of 10w[i]
by truncating 10w[i − 1] and −qi D and input them to the digit selection. This estimation is
compared to selection constants (mk, with k = −4, ..., 5) which are dependent on the leading
digits of D. Specifically,

qi+1 = k if mk ≤ 1̂0 w[i] < mk+1 (8.9)

As in [92] we implement the selection function by comparing the estimation of the resid-
ual with each of the selection constants. Since the estimation is composed of two words, the
comparisons are performed by obtaining the sign of the difference between the estimation and
the selection constant. This is performed by a 3:2 reduction using a decimal carry-save adder
and a decimal sign detector.

The method used to obtain the selection constants is well-known [92]. However, in this
work, we introduce two innovations:

• New decimal codings to reduce the estimation error.

• Estimations by truncating at the bit level instead of digit level (number of bits multiple
of four), to reduce the number of bits of the estimations.

In the following we briefly outline the procedure to determine the selection constants and
number of bits of the estimations.

The starting point is the definition of the selection intervals for convergence. It is well-
known that for digit-recurrence division [92], we may choose qj+1 = k, assuring convergence,
if the partial remainder 10w[j] takes values within the interval [Lk(D), Uk(D)], with

Lk(D) = (k − ρ) D = (k − 5/9) D

Uk(D) = (k + ρ) D = (k + 5/9) D (8.10)

As mentioned before, we use selection constants mk with a finite number of fractional
bits. The comparison of the estimate of 10w[j] with the constants has an error, and there-
fore certain conditions should be met to assure convergence. Specifically, for an estimation
(positive) error in 10w[j] of ∆εw, and denoting by h(mk) the distance between mk and the next
lower value within the same precision granularity, the selection constants should verify the
following conditions

mk(D)− h(mk) + ∆εw ≤ Uk−1(D)

Lk(D) ≤ mk(D) (8.11)

Note that mk(D) − h(mk) is the value of the upper limit for the estimate 1̂0w[i] to select qj+1 =
k − 1, and therefore, the corresponding upper bound in the value of 10w[j] (obtained adding
the estimation error) should be less or equal to Uk−1(D). Obviously, since the estimation error
is never negative, the constant should be greater or equal to Lk(D).

Therefore the following condition results for mk(D)

Lk(D) ≤ mk(D) ≤ Uk−1(D) + h(mk)−∆εw (8.12)

174 Chapter 8. Decimal Digit-by-Digit Division

To have a finite and practical set of constants we use also estimations of D (denoted by D̂,
and with positive error bounded by ∆εD). Therefore we use the same constant for the interval
of D [D̂, D̂ + ∆εD). Thus, condition (8.12) should be met along all the corresponding interval
of D. For an estimation D̂, the worst case of (8.12) for the whole interval [D̂, D̂ + ∆εD) is

max{Lk(D̂), Lk(D̂ + ∆εD)} ≤ mk(D̂) ≤
min{Uk−1(D̂), Uk−1(D̂ + ∆εD)}+ h(mk)−∆εw (8.13)

The maximum and minimum functions take different values depending on the sign of k.
Specifically for k ≥ 0 the condition results in

Lk(D̂ + ∆εD) ≤ mk(D̂) ≤ Uk−1(D̂) + h(mk)−∆εw (8.14)

For k < 0 we have
Lk(D̂) ≤ mk(D̂) ≤ Uk−1(D̂ + ∆εD) + h(mk)−∆εw (8.15)

Moreover, as pointed out before, mk should be representable with the number of fractional
bits used for the estimation of 10 w[j].

Using (8.14) and (8.15), we determined the minimum required number of bits for the
estimations of 10 w[j] and D, and the intervals of possible constants values for mk, under the
following conditions:

• Range of the estimation of 10w[j]: since for convergence −10ρD ≤ 10w[j] ≤ 10ρD, the range
of the estimation is

−∆εw − 10ρD ≤ 1̂0w[j] ≤ 10ρD (8.16)

For D in the range [1, 10) and ρ = 5/9, this leads to a range of the estimation of −∆εw −
500/9 ≤ 1̂0w[j] ≤ 500/9.

• Decimal representation of 10w[j] and D: we considered codes BCD, (4221) and (5211).
The truncation error for the estimates depends on the code and the weight of the position
of truncation. Moreover, the value of h(mk) might be dependent of the value of the
constant.

We obtained that by using (5211) coding, one less fractional bit is needed for the esti-
mation of the residual compared to BCD or (4221). Moreover, the decimal carry-save adder
is effectively implemented with the (5211) code. Therefore we use (5211) for representing the
estimation of the residual ŵ[i] and the selection constants mk. By other hand, the residual w[i]
is coded in (5421) (see Table 7.1) due to the fast conversion between (5421) and (5211) decimal
codes and the efficient implementation of a decimal (5421) carry-propagate adder (similar to
a BCD carry-propagate adder).

For (5211) representation, the selection constants are obtained from the leading 12 bits
of D (one integer and two fractional decimal digits). The estimation of the residual requires
9 integer (including sign) and 6 fractional bits. The selection constants require the following
number of bits (integer+fractional): m1 and m0 → 3+6, m2 and m−1 → 5+6, m3, m4, m−2 and
m−3 → 6+6, m5 and m−4 → 7+6.

A straightforward implementation to obtain the constants consists in using a look-up
table with the 12 bits of D as input. Our synthesis results indicate that this approach is very

8.4. Decimal fixed-point architecture 175

costly in terms of area and time (we want to determine the constants in just one cycle). An
efficient implementation is obtained by computing the constants as follows.

• Compute simple multiples of D̂ that lie within the interval [Lk(D), Uk−1(D)]. Since
ρ = 5/9, the multiples may be computed as (k − 0.5) × D̂. These multiples might be out
(but close) of the required range for the constants since the requirements for the constant
are more restrictive than just being in the interval [Lk(D), Uk−1(D)]. Therefore, the computed
multiples must be perturbed to fit within the interval of possible selection constants. We have
determined that the following schemes allow to obtain valid selection constants:

• For mk with k = 1, 2, 3, 4, 5 the perturbation of the computed value (k−0.5)× D̂ consist in
rounding up to six fractional bits (note that since D̂ has eight fractional bits, (k− 0.5)× D̂ may
have nine fractional bits). Since the constants should have six fractional bits, and the code
is (5211), the least significant digit of the constant should have values 0, 2, 5 or 7. Therefore
the rounding up of (k − 0.5) × D̂ is done to have the least significant digit with values 0, 2,
5 or 7. Moreover, the sign detectors require the addition of −mk, therefore it is necessary to
complement the digits of mk (bit inversion for 5211 code) and add a 1 in the least significant
position. In Section 8.4.3 we show the detailed implementation of this method.

• For mk with k = −4,−3,−2,−1,−0, we obtain −mk (a positive value) by truncating (k −
0.5)× D̂ to six fractional bits and adding five to the resultant least significant digit. In Section
8.4.3 we also show the detailed implementation of this method.

Fig. 8.2 shows an instance (a few intervals of D̂) of the r̂w[j] vs. D̂ space for k = 5,−4
illustrating these concepts. Therefore, we compute the constants using simple arithmetic
methods, avoiding large and slow lookup tables.

8.4 Decimal fixed-point architecture

In this Section we present the divider architecture, which uses the (5421) code to represent the
residual w[i] and the (5211) code for the estimation of the residual and the selection constants.
We only detail the architecture for significand (fixed-point) computation, since other issues of
floating-point division were detailed in Section 8.2. We show both the datapath (including the
decimal (5421) carry-propagate adder, the generation of the divisor multiples for the selection
constants) and the implementation of the selection function. A description of the sequence of
operations is also presented.

8.4.1 Implementation of the datapath

For a p-digit precision quotient, we need at least bit-vectors of length l = (4p+6) bits (including
a sign bit and 5 guard bits for the initial scaling by 20) to represent the decimal operands X,
D, Q and w[i] coded in (5421). We assume that X is unpacked to BCD and D to (5421)
code. The architecture is shown in Fig. 8.3. The division unit consists mainly of a (p+2)-digit
decimal (5421) adder and rounding unit (see Section 8.4.4), a block implementing the quotient
digit selection (detailed in Section 8.4.3), a generator of divisor multiples coded in (5421) and
a generator of (k − 0.5)× D̂ multiples (k = {1, . . . , 5}).

176 Chapter 8. Decimal Digit-by-Digit Division

Interval of D (x 100)

10w[j]

(x 100)

Upper and lower limits for m −4

L (D)
5

U (D)
4

m

L (D)

Upper and lower limits for m
5

m
5

(k−0.5) x D

5
U (D)

−(k−0.5) x D

−4

−4

 445

 455

 460

 465

 470

 100 101 102 103 104

 450

−470

−465

−460

−455

−450

−445

Figure 8.2. Selection constants for some intervals of D for k = 5 and k = −4.

Fig. 8.4(a) shows the generation of positive full length divisor multiples (D, 2D, 3D, 4D,
5D). These multiples are precomputed and are not needed until after the selection of the first
quotient digit q1. Since the divisor D is unpacked in (5421), the multiplication by 2 consists
of a 1-bit wired left shift (it does not require logic) followed by a digit recoding from BCD to
(5421) using combinational logic with no carry propagation between digits (see Section 8.3.1).

The 4D multiple is obtained by performing this sequence twice. Multiple 5D is generated
first recoding from (5421) to BCD and then performing a 3-bit wired left shift. The generation
of 3D = 2D+D requires a decimal carry-propagate addition that is performed in the (p+2)-digit
decimal (5421) adder. The result is stored in a latch to be available for the next iterations.

In Section 8.3.4 we obtained that the selection function requires 15 leading bits of −qiD

and so they need to be buffered. For a reduced latency implementation, the datapath (latches
and multiplexes) for these leading bits is replicated and the sign bit of qi is buffered and
latched.

Fig. 8.4(b) shows the block to precompute the positive Dk = (k − 0.5) × D̂ multiples
(k = 1, 2, 3, 4, 5), required to obtain the selection constants {m−4, . . . , m0, . . . , m5} as described
in Section 8.3.4. We obtain D1 = 0.5 × D̂ (k = 1) and D2 = 2.5 × D̂ (k = 3) coded in (5211) by
shifting 1-bit to the right the representations of D̂ and 5 × D̂ in (4221) code. Since the 12-bit
estimate of D is coded in (5421), we perform an initial digit recoding of D̂ to BCD followed by
a second digit recoding from BCD to (4221), obtaining D̂(4221). By other hand, 5 × D̂(4221)

8.4. Decimal fixed-point architecture 177

Mux− Latch

Decimal (5421)
Compound Adder

(p+2 digits)

D

10 w[i−1]

Decoder

 (5421)

Mux− Latch

2D 3D4D 5D

L4−shift
4

1

X

X/20

4p+8

 (5211)

L4−shift

15
15

Digit Selection

Rounding
Logic

inc

4
w[p+2]

Rounding
digit

X/2

q*i+1

sign(X−D)

Mux− Latch Mux− Latch

5421 to 5211

Q*

−10 qiD

5D4D3D2DD 5X

100w[i−1]

4p+4
L4−shift

p+2

p+1

D

10 w[i], Q/2

3D, w[p+2]

5421 to 5211

S

100w[i−1]
15

L4−shift

Q*S

4p+8 4p+8

X/250X

4p+8

4p+8

4p+4

 (5421)

 (5211)

15 15 (5421) (5421)

 (5421)
 (BCD)

 (5421)

 (5421)

 (5421)

sign(qi+1)

5
Control logic

eop(qi+1)
Ctrl1−4(qi+1)

 (5421)

10 x ()

eop(qi)

Ctrl1(qi) Ctrl2(qi)

Ctrl3(qi)

Ctrl4(qi)

Q

 (5421)BCD to 5421

X

 (BCD)

qi+1

Figure 8.3. Datapath for the proposed radix-10 divider.

BCD to 5421

5421 to BCD

divisor multiples coded in (5421)

decimal
addition

2D

L3−shift

4D

D (5421)

L1−shift

3D

p

5D

L1−shift

BCD to 5421

(a) Full length divisor multiples.

5421 to BCD D (BCD)

2D

L4-shiftL3-shift

10D

5D

D (5421)

L1-shift

7D

R1-shift

3D

12-bit BCD
adder

R1-shift

 (5211)

5421 to BCD

11-bit BCD
adder

13-bit BCD
adder

6+93+9

R1-shift
5+9

R1-shift
6+9

R1-shift
7+9

D5=4.5DD4=3.5DD3=2.5DD2=1.5DD1=0.5D

12

 (BCD)

BCD to 4221BCD to 4221BCD to 4221 BCD to 4221

D 5D

BCD to 4221

9D

 (5211) (5211) (5211) (5211)

bit inversion

1

(b) Multiples of bD.

Figure 8.4. Generation of D and bD multiples.

results from a 3-bit left shift of D̂(BCD).

The other three (5211) decimal coded multiples Dk are obtained by a 1-bit right shift
of 3D̂ (k = 2), 7D̂ (k = 4) and 9D̂ (k = 5), coded in (4221). These values are computed using
11-bit, 12-bit and 13-bit BCD carry-propagate adders as 3D̂ = 2D̂ + D̂, 7D̂ = 5D̂ + 2D̂ and
9D̂ = 10D̂ − D̂. The resulting BCD digits requires a digit conversion to (4221).

Finally, each selection constant −mk (k = −4, . . . , 0, . . . , 5) is obtained on-the-fly by per-

178 Chapter 8. Decimal Digit-by-Digit Division

forming a perturbation of the corresponding precomputed multiple Dk inside each decimal
comparator (see Section 8.4.3).

Other key components are the mux-latches that combine a wide multiplexer and a latch
[107]. They are used to select and store the corresponding divisor multiples for the next
iteration, the results coming from the decimal adder and the different values of initialization.
The architecture was designed to fit the latches after the multiplexes to reduce latency. We
now describe the operation of the divider.

8.4.2 Operation sequence

The sequence of operations of the proposed architecture is as follows:

• Cycle 1 (initialization). We assume q0 = 0. We preloaded the narrow mux-latches with 0
and X̂/20 and the wide mux-latches with D and X. First, the decimal adder performs X −D.
Then, the narrow mux-latch load 0 and X̂/20 (if X − D ≥ 0, determined by examining the
carry-out of the adder) or X̂/2 in other case. The wide mux-latches load 2D and D. Note that
X/2 and X/20 coded in (5421) are obtained by shifting respectively 1 and 5 bits to the right
the BCD operand X.

• Cycle 2 (recurrence iteration i = 0). The quotient digit q1 is obtained decoded in a
sign bit s1, a (5421) digit q∗1 and a 5-bit signal |q1|, which represents the absolute value of
q1. Depending on |qi+1|, si+1 and the cycle number, a control unit computes the hot-one code
selection signals (Ctrl1(qi+1) to Ctrl4(qi+1)) for the mux-latches, and an effective operation
(eop(qi+1)) for the next cycle. In parallel, the decimal adder performs 2D + D = 3D. The 3D

multiple is stored in a dedicated latch. The wide mux-latches load |q1|D and X/20 (X −D ≥ 0)
or X/2 (X −D < 0). The narrow mux-latches load |̂q1|D and ŵ[0].

• Cycle 3 to p + 3 (iterations i = 1 to i = p + 1). In each iteration, the selection function
performs qi+1 = selection(̂100 w[i− 1], ̂−10 qiD) while in parallel the decimal adder computes
w[i] = 10w[i− 1]− qi D. At the end of the cycle p+3, the quotient digits (q∗1 , s1) to (q∗p+2, sp+2) are
available.

• Cycle p + 4. The residual w[p + 2] = 10w[p + 1] − qp+2 D is assimilated in the decimal
adder. This cycle could be avoided by implementing a sign and zero detector at the expense of
additional hardware cost.

• Cycle p + 5. The decimal adder performs the subtraction Q = Q∗ − 10 · S and rounds the
result to p-digit precision (the round position is known). The rounding logic determines the
+1 ulp conditional increment from the round digit, the rounding mode and the sticky bit. The
(5421) quotient is multiplied by 20 (5-bit left wired shift) to produce the normalized decimal
quotient Q in BCD. Note that only the most significant bit of q∗n+2 is needed, so the subtraction
fits in the (p+2)-digit (5421) carry-propagate adder.

In summary, a p-digit decimal significand (fixed-point) division is performed in p+5 cycles.
The significand division is completed in 21 cycles for the IEEE 754-2008 Decimal64 format
(16 BCD digit operands), and in 39 cycles for the IEEE 754-2008 Decimal128 format (34
BCD digit operands). In the following Sections we detail the implementation of the selection
function and the decimal adder.

8.4. Decimal fixed-point architecture 179

8.4.3 Implementation of the selection function

Fig. 8.5(a) shows the detail corresponding to the selection function part. The selection func-

3:2 CSA

Decimal sign detector

L1−shift

c−4

15
15

c−3 c−2 c−1 c0 c1 c2 c3 c4 c5

Decoder

4 5

1

1

sign(qi+1)
(hot−one code)

100 w[i−1]

−10 qiD

q*i+1

15 13 15

(to the decoder)

 (5421)

−mk

ck

15
15 (4221) (5211)

ws[i]=

wc[i]=

qi+1

(a) Digit selection block diagram.

3:2 3:2 3:2 3:2 3:2 3:2 3:2 3:2 3:2 3:2 3:2

Decimal generate and alive

L1− Shift

3:2 3:2

5 2
ws[i]

Sign

3:2

Decimal generate and alive LSD
carry−out

logic
>=10

Decimal generate and alive

5 2 1 1

C1

A1G1A2G2 A0G0

C2

C0

wc[i]

5 2 1 15 2 1 1
x100x101 x10−2x10−1sign bits

−1x102

sv[i,k]

hv[i,k]

Prefix Cell

Dk

(b) Bit level implementation of a decimal comparator.

Figure 8.5. Implementation of the digit selection function.

tion is directly implemented using 10 decimal comparators. Each one compares the esti-
mate of the residual 1̂0w[i] coded as a decimal (5211) carry-save operand (ws[i] = ̂100w[i− 1],
wc[i] = −̂10qiD) with one selection constant −mk, k = {−4, . . . , 0, . . . , 5}. If 1̂0w[i] ≥ mk then
the output of the ck comparator is 1. The value of qi+1 is obtained decoding the output of
the comparators. The decoder produces a sign bit si+1 = sign(qi+1) and the absolute value of
qi+1 (|qi+1|) in hot-one code for the control signals of the mux-latches. It also provides the q∗i+1

quotient digits coded in (5421).

The implementation of one decimal comparator is shown in Fig. 8.5(b). Operands ws[i],
wc[i] and −mk, coded in (5211), have 6 fractional bits. However, instead of the 10 selection
constants −mk k = {−4, . . . , 0, . . . , 5}, we precomputed the positive multiples Dk = (k − 0.5)× D̂

(k = {1, 2, 3, 4, 5}). To obtain the correct result in the comparators, we truncate the values Dk

to six fractional bits and then we perturb them as detailed in Section 8.3.4. This perturbation
is incorporated into the logic to generate a decimal carry-out C0 from the LSD position, as we
show later.

180 Chapter 8. Decimal Digit-by-Digit Division

First, a level of binary 3 to 2 CSAs reduces the three input operands to a two operand, a
sum operand sv[i, k], coded in (5211), and a decimal carry operand hv[i, k] = 2 h[i, k] coded in
(4221), that is

ws[i] + wc[i] + Dk = sv[i, k] + hv[i, k] (8.17)

The decimal carry operand hv[i, k] =
∑1

j=−2 hvj 10j is obtained by a 1-bit left shift of the binary
carry bit-vector h[i, k]. The digit hv2[i, k] ∈ {0, 1} is a decimal carry into the sign position.

The decimal addition of sv[i, k] and hv[i, k] generates a carry-out C2. The sign of the
comparison is determined by the XOR of the sign bits of the input operands, hv2[i, k], and
the decimal carry-out C2. For each decimal position, we compute a decimal carry generate
Gj and decimal carry alive Aj from the digits of sv[i, k], coded in (5211), and hv[i, k], coded in
(4221). We use the notation (svj,3, svj,2, svj,1, svj,0) and (hvj,3, hvj,2, hvj,1, hvj,0) to represent the
bits of sv[i, k] and hv[i, k]. Fig. 8.6 shows the gate level implementation required to compute
Gj and Aj. We express the digits svj [i, k] and hvj [i, k] in two parts as svj [i, k] = svj,3 5 + svL

j

AOI

svj,2 hvj,1 hvj,0

AOI

svj,1 svj,0hvj,3

mj,2mj,1 mj,0 nj,2nj,1 nj,0

svj,3 hvj,2

AOIAOI

OAIAOI

OAI

AOI

Gj Aj

6Uj

AOI

OAI

5Uj 1Uj 9Uj 4Uj

6Uj 5Uj 1Uj9Uj 4Uj

mj,2 mj,1 mj,0nj,2 nj,1 nj,0

Figure 8.6. Decimal carry generate (G) and alive (A) block.

and hvj [i, k] = hvj,3 4 + hvL
j , so that svL

j + hvL
j < 10. From their definition, Gj and Aj can be

computed as

Gj = svj,3 (hvj,3 1Ui ∨ 5Ui) ∨ hvi,3 6Ui

Aj = svj,3 (hvj,3 ∨ 4Ui) ∨ (hvj,3 5Ui ∨ 9Ui) (8.18)

where the boolean functions nUj , n ∈ {1, 4, 5, 6, 9} are true if svL
j + hvL

j ≥ n. To simplify the
computation of these nUj ’s, we define svL

j + hvL
j = Mj 2 + Nj, where Mj = mj,2 2 + mj,1 + mj,0

with

mj,2 = svj,2 hvj,1 hvj,0

8.4. Decimal fixed-point architecture 181

hv-2,3 sv-2,2

AOI

dk-3,3

dk-2,1

dk-2,0

dk-2,2

sv-2,3
hv-2,3 sv-2,2sv-2,3

ru

4

Dk

C0

AOI

C0

Implementation for k=1, 2, 3, 4, 5Implementation for k=-4, -3, -2, -1, 0

Figure 8.7. Implementation of the LSD carry-out block.

mj,1 = (hvj,1 hvj,0) ∨ (hvj,1 ∨ hvj,0) svj,2

mj,0 = svj,2 ∨ hvj,1 ∨ hvj,0 (8.19)

and Nj = nj,2 2 + nj,1 + nj,0 with

nj,2 = svj,1 svj,0 hvj−1,3

nj,1 = (svj,1 svj,0) ∨ (svj,1 ∨ svj,0) · hvj−1,3

nj,0 = svj,1 ∨ svj,0 ∨ hvj−1,3 (8.20)

The nUj ’s are obtained from the bits of Nj and Mj as

1Uj = mj,0 nj,0

4Uj = mj,1 ∨ nj,1 mj,0

5Uj = mj,0 nj,2 ∨mj,1 nj,0

6Uj = mj,2 ∨mj,1 nj,1

9Uj = mj,2 nj,2 (8.21)

Next, we compute C2 as a direct decimal carry-propagation Cj+1 = Gj ∨Aj Cj (see Section
3.1) using a 2-level prefix tree. The decimal carry-out C0 of the comparator ck should be 1
when the sum of the bits of the LSD of sv[i, k] and hv[i, k] is equal or greater than 10, that is

sv−2,3 5 + hv−2,3 4 + sv−2,2 2 ≥ 10 (8.22)

However, the perturbation of values Dk requires a slight modification of the logic to
generate the carry-out C0 (the block ’LSD carry-out logic’ of Fig. 8.5(b)). The gate-level imple-
mentation of this block, shown in Fig. 8.7, is obtained as follows:

• For k = {−4,−3,−2,−1, 0}, we only have to sum +5 to the LSD of Dk truncated to six
fractional bits, as shown in Section 8.3.4. Therefore, we have to detect the condition

(sv−2,3 + 1) 5 + hv−2,3 4 + sv−2,2 2 ≥ 10 (8.23)

This is implemented using combinational logic as

sv−2,3 ∨ hv−2,3 sv−2,2 (8.24)

182 Chapter 8. Decimal Digit-by-Digit Division

• For k = {1, 2, 3, 4, 5} we have to round up Dk to six fractional bits and obtain its 10’s
complement. Thus, we have to calculate first a round up bit ru examining the three
least significant bits of Dk discarded, that is, ru = dk−2,1 ∨ dk−2,0 ∨ dk−3,3. To perform
the round up of Dk to 6 fractional bits, Dk(ru), we have to add ru 2 + (dk−2,2 ru) to
the LSD of Dk truncated to six bits. If we represent the LSD of Dk(ru) in (5221) code
as (dk−2,3, dk−2,2, ru, dk−2,2 ru), then the 10’s complement of Dk(ru) is obtained inverting
its bits. Observe that the weight bits (5221) sum 10, so Dk(ru)−2 = 10 − Dk(ru)−2.
Summarizing, the constants −mk (k = {1, 2, 3, 4, 5}) are obtained inverting the bits of Dk

before the binary 3:2 carry-save addition, and adding a value ru 2 + Dk−2,2 ru to the LSD
position. Therefore, the condition for the generation of C0 is stated as

sv−2,3 5 + hv−2,3 4 + (sv−2,2 + ru) 2 + dk−2,2 ru ≥ 10 (8.25)

This is implemented at logic level as

(sv−2,3 hv−2,3)(sv−2,2 ∨ ru ∨ dk−2,2) ∨ sv−2,3 sv−2,2 ru dk−2,2 (8.26)

8.4.4 Implementation of the decimal (5421) coded adder

The algorithm for decimal addition is based on the conditional speculative method (see Section
3.2), but with digits in a (5421) code instead of the more conventional BCD. We use the (5421)
decimal code since recoding from (5421) to (5211) is much simpler than from BCD to (5211).

The implementation of the hybrid carry-select/prefix quaternary-tree for signed operands
is shown in Fig. 8.8. The sign bits of the input operands are represented as sX , sY , while X

and Y are the (p+2)-digit magnitudes coded in (5421). The adder performs both two-operand
10’s complement additions and subtractions S = X+(−1)eopY . The digits of X are incremented
+3 units. This operation is carried out as a digit recoding from (5421) to (5421) excess-3 of
one input operand. This allows the computation of the decimal carries using conventional
4-bit binary carry-propagate additions, since decimal carries are equal to the binary carries at
decimal positions. The decimal carries Ci and the carry-alive groups ai−1:0 are computed in a
quaternary prefix tree. The complement operation for subtractions is performed by inverting
the bits of Y coded in (5421) excess-3 and setting up the carry input to 1. The resultant
operand Y ∗ is coded in (5421).

As in the conditional speculative decimal addition method of Section 3.2, we compute a
control signal AL

i for each digit position i given by

AL
i =

{
1 If XL

i + (Y ∗
i)L ≥ 5

0 Else
(8.27)

where XL
i , (Y ∗

i)L represents the 3 least significant bits of digits Xi and Y ∗
i . This signal indicates

when the digit Xi should be incremented +3 (X∗
i = Xi + 3 AL

i) to obtain the correct decimal
sum digit Si coded in (5421). This speculation fails when X∗

i + Y ∗
i ∈ {7, 12} (’0111’, ’1111’ in

(5421)) and the late carry LCi is zero.

The presum digits S1i = X∗
i + Y ∗

i + 1, S0i = X∗
i + Y ∗

i are computed in the 4-bit two-
conditional decimal (5421) adder of Fig. 8.8(b). The sum digit S0i must be corrected when
S1i ∈ {7, 15}. The correct decimal sum values are S0i ∈ {4, 9} (’0100’, ’1100’ in (5421)). The
decimal correction is performed by the black gates of Fig. 8.8(b).

8.4. Decimal fixed-point architecture 183

X Y

Ai
L

Two-conditional
decimal digit

adders

Mux-2
1 0

Ci

Quaternary prefix
carry tree

S

ai-1:0

AOI

inc

Cin

Xi+3

Mux-2
1 0

Cond. Spec.
signal

Mux-2
1 0 eop

Yi+3

4p+8

1

Y*L
iXL

i

Y*i

Xi+3

4p+8
4p+8

4p+8

X*i
Y*i

S1i S0i

sX sY

sign(S)

Cout

1

eop

(a) Q-T decimal adder (digit slice).

pi,3
pi,1 pi,0pi,2

Mux-2
1 0

gi,0ai,0ai,1

gi,1
ai,2

gi,2 gi

al

gr

gl+algr

PREFIX CELL

s1i,1 s0i,1 s1i,0 s0i,0s1i,3 s0i,3 s1i,2 s0i,2

S1i ,S0i digits in 5421

(b) Two-conditional decimal digit sum cell.

Figure 8.8. Diagram block of the Q-T decimal (5421) adder.

Sum digits Si (coded in (5421)) are obtained as Si = S1i LCi ∨ S0i LCi, where the decimal
late carries are given by LCi = Ci ∨ ai−1:0 inc using the level of And-Or-Inverter (AOI) gates
placed after the prefix tree, where signal inc controls a request from the rounding logic to
increment the sum. This allows for a +1 conditional increment of the result for rounding
operations.

By other hand, the sign bit of the result is computed as sign(S) = sX ⊕ sY ⊕ Cout ⊕ eop

(without overflow).

184 Chapter 8. Decimal Digit-by-Digit Division

Block Area Stage delay
(NAND2) (FO4)

IEEE 754-2008 Decimal64 (16 digits)
Cycles/division= 21

Sel. function (Fig. 8.5) 2800 22.3
Mult. generator (Fig. 8.4) 2000 18.5
Adder datapath (Fig. 8.8) 2600 17.5
Mux/latches 2700 3.0

Total 10100 25.3∗

IEEE 754-2008 Decimal128 (34 digits)
Cycles/division= 39

Sel. function (Fig. 8.5) 2800 22.3
Mult. generator (Fig. 8.4) 4500 21.5
Adder datapath (Fig. 8.8) 5800 20.5
Mux/latches 6000 3.0

Total 19100 25.3∗

∗Critical path delay (sel. function +mux/latch)

Table 8.2. Delay and area of the proposed divider.

8.5 Evaluation and comparison

In this Section we show the area and delay figures estimated for the proposed architecture
using our evaluation model for CMOS technology (see Appendix A). We have compared it
with two recent proposals of decimal dividers based on a radix-10 digit-recurrence algorithm
[92, 106] and with the radix-10 divider implemented in the IBM Power6 [122]. As a reference,
we include the division latency figures of a DFP software library [30].

8.5.1 Evaluation results

Table 8.2 summarizes the evaluation results for the IEEE 754-2008 Decimal64 (16 precision
digits) and Decimal128 (34 precision digits) dividers. Note that these figures correspond to
the architecture for significand radix-10 division (Fig. 8.3). In both 16-digit and 34-digit
implementations, the evaluation of the selection function (critical path) determines the latency
of the divider. The area and delay of this block is independent of the widths of the operands,
so the latency of the proposed divider is given by (p + 5) × 25.3 FO4, where p ∈ {16, 34} is the
number of precision digits. The adder datapath includes the decimal (5421) carry-propagate
adder and the logic for rounding.

The area of the divider can be reduced between 25% and 30% by reusing an exist-
ing decimal p + 2-digit carry-propagate adder with logic for rounding. However, commercial
units [19, 20, 45, 122] do not implement decimal (5421) adders but BCD adders. For in-
stance, the IBM Power6 DFPU includes a 36-digit BCD adder. To reuse this BCD adder, we
should modify the proposed divider by coding in BCD the dividend X, the divisor multiples
{−5D, . . . , 0, . . . , 5D} and the residual w[i]. For a fast implementation of the selection unit, the
estimate of the residual and the selection constants should be coded in (4221). This incre-

8.5. Evaluation and comparison 185

Divider Cycle time Cycles Latency Area
(FO4) # (FO4 /Ratio) (NAND2/Ratio)

IEEE 754-2008 Decimal64 (16 digits)

Proposed (Fig. 8.3) 25.3 21 531/1.00 10100/1.00
Ref. [92] 26.8 20 536/1.00 13500/1.35
IBM Power6 [122] 13 82 1066/2.00 6600/0.65
Ref. [30]∗ ≈ 22 294 6468/12.20 –

IEEE 754-2008 Decimal128 (34 digits)

Proposed (Fig. 8.3) 25.3 39 987/1.00 19100/1.00
Ref. [106] 35.8 37 1325/1.35 48100/2.50
IBM Power6 [122] 13 154 2002/2.00 15600/0.80
Ref. [30]∗ ≈ 22 679 14938/15.10 –
∗Software library running in an Itanium 2 @ 1.4 GHz

Table 8.3. Comparison results for area-delay.

ments in one bit the length of the path for the selection of the quotient digits. In addition,
the decimal comparator for operands coded in (4221) is slightly slower (about 3%) than the
proposed comparator for (5211) coded operands of Fig. 8.5(b).

8.5.2 Comparison

Table 8.3 presents the area-delay figures and ratios for the architectures analyzed. We also
include the delay figures of a software implementation of IEEE 754-2008 DFP division [30].

Since the area-delay figures for the Decimal64 (p = 16) divider proposed in [92] are com-
parable to ours we have estimated its critical path delay using our area-delay model in order
to provide fair comparison results. The hardware complexity in NAND2 gates was provided by
the authors. For the other reference [106], we use the figures provided by its synthesis results
for Decimal128 (p = 34) and expressed in terms of equivalent FO4 gate delays and number of
equivalent NAND2 gates.

The radix-10 division algorithm implemented in the IBM Power6 [122] uses a similar
recurrence and the same divisor multiples than our proposal. Basically, they differ in the
selection of the quotient digits and that the IBM Power6 decimal divider keeps the partial
remainder in a non-redundant form. Thus, to obtain (roughly) the hardware cost of the IBM
Power6 decimal divider we considered the area occupied by a (p+2)-digit BCD adder, a gener-
ator of decimal divisor multiples and the mux-latches for selection of the divisor multiples.

From this comparison we conclude that our proposal is comparable in terms of latency
to the best up-to-date implementation [92] and is more advantageous in terms of hardware
complexity (about 1.35 area ratio). Moreover, our implementation for Decimal128 requires
less than half the area of the Decimal128 radix-10 divider proposed in [106] and presents an
speedup of 1.35. In addition, we obtain a speedup of 2 with respect to the decimal division
of the IBM Power6 processor at the cost of about 20% more area. Finally, observe that the
software implementation analyzed [30] is an order of magnitude slower than the SRT radix-10
hardware implementations.

186 Chapter 8. Decimal Digit-by-Digit Division

With respect to hardware implementations based on multiplicative algorithms such as
Newton-Raphson [26, 156], comparison is difficult, since different issues should be taken into
account: the use of a serial or a parallel decimal multiplier, the reuse of an existing multiplier
or replication and the impact on the performance of other instructions that share the same
multiplier. However, since efficient decimal parallel multipliers have been recently reported
[148], we expect that the design decisions for decimal division are close to those considered
for binary division.

8.6 Conclusions

We have presented the algorithm and architecture of a decimal division unit. The proposed
radix-10 algorithm is based on the SRT digit-recurrence methods with a minimally redundant
signed-digit set (ρ=5/9). The resultant implementation combines conventional methods used
for high-performance radix-2k division (SD redundant quotient and digit selection using se-
lection constants and an estimate of the carry-save residual) with novel techniques developed
in this work to exploit the particularities of radix-10 division. Among these new techniques
are the use of non-conventional decimal codings to represent decimal operands, estimates by
truncation at any binary position of a decimal digit and a customized decimal adder for several
computations. We have designed 16 and 34 decimal digit dividers that fit the IEEE 754-2008
decimal64 and decimal128 formats. Evaluation results show that our 16-digit implementa-
tion presents comparable delay figures with respect to the best up-to-date implementation of
a radix-10 digit-recurrence divider [92] but using less hardware complexity (1.35 area ratio).
Moreover, the proposed architecture can be efficiently implemented in current commercial
DFUs to reduce ×2 the latency of the decimal divisions at the cost of about 20% more area.

Conclusions and Future Work

We have presented a new family of high-performance decimal fixed and floating-point units
which implement the decimal arithmetic operations of most frequent use in numerical process-
ing. These units are based on novel algorithms developed to improve the efficiency (perfor-
mance, hardware cost and power consumption) of previous high-performance decimal units.

We detailed the functionality and the gate-level implementation of the different architec-
tures. Moreover, we estimated the hardware costs and latencies using an area-delay evalu-
ation model for static CMOS technology independent of the scale of integration. Specifically,
the main contributions of this thesis are the following:

1. A new carry-propagate algorithm to compute 10’s complement BCD additions and sub-
tractions (Chapter 3). We have implemented the proposed method using different high-
performance binary Ling and prefix tree adders, only requiring, in addition to the binary
adder, a fast (constant delay) decimal pre-correction and a minor modification of the bi-
nary sum cell. This leads to very efficient implementations of combined 2’s complement
binary/10’s complement decimal integer or fixed-point adders, and quite competitive
with other academical and commercial proposals.

2. A new method and a high-performance architecture to compute sign and magnitude
BCD addition/subtraction (Chapter 4). This operation is used in many applications,
such as decimal floating-point addition to add/subtract the BCD coefficients. Unlike
other proposals which use a decimal post-correction, the BCD magnitude result is di-
rectly obtained from a binary sign-magnitude addition after a slightly more complex
pre-correction stage. Hence, the proposed architecture presents better area and delay
than these previous implementations.

3. A unit to detect soft errors in 10’s complement and mixed 2’s/10’s complement adders
(Chapter 3) and in sign-magnitude BCD adders (Chapter 4). These units present a re-
duced hardware complexity (half the area) of other solutions used in commercial mi-
croprocessors (such as replication of arithmetic units), while it does not affect to the
performance of the processor (unlike parity checking).

4. A new method and the architecture for merging significand (sign-magnitude) BCD ad-
dition and IEEE 754-2008 decimal rounding (Chapter 5). This is of interest to improve
the efficiency of high-performance DFP adders, DFP multipliers and decimal FMA (fused-
multiply-add) units. The IEEE 754-2008 Decimal64 (16 precision digits) and Decimal128

187

188 Conclusions and Future Work

(34 precision digits) implementations present speedups of about 15% in performance
while the area of the proposed unit is reduced more than 25% with respect to the best
performance significand BCD adder and decimal rounding unit reported to date. This
significant reduction in area and latency comes from a simplification of the logic re-
quired for decimal post-correction and rounding. The proposed method implements a
pre-correction stage of reduced constant delay to allow the computation of both signif-
icand BCD addition and decimal rounding using a binary compound adder and little
additional hardware.

5. An algorithm to improve multioperand decimal carry-free addition (Chapter 6) based on a
binary carry-save addition over decimal operands represented in unconventional (4221)
and (5211) decimal encodings. This makes possible the construction of multioperand
decimal CSA trees that outperform the area and delay figures of existing proposals and
only have 20% more area than a equivalent binary CSA tree. This makes viable the imple-
mentation of efficient commercial units which use these kind of structures to increase
their performance, such as decimal parallel multipliers and FMA (fused multiply-add)
units.

6. Several techniques for parallel decimal fixed-point multiplication (Chapter 7). We have
proposed three different schemes for fast and parallel generation of partial products
coded in (4221) or (5211) decimal encodings. This makes possible the efficient reduction
of all partial products using the proposed multioperand decimal CSA trees.

7. Two architectures for decimal parallel multiplication and two combined binary/decimal
fixed-point multipliers (Chapter 7). The decimal SD radix-10 multiplier is an interesting
option for high performance with moderate area. For higher performance a better alter-
native is the SD radix-5 architecture. For combined binary/decimal multiplications the
choices are the Booth radix-4/SD radix-4 for low latency in binary multiplication or the
Booth radix-4/SD radix-5 multiplier for low latency in decimal multiplication. These ar-
chitectures present better latency and less area than the only parallel decimal fixed-point
multiplier previously reported.

8. Novel schemes for decimal floating-point multiplication and for decimal fused multiply-
addition (Chapter 7). The key components of these designs are the proposed BCD sign-
magnitude adder with decimal rounding and the SD radix-10 and SD radix-5 decimal
fixed-point multipliers.

9. The algorithm and the architecture of a radix-10 digit-by-digit division unit with a min-
imally redundant signed-digit set (Chapter 8). The resultant implementation combines
conventional methods used for high-performance radix-2k division with novel techniques
developed in this work to exploit the particularities of radix-10 division, namely, the use
of (5421) and (5211) decimal codings to represent operands, an estimate of the resid-
ual by truncation at any binary position of a decimal digit and a customized decimal
adder reused for several computations. Our unit is comparable in terms of latency with
the radix-10 digit-recurrence divider that presents the highest performance to date, but
requires 30% less area.

Our future work will be focused on the following issues:

Conclusions and Future Work 189

1. Implement a delay optimized version of the significand BCD adder with rounding of
Chapter 5. A further objective will be the integration of this adder in the DFU (decimal
floating-point unit) of a high-performance microprocessor.

2. Optimize the decimal fixed-point parallel multipliers to provide pipelined implementa-
tions that fit adequately in the dataflow and cycle time of current commercial DFUs.
Part of this work has already been done thanks to a research project funded by IBM and
a five-month on-site collaboration with a design team of IBM Boeblingen (Germany).

3. Provide a detailed implementation of the DFP multiplier and decimal FMA designs pre-
sented in Chapter 7 for IEEE-754 Decimal64 and Decimal128 formats.

4. Extend the radix-10 digit-by-digit divider of Chapter 8 to support also decimal square-
root computations.

5. Implementation of transcendental functions (exponentials, logarithms, trigonometric func-
tions, . . .) using decimal CORDIC units [146]. These units are a low-cost solution and
therefore a feasible option to incorporate these operations in current DFUs. Moreover,
these functions are recommended to be implemented correctly rounded in the new stan-
dard for floating-point arithmetic [74].

190 Conclusions and Future Work

Appendix A

Area and Delay
Evaluation Model for
CMOS circuits

This Appendix describes the evaluation model used for area and delay estimations of CMOS
circuits. The delay model is based on a simplification of the logical effort method [131] that
allows for faster hand calculations. It is independent from the technology and only depends
on the transistor level design of the components. The main characteristics of this delay model
are the following:

• The path delay is obtained as the sum of the delays of the gate stages in this path. The
total stage delay is given by the critical path delay assuming equal input and output
capacitances. This total stage can be either a pipelined stage or the whole design.

• Delay values are given in FO4 units (delay of an minimum sized (1x) inverter with a
fanout of four 1x inverters).

• It does not consider the delay of the wiring interconnect [68].

• The delay of a gate is obtained as the sum of the parasitic delay (a function of the gate’s
intrinsic internal capacitance) and the effort delay (due to the load on the gate’s output).
The effort delay is the product of the logical effort (depends on the logic gate’s topology
that drives the load) and the electrical effort (the ratio between the output load and the
input gate capacitance).

• For a given path with fixed number of gate stages, the minimum path delay is achieved
when each gate stage in the path has the same stage effort fi. The optimum number of
gates N̂ in a path for minimum delay depends on the total path effort F. For practical
purposes, we estimate that the optimum number of gate stages is N̂ = logρ F with ρ ≈ 4.

• It does not consider gate sizing optimizations. The logical effort method uses gate sizing
to equilibrate the gate efforts and thus minimize the path delay. Instead, we assume
gates with the drive strength of the 1x inverter (minimum sized gates) to simplify the
calculation of the total stage delay. To ensure that minimum path delays are close to
the optimum values, we use other optimization techniques, such as buffering or cloning
(gate replication) to drive high loads.

The area of a design is the sum of the area of their components. The cost related to the
area of a gate is a function of the number of transistors and its size (width). To measure the

191

192 Appendix A. Area and Delay Evaluation Model for CMOS circuits

Rpu

Rpd

VDD

Z
inA

Cin

CoutCp

VDD

Wp/Lp

Z

inA

inA Wn/Ln

Figure A.1. RC model of a logic gate (for one input).

total hardware cost in terms of number of gates, the area of the different gates is normalized
using a reference gate, in this case a minimum sized (1x) two-input NAND gate (NAND2).
Thus, the area of a design is estimated as the number of equivalent NAND2 gates. This value
is just a rough approximation of the actual physical size of a design, since extra space is
needed for chip pins and wiring. However, the values obtained are good enough to compare
the relative sizes of the different designs.

Before evaluating delays and areas it is necessary to determine the model gate parame-
ters. Section A.1 introduces the static CMOS gate library used for the gate level description of
the architectures. Gate model parameters are obtained characterizing the static CMOS gate
transistor circuit as a network of capacitors and resistors. For dynamic CMOS circuits, such
as the dynamic CMOS mux-latches used in the radix-10 divider (Chapter 7), we use the area
and delay values provided by the developers (normalized to NAND2 and FO4 units). In Section
A.2 we detail the methodology for path delay evaluation and for critical path delay optimiza-
tion. Section A.3 covers two of the techniques used for delay path optimization: buffering and
balancing of loads for branching paths. Finally, we present in Section A.3 an example of delay
an area estimations for some basic components.

A.1 Parametrization of the Static CMOS Gate Library

The logical effort method characterizes the logic gate delay by means of three parameters:
logical effort, electrical effort, and parasitic delay. These parameters are obtained by mod-
eling logic gates as capacitors, which represent the transistor gates and stray capacitances,
charging and discharging through resistors, which model networks of transistors connected
between the power supply voltages and the output of the logic gate. This RC model of a gate is
shown in Fig. A.1. It relates easily to the design of an inverter. The pMOS pull-up transistor,
with width Wp and length Lp, is modeled by the switch and resistor Rpu forming a path from
the output Z to the positive power supply. The nMOS pull-down transistor, with width Wn

and length Ln is modeled by the switch and resistor Rpd that form a path from the output Z
to ground. The delay in a logic gate modeled by Fig. A.1 is just the RC delay associated with
charging and discharging the capacitance attached to the output node Z. The equation of the
output voltage Z(t) is stated as

Z(t) = VDD · e
−t

Rp(Cp+Cout) (A.1)

A.1. Parametrization of the Static CMOS Gate Library 193

where Rp represents the pull-up (Rpu) or pull-down resistance (Rpd) of the charging/discharging
path, Cp is the internal gate capacitance and Cout is the external load. From this equation we
obtain the following delay expression:

tp = Rp(Cp + Cout) ln
(VDD

Z(t)
)

(A.2)

where tp is either the propagation delay for pull-up tpu or pull-down tpd transitions. Taking
as a reference for high and low states the 65% and 35% of VDD respectively, the propagation
delay transitions are approximated as

tpu = Rpu(Cp + Cout)

tpd = Rpd(Cp + Cout) (A.3)

An additional delay term tq would be necessary to account for other nonideal factors such as:

• The dependency of the delay on the input ramps.

• Capacitances in the internal nodes.

• Finite time to produce a charge/discharge path.

• Capacitance of interconnection loads.

• Gate capacitance variable with the applied voltage.

so the gate delay is given by tgate = max{tpu, tpd}+ tq. To obtain a simplified expression for the
gate delay we adopt the following criteria for the transistor level design:

• Both pMOS and nMOS transitions have the same delay. Subsequently, pMOS transistors
have double width compared to nMOS transistors.

• For any gate we perform a scaling of the width of the transistor (normalization of the
gate) in order to obtain (in the worst case) the same drive capability than the minimum
sized inverter.

• For our rough model we do not consider nonideal terms, so tq = 0.

Thus, assuming that both transitions have the same delay, equations (A.3) are summa-
rized in

tgate = tpu = tpd = Rp(Cp + Cout) (A.4)

and therefore Rpu = Rpd = Rp. Expression (A.4) represents the delay of a 1x gate. For a sx gate
(equivalent scaled width of transistors by s), the delay is given by

tgate(s) =
Rp

s
(Cout + s Cp) (A.5)

We assume that the capacitance Cin of an input is proportional to the area of both pMOS
and nMOS transistor gates. Thus, the input gate capacitance of the scaled sx gate is Csin =
s Cin, where Cin = k(Wp Lp + Wn Ln) is the input capacitance of the 1x gate (k is a constant

194 Appendix A. Area and Delay Evaluation Model for CMOS circuits

that depends on the fabrication process). Introducing the input capacitances in expression
(A.5), the propagation delay results in

tgate = Rp Cp + RpCin(
Cout

Csin
) (A.6)

The logical effort method represents the gate delay as a function of a fixed part, called the
parasitic delay, p, and a part that is proportional to the load on the gate’s output, called the
effort delay or stage effort, f. The effort delay is further defined as f = g h, where g is the logical
effort, and h is the electrical effort. Thus, in terms of a delay unit τ = Rinv Cinv, expression
(A.6) is parameterized as

tgate = τ(p + f) = τ(p + g h) (A.7)

where

g =
RpCin

τ

h =
Cout

Csin

p =
RpCp

τ
(A.8)

The product τ = Rinv Cinv is a characteristic delay for a technology, where Cinv and Rinv are
the corresponding channel resistance and the total gate capacitance for a 1x inverter.

Instead of using absolute delay units, delay values are usually normalized to the fanout-
of-4 inverter (FO4) metric. A FO4 delay represents the delay of a 1x inverter with an output
load of four other 1x inverters. The FO4 metric can be used to express delays in a process-
independent way since it is fairly stable through a wide range of process technologies, tem-
peratures, and voltages [68], and also because most designers know the FO4 delay in their
process and can therefore estimate how your circuit will scale to their process.

A FO4 delay is related to τ units as follows:

tFO4 = Rinv Cinv + Rinv Cout = Rinv(Cinv + 4Cinv) = 5τ (A.9)

The gate delay in FO4 units is given by the following expression

dgate(#FO4) =
tgate

tFO4
=

τ

tFO4
(p + g h) =

1
5
(p + g h) (A.10)

Therefore, the FO4 delay of any CMOS gate is estimated by determining its parameters p, g
and h. We show next how to compute these terms.

Computation of g (logical effort)

As we have mentioned, we consider that the 1x gates have the same drive capability than
the 1x inverter. Therefore, in this case, Rp = Rinv, resulting in

g =
Rp Cin

Rinv Cinv
=

Cin

Cinv
(A.11)

which corresponds to the ratio of the input (gate) capacitances between the 1x gate and the
1x inverter, provided that Rp = Rinv. We consider that the gate capacitances are proportional
to the width of the corresponding gate. Therefore

Cin =
Wgp + Wgn

Winvp + Winvn
Cinv (A.12)

A.1. Parametrization of the Static CMOS Gate Library 195

where Wgp, Wgn are the widths of the pMOS and nMOS transistors of the corresponding gate
input and Winvp, Winvn are the widths of the inverter transistors. Then, the logical effort is

g =
Wgp + Wgn

Winvp + Winvn
(A.13)

Computation of h (electrical effort)

Introducing relations Csin = s Cin and Cin = g Cinv in the corresponding equation for h of
expression (A.8), we have

h =
Cout

s g Cinv
(A.14)

The output gate capacitance Cout in terms of Cinv is given by

Cout =
∑k−1

i=0 (Wgp + Wgn)i

Winvp + Winvn
Cinv =

k−1∑

i=0

gi Cinv (A.15)

where the terms (Wgp + Wgn)i correspond to the gate load for a fanout of k gates. We consider
only the load due to input gate capacitances, obtained as the sum of the widths of the input
gate transistors.

Therefore, h can be computed as

h =
k−1∑

i=0

gi

s g
(A.16)

where the g′is are the logical efforts of the k gates that contribute to the gate load. Moreover,
the effort delay is given by

f = h g =
k−1∑

i=0

gi

s
(A.17)

Computation of p (electrical effort)

For a gate with scaled width for transistors so that its drive capability is the same as the
1x inverter, we have that Rp = Rinv, and therefore,

p =
Cp

Cinv
(A.18)

We consider Cp proportional to the width of transistors connected to the output. Thus, the
ratio of parasitic capacitances between a gate and a 1x inverter is

Cp

Cpinv
=

Wog

Woinv
(A.19)

where Wog and Woinv are the sum of the widths of the gate transistors connected to the output
for a gate and an 1x inverter respectively. Therefore, we express p as follows

p =
Cp

Cinv
=

Wog

Woinv

Cpinv

Cinv
=

Wog

Woinv

pinvCinv

Cinv
=

Wog

Woinv
pinv (A.20)

Note that the parasitic delays does not depend on the size of the gate. It is difficult to provide
values of pinv (electrical effort of an inverter) for a wide range of technologies. For our rough
model we assume pinv = 1, so the parasitic delay is estimated as

p =
Wog

Woinv
(A.21)

196 Appendix A. Area and Delay Evaluation Model for CMOS circuits

VDD

2/12/1

2/1

2/1
Z

inA

inA

inB

inB

VDD

2/1

1/1
Z

inA

inA

NAND2

Area=8
g = 4/3
p = 2

INV

Area=3
g = 1
p = 1

Z

inBinA

inB
inA

Z

inD

inC

NAND4

Z

inA

inB
inA

Z

inC

NAND3

2/1

VDD

2/12/1

3/1

3/1

Z

inA

inC

inB

inB

3/1inA

inC

Area=15
g = 5/3
p = 3

2/12/1

VDD

2/12/1

4/1

4/1

Z

inA

inC

inB

inB

4/1inA

inDinC

4/1inD
Area=24
g = 2
p = 4

inB
inA

inD

inC

Z

inE

NAND5

2/12/1

VDD

2/12/1

5/1

5/1

Z

inA

inC

inB

inB

5/1inA

inD
inE

5/1inD

2/1inC

5/1inE

Area=35
g = 7/3
p = 5

NOR2

Area=10
g = 5/3
p = 2

NOR3

Area=21
g = 7/3
p = 3

VDD

4/1

1/11/1

Z

inA

inA inB

inB 4/1

inC

VDD

6/1

1/11/1

Z

inA

inA
inB

inB 6/1

1/1

inC 6/1

inB
inA inC

Z

inD

inB
inA

inC

Area=36
g = 3
p = 4

inC

VDD

8/1

1/11/1

Z

inA

inA inB

inB 8/1

1/1

inC 8/1

NOR4

inD 8/1

1/1 inD

inA inB

Z

(a) Basic gates.

Area=17
g = (5/3,2,2)
p = 7/3

AOI12

1/1 inA

inB

4/1

inC 2/1

2/1

4/1

4/1

Z
inA

inB inC

VDD
inBinA inC

Z

Area=24
g = 2
p = 4

AOI22

inD

inB
inA

inC

Z

inBinA inC

Z

Z

inD

inB
inA

inC

Area=16
g = (4/3,2,2)
p = 8/3

2/1

inA

inB

2/1

inC2/1

2/1

4/1

4/1

Z

inA

inB

inC

VDD

OAI12

Area=24
g = 2
p = 4

OAI22

2/1

inA 2/1

inC 2/1

4/14/1

4/1

Z

inA inB

inC

VDD

inB2/1

inD

4/1

inD

OAAI22

Z

inD

inB
inA

inC
inD

inB
inA

inC

Z

Area=24
g = (7/3,7/3,5/3,5/3)
p = 11/3

Area=30
g = (7/3,7/3,8/3,8/3)
p = 10/3

OAOI22

1/1 inA

2/1

6/1

6/1

Z

inA

inB

inC

VDD

inB
2/1

inD

2/1

1/1

6/1

6/1

inD

inC

3/1inA

inC

3/1

2/1

4/1

4/1

Z

inA

inB

inC

VDD

inB

3/1

inD

2/1 inD

3/1

inD

2/1

inA

inB

4/1

inC

2/1

2/1

4/1

Z

inA inB

inC

VDD

2/1

inD

4/14/1

(b) Complex gates.

Figure A.2. Library of minimum size static CMOS gates.

Therefore, the calculation of p, g and h for gate delay evaluation is simply reduced to de-
termine the widths of the transistors for each gate. Fig. A.2 shows the library of parameterized
static CMOS gates we have used for the gate level description of the architectures. We repre-
sent both the transistor circuit and the schematics for each gate. The logic gates selected for
the library were limited to single inverting stages, to keep the range of gate stage effort around
4. As we have commented, we need to normalize the geometries of the transistors to obtain
gates with the same drive capability as the 1x inverter, that is, we only use minimum sized
(1x) gates. Thus, the scaling factor is s=1 for all the CMOS gates of the library.

This simplifies further path delay computations, since h is simply determined by the g’s
of the gate and its load (given by equation A.16 with s=1), while the gate effort delay f is just
given by the g’s of the gate load (equation A.17 with s=1). Therefore, the FO4 gate delay is
computed as

dgate =
1
5
(pgate + fgate) =

p

5
+ 0.2Lout (A.22)

where we have defined the gate load Lout =
∑k−1

i=0 gi for a fanout of k gates. Lout represents the
gate load capacitance normalized to the 1x inverter capacitance. Thus, to determine the FO4
delays we only need to characterize the p and g parameters for each gate of the library.

Since the drive capability depends on the W/L ratio of the transistors, we need to adjust
this ratio for the transistors of the corresponding gate. The W/L units for each transistor are

A.2. Path delay evaluation and optimization 197

determined so that the gate is normalized, that is, the equivalent W/L ratios of each of the
nMOS and pMOS parts are the same as in the 1x inverter. The rules for this adjustment are
as follows:

• For a branch of transistors in serial configuration, the equivalent W/L is given by the
ratio of the W of each transistor and the addition of the L values.

• For branches of transistors in parallel, we consider the worst case of conduction, that
is, only one branch conducts. Therefore, the equivalent W/L ratio is the maximum W/L
ratio of the branches.

We consider relative units for W and L normalized to the values of the nMOS transistor
in a 1x sized inverter. Therefore, for the nMOS transistor of the inverter we have W/L =1/1.
Moreover, another important parameter is m, the ratio of the widths of the nMOS and pMOS
transistors to have symmetrical rise/fall characteristics. A typical value used for current static
CMOS technology would be m = 2 [126, 131]. Therefore, W/L =2/1 for the pMOS transistor of
the minimum sized inverter.

For instance, the p and g parameters and the FO4 delay equation for the AOI12 (asym-
metric (1+2)-input AND-OR-INVERTER) gate of Fig. A.2(b) are computed as follows:

• Computation of p. As defined in equation (A.21), we need to compute the normalized
widths of the transistors connected to the output of both the gate and the 1x inverter.
For the AOI12 gate, the sum of the normalized widths is Wog = 7, and Woinv=3 for the
inverter. Therefore, p = 7/3.

• Computation of g. We give the value of g for each input in vector form, that is, g =
(ginA, ginB , ginC). From equation (A.13), we just need to compute the ratio of the normal-
ized widths of the nMOS and pMOS transistors for each gate input to the width of the
nMOS and pMOS transistors of the 1x inverter. Therefore, g=(5/3,2,2).

• Computation of gate delay. From expression (A.22), we obtain that the estimated FO4
delay of the AOI12 gate is

dAOI12 =
7
15

+ 0.2Lout (A.23)

for an output load of Lout.

The cost of each gate is estimated as the logical area. The logical area measures the
number of square units in the active areas of the transistors of the gate. Therefore, the cost
of a gate is given by the sum of the normalized W/L ratios of all nMOS and pMOS transistors
of the gate. Note that this method takes into account the number of transistors and its size.
Fig. A.2 also shows the logical area for each gate of the library. To normalize the results to
the cost of the NAND2 gate (with logical area of 8 units), we compute the ratio Areagate/8. For
instance, the estimated area of the AOI12 gate is 17/8= 2.125 NAND2.

A.2 Path delay evaluation and optimization

Computation of path delay

198 Appendix A. Area and Delay Evaluation Model for CMOS circuits

Gate 1 Gate 2 Gate
N-1

Gate 3 Gate
N-2

Gate N ZinA

Cin Cout

Parallel path

Figure A.3. Path to be optimized.

The path delay D (normalized to FO4 units) is the sum of the delays of the logic gates in
the path. The total stage delay is given by the critical path delay, Dmax. D is decomposed in a
path parasitic delay P, and in a path effort delay, DF , as

D(#FO4) =
∑

i

di =
1
5
(P + DF) =

1
5

∑

i

(pi + fi) =
1
5
(
∑

i

pi +
∑

i

gihi) (A.24)

where the subscript i index the logic gate stages along the path. The path effort delay DF is not
easy to compute using the electrical efforts hi when branching occurs within a logic network.
In this case, some of the available drive current is directed along the path we are analyzing,
and some is directed off the path. The logical effort method introduces the branching effort
B, to account for fanout within a network.

The use of only minimum sized gates, as we propose, simplifies the computation of DF

by means of the gate stage efforts fi = gihi. In our case, from equation (A.17) with s=1, we
obtain that the stage effort fi is given by the normalized load of the gate at stage i, Li, with
fanout ki, that is,

fi = Li =
ki−1∑

j=0

gj(i) (A.25)

so DF is computed as

DF =
N∑

i=1

fi =
N−1∑

i=1

Li + Lout (A.26)

For the whole design or pipelined stages, we assume that the output load of the path Cout is
equal to the input load Cin, so in our case, Lout = Lin =

∑k0−1
j=0 gj(0), where the gj(0)′s are the

logical efforts of the k0 gates connected to a given input.

Optimization of path delay

We want to obtain the conditions to optimize a logical path of a multi-stage design as
shown in Fig. A.3. An overall delay optimization usually requires balancing the delay of
parallel paths, which is beyond the scope of this analysis due to its high complexity. We only
consider a simple but very common case of parallel path optimization in Section A.3: a buffer
fork.

The method of logical effort provides the best number of stages to minimize the path
delay and it shows how to get least overall delay by balancing the delay among the stages. For
a given path we define the path effort as

F = GH =
N∏

i=1

higi (A.27)

A.3. Optimization of buffer trees and forks 199

where H =
∏N

i=1 hi = Cout

Cin
is the path electrical effort and G =

∏N
i=1 gi is the path logical effort.

The optimization process consists in calculating hi to minimize D with the constrain
H = Cout

Cin
(a detailed calculation is shown in Chapter 3 of [131]). For a given fixed number of

gate stages in a path, N, the minimum path delay is achieved when each gate in the path has
the same effort, that is, fi = higi = ρ = F

1
N and the FO4 delay of the path is

Dmin(N) =
1
5
(P + NF

1
N) =

1
5
(P + N(GH)

1
N) (A.28)

The optimum path delay is obtained for a number of gate stages equal to N = N̂ , that is,
Dopt(N) = Dmin(N̂) in FO4 delays. A good estimate of the optimum number of gate stages for
an inverter chain, as detailed in Section A.3, is N̂ ≈ ln F

ln ρ = logρ F with ρ ≈ 3.6. The optimum
path delay is Dopt ≈ 1+ρ

5 logρF in FO4 units.

For paths with more complex gates, the parasitics have more importance, so a better
value for ρ is approximately around 4, so Dopt ≈ log4 F . This estimate is useful for rough
comparisons among different circuit topologies by computing only the path effort [131].

To keep close to the optimum path delay, we use gate loads fi = Lout(i) around ρ = 4. The
logical effort method use gate sizing to adjust the stage efforts. Devices with higher transistor
sizes are faster but have more input capacitance (i.e. presents more load to the previous
stage), so optimal gate sizing is a complex tradeoff process. Instead of gate sizing, we use
other equivalent optimization techniques to reduce the number of logic stages (increasing the
stage effort) or to decrease the gate load (and therefore to reduce the stage effort), such as:

• Buffering. A buffering tree, or equivalently, a chain of inverters, is used to drive the load
and reduce the effort stage. The number and size of buffers required to drive an output
capacitance Cout is determined in Section A.3.

• Gate cloning. Involves duplicating a gate and dividing the fanout between the copies.

• Delay balancing of buffer forks. We apply this technique to optimize the delay of true
complement control signals that drive high loads. This is detailed in Section A.3.

• Gate stage expansion. In this case, a complex gate in the critical path is converted into
a simpler gate and other additional gates out of the critical path.

• Gate stages compression. A two-logic stage of simpler gates is compressed into a single
complex logic stage.

• Inverter pushing. An inverter at an input in the critical path can be pushed to other
input out of the critical path.

A.3 Optimization of buffer trees and forks

This Section covers two of the techniques used for path delay minimization: delay optimization
of buffer trees (or equivalently buffer chains) and buffer forks, which consist of a pair of buffer
(inverter) chains with a common input used to drive high loads that require a true complement
input, e.g. the control signal of a 2:1 mux.

200 Appendix A. Area and Delay Evaluation Model for CMOS circuits

Optimum delay of a buffer tree

We use expression (A.28) to determine the optimum delay of a buffer tree (or a buffer
chain) with an input capacitance Cin (or Lin) that drives an output capacitance Cout (or Lout).
Since for inverters, gi = 1, we have

F = GH = H = hN (A.29)

Therefore, from (A.28) we obtain

Dopt =
1
5
(Npinv + Nh) =

N

5
(h + pinv) =

ln H

5 ln h
(h + pinv) (A.30)

that is, N = ln H
ln h and H = Cout

Cin
is a constant.

The minimum of this expression occurs for ln h = h+pinv

h , so after introducing this value
in (A.30), the optimum delay is Dopt = h

5 ln(H).

For pinv = 1, the value of h which verifies ln h = h+pinv

h is h = 3.591, and therefore the
optimum delay of the buffer tree with an input capacitance Cin driving a load Cout is

Dopt(#FO4) = 0.72 ln(
Cout

Cin
) (A.31)

The estimated logical area of a tree buffer is

Areabuffer = N × h×Areainv = 8.43× ln(
Cout

Cin
) (A.32)

or 1.05× ln(Cout

Cin
) NAND2 units.

Optimum delay of a buffer fork

One of the complications of buffer forks is that one of the paths has an additional invert-
ing stage. To avoid an increased overall delay, the true and complement output signals must
emerge at the same time. Therefore, the delay of each buffer chain should be the same. These
kind of signals are typically used as control inputs for high loads of 2:1 multiplexers. We also
assume that both paths drive the same load Cout

2 . Fig. A.4 shows the general structure of a
buffer fork driving n 2:1 muxes (Lout = 4n

3). The input capacitance Cin is divided between the
two paths as

Cin = CAin + CBin = (1− β)Cin + βCin (A.33)

where β ∈ [0, 1] denotes the fraction of input capacitance allocated to the branch with more
stages.

The optimal FO4 delay for each separate path is given by

DAopt =
(N − 1)

5
H

1
N−1
A +

(N − 1)
5

pinv =
(N − 1)

5
((

H

2(1− β)
)

1
N−1 + pinv)

DBopt =
N

5
H

1
N

B +
N

5
pinv =

N

5
((

H

2β
)

1
N + pinv) (A.34)

To minimize the total delay, both path delays should be equal, that is, DAopt = DBopt.
The electrical effort of each path HA and HB must be close to the electrical effort of the whole
fork, H = Cout

Cin
, for optimal delay. To reduce the delay of the slowest path, we reduce slightly

A.3. Optimization of buffer trees and forks 201

Mux-2sel0

Cin = CAin + CBin

Cout/2

CAin

0 sel1

sel0sel1

in

1 Mux-2sel0 0 sel11

A0 B0
An-1 Bn-1

CBin

N-1
stages N

stages

n 2:1 muxes

Cout/2

Figure A.4. An amplifier fork with a load of n 2:1 muxes.

its electrical effort by incrementing the input capacitance of that path. Since Cin and Cout are
fixed, this implies a variation in β, making slower the other path of the fork.

By other hand, the optimum number of inverter stages for a buffer chain with an equiva-
lent electrical effort H, is given by N̂ = d0.78 lnHe (obtained replacing h = 3.591 in N = ln H

ln h). For
minimum delay one path must have N̂ inverting stages. To determine if N̂ corresponds to the
N stage path or to the N-1 stage path, we compute the optimum electrical stage efforts ρ = H

1
N

of the buffer chain for N = N̂ + 1 stages and for N = N̂ − 1 stages (note that H ≈ HA ≈ HB).
The selected value (N̂ + 1 or N̂ − 1) is the one with ρ closer to 3.591, the optimum value for a
buffer chain.

We replace N by N̂ or N̂ + 1 in (A.34) and compare both delay equations (with pinv = 1),
that is,

(N̂ − 1)(1 + (
H

2(1− β)
)

1
N̂−1) = N̂(1 + (

H

2β
)

1
N̂) (A.35)

or

N̂(1 + (
H

2(1− β)
)

1
N̂) = (N̂ + 1)(1 + (

H

2β
)

1
N̂+1) (A.36)

obtaining a value of β for a given H. The optimum FO4 delay is obtained replacing the
corresponding β and and N̂ or N̂ + 1 in one of the delay equations (A.34).

The most usual number of stages for forks are N = {2, 3}. Actually, for higher loads, it is
preferred to use a buffer tree and a fork of inverters with N=3. For lower loads, it is better to
use a fork with N=2 by replicating the gate stage preceding the fork (gate cloning) rather than
using a fork with N=1.

As an example, we present in Table A.1 the FO4 delay figures of the optimum forks for a

202 Appendix A. Area and Delay Evaluation Model for CMOS circuits

n Opt. fork type Delay (# FO4)

1 to 8 2-1 0.85 to 1.95
9 to 36 3-2 2.05 to 3.05

37 to 152 4-3 3.10 to 4.15
152 to 598 5-4 4.20 to 5.15

Table A.1. Optimum delay of buffer forks for a load of n 2:1 muxes.

MUX2

01 Mux2 sel

inA inB

Z
Z

inBinA
sel

Decoded muxes

Mux-k

Z
Z

ink
ink-1

selk-1
selk

in2in1

sel1
sel2

selk-1
selk

sel1
sel2

inkink-1in2in1

XOR2
inA inB

Z

inA inB

Z

XNOR2
inA inB

Z

inA inB

Z

Mux201

h

Full adder (type a) Full adder (type b)

s

inBinA inC inBinA inC

h s

inBinA inC

h

FA

s

inBinA inC

h

FA

s

Figure A.5. Basic multi-stage gate components.

load of n 2:1 muxes. We consider an electrical effort of H = 2n
3 for the whole path (Lin = 4 and

Lout = 2 4n
3). The optimum path delay of this fork is computed as

Dopt =
N

5
[
1 + (

n

β
)

1
N] (A.37)

A.4 Area and delay estimations of some basic components

We use our delay model to estimate the delay of multi-stage gate components of common use
in hardware architectures, such as the multi-stage gate components shown in Fig. A.5.

Table A.2 summarizes the equivalent area, FO4 delay equation and normalized input
load (Lin) of these common components. The cost in area of each component is just the sum
of the equivalent NAND2 values of its gates. The FO4 stage delay of each component was
obtained adding the delay of the gates in its critical path, and the normalized output load

A.4. Area and delay estimations of some basic components 203

Component Delay (# FO4) Lin Area (# NAND2)

Xor2 1.53+0.2 Lout
7
3

3.750
Xnor2 1.53+0.2 Lout

7
3

3.750
Mux2(not decoded) (1.10, 1.53)+0.2 Lout (4

3
, 7

3
) 3.375

Mux2 1.10+0.2 Lout
4
3

3.000
Mux3 1.36+0.2 Lout

4
3

4.875
Mux4 1.60+0.2 Lout

4
3

7.000
Mux5 1.86+0.2 Lout

4
3

9.375
Full adder (type a) (1.33, 3.53)+0.2 Lout 5 12.375
Full adder (type b) 4.0+0.2 Lout (11

3
, 7
3
, 11

3
) 11.250

∗D-latch (1-bit) 3.00 4
3

4
∗ m:1 Mux-latch (1-bit) (3.00,4.50) 4

3
4+m

∗ Area and delay figures obtained from reference [107]

Table A.2. Area, delay and input capacitance estimations of some multi-stage gates.

Lout. The area and delay values for the D-latches and the dynamic CMOS mux-latches (up
to a 8:1 multiplexer) are extracted from reference [107]. We use all these values to estimate
the cost and FO4 delay of designs in a hierarchical way. For instance, both full adders (1-bit
3:2 CSAs) shown in Fig. A.5 are built of other multi-stage gate components (xor gates and
2:1 muxes). Thus, the total delay stage of both full adders was estimated using the delay
equations for the xor and 2:1 mux.

204 Appendix A. Area and Delay Evaluation Model for CMOS circuits

Resumen

Los microprocesadores de propósito general incorporados en los sistemas de computación de
altas prestaciones anteriores a 2007 solo implementan unidades de punto flotante binarias.
Esto es debido, fundamentalmente, al hecho de que los datos binarios pueden ser almacena-
dos y manipulados eficientemente en los computadores actuales (basados en la electrónica de
transistores de dos estados), lo que los hace adecuados para cálculos cientı́ficos.

Las actuales aplicaciones financieras, comerciales y orientadas al usuario necesitan
procesar una gran cantidad de números en representación decimal. Sin embargo, las uni-
dades de aritmética binaria no pueden representar exactamente la mayorı́a de las fracciones
decimales (por ejemplo, 0.1 no tiene una representación binaria exacta), lo que genera errores
de precisión al tratar directamente los datos decimales. Además, en muchas aplicaciones
comerciales, incluyendo análisis financiero, transacciones bancarias, cálculo de aranceles,
tasas e impuestos, conversiones monetarias, seguros, contabilidad y e-comercio, los errores
introducidos al convertir entre números decimales y binarios pueden incumplir los requisitos
de precisión legales.

Las aplicaciones software de aritmética decimal corrigen estos errores, pero son significa-
tivamente más lentas que las unidades hardware. Por otra parte, el continuo escalamiento de
las tecnologı́as de integración, permite obtener circuitos con una complejidad de millones de
transistores con un coste moderado. Ası́, existe un interés cada vez mayor por parte de los
fabricantes de microprocesadores para incorporar unidades hardware dedicadas de aritmética
decimal en sus futuros productos.

Este interés se ha visto apoyado por los esfuerzos para definir un estándar para la ar-
itmética decimal de punto flotante. En concreto, la revisión del estándar IEEE 754-1985
para punto flotante (IEEE 754-2008) incorpora especificaciones para aritmética decimal. El
estándar puede ser implementado totalmente en hardware, en software o usando cualquier
combinación de ambos.

De este modo, las primeras unidades de punto flotante decimal ya están disponibles
desde Junio de 2007. Los microprocesadores IBM Power6 de doble núcleo, e IBM z10, de cua-
tro núcleos, incorporan una unidad decimal en cada núcleo. Estos procesadores constituyen
la base de la lı́nea de servidores UNIX de alto rendimiento de IBM destinados a aplicaciones
financieras. Otros fabricantes, como Intel, han optado por implementaciones software, pero
planean incorporar algún tipo de soporte hardware para procesamiento de aritmética decimal.
Además, se están publicando un gran número de trabajos académicos centrados en diferentes
aspectos del diseño de unidades decimales de altas prestaciones.

205

206 Resumen

Siguiendo esta lı́nea de trabajo, esta tesis doctoral se centra en la investigación y diseño
de nuevos algoritmos y unidades hardware de altas prestaciones para aritmética decimal de
punto fijo (entera) y de punto flotante (real).

En primer lugar, hemos determinado cual es el conjunto de operaciones aritméticas dec-
imales de punto fijo y de punto flotante definidas en el estándar IEEE 754-2008 que deberı́an
ser aceleradas en hardware. Para esta estimación se han tenido en cuenta diversos aspectos,
como el rendimiento de las unidades decimales existentes, el margen de mejora respecto a las
unidades binarias equivalentes y la frecuencia relativa de cada operación en programas com-
erciales. De este modo, hemos desarrollado diferentes unidades hardware decimales (para
punto fijo y punto flotante) de alto rendimiento para procesar estas operaciones, que incluyen
suma/resta, multiplicación (o multiplicación acumulación) y división.

Con el objetivo de obtener arquitecturas eficientes, competitivas con otras propuestas
tanto académicas como industriales, se ha investigado el uso de nuevos algoritmos, diferentes
codificaciones numéricas decimales, técnicas de suma decimales libres de propagación de
acarreo, especulación hardware y otros métodos que permiten un mayor grado de paralelismo.
Con la aplicación de estos conceptos, las unidades resultantes presentan una latencia re-
ducida. Además se han abierto nuevas vı́as que sirven de guia en el diseño de los futuros
procesadores comerciales. En este sentido, la tendencia parece ser la necesidad de incorpo-
rar mayor precisión (número de dı́gitos) en las unidades decimales que en las binarias para
satisfacer los requerimientos de los usuarios. Esto impone demandas adicionales en el diseño
de estos procesadores en cuanto a optimización del área.

Otro aspecto de la tesis se ha centrado en mejorar la calidad (fiabilidad) de las com-
putaciones. Los usuarios de servicios financieros y de e-comercio demandan un alto grado
de fiabilidad en sus transacciones. Por otro lado, los errores debidos a fallos temporales de
los circuitos causados por radiaciones y partı́culas cósmicas son cada vez más significativos
debido a las altas densidades de integración y los reducidos tamaños de los transistores en
un chip. Los servidores incorporan diversos tipos de soportes para detectar errores. Para pro-
teger a las unidades aritméticas contra estos errores se replican, lo que conlleva un aumento
del área (coste) del procesador. Ası́, se ha desarrollado una técnica de detección y corrección
de errores para varios tipos de sumadores decimales de acarreo propagado con un coste en
área reducido.

También hemos desarrollado un modelo de evaluación del área (coste de fabricación) y
retardo (relacionado con el rendimiento y velocidad del procesador) de las diferentes arquitec-
turas basado en el esfuerzo lógico, que permite obtener resultados de forma rápida y sencilla,
y que, a la vez, permite establecer comparaciones realistas entre diferentes arquitecturas y
propuestas independientemente de la tecnologı́a de fabricación.

Un último aspecto que hemos contemplado es la aplicación de los conceptos y arquitec-
turas desarrollados a implementaciones reales. Por ejemplo, hemos propuesto un conjunto
de modificaciones necesario para adaptar la unidad de división de alto rendimiento diseñada
a una unidad decimal de punto flotante de un procesador comercial como el IBM Power6 o el
IBM z10.

Entre las unidades decimales de punto fijo y punto flotante desarrolladas se encuentran
las siguientes arquitecturas:

Resumen 207

1. Sumadores enteros decimales (BCD) de acarreo propagado.

Hemos propuesto un nuevo algoritmo para la suma/resta de dos operandos enteros dec-
imales en complemento a 10. Este método, denominado suma decimal mediante especulación
condicional, y las arquitecturas resultantes, están detallados en el Capı́tulo 3.

El método analiza el valor de la suma de los 3 bits más significativos para cada dı́gito
de los operandos de entrada, codificados en BCD (4 bits por dı́gito, con pesos 8, 4, 2, y 1), e
incrementa en +6 unidades cada posición decimal si dicha suma es mayor o igual que 8. Este
incremento se realiza en un tiempo de computación constante, independiente de la precisión
requerida (número máximo de dı́gitos significativos representables en un formato), puesto que
no se produce propagación de acarreo entre dı́gitos.

De esta forma, se genera un acarreo ’1’ al siguiente dı́gito cuando la suma en una
posición decimal es mayor o igual que 16. Esto permite utilizar cualquier técnica conven-
cional de suma/resta binaria para acelerar la propagación de acarreo, ya que los acarreos
decimales coinciden con los acarreos binarios en posiciones hexadecimales (esto es, 1 cada
4).

Además, la suma binaria coincide con la representación BCD de la suma decimal excepto
en aquellas posiciones decimales en las que la suma de los dı́gitos de entrada es 8(+6) o 9(+6)
y el acarreo decimal de entrada es ’0’. La corrección se realiza mediante lógica binaria muy
sencilla reemplazando los dı́gitos de suma 14 (’1110’) o 15 (’1111’), por 8 (’1000’) o 9 (’1001’)
respectivamente. Esta lógica se puede incorporar en el sumador binario sin incrementar el
retardo de la propagación de acarreo (su vı́a crı́tica o de máximo retardo).

Las arquitecturas resultantes constan básicamente de dos bloques: un primer módulo de
pre-corrección decimal y un sumador binario modificado. Para obtener implementaciones de
alto rendimiento hemos seleccionado un conjunto de sumadores binarios paralelos basados
en el cálculo de prefijos (”parallel prefix adders”), puesto que las implementaciones resultantes
en tecnologı́a VLSI (muy alta escala de integración) presentan estructuras muy regulares y de
muy baja latencia. Entre las topologı́as más eficientes están los sumadores paralelos cuater-
narios (de área reducida, solo evalúa 1 de cada 4 acarreos) con esquema de Ling (adelantan
la obtención del acarreo en una etapa lógica). Además, el método propuesto también permite
obtener sumadores combinados binarios/decimales muy eficientes respecto a otras propues-
tas.

El algoritmo para suma/resta decimal mediante especulación condicional se ha ex-
tendido en el Capı́tulo 4 para operandos enteros decimales (BCD) representados en signo-
magnitud. Las arquitecturas resultantes son más complejas que las equivalentes para operan-
dos en complemento a 10, pero su utilidad está justificada, ya que se requieren para suma o
resta de coeficientes enteros (BCD) en unidades de punto flotante decimal (sumadores, mul-
tiplicadores, etc...).

Del análisis comparativo efectuado, usando el modelo de área-retardo descrito en el
Apéndice A, se concluye que los sumadores decimales propuestos presentan mejores valores
de área y latencia en relación a otras arquitecturas de alto rendimiento basadas en algoritmos
alternativos, puesto que evitan la necesidad de implementar un módulo de corrección decimal
posterior al sumador binario.

208 Resumen

2. Unidades de detección de errores en sumadores enteros decimales.

Se han desarrollado unidades para detectar errores en sumadores BCD en complemento
a 10 y sumadores combinados binarios/decimales, detalladas en el capı́tulo 3, y en sumado-
res BCD de signo-magnitud, detalladas en el Capı́tulo 4.

Estas unidades comparan los dos operandos de entrada con el resultado de la suma a
nivel de bit, produciendo un bit de error en caso de que el vector de suma no sea el esperado.
Consisten en un sumador libre de propagación de acarreo (tiempo de computación constante)
y un detector de paridad. Requieren la mitad de área que otras soluciones empleadas en
microprocesadores comerciales (como la replicación de unidades), mientras que no afectan
al rendimiento del procesador, puesto que la detección tiene lugar fuera de la vı́a crı́tica:
el resultado de la instrucción de suma es especulativo por uno o más ciclos, mientras el
microprocesador verifica las dependencias con intrucciones previas. En este tiempo, la unidad
aritmética puede detectar errores en la suma.

3. Sumador de punto flotante decimal.

En el Capı́tulo 5 presentamos una nueva arquitectura de altas prestaciones para sumar
coeficientes BCD (en signo-magnitud) que incorpora una unidad de redondeo decimal con-
forme al estándar IEEE 754-2008. Este es un componente fundamental para acelerar en
hardware diferentes operaciones decimales de punto flotante como suma/resta, multipli-
cación y suma-multiplicación combinada.

Una de las dos implementaciones de altas prestaciones publicadas hasta la fecha real-
iza el redondeo decimal después de la suma de coeficientes BCD en signo-magnitud, por lo
que son necesarias dos propagaciones de acarreo, una para la suma de coeficientes y otra
para el redondeo. La suma/resta de magnitudes BCD consiste en una pre-corrección de los
operandos de entrada, una suma binaria y una corrección posterior compleja, dependiente
de los acarreos decimales, para obtener la representación BCD correcta de la suma/resta de
magnitudes. El redondeo consiste en la suma adicional de una unidad en el dı́gito menos
significativo de la suma BCD truncada (el numero máximo de dı́gitos representable depende
del formato) si las condiciones para el modo de redondeo decimal lo requieren.

La otra propuesta existente combina parte de la suma BCD en signo magnitud con el
redondeo decimal solapando la corrección decimal posterior a la suma binaria con la eval-
uación de ciertas señales requeridas para el redondeo. De esta forma se reduce un 20% la
latencia de la propuesta previa. Sin embargo, esta solución presenta un alto coste hardware
debido a la introducción de árboles de puertas lógicas (tiempo de computación logarı́tmico)
para adelantar el cálculo del redondeo y a la complejidad de la unidad de correción decimal
posterior a la suma binaria.

La arquitectura presentada en esta tesis utiliza el mismo sumador binario para realizar
tanto suma BCD en signo-magnitud como el redondeo decimal. Para ello se realiza una
pre-corrección de los operandos BCD de entrada (tiempo de computación constante), lo que
facilita realizar en el sumador binario incrementos de +1 o +2 unidades en la posición menos
significativa del formato del operando de suma, sin aumentar significativamente la latencia del
sumador. Esto permite realizar la suma en signo-magnitud y el redondeo simultáneamente, y

Resumen 209

además simplifica significativamente la unidad de corrección decimal posterior.

De esta forma, hemos mejorado en un 15% el rendimiento del sumador IEEE 754-2008
de punto flotante decimal de menor latencia presentado hasta la fecha y reducido el área de
la unidad combinada de suma de coeficientes BCD y redondeo decimal un 25% .

4. Sumadores decimales libres de propagación de acarreo.

La mayorı́a de los algoritmos para implementar multiplicación, división y raı́z cuadrada
decimales en unidades de alto rendimiento requieren sumar múltiples operandos decimales.
Los métodos para sumar dos operandos decimales usan propagación de acarreo (tiempo de
computación logarı́tmico). Sin embargo, la aplicación recursiva de este tipo de algoritmos no
es eficiente para la suma de múltiples operandos.

Ası́, de forma similar que en binario, para acelerar la suma de múltiples (más de dos)
operandos decimales se han propuesto varios algoritmos que realizan sumas libres de propa-
gación de acarreo. Estos métodos reducen q (q > 2) operandos decimales a dos operandos
en un tiempo independiente del tamaño de palabra (tiempo de computación constante), re-
trasando la propagación del acarreo hasta la suma final de los dos operandos.

Estos algoritmos asumen que los operandos decimales están representados en BCD. Por
lo tanto, las implementaciones resultantes son bastante complejas debido a la ineficiencia
de la codificación BCD para representar los dı́gitos decimales (solo utiliza 10 de las 16 posi-
bles combinaciones de 4 bits). Esto implica la introducción de mecanismos adicionales para
corregir las combinaciones inválidas (aquellas que no representan un dı́gito decimal).

En el Capı́tulo 6 introducimos un nuevo algoritmo para sumar múltiples operandos dec-
imales representados en sistemas de codificación decimales no convencionales (distintos de
BCD), denominados (4221), (5211), (3321) y (4311). Estos códigos de 4 bits tienen la carac-
terı́stica común de que la suma de los pesos de sus bits es 9. Por ejemplo, el dı́gito A ∈ [0, 9]
representado en código (4221) tiene el valor A = a3 4 + a2 2 + a1 2 + a0, donde ai ∈ {0, 1} son los
bits asociados a cada peso.

El uso de estos códigos permite emplear aritmética binaria para realizar sumas (o restas)
decimales libres de acarreo sin necesidad de efectuar correcciones, puesto que cada una de las
16 combinaciones de 4 bits representa un número decimal. Ası́, podemos utilizar un sumador
binario sin propagación de acarreo (por ejemplo de acarreo almacenado, o carry-save adder
o CSA, en inglés), o una estructura en árbol de CSAs para acelerar la suma de múltiples
operandos decimales. Además, esto simplifica la implementación de sumadores combinados
binario/decimal libres de propagación de acarreo.

Un CSA binario reduce tres vectores de bits (A, B, C) a un vector de suma y otro de
acarreo C, de forma que A + B + C = S + 2C. La multiplicación binaria 2C se realiza mediante
un desplazamiento aritmético de C de 1 bit a la izquierda. Sin embargo, la multiplicación de
un operando decimal ×2 es más compleja. Para la codificación (4221) esta multiplicación se
realiza mediante una conversión de los dı́gitos de C a la representación (5211) y un desplaza-
miento de 1 bit a la izquierda del vector de bits resultante, con lo que los pesos se duplican
(5211)→ (10 4 2 2) y el vector resultante es el doble de C codificado en (4221).

Por consiguiente, es necesario introducir recodificadores de dı́gitos en el árbol de CSAs

210 Resumen

binarios para obtener la suma decimal correcta. Ası́, con respecto a un árbol CSA binario, los
árboles CSA decimales propuestos son un 45% más lentos y tienen un 20% más área. Sin
embargo, respecto a otras implementaciones de sumadores decimales libres de propagación
de acarreo, los sumadores propuestos son al menos un 20% más rápidos y requieren un 40%
menos área. Por lo tanto, constituyen una alternativa muy competitiva para implementar
sumadores decimales o sumadores combinados binarios/decimales de múltiples operandos.

5. Multiplicadores paralelos de punto fijo decimal.

Aunque la multiplicación decimal es una operación importante y muy frecuente en las
aplicaciones comerciales, las implementaciones hardware actuales presentan un rendimiento
muy bajo respecto a las unidades de multiplicación binaria.

La multiplicación de enteros y en punto fijo (tanto binaria como decimal) consiste en
tres etapas: generación de productor parciales, reducción (suma) de los productos parciales
a dos operandos y conversión final (mediante una suma con propagación de acareo) a una
representación no redundante.

Las unidades binarias de altas prestaciones implementan multiplicadores paralelos. Sin
embargo, la multiplicación decimal es más compleja de implementar debido a la complejidad
para generar los múltiplos decimales y la ineficiencia para representar valores decimales en
sistemas basados en señales binarias. Estos problemas complican la generación y reducción
de productos parciales.

Las implementaciones comerciales de multiplicadores decimales están basadas en algo-
ritmos iterativos (serie) y presentan bajo rendimiento. Para obtener un multiplicador decimal
de altas prestaciones es necesario generar los productos parciales de forma paralela y re-
ducirlos eficientemente usando un sumador libre de propagacion de acarreo (de baja latencia
y con un coste de área asumible).

En el Capı́tulo 7 hemos propuesto dos arquitecturas para enteros o punto fijo de multi-
plicadores paralelos decimales y dos multiplicadores paralelos binario/decimal combinados.

Para generar los productos parciales hemos optado por recodificar los dı́gitos BCD del
multiplicador y precomputar un conjunto reducido de múltiplos decimales del multiplicando.
Cada dı́gito recodificado del multiplicador da lugar a un producto parcial seleccionando el
múltiplo indicado por el valor de dicho dı́gito (que puede ser negativo). De este modo, todos
los productos parciales son generados en paralelo. Hemos desarrollado tres recodificaciones
diferentes para el multiplicador: la primera (SD radix-10) transforma los dı́gitos BCD Yi ∈
{0, 9} a dı́gitos en el conjunto Y b

i ∈ {5, . . . , 0, 5}. Las otras dos recodificaciones, SD radix-5 y SD
radix-4, separan cada dı́gito BCD Yi del multiplicador en dos dı́gitos, de la forma Yi = Y H

i +Y L
i ,

donde Y L ∈ {−2,−1, 0, 1, 2} y Y H
i ∈ {0, 5, 10} (SD radix-5) o Y H

i ∈ {0, 4, 8} (SD radix-4).

Los productos parciales se representan en código (4221) o (5211) para poder ser reduci-
dos de forma eficiente usando los sumadores decimales en árboles propuestos en el Capı́tulo
6.

Del estudio comparativo de área-latencia realizado, incluyendo al único multiplicador
decimal paralelo propuesto con anterioridad, hemos concluido que los multiplicadores prop-
uestos para 16 dı́gitos de precisión (formato IEEE 754-2008 Decimal64) pueden ser suficien-

Resumen 211

temente competitivos para ser implementados en una unidad decimal comercial: presentan
entre un 25% y 40% menos de latencia y un 35% menos área que el diseńo con el mejor
rendimiento propuesto hasta el momento. Además tienen un área similar que un multipli-
cador binario paralelo de 64 bits y solo un 25% más de latencia.

6. Multiplicador y sumador-multiplicador combinado de punto flotante decimal.

En el Capı́tulo 7 hemos propuesto varios esquemas para implementar unidades de punto
flotante de multiplicación decimal y suma-multiplicación decimal combinada conformes al
estándar IEEE 754-2008. Dichos esquemas emplean los multiplicadores paralelos de punto
fijo propuestos y el sumador decimal con redondeo presentado en el Capı́tulo 6 para reducir
la latencia de otra propuesta anterior. Un objetivo inmediato será proporcionar una imple-
mentación detallada de estas unidades y estudiar su adaptación a las unidades decimales
IEEE 754-2008 de punto flotante.

7. Unidad de división decimal basada en dı́gito-recurrencia.

En el Capı́tulo 8 presentamos una nueva arquitectura de altas prestaciones para división
decimal de punto flotante basada en un algoritmo de dı́gito recurrencia sin restauración en
base 10. Este tipo de algoritmos proponen una recurrencia para una función, denominada
residuo, del que se obtiene un dı́gito del cociente en cada iteración (convergencia lineal), de
tal forma que si el residuo se mantiene en un cierto rango de valores, el resto de la división
converge a 0.

El algoritmo usa técnicas convencionales desarrolladas para acelerar la división bina-
ria en base 2k, como la representación del cociente en forma redundante usando dı́gitos con
signo. En concreto, para base 10, se ha usado el conjunto de dı́gitos mı́nimamente redun-
dante {−5,−4, . . . , 0, . . . , 4, 5}. Otra técnica empleada ha sido la selección de dı́gitos del co-
ciente mediante la comparación con constantes de una estimación del residuo, representado
de forma redundante mediante una doble palabra (suma y acarreo).

Con el fin de optimizar área y latencia para la implementación en base 10, hemos
empleado nuevas técnicas como el uso de codificaciones binarias alternativas (distintas de
BCD) de los dı́gitos decimales, estimación mediante truncamiento del residuo decimal en una
posición binaria dentro de un dı́gito, diseño especı́fico de un sumador decimal de acarreo
propagado con redondeo adaptado para realizar diversas tareas, computación previa de los
múltiplos decimales del divisor, y recolocación de los registros con el fin de explotar las car-
acterı́sticas especiales de registros con multiplexación incorporada. Además, la conversión
del cociente desde una representación redundante a no redundante se realiza conjuntamente
con el redondeo en una misma iteración del sumador decimal.

Para minimizar el tamaño (en bits) de la estimación redundante (suma y acarreo) del
residuo y las constantes de selección y reducir ası́ la latencia y el coste hardware de la se-
lección de dı́gitos, hemos usado una codificación (5211) para representar los dı́gitos de la
estimación redundante del residuo.

212 Resumen

Hemos implementado divisores decimales para 16 y 34 dı́gitos de precisión que se corre-
sponden con los formatos Decimal64 y Decimal128 del estándar IEEE 754-2008. Los resul-
tados de la evaluación usando nuestro modelo de área-retardo muestran que la arquitectura
propuesta presenta latencias comparables a las del divisor decimal que presenta el mejor
rendimiento hasta la fecha, pero usando un 30% menos de área. Además, la arquitectura
propuesta puede ser incorporada de forma simple y eficiente a las unidades de punto flotante
decimal de los microprocesadores de IBM Power6 y z10, reduciendo la latencia de las instruc-
ciones de división decimal en un factor 2, mientras que el área de la unidad aumenta menos
de un 20%.

Bibliography

[1] P. H. ABBOTT ET AL., Architecture and Software Support in IBM S/390 Parallel Enterprise
Servers for IEEE Floating-Point Arithmetic, IBM Journal of Research and Development,
43 (1999), pp. 723–760.

[2] G. M. AMDAHL, G. A. BLAAUW AND F. P. BROOKS, Architecture of the IBM System/360,
IBM Journal of Research and Development, 8 (1964), pp. 87–53.

[3] S. F. ANDERSON, J. G. EARLE, R. E. GOLDSCHMIDT AND D. M. POWERS, The IBM Sys-
tem/360 Model 91: Floating-point Execution Unit, IBM Journal of Research and Devel-
opment, 11 (1967), pp. 34–53.

[4] H. ANDO, Y. YOSHIDA, A. INOUE ET AL., A 1.3-GHz Fifth-Generation SPARC64 Micro-
processor, IEEE Journal of Solid-State Circuits, 38 (2003), pp. 1896–1905.

[5] E. ANTELO, T. LANG, P. MONTUSCHI AND A. NANNARELLI, Digit-Recurrence Dividers with
Reduced Logical Depth, IEEE Transactions on Computers, 54 (2005), pp. 837–851.

[6] A. BAJWA AND R. STECK, A Fast Floating Point Unit in the i960 General-Purpose Em-
bedded Processor Family, in Proc. of the Wescon ’90 Conference, Anaheim, CA, USA,
November 1990, pp. 218–222.

[7] C. BAUGH AND B. WOOLEY, A Two’s Complement Parallel Array Multiplication Algorithm,
IEEE Transactions on Computers, C-22 (1971), pp. 1045–1047.

[8] A. BEAUMONT -SMITH AND C. LIM, Parallel-Prefix Adder Design, in Proceedings of the
15th IEEE Symposium on Computer Arithmetic, June 2001, pp. 218–225.

[9] O. BEDRIJ, Carry-Select Adder, IRE Transactions on Electronic Computers,, EC-11
(1962), pp. 340–346.

[10] M. BHAT, J. CRAWFORD, R. MORIN AND K. SHIV, Performance Characterization of Dec-
imal Arithmetic in Commercial Java Workloads, in IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS 2007), Apr. 2007, pp. 54–61.

[11] D. BOGGS ET AL., The Microarchitecture of the Intel Pentium 4 Processor on 90nm Tech-
nology, Intel Technology Journal, 8 (2004), pp. 1–17.

[12] G. BOHLENDER AND T. TEUFEL, A Decimal Floating-Point Processor for Optimal Arithmetic,
in Computer Arithmetic: Scientific Computation and Programming Languages, B. G.
Teubner Stuttgart, 1987, pp. 31–58.

213

214 Bibliography

[13] W. BUCHHOLZ, Fingers or Fists? (The Choice of Decimal or Binary representation), Com-
munications of the ACM, 2 (1959), pp. 3–11.

[14] W. BULTMANN, W. HALLER, H. WETTER AND A. WÖRNER, Binary and Decimal Adder
Unit, US Patent No. 6292819, Sept. 2001.

[15] N. BURGESS, The Flagged Prefix Adder and its Applications in Integer Arithmetic, Journal
of VLSI Signal Processing, 31 (2002), pp. 263–271.

[16] , Prenormalization Rounding in IEEE Floating-Point Operations Using a Flagged Prefix
Adder, IEEE Trans. on VLSI Systems, 13 (2005), pp. 266–277.

[17] A. W. BURKS, H. H. GOLDSTINE AND J. VON NEUMANN, Preliminary Discussion of the Log-
ical Design of an Electronic Computing Instrument, Inst. for Advanced Study, Princeton,
N. J., Jun. 1946.

[18] BURROUGHS CORPORATION, Burroughs B5500 Information Processing Systems Reference
Manual, tech. report, Burroughs Corporation, Detroit, MI, USA, Jun. 1964.

[19] F. Y. BUSABA, C. A. KRYGOWSKI, W. H. LI, E. M. SCHWARZ AND S. R. CARLOUGH, The
IBM z900 Decimal Arithmetic Unit, in Conference Record of the Asilomar Conference on
Signals, Systems and Computers, vol. 2, Nov. 2001, pp. 1335–1339.

[20] F. Y. BUSABA, T. SLEGEL, S. CARLOUGH, C. KRYGOWSKI AND J. G. RELL, The Design of
the Fixed Point Unit for the z990 Microprocessor, in Proceedings of the 14th ACM Great
Lakes Symposium on VLSI 2004, Apr. 2004, pp. 364–367.

[21] R. P. CASE AND A. PADEGS, Architecture of the IBM System/370, Journal of the Associ-
ation for Computing Machinery (ACM), 21 (1978), pp. 73–96.

[22] I. D. CASTELLANOS AND J. E. STINE, Experiments for Decimal Floating-Point Division by
Recurrence, in 40th Asilomar Conference on Signals, Systems and Computers, 2006.
ACSSC ’06, Oct.-Nov. 2006, pp. 1716–1720.

[23] , Compressor Trees for Decimal Partial Product Reduction, in 18th ACM Great Lakes
Symposium on VLSI, May 2008, pp. 107–110.

[24] P. E. CERUZZI, A History of Modern Computing, 2nd Ed., The MIT Press, 2003.

[25] M. A. CHECK AND T. J. SLEGEL, Custom S/390 G5 and G6 Microprocessors, IBM Journal
of R&D, 43 (1999), pp. 671–680.

[26] D. CHEN AND S.-B. KO, Design and Implementation of Decimal Reciprocal Unit, in Cana-
dian Conference on Electrical and Computer Engineering (CCECE 2007), Apr. 2007,
pp. 1094–1097.

[27] W. D. CLINGER, How to Read Floating Point Numbers Accurately, in Proceedings of the
ACM SIGPLAN ’90 Conference on Programming Language Design and Implementation,
June 1990, pp. 92–101.

[28] J. CLOUSER, M. MATSON, R. BADEAU, R. DUPCAK, S. SAMUDRALA, R. ALLMON AND

N. FAIRBANKS, A 600-MHz Superscalar Floating-Point Processor, IEEE Journal of Solid-
State Circuits, 34 (1999), pp. 1026–1029.

Bibliography 215

[29] M. S. COHEN, T. E. HULL AND V. C. HAMACHER, CADAC: A Controlled-Precision Decimal
Arithmetic Unit, IEEE Transactions on Computers, C-32 (1983), pp. 370–377.

[30] M. CORNEA, C. ANDERSON, J. HARRISON, P. TANG, E. SCHNEIDER AND C. TSEN, A Soft-
ware Implementation of the IEEE 754R Decimal Floating-Point Arithmetic Using the Binary
Encoding Format, in 18th Symposium on Computer Arithmetic, June 2007, pp. 29–37.

[31] M. CORNEA AND J. CRAWFORD, IEEE 754R Decimal Floating-Point Arithmetic: Reliable
and Efficient Implementation for Intel Architecture Platforms, Intel Technology Journal,
11 (2007), pp. 91–94.

[32] J. CORTADELLA AND J. M. LLABERRÍA, Evaluation of A+B=K Conditions Without Carry-
Propagation, IEEE Transactions on Computers, 41 (1992), pp. 1484–1488.

[33] M. COWLISHAW, IBM General Decimal Arithmetic Website.
http://speleotrove.com/decimal/.

[34] M. F. COWLISHAW, Densely Packed Decimal Encoding, IEE Proceedings Computers and
Digital Techniques, 149 (2002), pp. 102–104.

[35] , Decimal Floating-Point: Algorism for Computers, in Proceedings of the 16th IEEE
Symposium on Computer Arithmetic, Jul. 2003, pp. 104–111.

[36] , The DecNumber ANSI C Library, Version 3.32.
http://www2.hursley.ibm.com/decimal/decnumber.html, Dec. 2005.

[37] , General Decimal Arithmetic Specification, Version 1.66.
http://www2.hursley.ibm.com/decimal, Mar. 2007.

[38] M. F. COWLISHAW, J. BLOCH AND J. DARCY, Fixed, floating, and exact computation with
Java’s BigDecimal, Dr. Dobb’s Journal, 29 (2004), pp. 22–27.

[39] M. F. COWLISHAW, E. M. SCHWARZ, R. M. SMITH AND C. F. WEBB, A Decimal Floating-
Point Specification, in Proceedings of the 15th IEEE Symposium on Computer Arithmetic,
June 2001, pp. 147–154.

[40] L. DADDA, Some Schemes for Parallel Multipliers, Alta Frequenza, 34 (1965), pp. 349–
356.

[41] , Multioperand Parallel Decimal Adder: A Mixed Binary and BCD Approach, IEEE
Transactions on Computers, 56 (2007), pp. 1320–1328.

[42] DIGITAL EQUIPMENT CORPORATION, Software Product Description: COBOL-81/RSTS/E,
Version 3.1, Dec. 1990.

[43] G. DIMITRAKOPOULOS AND D. NIKOLOS, High-Speed Parallel-Prefix VLSI Ling Adders,
IEEE Transactions on Computers, 54 (2005), pp. 225–231.

[44] A. Y. DUALE, M. H. DECKER, H.-G. ZIPPERER, M. AHARONI AND T. J. BOHIZIC, Decimal
Floating-Point in Z9: An Implementation and Testing Perspective, IBM Journal Research
and Development, 51 (2007), pp. 217–227.

216 Bibliography

[45] L. EISEN ET AL., IBM POWER6 accelerators: VMX and DFU, IBM Journal Research and
Development, 51 (2007), pp. 663–684.

[46] M. D. ERCEGOVAC AND T. LANG, On-the-Fly Conversion of Redundant into Conventional
Representations, IEEE Transactions on Computers, 36 (1987), pp. 895–897.

[47] , Algorithms for Division and Square Root, Kluwer Academic Publishers, 1994.

[48] , Digital Arithmetic, Morgan Kaufmann Publishers, Inc., 2004.

[49] M. A. ERLE, J. M. LINEBARGER AND M. J. SCHULTE, Potential Speedup Using Decimal
Floating-Point Hardware, in 36th Asilomar Conference on Signals, Systems and Comput-
ers, Nov. 2002, pp. 1073–1077.

[50] M. A. ERLE AND M. J. SCHULTE, Decimal Multiplication Via Carry-Save Addition, in
IEEE International Conference on Application-Specific Systems , Architectures, and
Processors, I. C. S. Press, ed., The Hague, Netherlands, June 2003, pp. 348–358.

[51] M. A. ERLE, E. M. SCHWARZ AND M. J. SCHULTE, Decimal Multiplication With Efficient
Partial Product Generation, in 17th IEEE Symposium on Computer Arithmetic, June
2005, pp. 21–28.

[52] EUROPEAN COMMISSION DIRECTORATE GENERAL II, The Introduction of the Euro and
the Rounding of Currency Amounts, II/28/99-EN Euro Papers, DGII/C-4-SP(99) (1999),
p. 32.

[53] G. EVEN AND P.-M. SEIDEL, A Reduced-Area Scheme for Carry-Select Adders, IEEE
Trans. on Computers, C-42 (1993), pp. 1163–1170.

[54] , A Comparison of Three Rounding Algorithms for IEEE Floating-Point Multiplication,
IEEE Trans. on Computers, 49 (2000), pp. 638–650.

[55] B. FU, A. SAINI AND P. P. GELSINGER, Performance and Microarchitecture of the i486
Processor, in Proc. of the IEEE International Conference on Computer Design ICCD’89,
October 1989, pp. 182–187.

[56] D. M. GAY, Correctly Rounded Binary-Decimal and Decimal-Binary Conversions, Numer-
ical Analysis Manuscript 90-10, tech. report, AT&T Bell Laboratories, Nov. 1990.

[57] G. GERWIG, H. WETTER, E. M. SCHWARZ, J. HAESS, C. A. KRYGOWSKI, B. M. FLEIS-
CHER AND M. KROENER, The IBM eServer z990 Floating-Point Unit, IBM Journal of Re-
search and Development, 48 (2004), pp. 311–322.

[58] S. GOCHMAN, A. MENDELSON, A. NAVEH AND E. ROTEM, Introduction to Intel Core Duo
Processor Architecture, Intel Technology Journal, 10 (2006), pp. 89–97.

[59] D. GOLDBERG, Computer Arithmetic. Appendix H of Computer Architecture. A Quantitative
Approach - J.L.Hennessy and D.A.Patterson., Morgan Kaufmann, 2002.

[60] H. H. GOLDSTINE, The Computer from Pascal to von Neumann, Princeton University
Press, 1972.

Bibliography 217

[61] H. H. GOLDSTINE AND A. GOLDSTINE, The Electronic Numerical Integrator and Computer
(ENIAC), IEEE Annals of the History of Computing, 18 (1996), pp. 10–16.

[62] J. GRAD AND J. E. STINE, A Hybrid Ling Carry-Select Adder, in Conference Record of
the 38th Asilomar Conference on Signals, Systems and Computers, vol. 2, Nov. 2004,
pp. 1363–1367.

[63] W. HALLER, U. KRAUCH, T. LUDWIG AND H. WETTER, Combined Binary/Decimal Adder
Unit, US Patent No. 5928319, Jul. 1999.

[64] P. HARTMAN, O. RUTZ AND P. SHAH, Decimal Floating Point Com-
putations in SAP NetWeaver 7.10. White Paper available at
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101104, October
2007.

[65] A. HENINGER, Zilog’s Z8070 Floating Point Processor, Mini Micro Systems, (1983),
pp. 16/2/1–7.

[66] HEWLETT PACKARD, Chapter 13: Data representations, in Software Internal Design Spec-
ification for the HP-71, Vol. 1, Hewlett Packard Company, Palo Alto, CA, USA, December
1983, pp. 13.1–13.17.

[67] B. J. HICKMAN, A. KRIOUKOV, M. A. ERLE AND M. J. SCHULTE, A Parallel IEEE P754
Decimal Floating-Point Multiplier, in XXV IEEE Conference on Computer Design, Oct.
2007, pp. 296–303.

[68] R. HO, K. W. MAI AND M. A. HOROWITZ, The Future of Wires, Proceedings of the IEEE,
89 (2001), pp. 490–504.

[69] C. HUNTSMAN AND D. CAWTHRON, The MC68881 Floating-Point Coprocessor, IEEE Micro,
3 (1983), pp. 44–54.

[70] R. HYDE, The Art of Assembly Language, No Starch Press, September 2003.

[71] W. H. INMON, Building the Data Warehouse, 4th Ed., Wiley, 2005.

[72] INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS, INC., IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, Aug. 1985.

[73] , IEEE Standard for Radix-Independent Floating-Point Arithmetic, ANSI/IEEE Std
854-1987, Mar. 1987.

[74] , IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, Aug. 2008.

[75] INTEL, 8080/ 8085 Floating-Point Arithmetic Library User’s Manual, Intel Corporation,
Santa Clara, CA, USA, 1979.

[76] , The iAPX 286 Programmer’s Reference Manual, Intel Corporation, Santa Clara, CA,
USA, 1985.

[77] G. JABERIPUR AND A. KAIVANI, Binary-Coded Decimal Digit Multipliers, IET Comput.
Digit. Tech., 1 (2007), pp. 377–381.

218 Bibliography

[78] F. B. JONES AND A. W. WYMORE, Floating Point Feature On The IBM Type 1620, IBM
Technical Disclosure Bulletin, 62 (1962), pp. 43–46.

[79] W. KAHAN, Floating-Point Arithmetic Besieged by Business Decisions, in Proc. of the 17th

IEEE Symposium on Computer Arithmetic, Invited Keynote Address, Jun. 2005.

[80] C. N. KELTCHER, K. J. MCGRATH, A. AHMED AND P. CONWAY, The AMD Opteron Proces-
sor for Multiprocessor Servers, IEEE Micro, 23 (2003), pp. 66–76.

[81] R. D. KENNEY AND M. J. SCHULTE, High-Speed Multioperand Decimal Adders, IEEE
Transactions on Computers, 54 (2005), pp. 953–963.

[82] R. D. KENNEY, M. J. SCHULTE AND M. A. ERLE, High-Frequency Decimal Multiplier, in
Proceedings of the IEEE International Conference on Computer Design: VLSI in Com-
puters and Processors, Oct. 2004, pp. 26–29.

[83] Y.-D. KIM, S.-Y. KWON, S.-K. HAN, K.-R. CHO AND Y. YOU, A Hybrid Decimal Division
Algorithm Reducing Computational Iterations, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E89-A (2006), pp. 1807–1812.

[84] S. KNOWLES, A Family of Adders, in Proc. of the 14th IEEE Symposium on Computer
Arithmetic, Jun. 1999, pp. 30–34.

[85] D. E. KNUTH, Volume 2: Seminumerical Algorithms. Third Edition, in The Art of Computer
Programming, Addison-Wesley Professional, Reading, Massachusetts, 1997, p. 762.

[86] P. KOGGE AND H. STONE, A Parallel Algorithm for the Efficient Solution of a General Class
of Recurrence Equations, IEEE Transactions on Computers, C-22 (1973), pp. 786–793.

[87] L. KOHN AND N. MARGULIS, The i860 64-bit Supercomputing Microprocessor, in Proc. of
Supercomputing ’89, Reno, Nevada, November 1989, pp. 450–456.

[88] P. KONGETIRA, K. AINGARAN AND K. OLUKOTUN, Niagara: A 32-Way Multithreaded
SPARC Processor, IEEE Micro, 25 (2005), pp. 21–29.

[89] R. LADNER AND M. FISCHER, Parallel Prefix Computation, Journal of the Association for
Computing Machinery (ACM), 27 (1980), pp. 831–838.

[90] T. LANG AND J. D. BRUGUERA, Floating-Point Multiply-Add-Fused with Reduced Latency,
IEEE Transactions on Computers, 53 (2004), pp. 988–1003.

[91] T. LANG AND A. NANNARELLI, A Radix-10 Combinational Multiplier, in 40th Asilomar
Conference on Signals, Systems, and Computers, Oct. 2006, pp. 313–317.

[92] , A Radix-10 Digit-Recurrence Division Unit: Algorithm and Architecture, IEEE Trans-
actions on Computers, 56 (2007), pp. 727–739.

[93] , Combined Radix-10 and Radix-16 Division Unit, in 41st Asilomar Conference on
Signals, Systems, and Computers, Nov. 2007, pp. 967–971.

[94] R. H. LARSON, High-Speed Multiply Using Four Input Carry-Save Adder, IBM Tech. Dis-
closure Bulletin, 16 (1973), pp. 2053–2054.

Bibliography 219

[95] T. LING, High-Speed Binary Adder, IBM Journal of R&D, 25 (1981), pp. 156–166.

[96] K. LONEY AND G. KOCH, Oracle 8i: The Complete Reference, Mc. Graw-Hill, 2000.

[97] M. A. ERLE AND M. J. SCHULTE AND B. J. HICKMAN, Decimal floating-point multiplication
via carry-save addition, in 18th IEEE Symposium on Computer Arithmetic, June 2007,
pp. 46–55.

[98] M. J. MACK, W. M. SAUER, S. B. SWANEY AND B. G. MEALEY, IBM POWER6 reliability,
IBM Journal of Research and Development, 51 (2007), pp. 763–774.

[99] B. MARKS AND N. MILSTED, ANSI X3.274-1996: American National Standard for Infor-
mation Technology Programming Language REXX, tech. report, ANSI, Feb. 1996.

[100] S. MATHEW, M. ANDERS, R. KRISHNAMURTHY AND S. BORKAR, A 4Ghz 130nm Address
Generation Unit with 32-bit Sparse-Tree Adder Core, IEEE Journal of Solid-State Cir-
cuits, 38 (2003), pp. 689–695.

[101] C. MCNAIRY AND R. BHATIA, Montecito: A Dual-Core, Dual-Thread Itanium Processor,
IEEE Micro, 25 (2005), pp. 10–20.

[102] P. MEANEY, S. SWANEY, P. SANDA AND L. SPAINHOWER, IBM z990 Soft Error Detection
and Recovery, IEEE Trans. on Device and Materials Reliability, 5 (2005), pp. 419–427.

[103] S. MICROSYSTEMS, The BigDecimal Java Class, Java2 Platform, Standard Edition,
(2003).

[104] MOTOROLA, M68000 Family Programmer’s Reference Manual, Motorola Corporation,
Phoenix, AZ, USA, 1992.

[105] A. NAINI, A. DHABLANIA, W. JAMES AND D. D. SARMA, 1-GHz HAL SPARC64 Dual Float-
ing Point Unit with RAS Features, in 15th IEEE Symposium on Computer Arithmetic,
Jun. 2001, pp. 173–183.

[106] H. NIKMEHR, B. PHILLIPS AND C.-C. LIM, Fast Decimal Floating-Point Division, IEEE
Trans. VLSI Systems, 14 (2006), pp. 951–961.

[107] H.-J. OH ET AL., A Fully Pipelined Single-Precision Floating-Point Unit in the Synergistic
Processor Element of a CELL Processor, IEEE Journal of Solid-State Circuits, 41 (2006),
pp. 759–771.

[108] N. OHKUBO ET AL., A 4.4 ns CMOS 54x54-bit Multiplier Using Pass-Transistor Multiplexer,
IEEE Journal of Solid State Circuits, 30 (1995), pp. 251–256.

[109] T. OHTSUKI ET AL., Apparatus for Decimal Multiplication, U.S. Patent No. 4,677,583,
(1987).

[110] J. F. PALMER AND S. P. MORSE, The 8087 Primer, Wiley, 1984.

[111] D. PATIL, O. AZIZI, M. HOROWITZ, R. HO AND R. ANANTHRAMAN, Robust Energy-Efficient
Adder Topologies, in Proc. 18th IEEE Symposium on Computer Arithmetic, Jun. 2007,
pp. 16–25.

220 Bibliography

[112] B. RANDELL, The Origins of Computer Programming, IEEE Annals of the History of Com-
puting, 16 (1994), pp. 6–13.

[113] R. K. RICHARDS, Arithmetic Operations in Digital Computers, D. Van Nostrand Company,
Inc., New Jersey, 1955.

[114] L. RUBINFIELD, A Proof of the Modified Booth’s Algorithm for Multiplication, IEEE Trans-
actions on Computers, C-22 (1975), pp. 1014–1015.

[115] R. SACKS-DAVIS, Applications of Redundant Number Representations to Decimal Arith-
metic, The Computer Journal, 25 (1982), pp. 471–477.

[116] M. R. SANTORO, G. BEWICK AND M. A. HOROWITZ, Rounding Algorithms for IEEE Multi-
pliers, in 9th IEEE Symposium on Computer Arithmetic, Sep. 1989, pp. 176–183.

[117] H. SCHMID, Decimal Computation, John Wiley & Sons, 1974. Reprinted in 1983 by
Krieger Publishing Company (ISBN 0898743184).

[118] M. SCHMOOKLER AND A. WEINBERGER, High Speed Decimal Addition, IEEE Trans. on
Computers, c-20 (1971), pp. 862–866.

[119] M. J. SCHULTE, N. LINDBERG AND A. LAXMINARAIN, Performance Evaluation of Decimal
Floating-Point Arithmetic, in Proceedings of the 6th IBM Austin Center for Advanced
Studies Conference, Feb. 2005.

[120] E. SCHWARZ, Binary Floating-Point Unit Design, in High Performance Energy Efficient
Microprocessor Design, R. Krishnamurthy and V. G. Oklobdzija, eds., Springer, Mar.
2006, pp. 189–208.

[121] , Future Research in Computer Arithmetic, in The Future of Computing, essay in
memory of Stamatis Vassiliadis, Sep. 2007, pp. 114–120.

[122] E. SCHWARZ AND S. R. CARLOUGH, Power6 Decimal Divide, in Proc. of the 18th IEEE In-
ternational Conference on Application-Specific Systems, Architectures and Processors,
Jul. 2007, pp. 128–133.

[123] E. M. SCHWARZ ET AL., The Microarchitecture of the IBM eServer z900 Processor, IBM
Journal of Research and Development, 46 (2002), pp. 381–395.

[124] E. M. SCHWARZ, R. M. A. III AND L. J. SIGAL, A Radix-8 CMOS S/390 Multiplier, in 13th

IEEE Symposium on Computer Arithmetic, July 1997, pp. 2–9.

[125] P. M. SEIDEL AND G. EVEN, Delay-Optimized Implementation of IEEE Floating-Point Ad-
dition, IEEE Transaction on Computers, 53 (2004), pp. 97–113.

[126] K. L. SHEPARD ET AL., Design Methodology for the S/390 Parallel Enterprise Server G4
Microprocessors, IBM Journal of Research and Development, 41 (1997), pp. 515–547.

[127] B. SHIRAZI, D. Y. Y. YUN AND C. N. ZHANG, RBCD: Redundant Binary Coded Decimal
Adder, in IEE Proceedings - Computers and Digital Techniques, vol. 136, Mar. 1989,
pp. 156–160.

Bibliography 221

[128] J. SKLANSKY, Conditional-Sum Addition Logic, IRE Transactions on Electronic Comput-
ers,, EC-9 (1960), pp. 226–231.

[129] W. STALLINGS, Computer Organization and Architecture. Designing for Performance, 6th
edition, Prentice Hall, 2003.

[130] G. L. STEELE JR. AND J. L. WHITE, How to Print Floating-Point Numbers Accurately, in
Proceedings of the ACM SIGPLAN ’90 Conference on Programming Language Design and
Implementation, June 1990, pp. 112–126.

[131] I. SUTHERLAND, R. SPROULL AND D. HARRIS, Logical Effort: Designing Fast CMOS Cir-
cuits, Morgan Kaufmann, 1999.

[132] A. SVOBODA, Decimal Adder with Signed-Digit Arithmetic, IEEE Trans. on Computers, C
(1969), pp. 212–215.

[133] P. TANG, Binary-Integer Decimal Encoding for Decimal Floating-Point.
http://754r.ucbtest.org/issues/decimal/bid rationale.pdf, Jul. 2005.

[134] G. S. TAYLOR AND D. A. PATTERSON, VAX Hardware for the Proposed IEEE Floating-
Point Standard, in Proc. of the 5th IEEE Symposium on Computer Arithmetic, 1981,
pp. 190–196.

[135] TEXAS INSTRUMENTS, TI-89/TI-92 Plus Developers Guide, Beta Version .02, Texas Instru-
ments, 2001.

[136] J. THOMPSON, N. KARRA AND M. J. SCHULTE, A 64-bit Decimal Floating-Point Adder, in
IEEE Computer Society Annual Symposium on VLSI, Feb. 2004, pp. 297–298.

[137] S. D. TRONG, M. SCHMOOKLER, E. M. SCHWARZ AND M. KROENER, P6 Binary Floating-
Point Unit, in 18th IEEE Symposium on Computer Arithmetic, Jun. 2007, pp. 77–86.

[138] A. TSANG AND M. OLSCHANOWSKY, A Study of DataBase 2 Customer Queries, TR. 03.413,
tech. report, IBM Santa Teresa Laboratory, San Jose, CA, USA, Apr. 1991.

[139] C. TSEN, S. GONZÁLEZ-NAVARRO AND M. SCHULTE, Hardware Design of a Binary Inte-
ger Decimal-based Floating-point Adder, in XXV IEEE International Conference on Com-
puter Design, Oct. 2007, pp. 288–295.

[140] C. TSEN, M. SCHULTE AND S. GONZLEZ-NAVARRO, Hardware Design of a Binary In-
teger Decimal-based IEEE P754 Rounding Unit, in IEEE International Conference on
Application-Specific Systems, Architectures, and Processors, Jul. 2007, pp. 115–121.

[141] T. UEDA, Decimal Multiplying Assembly and Multiply Module. U.S. Patent No. 5,379,245,
January 1995.

[142] S. VASSILIADIS, D. S. LEMON AND M. PUTRINO, S/370 Sign-Magnitude Floating-Point
Adder, IEEE Journal of Solid-State Circuits, 24 (1989), pp. 1062–1070.

[143] S. VASSILIADIS AND E. SCHWARZ, Generalized 7/3 Counters. U.S. Patent No. 5,187,679,
Feb. 1993.

222 Bibliography

[144] A. VÁZQUEZ AND E. ANTELO, Conditional Speculative Decimal Addition, in 7th Conference
on Real Numbers and Computers (RNC 7), July 2006, pp. 47–57.

[145] , Decimal Arithmetic Units for Financial and e-Commerce Servers: A Case Study of
High-Performance Decimal Addition, in XVII Jornadas de Paralelismo, Sept. 2006.

[146] , Constant Factor Cordic for Decimal BCD Input Operands, in 8th Conference on Real
Numbers and Computers (RNC 8), Jul. 2008, pp. 83–91.

[147] , New Insights on Ling Adders, in 19th IEEE International Conference on
Application-Specific Systems, Architectures, and Processors (ASAP), Jul. 2008, pp. 233–
238.

[148] A. VÁZQUEZ, E. ANTELO AND P. MONTUSCHI, A New Family of High-Performance Paral-
lel Decimal Multipliers, in 18th IEEE Symposium on Computer Arithmetic, June 2007,
pp. 195–204.

[149] , A Radix-10 SRT Divider Based on Alternative BCD Codings, in XXV IEEE Interna-
tional Conference on Computer Design (ICCD 2007), Oct. 2007, pp. 280–287.

[150] , Improved Design of High-Performance Parallel Decimal Multipliers, Submitted to
IEEE Transactions on Computers. Under Revision., (2008).

[151] J. VON NEUMANN, First Draft of a Report on the EDVAC, Tech. Report Reprinted in IEEE
Annals of History of Computing, no. 4, 1993, Moore School, University of Pennsilvania,
1945.

[152] C. D. WAIT, IBM PowerPC 440 FPU with Complex-Arithmetic Extensions, IBM Journal of
Research and Development, 49 (2005), pp. 249–254.

[153] C. S. WALLACE, A Suggestion for a Fast Multiplier, IEEE Transactions on Computers,
EC-13 (1964), pp. 14–17.

[154] L.-K. WANG AND M. J. SCHULTE, Decimal Floating-Point Division Using Newton-Raphson
Iteration, in 15th IEEE International Conference on Application-Specific Systems, Ar-
chitectures and Processors (ASAP), September 2004, pp. 84–95.

[155] , Decimal Floating-Point Square Root Using Newton-Raphson Iteration, in 16th IEEE
International Conference on Application-Specific Systems, Architectures, and Proces-
sors (ASAP), July 2005, pp. 309–315.

[156] , A Decimal Floating-Point Divider Using Newton-Raphson Iteration, The Journal of
VLSI Signal Processing, 49 (2007), pp. 3–18.

[157] , Decimal Floating-Point Adder and Multifunction Unit with Injection-Based Rounding,
in 18th IEEE Symposium on Computer Arithmetic, June 2007, pp. 56–68.

[158] L. K. WANG, C. TSEN, M. J. SCHULTE AND D. JHALANI, Benchmarks and Performance
Analysis of Decimal Floating-Point Applications, in XXV IEEE International Conference
on Computer Design, Oct. 2007, pp. 164–170.

[159] Y. WANG, C. PAI AND X. SONG, The Design of Hybrid Carry-Lookahed/Carry-Select
Adders, IEEE Trans. Circuits Syst. II, 49 (2002), pp. 16–24.

Bibliography 223

[160] C. F. WEBB, IBM z10 - The Next-Generation Mainframe Microprocessor, IEEE Micro, 28
(2008), pp. 19–29.

[161] M. H. WEIK, A Third Survey of Domestic Electronic Digital Computing Systems, Report
No. 1115, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Mar.
1961.

[162] A. WEINBERGER AND J. L. SMITH, A One-Microsecond Adder Using One-Megacycle Cir-
cuitry, IRE Transactions on Electronic Computers, EC-5 (1956), pp. 65–73.

[163] G. S. WHITE, Coded Decimal Number Systems for Digital Computers, Proceedings of the
IRE, 41 (1953), pp. 1450–1452.

[164] H. YABE, Y. OSHIMA, S. ISHIKAWA, T. OHTSUKI AND M. FUKUTA, Binary Coded Decimal
Number Division Apparatus, U.S. Patent 4635220, Jan. 1987.

[165] W. YEH AND C. JEN, High-Speed Booth Encoded Parallel Multiplier Design, IEEE Trans.
on Computers, 49 (2000), pp. 692–701.

[166] M. YILMAZ, A. MEIXNER, S. OZEV AND D. J. SORIN, Lazy Error Detection for Microproces-
sor Functional Units, in 22nd International Symposium on Defect and Fault Tolerance in
VLSI Systems, Sep. 2007, pp. 361–369.

[167] R. K. YU AND G. B. ZYNER, 167 MHz Radix-4 Floating Point Multiplier, in 12th IEEE
Symposium on Computer Arithmetic, Jul. 1995, pp. 149–154.

[168] B. ZEYDEL, T. KLUTER AND V. OKLOBDZIJA, Efficient Mapping of Addition Recurrence
Algorithms in CMOS, in Proc. 17th IEEE Symposium on Computer Arithmetic, June
2005, pp. 107–113.

[169] R. ZLATANOVICI ET AL., Power-Performance Optimal 64-Bit Carry-Lookahead Adders, in
Proc. ESSCIRC 2003, Sep. 2003, pp. 321–324.

	Portada-Tese.pdf
	Impresión de fotografía de página completa.pdf
	Thesis.pdf

