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Asdo: Xosé Ramón Fernández
Vidal
Codirector da tese de doutoramento
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abrindo as rutas máis inesperadas e marabillosas. A Xurxo e a Carmen un exemplo
en tantas cousas e uns superavós, grazas por iso e moito máis como as abondosas
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Resumo

A visión biolóxica esteblece un amplo abano de metas non acadadas por
ningún sistema artificial en termos de eficiencia, robusteza e en xeral de
funcionamento en tarefas visuais activas. A pesar da complexidade e vari-
abilidade das imaxes naturais, os sistemas visuais dos mamı́feros son sor-
prendentemente capaces de recoñecer obxectos e contextos nunha primeira
fitada e dirixir de forma eficiente unhas poucas fixacións cara as partes máis
salientes dunha escea descoñecida.

Estas capacidades requiren dunha selección da información dramática e
realizada de forma activa, fornecendo unha causa de primeira orde para a
atención visual. Isto semella razoable se considerarmos o enorme fluxo de in-
formación que recibe o sistema visual humano (SVH) a través dos fotorecep-
tores retinianos, estimada en máis de 1010bits/s [AvEO05]. O procesamento
adaptativo ascendente (bottom-up) e a percepción da saliencia considérase
que residen na base deste comportamento temperán con tan notable eficien-
cia. Estes mecanismos parecen xogar un rol esencial no control da atención
visual humana –en cooperación co control descendente (top-down) – como
mostran multitude de resultados procedentes dunha ampla variadade de ex-
perimentos.

O termo saliencia visual é usualmente empregado para referir medidas
que pretenden cuantificar o carácter conspicuo e distintivo dun est́ımulo vi-
sual. Isto é, tentan cuantificar canto sobresae un est́ımulo do contexto, a
partir das súas propiedades f́ısicas. A representación máis común da salien-
cia adoita ser mediante un mapa retinotópico (o mapa de saliencia). Unha
fonte de información principal –áında que de ningún xeito a única– para
entender o funcionamento da atención visual é a distribución espacial de
fixacións oculares obtidas en experimentos de seguemento ocular. Os move-
mentos oculares producen fixacións que determinan as pequenas rexións dun-
ha imaxe dada que son proxectadas sobre a fóvea. En condicións de boa ilu-
minación (de visión fotópica), estas pequenas rexións reciben unha resolución
espacial moito maior debido á densidade moito maior de fotoreceptores pre-
sentes na fóvea. Por este motivo, os movementos oculares representan unha
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Figura 1: Exemplos dun mapa de saliencia (centro-superior) e un mapa de den-
sidade de fixacións (arriba dereita) para unha imaxe t́ıpica (esquerda).
Debaixo de cada mapa amósase o resultado de o superpoñer sobre a
imaxe orixinal.

primeira forma de forte selección espacial da información visual. Na figura 1
amósase un exemplo de mapa de saliencia aśı como o correspondente mapa
de densidade de fixacións oculares, para unha imaxe t́ıpica. Dá unha idea
das implicacións reais da selección espacial dirixida pola saliencia. Porén,
convén sinalar que tamén a visión periférica se ve afectada pola selección de-
bida á atención, sen necesidade de que medie un movemento dos ollos. Esta
cuestión será retomada de novo ao longo desta tese.

Doutra banda, os modelos mecańısticos de procesamento visual temperán
céntranse na explicación dos campos receptivos visuais e no seu compor-
tamento adaptativo, tanto fronte a caracteŕısticas locais como globais. Un
obxectivo primordial destes modelos é a formulación de estratexias de codifi-
cación temperá que sexan bioloxicamente plausibles e que sexan capaces de
explicar determinados fenómenos relacionados coa visión temperá, e en par-
ticular coa adaptación contextual do comportamento neuronal e perceptual.

O problema de medir a saliencia ou distintividade nunha imaxe ten tamén
unha grande relevancia na visión por computadora e en xeral no desenvolve-
mento de sistemas de visión, moi especialmente de sistemas activos. De feito,
a atención espacial emerxente ten demotrado ser moi útil en importantes fun-
cións visuais como a aprendizaxe e o recoñecemento e moitas aplicacións de
visión como se amosa no primeiro caṕıtulo desta tese. Asemade, a extracción
de caracteŕısticas de baixo nivel adecuadas ten unha enorme importancia na
análise de imaxes e na visión por computadora. Ambos os dous problemas
–representación de baixo nivel e saliencia– adoitan aparacer estreitamente
ligados en moi variadas solucións. Un exemplo destacado atópase nos detec-
tores de puntos de interese máis extendidos, mais tamén en moitos outros
modelos de visión por computadora.

Ambas as preocupacións tanto en torno á comprensión do SVH como



ao desenvolvemento de sistemas de visión activos, promoveu e promove un
importante esforzo interdiciplinar para proporcionar medidas melloradas de
saliencia. En particular, nos últimos anos asistimos a un extraordinario e
crecente esforzo investigador no modelado bioinspirado da saliencia e as súas
aplicacións.

Porén, hai claramente unha carencia de modelos que aborden a relación
entre a adaptación contextual dirixida polos datos observada na codificación
visual temperá e a percepción da saliencia. Comprender esta relación é esen-
cial para o desenvolvemento dun cadro computacional para a codificación
visual temperá que sexa bioloxicamente plausible. Semellante cadro debe
formular representacións retinotópicas intermedias plausibles e adaptadas
á imaxe. Estas representacións intermedias deben ser capaces de termar dun-
ha medida adecuada de saliencia, mais tamén de axustarse a caracteŕısticas
observadas propias da visión temperá. As aproximacións a este problema
son tamén moi interesantes para a visión por computadora, na medida en
que poder brindar modelos mellorados tanto de caracteŕısticas de baixo nivel
como de saliencia.

Ademais, a maioria de modelos de saliencia están fundamentados en prin-
cipios da teoŕıa da información, sen unha especificación das fontes f́ısicas
involucradas e, áında máis importante, dos diferentes xeitos no que estas
contribúen á saliencia visual. Esta especificación, de ser posible, é moi im-
portante xa que ofreceria unha ligadura adicional para comprender a función
visual en termos das súas ráıces f́ısicas. Aśı mesmo poderia proporcionar ex-
celentes pistas para o desenvolvemento de aproximacións de visión activa e
en xeral para o procesamento e análise adaptativos de imaxes.

Coa intención de cubrir estes ocos, esta tese proporciona unha aproxi-
mación funcional e coherente tanto á codificación visual temperá como á sa-
liencia, dun xeito bioloxicamente plausible. Aśı mesmo, o cadro proposto
enraiza nunha interpretación f́ısica que involucra unhas poucas magnitudes
ópticas. Demóstrase como o modelo resultante explica unha serie de ilusións
visuais e supera claramente os modelos de saliencia do estado da arte exis-
tentes usando as probas de avaliación máis extendidas, inclúındo a predición
de fixacións oculares e a reprodución de resultados psicof́ısicos.

A primeira das carencias descritas enriba pode ser doadamente aprezada
nas dúas estratexias habituais de representación de baixo nivel adoptadas
polos modelos de saliencia existentes. Moitos deles comezan cunha descom-
posición multiresolución de tres compoñentes de cor predefinidas, nun deter-
minado modelo de cor. Isto fano proxectando as compoñentes da imaxe de
cor sobre filtros lineares semellantes a campos receptivos de células do córtex
visual primario (V1), que adoitan ser modelados mediantes bancos de filtros
Gabor ou gaussianos desde que o modelo estándar de V1 foi inicialmente



proposto por Hubel e Wiesel [HW59,HW68]. Os seguintes pasos xeralmente
involucran procesos de competición e integración que rematan nunha medida
final de saliencia, un esquema presente xa nos primeiros modelos baseados na
arquitectura de atención de Koch e Ullman [KU85]. A outra aproximación
t́ıpica aborda a descomposición mediante a proxección da imaxe sobre com-
poñentes independentes de parches de imaxes naturais, eludindo deste xeito
a parametrización das canles de cor e dos filtros e alén do tamaño de parche.
Esta proposta está baseada na interpretación estat́ıstica do modelo estándar
de V1 como resultado da evolución e o desenvolvemento neuronal para axus-
tarse ás estat́ısticas que caracterizan as imaxes naturais [O+96,BS97].

Ambos os dous esquemas brevemente descritos, tanto o baseado en bancos
de filtros como na análise de compoñentes independentes de imaxes naturais,
comparten unha importante propiedade: sempre empregan as mesmas por-
cións do espazo de caracteŕısticas para representar unha imaxe calquera. As
aproximacións baseadas en bancos de filtros proxectan un conxunto fixo de
compoñentes de cor sobre unha partición fixa do dominio espectral. Asemade,
as compoñentes independentes son determinadas a partir dun conxunto de
adestramento de imaxes naturais e non son modificadas posteriormente.

Estas aproximacións á codificación temperá adoptadas pola inmensa maio-
ria dos modelos de saliencia son estáticas e non se axustan por tanto ao com-
portamento do SVH. De feito, o SVH adapta as súas respostas ás caracteŕısti-
cas globais e locais de cada imaxe espećıfica. Exhibe unha clara adaptación
de curto prazo e contextual ao contraste, á cor e á estrutura espacial. Esta
adaptación ten lugar desde os fotoreceptores e as células G ata ás células
corticais e tense observado que produce en conxunto unha representación
decorrelacionada [BF89, RR09, Koh07, CWS+07, SHD07]. Deste xeito a de-
correlación adaptativa semella ser un mecanismo neuronal plausible. Non
debe sorprender pois, que moitos modelos mecańısticos recentes de redes
neuronais corticais aśı como modelos de computación mediante poboacións
de neuronas producen en conxunto unha representación decorrelacionada e
branqueada da entrada.

Desde unha perspectiva computacional, existen tamén razóns a favor
dun modelo de adaptación contextual. Aproximacións que non presenten tal
adaptación son máis susceptibles de sofrer de caracterizacións nesgadas, limi-
tando a aplicabilidade da correspondente medida de saliencia.

Aśı, o problema da saliencia parece estar estreitamente relacionado co
problema da selección dunha representación de baixo nivel do mesmo xeito
que a súa adaptación. No contexto da visión biolóxica, a codificación visual
temperá preséntase como un problema ineludible se se pretende defender
a plausibilidade biolóxica dun modelo. Por outra banda, unha perspectiva
adecuada sobre a codificación visual temperá pode fornecer directrices no



deseño de representacións de baixo nivel de imaxes, que sexan adecuadas para
funcións visuais activas que poidan ser de utilidade en aplicacións de visión
por computadora e de sistemas de visión. De feito, e de xeito similar a outros
traballos no campo, a motivación orixinal desta tese naceu froito dun pro-
xecto a longo prazo de desenvolvemento dun cadro xenérico e bioloxicamente
inspirado para aproximar e estudar problemas de visión activa.

Hipóteses e obxectivos

A hipótese de traballo asumida nesta tese é que a adaptación contextual
que xorde do branqueado adaptativo é o factor clave involucrado na deter-
minación da saliencia visual. Aśı, do mesmo xeito que hai unha adaptación
a longo prazo da codificación neuronal dirixida polas estat́ısticas das imaxes
naturais, hai tamén unha adaptación contextual a curto prazo da codifi-
cación temperá dirixida polas estat́ısticas de cada imaxe particular. Unha
asunción impĺıcita nesta hipótese é que os principais mecanismos computa-
cionais subxacentes á adaptación contextual son a decorrelación das respostas
e a normalización ao contraste.

Repousando nestas ideas, esta tese céntrase na investigación, en termos
de magnitudes sinxelas, tanto da adaptación contextual da representación de
baixo nivel como dunha definición coherente da saliencia visual.

Polo tanto, podemos dicir que se procuran tres obxectivos principais, a
saber:

A proposta dun cadro teórico capaz de explicar dun xeito coherente un-
ha variedade de fenómenos relacionados coa adaptación contextual e a
saliencia visual. Este cadro debe ser bioloxicamente plausible, e daquela
debe cumprir cunha serie de limitacións impostas polo comportamento
coñecido do SVH.

A implementación dun modelo de saliencia computacional que supere
aproximacións previas, en termos de reprodución de resultados en ex-
perimentos visuais con observadores humanos. Estes experimentos de-
ben inclúır exemplos representativos daqueles adicados á atención vi-
sual, tanto dos que involucran movementos oculares como dos que non.
Entre eles, unha referencia primordial é a predición de fixacións hu-
manas en observación libre de imaxes usando bases de datos de segue-
mento ocular de libre acceso.

A demostración da utilidade do modelo de saliencia nunha variedade
de aplicacións, posto que a aplicabilidade pode tamén ser vista como
unha condición de validez para calquera novo modelo. Dada a grande



cantidade de aplicacións xa existentes, f́ıxase unha selección de tres apli-
cacións obxectivo. A primeira é amosar a utilidade da medida de salien-
cia proposta como a base dunha segmentación obxectos-fondo xenérica,
un problema de primeira orde na análise de imaxes. O segundo obxecti-
vo consiste na mellora da selección de puntos de referencia e de interese,
unha cuestión central nos problemas de navegación de robots. O terceiro
obxectivo pretende ampliar o campo de aplicacións da saliencia a un
ámbito novo, á análise de representacións espaciais non visuais, posto
que a aproximación aqúı proposta fundaméntase nunha aproximación
f́ısica –xeralizable– á visión temperá.

Contribucións desta tese

A seguir, resúmense as principais contribucións desta tese

Acádase unha nova perspectiva sobre a adaptación contextual e a con-
dificación temperá –dirixida polos datos– no SVH, a través dun sinxelo
cadro de branqueado progresivo de compoñentes de cor e de escala.
Xa que logo, proponse unha representación adaptada ás estat́ısticas
da imaxe nunha forma computacional sinxela capaz de explicar unha
variedade de ilusións visuais.

Unha definición da correspondente medida de saliencia deŕıvase como
o módulo na representación branqueada obtida, que se propón como
estimación dun invariante no SVH. O modelo resultante é aśı nomeado
como saliencia por branqueado adaptativo (AWS nas siglas en inglés).
Aśı mesmo, esta medida de saliencia demóstrase como está directa-
mente relacionada cunha definición equiparable de variabilidade óptica
en termos de lonxitudes de onda espectrais e de frecuencias espaciais
a partir da descrición t́ıpica dunha imaxe en óptica de Fourier. Ase-
made, esta ligazón fornece un obxectivo explicativo para a catástrofe
de codificación dentro da hipótese de codificación eficiente, en termos de
invarianza do SVH na representación da variabilidade óptica presente
na imaxe, dentro dunha ventá óptica visual consecuentemente definida.

Proponse o emprego da capacidade preditiva de fixacións humanas
amosada polos propios humanos como referencia para mellorar unha
extendida medida de avaliación baseada na análise ROC. Deste xeito,
a valoración do funcionamento do modelo fronte á variabilidade entre
esceas é mellorada, e obtense unha valiosa información adicional sobre a
robusteza de modelos ou a fortaleza da saliencia. O modelo AWS exhibe



un funcionamento equivalente aos humanos, superando claramente ou-
tros modelos do estado da arte que semellan sufrir de diferentes nesgos
de deseño que limitan a súa xeralidade. Por outra parte, o modelo AWS
demóstrase capaz de reproducir un conxunto representativo de resulta-
dos psicof́ısicos, que até onde nós coñecemos non foron conxuntamente
reproducidos por ningún outro modelo anterior.

Demóstrase a aplicabilidade do modelo AWS en problemas de visión por
computadora e sistemas de visión. En particular a aplicación directa do
AWS a imaxes multi e hiperespectrais, até onde sabemos non propos-
ta anteriormente con ningún outro modelo bioinspirado de saliencia.
É importante tamén a demostración de resultados equiparables pro-
porcionados polo modelo empregando tanto unha representación com-
primida extráıda a partir de moitos sensores espectrais de anchura de
banda estreita, como unha representación tricromática clásica de detec-
tores de banda larga. Asemade, reaĺızase unha proposta de medida de
avaliación para comprobar a correcta proxección da variabilidade f́ısica
en técnicas de fusión de sensores para a visualización espacial, baseada
no emprego do modelo AWS tanto sobre os datos orixinais como sobre
os datos visualizados.

Esquema seguido nesta tese

Esta tese orgańızase como segue.

No caṕıtulo 1, o concepto de saliencia, o seu rol e funcionamento na
visión humana, os modelos computacionais existentes e os seus campos
de aplicación son revisados con certo detalle.

O caṕıtulo 2 ad́ıcase á investigación da codificación visual temperá.
Proponse un sinxelo cadro funcional que posibilita a adaptación con-
textual. A adaptación lógrase mediante o branqueado adaptativo de
caracteŕısticas de cor e escala. O branqueado implica a adaptación
do rango dinámico da correspondente dimensión de caracteŕısticas aos
datos espećıficos observados nunha escea dada. Apĺıcase primeiramente
ás compoñentes de cor seguido dunha descomposición multiescala das
compoñentes de cor branqueadas. Isto faise para varias orientacións. A
seguir, as caracteŕısticas de escala resultantes son branqueadas tamén.
Tal representación é analisada á luz de varios fenómenos psicof́ısicos
relacionados con ilusións visuais usando imaxes sintéticas, representa-
cións art́ısticas e imaxes naturais. Aliás, a plausibilidade biolóxica ava-
ĺıase á luz de propiedades coñecidas do SVH.



O caṕıtulo 3 investiga as ligazóns da proposta de branqueado adaptati-
vo cunha simple descrición óptica de imaxes. Como resultado, a apro-
ximación de branqueado adaptativo demóstrase que está directamente
relacionada cunha simples definición de variabilidade óptica en fun-
ción de lonxitudes de onda espectrais e de frecuencias espaciais, cando
se computa nos ĺımites sensoriais do SVH, que definen a ventá ópti-
ca visual. Proponse ademais unha definición coherente de saliencia,
aśı como o correspondente modelo computacional. Demóstrase como
este modelo se deriva de xeito natural do cadro proposto no caṕıtu-
lo anterior. Aśı, está baseado na adaptación contextual a curto prazo
da representación do espazo de caracteŕısticas ao contido dunha es-
cea espećıfica. Para cada orientación e compoñente de cor, a saliencia
compútase como o cadrado do módulo no espazo de caracteŕısticas mul-
tiescala branqueadas. A saliencia final resulta da suma destas saliencias
parciais para cada canle de cor e orientación. Como se verá, os resulta-
dos do modelo son practicamente independentes do método empregado
para branquear, estea este método baseado na análise de compoñentes
principais ou na análise de compoñentes independentes. Unha imple-
mentación concreta do modelo descŕıbese polo miúdo.

No caṕıtulo 4 avaĺıase a capacidade do modelo para predicir fixacións
oculares. Empregando un procedemento de uso extendido, demóstrase
que o AWS supera outros modelos do estado da arte na predición
de fixacións humanas, tanto en termos de funcionamento como de ro-
busteza. Isto faise sobre dúas bases de datos de seguemento ocular de
libre acceso. Mais, como se probará, as incertezas proporcionadas por
este procedemento non reflicten a verdadeira variabilidade do resulta-
dos entre esceas. Esta observación lévanos a propor unha comparación
coa capacidade preditiva dos propios humanos. O AWS revela ter un
funcionamento equiparable ao humano promedio e semella estar libre
de nesgos de deseño, a diferenza doutros modelos que teñen problemas
evidentes ante simetrias e caracteŕısticas salientes de altas frecuencias
espaciais.

No caṕıtulo 5 demóstrase como o modelo logra reproducir unha selec-
ción representativa de resultados psicof́ısicos descritos en experimentos
con humanos. A saber: a non-lineariedade fronte ao contraste de ori-
entacións; a lineariedade fronte ao ángulo de esquinas; a asimetria de
presenza-ausencia e a lei de Weber; a influencia do fondo sobre as asime-
trias de cor; os efectos de emerxencia (pop-out) de orientación, cor e
tamaño; unha variedade de exemplos de procura eficiente (paralela)



e ineficiente (en serie); aśı como o comportamento de humanos baixo
diferentes arranxos de similaridade branco-distractor e de heteroxenei-
dade de distractores.

No caṕıtulo 6 exponse unha selección de aplicacións do modelo e as
implicacións das mesmas. O AWS posibilita a separación de proto-
obxectos do seu contexto mediante unha simple segmentación do mapa
de saliencia. Asemade, demóstrase que o uso do modelo mellora con-
siderablemente a eficiencia nunha aproximación ao recoñecemento de
esceas na navegación de robot. A estratexia de branqueado adaptati-
vo proposta permite tamén o uso sen modificación ningunha do códi-
go con imaxes multiespectrais e hiperespectrais, mediante a simples
substitución dos sensores (R,G,B) por outros calquera con diferentes
propiedades espectrais, abrindo a posibilidade de segmentar e analisar
imaxes multi e hiperespectrais. Isto podeŕıase aplicar a problemas de
imaxes de satélite e a análise multi e hiperespectral de curto alcance.
Até onde nós sabemos, este é o primeiro modelo bioinspirado de salien-
cia en aplicarse neste ámbito dos sistemas de visión. Tamén se apunta
á posible aplicación do modelo sobre outros tipos de sensores f́ısicos,
capaces de producir unha representación do espazo.

Finalmente, trázanse as conclusións e sinálanse os camiños abertos para
o traballo futuro.





Introduction

Biological vision establishes a wide variety of unrivaled benchmarks in
terms of efficiency, robustness, and general performance in active visual tasks.
Despite the complexity and variability of natural images, visual systems of
mammals are surprisingly skilful in recognizing objects and contexts at a first
glance and to efficiently drive few fixations to the most salient parts of a new
unknown scene.

These capabilities demand an active and dramatic selection of infor-
mation that poses a main cause for visual attention. It seams reasonable
considering the huge flow of information entering the human visual system
(HVS) through the retinian photoreceptors, estimated to be over 1010bits/s
[AvEO05]. Bottom-up adaptive processing and perception of saliency, are
thought to lie at the basis of this early behavior with such a remarkable effi-
ciency. They appear to play an essential role in the control of human visual
attention –working in cooperation with top-down control– as a number of
results from a wide variety of experiments have shown.

Visual saliency is usually employed to refer measures that aim to quantify
the conspicuity or distinctiveness of a visual stimulus. That is, it intends to
quantify how much a stimulus stands out from the context, given its physical
properties. The common representation of saliency is given in the form of a
retinotopic map (the saliency map). A main –though in no way the only–
source of information to understand the functioning of visual attention is the
spatial distribution of human eye fixations obtained in eye-tracking experi-
ments. Eye movements result in fixations that determine the small regions
of a given image that are sensed by the fovea. Under good illumination con-
ditions (i.e. for photopic vision), these small regions receive a much higher
spatial resolution due to the much higher density of photoreceptors present
in the fovea. Consequently, eye movements represent a first form of strong
spatial selection of visual information. In figure 2, an example of a saliency
map as well as the corresponding density map of eye fixations for a typical
image is shown. It gives an idea of the actual implications of a saliency-driven
spatial selection. It must be noticed however that also peripheral vision is
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2 INTRODUCTION

Figure 2: Examples of a saliency map (top center) and a map of density of
fixations (top right) for a typical image (left). Below each map, the
result to superimpose it to the image is shown.

affected by attentional selection, without the need of eye-movements. This
issue will be considered further along this dissertation.

Otherwise, mechanistic models of early visual processing with a biological
concern are focused on the explanation of the visual receptive fields and
their adaptive behavior, to local and contextual features. A main goal of
these models is the formulation of early coding strategies that are biologically
plausible and that are able to explain observed visual phenomena related to
early vision, and particularly to contextual adaptation of perceptual and
neural behavior.

The problem of measuring the saliency or distinctiveness in an image has
also a great relevance in computer and machine vision, specially in the de-
velopment of active systems. Indeed, bottom-up spatial attention has shown
to be very useful in important visual functions like learning and recognition
and many vision applications as shown in the first chapter of this thesis.
Besides, the extraction of suitable low level features is of enormous impor-
tance in image analysis and computer vision. Both of these problems –low
level representation and saliency– use to appear closely related in a variety of
solutions. A remarkable example can be found in the most popular interest
point detectors, but also in many other computer vision models.

Both concerns on the understanding of the HVS and on the development
of active vision systems have fostered an important and crossdisciplinary
research effort to provide improved measures of saliency. Particularly, the
bioinspired modelling of saliency and its applications have seen an extraor-
dinary and increasing amount of research efforts in the last years.

However, there is clearly a lack of models that address the relationship
between the contextual data-driven adaptation observed in early visual cod-
ing and the perception of saliency. Understanding this relation is essential for
the development of a computational framework of early visual coding with
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biological plausibility. Such a framework should formulate plausible interme-
diate retinotopic representations adapted to the image. These intermediate
representations must be able to maintain a suitable measure of saliency, but
also to match observed characteristics of early vision. Approaches to this
problem are very interesting for computer vision too, as far as they may
yield improved models of both adaptive low level features and saliency.

Furthermore, most models of saliency are grounded on an information the-
oretic foundation, without an specification of the physical sources involved,
and more importantly, of the different ways in which they contribute to vi-
sual saliency. This specification, if possible, is very important since it would
offer an additional constraint to understand the visual function in terms of
its physical roots. As well it could yield excellent cues for the development
of active vision approaches and in general for the adaptive processing and
analysis of images.

With the aim of filling these gaps, this thesis provides a coherent func-
tional approach to both early visual coding and saliency, in a biologically
plausible manner. Likewise, the framework proposed is rooted in a physical
interpretation involving few simple optical magnitudes. The resulting model
is shown to explain a variety of visual illusions and to clearly outperform the
existing state-of-the-art models of saliency using the most popular evalua-
tion tests, including the prediction of eye fixations and the reproduction of
psychophysical results.

The first pointed lack can be easily appreciated in the two typical strate-
gies of low level representation adopted by existing models of saliency. Many
of them start with multiresolution decomposition of three predefined color
components, in a given color model. This is done by projecting the im-
age color components on linear filters resembling receptive fields of cells
in V1, which are usually modeled by Gabor-like and Gaussian-like func-
tions ever since the standard model of V1 was first proposed by Hubel and
Wiesel [HW59, HW68]. The following steps generally involve a competition
and integration process that delivers a final measure of saliency, a scheme
already found in early models based on the Koch and Ullman architecture
of attention [KU85]. Otherwise, the other typical approach involves decom-
position through the projection of the image on independent components of
natural image patches, avoiding color components and filter parameterization
beyond patch size. This proposal is based on the statistical interpretation of
the standard model of V1 as the result of evolution and neural development
to match the statistics of natural images [O+96,BS97].

Both of these schemes, either based on filter banks or on independent
components analysis, share an important property: they always use the same
portions of the feature space to represent any image. Filter bank approaches
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project a fixed set of color components on a fixed partition of the spectral
domain. Independent components are determined from a set of training
natural images and are not modified subsequently.

The described static approaches to early coding underlying most of cur-
rent models of saliency do not match the behavior of the HVS. Indeed, it
adapts its responses to the global and local features of each specific image. It
shows short-term and contextual adaptation to contrast, to color content and
to spatial structure. This adaptation takes place from photoreceptors and G
cells to cortical cells and has been shown to produce overall a decorrelated
representation [BF89, RR09, Koh07, CWS+07, SHD07]. Adaptive decorrela-
tion seems thus to be a plausible neural mechanism. Not surprinsingly, many
recent mechanistic models of neural cortical networks as well as models of
computation by populations of neurons produce an overall decorrelated and
whitened representation of the input.

From a computational point of view, there are also reasons in favor of a
contextual adaptation model. Approaches that do not present such adapta-
tion are more likely to be affected by feature biases, reducing the applicability
of the corresponding measure of saliency.

Therefore, the problem of saliency appears to be closely related to the
problem of selection of a low level representation as well as its adaptation. In
the context of biological vision, early visual coding appears to be an unavoid-
able problem to tackle wether biological plausibility is claimed. Otherwise, a
proper insight in early visual coding can deliver guidelines to design low level
representations of images, suitable for active visual functions that migth be
useful for computer and machine vision applications. Indeed, and similarly to
other works in the field, the original motivation of this dissertation was born
within a long-term project of developing a generic and biologically inspired
framework to approach and study active vision problems.

Hypothesis and objectives

The working hypothesis assumed in this thesis is that contextual adapta-
tion arising from the adaptive whitening of low level features is the key factor
involved in the determination of visual saliency. Thus, as well as there is a
long-term adaptation of neural coding driven by natural images statistics,
there is also a short-term contextual adaptation of early coding driven by
particular image statistics. An implicit assumption in such a hypothesis is
that the main underlying computational mechanisms of contextual adapta-
tion are decorrelation of responses and contrast normalization.

Relying on these ideas, this dissertation is focused on the investigation,
in terms of simple magnitudes, of both contextual adaptation of the low level
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representation and a coherent definition of visual saliency.
Consequently, the following three major objectives are pursued:

The proposal of a theoretical framework able to explain in a coher-
ent manner a number of phenomena related to contextual adaptation
and visual saliency. This framework must be biologically plausible and
hence it must accomplish with a number of constraints impossed by
the known behavior of the HVS.

The implementation of a computational model of saliency that outper-
forms previous approaches, in terms of reproduction of results in visual
experiments with human observers. These experiments must include
representative examples of those devoted to overt and covert attention,
that means with and without involvement of eye movements. Among
them, a main benchmark is the prediction of human fixations in free
surveillance of images using open access eye-tracking datasets.

The demonstration of the usefulness of the model of saliency in a vari-
ety of applications, since applicability can also be seen as a condition
of validity for any new model. Given the huge amount of applications,
a selection of three application goals has been done. The first is to
show the usefulness of the proposed measure of saliency as the basis
for generic figure-ground segmentation, a main problem of image anal-
ysis. The second goal is the improvement of landmark and interest
points selection, a main issue in robot navigation problems. The third
goal is to extend the field of applications of saliency, particularly to
the analysis of non-visual spatial representations, since the approach
adopted here is theoretically grounded on a physical –generalizable–
aproximation to early vision.

Contributions of this thesis

The main contributions of this dissertation can be hence summarized as
follows:

A new insight is achieved in contextual adaptation and early –data
driven– visual coding in the HVS, through a simple framework of for-
ward whitening of color and scale components. An image representa-
tion adapted to image statistics is thereby proposed in a simple com-
putational form that is able to explain a variety of visual illusions.

A definition of the corresponding measure of saliency is derived as the
modulus in the obtained whitened representation, which is proposed
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to estimate an invariant in the HVS. The resulting model is hence
named as adaptive whitening saliency (AWS). Likewise, this measure
of saliency is shown to be directly related to an equivalent definition of
optical variability in terms of spectral wavelengths and spatial frequen-
cies from a typical description of an image in Fourier optics. Besides,
this link yields an explanatory goal to the coding catastrophe within
the efficient coding hypothesis, in terms of invariance of the HVS to
cope with optical variability in the image, inside a defined optical visual
window.

The use of the predictive capability of human fixations shown by hu-
mans themselves is proposed as a reference to improve a popular mea-
sure based on ROC analysis. This way, the assessment of model per-
formance against inter-scene variability is improved, and valuable in-
formation about robustness of models or saliency strength is obtained.
The AWS model exhibits a performance equivalent to humans, clearly
outperforming other state-of-the-art models that appear to suffer from
different feature biases. Otherwise, the AWS model is shown to re-
produce a representative ensemble of psychophysical results, to our
knowledge not reproduced together by any other model before.

The applicability of the AWS model in problems of computer and ma-
chine vision is demonstrated. Particularly, a straightforward applica-
tion of AWS to multispectral and hyperspectral images, to our known
not proposed with any other bioinspired model of saliency before. It is
also important the demonstration of equivalent results yielded by the
model both using a compressed representation extracted from many
narrow spectral sensors, and using a classic trichromatic representa-
tion from broadband detectors. As well, a proposal to check the cor-
rect projection of physical variability in techniques of sensor fussion for
spatial visualization is pointed, by applying the AWS model on both
the original and the displayed data.

Thesis outline

This thesis is organized as follows.

In chapter 1, the concept of saliency, its role and functioning in human
vision, the existing computational models, and its fields of application
are reviewed in some detail.

Chapter 2 is devoted to the investigation of early visual coding. A
simple functional framework that enables contextual adaptation is pro-
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posed. Adaptation is accomplished by the whitening on color and scale
features. Whitening implies the adaptation of the dynamic range of
each feature dimension to the specific data observed in a given scene.
It is first applied to color components and it is followed by a multi-
scale decomposition of the whitened color components. This is done
for a number of orientations. Next, scale features are further whitened.
Such a representation is analyzed in the light of several psychophysical
phenomena related to visual illusions using synthetic images, artistic
pictures and natural images. As well, its biological plausiblity is as-
sessed in the light of known properties of the HVS.

Chapter 3 investigates the links of the adaptive whitening proposal with
a simple optical description of images. As a consequence the adaptive
whitening approach is shown to be directly related to a simple defini-
tion of optical variability in function of spectral wavelengths and spatial
frequencies, when computed in the sensorial limits of the HVS denoted
as the optical visual window. A coherent definition of saliency in pro-
posed, as well as the corresponding computational model. This model
is shown to be naturally derived within the framework proposed in the
previous chapter. Therefore the model is based on the short-term con-
textual adaptation of the feature space representation to the contents
of a specific scene. For each orientation and color component, saliency
is computed as the squared modulus on the whitened multiscale fea-
ture space. The overall saliency is the result of simple summation of
the conspicuities for each color channel and orientation. As we will see,
the results of the model are practically independent of the method used
to whiten, being this method based on principal components analysis
(PCA), or on independent components analysis (ICA). A concrete im-
plementation of the model for experimental evaluation is described in
detail.

In chapter 4 the capability of the model of predicting human fixations
is evaluated. Through a widely used assessment procedure, the AWS
will show to outperform other models of the state of the art in pre-
dicting human fixations, in terms of both performance and robustness.
This is done on two different open access eye-tracking data sets. But
as it will be also shown, the uncertainties provided by that procedure
do not reflect the actual inter-scene variability. This observation leads
us to propose a comparison with the predictive capability of humans
themselves. The AWS reveals to have equivalent performance to the av-
erage human and seems to be free of design biases, unlike other models
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that have evident problems with symmetries or high frequency salient
features.

In chapter 5 the model is shown to be able to reproduce a represen-
tative selection of psychophysical results decribed in experiments with
humans. Namely: the non linearity against orientation contrast; the
linearity against corner angle; the presence-absence asymmetry and
the Weber’s law; the influence of background on color asymmetries;
the orientation, color and size pop-out; a variety of examples of effi-
cient (parallel) and inefficient (serial) search; as well as human behavior
under different target-distractor similarity and distractor heterogeneity
arrangements.

In chapter 6 selected applications of the model and their implications
are shown. The AWS allows the separation of proto-objects from con-
text by means of simple segmentation of the saliency map. As well, the
model is shown to improve efficiency in an approach to scene recognition
in robot navigation. Besides, the proposed adaptive whitening strat-
egy can be used with multispectral and hyperspectral images, through
a simple replacement of (R,G,B) sensors by any others with different
spectral properties, offering a way to segment and analyze multispec-
tral proto-objects. This could be applied to satellite imagery and to
close range multispectral and hyperspectral analysis. To our knowl-
edge, this is the first bio-inspired model of saliency to be applied in
that field of machine vision. Its further applicability to manage other
kind of physical sensors able to produce a representation of the space
is also pointed.

Finally, conclusions are drawn and open paths for future work are
pointed.



Chapter 1

Saliency: Concept, Models and
Applications

It is worth remarking from the beginning that in this dissertation the term
saliency will be used as arising from only bottom-up, data-driven processes.
Therefore, saliency will be broadly conceived like a measure or estimation of
the spatial conspicuity or distinctiveness of a point or region in an image.
This approach to the concept of saliency is very frequent in the use that
traditionally receives in computer vision, as a measure that provides a front
end to select landmarks, interest points or regions of interest, in general
purpose descriptors used for learning and recognition, for segmentation, and
in general for any task requiring an unsupervised selective pre-processing. A
point or region that stands out from the context by its physical properties
(e.g. color, size, structure) use to still do it after moderate variations on the
illumination or the point of view. Thus, a measure of saliency is expected
to provide a high degree of invariance and robustness under perspective,
orientation, scale or illumination transformations. This makes such a kind
of measures very interesting and potentially useful.

Besides, the stated use of the term saliency also agrees with a terminology
used in the context of neuroscience, which differentiates between three types
of measures: saliency, relevance and priority. As explained by Fecteau and
colleagues, the aim of such a differentiation is to provide a clear ground to
manage with neural phenomena that drive human attention and arise respec-
tively from only bottom-up stimuli (saliency), from only top-down choices
(relevance), or from the mechanisms that efficiently combine both of them
(priority) [FM06].

9
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1.1. The computational and information the-

oretic concept of saliency

As pointed above, saliency has been intuitively or subjectively modelled
in many computer vision approaches. It is generally used as a front end
to detect interest points or regions, without a main concern on any kind of
justification beyond the good performance of the model for the corresponding
purpose. For instance, the most popular schemes of interest point detectors
and descriptors like SIFT or SURF, use an interest (saliency) map to facilitate
further stable and distinctive point selection in an efficient manner [Low04,
BETG08].

However there are also a variety of generic approaches to the concept,
trying to derive it in a principled manner. The underlying goal is to provide
a generic framework for an unsupervised task-independent and efficient com-
putation of saliency. Currently, the most accepted view justifies saliency in
terms of probability. The most improbable or unpredictable a local low level
feature is, the most salient it is. Hence the different models of saliency are
justified as a suitable and efficient approach to compute the inverse of the
probability of the local features.

Several state-of-the-art bioinspired models that will be referred along this
dissertation, are grounded on this conception. They define a low level rep-
resentation, and subsequently they propose a measure that approaches the
computation of the inverse of the probability density. Some of them also
claim for the biological plausibility of the proposed measure in terms of neu-
ral computations.

An interesting and popular approach has been done by Kadir and Brady
[KB01] that already points in the direction of adaptive interaction between
scales. They proposed that there are salient scales that define saliency in a
given point. To find them, they measured the entropy on the neighbourhood
of each point at different scales, and they took the scales that present a peak
of entropy. The most interesting aspect of this approach is the proposal
of a local selective interaction between scales to determine local saliency,
that avoids rigid schemes like the highly frequent center-surround differences
modelled through differences of gaussian filters.

Much more recently, in a formal approach, Loog and Lauze showed that
the interest map of the Harris detector, is inversely proportional to the prob-
ability density of a local uncommitted low level feature [LL10]. They claim
that this straight relation with the Harris interest map gives it a strong
support in the computation of saliency over other approaches. Since most
bioinspired approaches are principled in an estimation of the local probabil-
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ity density, they even suggest a probable superiority of Harris detector in
the context of modelling of human visual attention. However they do not
provide experimental evidences in this regard.

This discussion around the theoretical foundation of visual saliency will
be taken up again in the chapter 3, but in terms of the optical variability
existing in the perceived image. Saliency will be formulated as a measure of
the local spatial distinctiveness existing across the physical magnitudes that
an image sensor is able to sense.

1.2. Computational models of human atten-

tion

Biologically plausible models of saliency have arisen in the context of the
research in human visual attention. The first approaches to attention were
motivated mainly by the need of a systematic and comprehensive explana-
tion for a variety of psychophysical observations. There were also proposals
arisen in the context of neurophysiological observations and neural networks
theories. These initial concerns, mainly focused on particular aspects (visual
search phenomena, models of neural networks) from concrete disciplines, have
converged in a huge crossdisciplinary effort to explain human attention.

The feature integration theory (FIT) by Treisman and Gelade [TG80]
marked the starting point for the development of computational models of
visual attention. Its main contribution lies on the proposal of an early parallel
processing of simple, integral, features able to capture attention, in opposite
to the serial -sequential- process of attention needed to detect conjunctions of
features. As a remarkable result from this parallel processing of few features
proposed and maintained by Treisman in several works, arises the explana-
tion of both pop-out effects observed in visual search experiments with hu-
mans for certain features and the serial search observed for the conjunction
of those features. These experiments pointed that stimuli clearly different
in one unique feature from an almost homogeneous surrounding rapidly at-
tract our glance without the need of examining the scene, regardless of the
number of nearby objects acting as distractors. In contrast, when distractors
were clearly heterogeneous, or when the target differed from all of them in a
combination of features rather than in only one, subjects seemed to need to
examine the scene object by object, checking for a match with the target. So
that the time spent in searching grew linearly with the number of distractors.
Treisman held that this could be understood if parallel processing of features
exhibiting pop-out effects was assumed. Once saliency was determined from
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this parallel processing of a number of features, search was serial on the basis
of this final measure of saliency. Thus only the feature map corresponding to
the unique different feature in the case of a singleton target, would strongly
fire in the location of the target, thus conveying this high value to a final map
of activation, and directing attention to it. On the other hand, in the hetero-
geneous and conjunctive cases none -or several maps in different locations-
would fire, without providing for a clear salient location, thus explaining the
need for a serial search. This theory fostered the search for simple features
responsible for pop-out in the HVS, but also provided a suitable ground for
the computational modeling of visual attention.

These ideas were gathered by Koch and Ullman, to conceive a saliency-
based computational architecture of attention [KU85]. They proposed, in
agreement with Treisman, the parallel computation of retinotopic feature
maps and the integration of the activity of these feature maps at each posi-
tion in the corresponding position of a unique map of saliency. This map of
saliency would guide attention, directing it to points with highest values of
saliency. They also introduced a winner take all (WTA) network to deter-
mine the next most salient region, combined with a mechanism of inhibition
of return (IOR) acting on the saliency map, to allow for a dynamic selection
of different regions of a scene in the course of time. This architecture is
essentially bottom-up, although they pointed the possibility of introducing
top-down knowledge through biases of the feature maps. Besides, this pro-
posal have had a great influence in the development of computational models
of saliency. The figure 1.1 shows a scheme representing this model, adapted
from [KU85].

An important subsequent model of attention trying to explain more re-
sults on visual search experiments is the Guided Search Model hold by
Wolfe [Wol94]. In this model, feature dimensions (color, orientation, size)
rather than features (vertical, green, small, etc.) are assumed to be processed
in parallel and, therefore, to have an independent map of activation (saliency)
extracted from the input categorical channels. Besides, top-down influences
are considered by means of top-down activation (relevance) maps for each
feature dimension. Top-down maps are extracted directly as well from the
input categorical channels through rules specially designed for a given task.
All of these activation maps are further combined through weights that are
task-dependent. Interestingly, while weights of top-down maps are allowed
to be zero, weights of bottom-up maps are only allowed to be reduced up to
a minimum (non-zero) amount.

There are many other models of attention that were conceived mainly
from psychophysical and neurophysiological observations -not only related
to visual search-. Many of them claim for a biological plausibility by pro-



1.2. COMPUTATIONAL MODELS OF HUMAN ATTENTION 13

Figure 1.1: Koch and Ullman architecture of visual attention

viding a detailed description of a neural circuitry linked to known data from
neurophysiology. This is the case of the adaptive resonance theory to model
attention proposed by Grossberg [Gro76,CG03], the neural model of dynamic
routing of information by Olshausen et al. [OAE93], the FeatureGate model
by Cave [Cav99], the neurodynamical approaches hold by Deco and cowork-
ers [DZ01, DR04], or the model of bottom-up saliency coded in V1 cells by
Zhaoping [Zha02].

Meanwhile, other models are motivated by the study of attention taking
advantage of the information theory, trying to catch and describe the strat-
egy of information processing of the HVS in terms of formal principles or
statistical descriptors. Therefore Tsotsos [TCW+95] proposed the Selective
Tuning Model, exploiting the complexity analysis of the problem of viewing,
and achieving in this way several predictions on the real behavior of the HVS.
Rajashekhar et al. [RvdLBC08], have studied the statistical structure of the
points that attract the eye fixations of human observers in natural images in
surveillance and search tasks. In this way, they have modeled a set of low
level gaze attractors, in the form of filter kernels.

Finally, other models of attention have focused more on top-down than in
bottom-up aspects. An outstanding example was provided by the extensive
work conducted by Oliva and Torralba on modelling contextual influences
on attention. They proposed a simple scheme to introduce the reasoning on
the gist of a scene and its layout as driving scene recognition at very early
stages [OT01,TOCH06].
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1.2.1. Sources of information about visual attention

In the development of the previous theories, the initial sources of knowl-
edge about visual attention have been largely broadened, to feed, support
and refuse a variety of proposals. Here are briefly mentioned some of these
research techniques that will provide arguments for the development of this
dissertation. The main sources of information can be gathered in three groups
according to its origin: psychophysical experiments, neurophysiological data
and the statistical and computational analysis of images.

Psychophysical experiments have a long history. They have shed light
on key aspects of visual attention from the beggining of the research in this
field. Pop-out effects, evidences for efficient and inefficient search, asym-
metric behavior, influence of distractors, of heterogeneity, of similarity, of
different kinds of feature contrasts, of binocular rivalry, and a long etcetera
have provided invaluable information and constraints to build models. In
many cases these constraints affected to the covert attention, that is to say,
to attention that does not involve eye movements. Besides, overt attention
that is related to eye movements has been largely studied through eye-traking
experiments. As we will see, the spatial distribution of eye fixations is a quite
straigthforward and clear reference of priority. It allows, hence, for the quan-
titave assessment of measures of saliency and relevance not only on synthetic
images, but also on natural images.

Neurophysiological data from single cell recordings have described much
about receptive fields, contrast, color, scale and orientation sensitivities, as
well as neural organization. Multielectrode recording techniques like EEG or
visualization techniques like fMRI, PET, or VSD have provided information
about neural activity, and the response of different regions of the brain to
different natural and synthetic stimuli. But also other techniques from neuro-
physiology like TMS have delivered relevant observations in the functioning
of visual attention.

Finally, image analysis through statistical and computational tools have
also provided powerful concepts, measures and algorithms that have sup-
ported the construction of theories and models to describe and reproduce
the attentional function, and remarkably the computation of saliency.

Currently, we can indeed find several of the previous techniques involved
in a single experiment. Therefore, there are studies of fMRI imaging of brain
combined with recording of eye fixations with an eye-tracker, which next
analyse the results in the light of a given computational model of neural
behavior.

Therefore, a model of saliency that claims for biological plausibility should
find support in observations from this tripod of sources, and fit the best with
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the constraints imposed by the results delivered by them.

1.3. The interplay between saliency and rel-

evance to determine priority in human

vision

This problem is often addressed in different ways and from different views.
It poses a number of questions like: what is stronger saliency or relevance?,
how their relative strength varies with time?; how it varies with the type
of scene?; are there separate neural mechanisms coding each of them in the
brain?. There is a wide variety of works that have tackled these questions
that still remain open. But a deal of worthy knowledge has been aquired in
the aims of finding answers. Since the performance of the HVS excceds that
shown by computer systems in any minimally complex visual task, the known
constraints on its functioning in relation to these questions are also valuable
in the design of computer vision systems. Moreover, they are essential when
considering the biological plausibility of a given computational model.

1.3.1. Relative strength of saliency versus relevance

Many simple computational models of saliency operating on natural and
synthetic images, have shown a remarkable ability to predict human eye fixa-
tions as well as a variety of psychophysical results [MCBT06,BT09,GMV08,
ZTM+08,SM09]. However many works argue the actual strength of saliency
in governing human attention. This question is briefly revised in the follow-
ing, in the light of the recent works that deal with this issue.

It is worth to start clarifying that we are not trying to refute results that
point to a dominant influence of knowledge and top-down mechanisms on
the control of gaze during the realization of complex tasks, like for instance
driving. The dominance of top-down influences on eye movements when
doing strong goal-oriented tasks has been observed early by Yarbus [Yar67],
and is still being studied in depth like for instance in the remarkable works
of Hayhoe and Ballard [HB05].

However, from a view found in many papers, top-down processes deve-
lope a role stronger than saliency in driving attention, even in early free
surveillance. An interesting example is found in the work by Einhauser et
al. [ESP08] holding that objects predict fixations better than saliency. They
support this observation from results in experiments involving eye-tracking
data, human segmentation of the objects after surveillance, and comparison



16 CHAPTER 1. SALIENCY: CONCEPT, MODELS AND...

with the model by Itti and Koch [IK00]. But this work presents two main
weaknesses. First, there are available models of saliency of the state of the
art able to predict fixations in natural images clearly better than the em-
ployed by them. Second, the design of the eye-tracking experiment, where
observers where asked for remember objects following each image, could have
introduced a top-down bias towards objects. Also recently, Birmingham et
al. [BBK09] reported that saliency does not account for fixations to eyes in
social scenes, but again they have used the same model that suffers from poor
performance as well as strong design biases. Again, this fact could explain
at least in part, the reported results as arising from a poor computation of
saliency.

Taking into account the influence of contextual cues observed in psy-
chophysical experiments as well as the ability to recognize scenes even with
displaying times as low as 30ms, Oliva and Torralba [OT01, Oli05, OT06,
TOCH06] proposed that attention was guided by the gist of the scene. They
modelled fast scene recognition through feedforward processing of low spa-
tial frequencies. Since this recognition is supposed to subsequently drive
attention, this model can be seen as supporting for a stronger role of top-
down mechanisms to determine priority, even for early fixations. However the
initial feedforward scheme of processing to characterize the scene is clearly
stimulus-driven. Thus, it could be interpreted as evidence of a fast feedfor-
ward stimulus-driven representation that serves as ground for scene recogni-
tion, and even object recognition. This question will be examined further at
the end of the chapter 3.

A deal of classical and recent works have shown evidences of the strong
role of stimulus-driven mechanisms in human behavior. In a popular review,
Wolfe and Horowitz [WH04] went over the features that does guide and does
not guide attention on the basis of psychophysical evidences. They provided
a list classifying a variety of features, from the lowest level, like contrast, color
or orientation, to highest level, like words or faces. They made the classi-
fication as a function of the evidence and the probability for each feature
of driving pop-out or not. Interestingly, they find several low level features
that undoubtedly guide the deployment of attention, as well as a number of
probable features. Moreover, high level features (e.g. faces, name, semantic
category) are clasified under doubtful or probable non guiding features. Be-
sides, the analisys of the low level information content of fixated locations, as
opposite to non fixated ones, points to a strong influence of low level features
at least at the beginning of subject observation [TBG05,BT06a,FU08]. This
has been recently reinforced with the analysis of microsaccades [OTM+08].

Regarding the relative influence of saliency related to the time of obser-
vation of a scene, there is an extended view supporting for a decrease with
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time. An early observation in this sense was provided by Nakayama and
Mackeben [NM89], showing that transient and sustained attention are differ-
ent components. They hypothesized that transient attention is operative at
an earlier stage of visual cortical processing. This view has recently received
additional support from psychophysical results pointing in the transient ef-
fect of saliency in guiding eye fixations [PLN02,vZD06,DS10]. Indeed there
is consensus in that consistency in fixation locations between subjects drops
under prolonged viewing [TBG05]. However we find different interpretations
to this observation. In a revealing work, Tatler and colleagues [TBG05]
showed that while consistency between subjects decreases over time, even
without forcing a common starting location, there is no evidence for vari-
ation in the discrimination between the saliency at fixated and non-fixated
locations. They used a number of specifically modelled low level features to
account for saliency. Recent results by Foulsham and Underwood agree with
this observation [FU08]. In the light of this finding Tatler an colleagues assess
four different hypothesis for the involvement of saliency in the course of time:
i) saliency divergence with a relative drop of bottom-up influence in compar-
ison to top-down one as proposed by Parkhurst and coworkers [PLN02], ii)
saliency rank, that would mean the selection of locations with basis only
in saliency like in the model of attention of Itti and colleagues [IKN98], iii)
random selection with distance weighting independent of bottom-up and top-
down processes as proposed by Melcher and Kowler [MK01], and iv) strategic
divergence, which as proposed by the authors means that top-down strate-
gies chosen by observers are different, while the bottom-up frame of reference
remains the same. This last possibility is the only compatible with both a de-
crease in the consistency between observers, even with free starting locations,
and the constancy of low level content of fixations over time, both reported
in the study. From comparison of eye fixations on natural images between
patients with visual agnosia and healthy subjects, Mannan et al. showed
that consistency between observers in the very first fixations was equivalent
for healthy and unhealthy subjects. However for subsequent fixations only
unhealthy subjects (impaired to understand the image) maintained the con-
sistency between fixation patterns [MKH09]. This also points to a constant
influence of saliency and an increasing and divergent influence of relevance
in the spatial distribution of fixations in healthy subjects.

Just to have an idea of the difficulties involved in this effort to asses the
relative strength between saliency and relevance, it is illustrative the recent
study by Verma and McOwan, showing that a number of results claiming
for top-down influences in change detection were saliency biased. What was
supposed to arise from top-down behavior of subjects was however easily
explained by a simple measure of saliency [VM10].
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In sum, there is a strong support for physical saliency as driving human
attention at least in the beginning of free surveillance of images. This is very
important, since it would mean that saliency, or in general a stimulus-driven
representation, is also a key factor in unsupervised learning of new objects
and scenes, and even in spontaneous object recognition. In the following
chapters, the capability of predicting human fixations as well as a variety
of psychophysical results of a new simple model of low level, feedforward
representation of images, and the corresponding measure of saliency, will be
shown. These results will reinforce the support for a strong role of saliency
in the determination of early priority, but also the support for a strong role
of bottom-up mechanisms in the adaptive capability of the HVS to different
images. Besides, we will claim that AWS is a more robust and accurate
measure of saliency, and thus it is more suitable to be used in studies on the
assessment of the relative strength of bottom-up versus top-down processes
in human behavior.

1.3.2. Coding of saliency in the brain. How and where

The coding and location of saliency in the brain is also one of the main
open questions tackled by literature related to attention, and it has seen
an increasing research effort in recent years. The way in wich the bottom-
up and top-down attentional functions are deployed remains unclear, and
in particular, the existence of some kind of an image-based saliency map in
the brain is still under discussion. In a recent review, Fecteau et al. have
hold that the concept of a priority map rather than a saliency one, is more
probable to find a neural correlate [FM06]. They remark the fact that the
term salience or saliency is frequently used with the meaning of priority in
many neurophysiological studies that claim to identify the location or coding
of its neural correlate. They ground their analysis on four main properties
that a neural saliency map must have: i) it should encode spatial visual
information in a featureless manner; ii) lessions of its neural substrate should
produce defficits in attention; iii) electrical stimulation of part of its neurons
should facilitate attention to the corresponding region of the visual field ;
iv) it should receive information from the ventral visual pathway to sum the
relative saliency of an object. They point that the oculomotor network is
known to meet these properties and that relevance is also known to influence
its behavior. Besides, they remark that the temporal spiking profiles of
these neurons, recorded simultaneously to a singleton pop-out, only allow to
discriminate between target and distractor in the recurrent epoch but not
in the feedforward one. This is important because this argumentation is
supported mainly in observations of the temporal profile of single cells from
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the frontal eye field.
According to Zhaoping and coworkers, saliency could be computed at

V1, a lower visual area than usually thought. They propose that V1’s neural
responses can be used as universal currency to bid for attentional selection,
despite the feature tuning of the V1 neurons [Zha08,Zha02]. This hypothesis
is supported by a combination of different psychophysical and neurophys-
iological observations as well as the predictions of a computational model
of V1 [Zha98, ZM07, ZS06]. It implies a dissociation between bottom-up
attention and awareness, consistent with additional findings on binocular ri-
valry [SVP10] and monocular attention [SR10] . It also would remove the
need for a master saliency map for the bottom-up saliency. However they
point the possibility that other cortical areas could be reponsible for integra-
tion with top-down attentional factors. All of this seem to overcome in part
the objections posed by Fecteau et al., mentioned above. However it clearly
contradicts their assertion about the saliency map as requiring input from
later visual areas, which refuses the idea of saliency as a summary of early
visual processing.

Indeed, visual areas from the parietal cortex are usually proposed to en-
code saliency in different forms. Parietal cortex is thought to play a crucial
role in saccade updating and in general in attention deployment and analysis
of space. Many neurophysiological studies have hold that this area maintains
a neural representation of visual priority, with basis in the analysis of record-
ings of single cells in monkeys as well as human brain imaging by different
methods [GKG98, TM04]. In much more recent studies, the right anterior
intraparietal cortex is proposed to be the neural substrate for maintaining a
priority map across saccades with basis on results under TMS [vKGS+10],
and also the posterior superior parietal cortex is proposed to host a priority
map from fMRI observations [RFV10]. Saalmann et al. reported that, under
a visual matching task, the posterior parietal cortex and the medial tem-
poral area become synchronized. They suggest that this points to posterior
parietal cortex as driving a selective modulation of activity in earlier sensory
areas to enable focused spatial attention [SPV07]. But these studies do not
tackle the analysis of saliency versus relevance.

In an exhaustive review of neurophysiological literature, Corbetta and
Shulman find enough evidence for the existence ot two segregated networks
devoted respectively to goal-directed selection and to stimulus-driven selec-
tion [CS02]. They propose that there exists a bottom-up system that involves
the temporoparietal cortex and inferior frontal cortex and that is largely lat-
eralized to the right hemisphere. It would work as a circuit breaker for the
dorsal system, directing attention to salient stimuli. The top-down system
would include parts of the intraparietal cortex and superior frontal cortex.
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They also propose that while these systems interact during normal vision,
both are disrupted in unilateral neglect. More recently, Buschman and Miller
recorded simultaneously cells from prefrontal and posterior parietal cortex,
finding that while bottom-up signals arise from the sensory cortex, the top-
down signals arise from the frontal. Moreover, they also proposed that
bottom-up mechanisms are associated to high frequencies, while top-down
signals are associated to low frequencies, and thus emphasizing synchrony at
different bands [BM07]. Besides, in an EEG study in humans involved in a
face discrimination task, Landau et al. observed different effects of volun-
tary and involuntary attention on EEG activity in high frequencies [LER+07].
Very recently, Mavritsaki and colleagues have compared fMRI images from
subjects involved in visual search tasks with the results of BOLD predictions
of a computational model of attention for the same tasks. The obtained
results make them to propose that a saliency map is coded in the right
temporoparietal junction in agreement with the proposal of Corbetta and
Shulman. They also identified separate networks of areas in parietal and
occipital cortex, linked to top-down mechanisms of facilitation and suppre-
sion [MAH10].

1.4. Computational models of saliency

The main concern of the models mentioned in section 1.2 was the under-
standing of the attentional function in the human visual system. Some of
them have also been employed in technical applications of computer vision
with remarkable achievements. Therefore it is sometimes difficult to establish
a clear separating line between biological and technical models. However, we
will make this classification here and we will tackle in this section the de-
scription of the last group. These models are characterized by either a main
concern on technical performance, a principled approach to the concept of
saliency, and/or a remarkable contribution to the development of applications
in computer vision. Thus, the driving goal underlying them is to deliver an
efficient and generic way to select information, to reduce the high complexity
of a variety of visual tasks requiring image analysis. In most cases we also find
claims of either biological plausibility or a contribution to the understanding
of the HVS.

In the 90’s we find two particular implementations of the Koch and Ull-
man architecture being of special interest. The first was made by Milanese
and was initially only bottom-up [Mil93], employing as low level features
gaussians of opponent color components, oriented gaussian first derivatives
of intensity to measure orientation and edge magnitude, and divergence of the
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gradient of intensity to measure curvature. These initial maps were further
filtered by a conspicuity center-surround operator, involving the difference of
oriented gaussians. Within each feature the maps were integrated in a unique
conspicuity map by taking the maximum response through scales and orienta-
tions. Finally, the feature maps were integrated in a final measure of saliency
by means of a relaxation rule. Further on, in subsequent works [MWG+94],
a top-down component conspicuity and a motion alerting system were in-
corporated. The top-down component had the form of a system for object
recognition, which applied to a few small regions of interest provided by
the bottom-up component, delivered a top-down map favoring regions of
recognized objects, and was integrated in the same relaxation process with
the bottom-up conspicuity maps to determine the final saliency, highlighting
known objects against unknown ones. The alerting system based on motion
detection was used to drive attention instead of saliency through switching
dependent on an alertness parameter. This model is one of the first efficient
approaches to bottom-up saliency computation on natural images, and many
of its details have been incorporated in subsequent models.

The second implementation of the Koch and Ullman architecture was
hold by Itti et al. [IKN98], who similarly made use of contrast, color and ori-
entation as separate features, in a center-surround approach, but introducing
a more simple integration process of weighting and addition of maps at first
and of iterative spatial competition and addition in a subsequent work. It
starts, like Milanese, decomposing the image in intensity and two color oppo-
nent components (RG and BY). These components are further decomposed
through filtering with Gaussian pyramids, and with a bank of real valued
Gabor filters. In the original version, which is the most efficient and sim-
ple, normalization is performed using an operator that favors a low number
of local maxima with a value close to the global maximum. In a later ver-
sion, this operator was replaced by a non-linear and iterative filtering with
difference of Gaussian (DoG) filters [IK00], followed by normalization and
integration by the summation of the resulting maps. This filtering increases
the computational cost and it is too selective. What is more, its perfor-
mance in predicting human fixations is lower. Anyway, these two approaches
to integration were significantly faster than the relaxation rule proposed by
Milanese. In a later work, Navalpakkam et al. introduced a top-down com-
ponent in the model based on the learning of the feature values of a target
from training images, yielding a feature vector which is used afterward to
bias the feature maps of the bottom-up component. In this way they are
able to speed up the detection of a known target in relation to the use of the
bottom-up model alone [NI05]. This model has been modified and extended
with a variety of features and additional functions. It has been compared
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with human performance as shown in section 1.3, and tested in a variety of
applications, some of which will be referred in the next section. It is usually
a reference for comparisons in the most recent works related to saliency. In
sum, it has yielded a number of successful results and applications, being the
basis of a wide research activity in the field.

In recent years, more and more new models are emerging with improved
results. In the following, we briefly mention a selection of the most remark-
able approaches. Le Meur et al. built a model based on a sequence of bioin-
spired preattentive modules [MCBT06]. They used the Krauskopf color space
and also performed a multioriented and multiscale decomposition. Likewise,
the competition and integration process involved several bioinspired opera-
tions: contrast sensitivity, visual masking, center-surround competition and
perceptual grouping. They achieved with this aproach results that improved
the model by Itti et al. in the prediction of eye fixations on a number of im-
ages. In a subsequent version they added a dynamic component of saliency,
enabling the model to be applied in video sequences [MCB07]. Gao et al.
studied the hypothesis that saliency-based decisions are optimal in a deci-
sion theoretical sense [GMV08]. With this aim, they validated a discriminant
center-surround saliency measurement. In this approach, they used the same
color space than Itti et al. and a similar filtering process, involving DoG and
differences of oriented Gaussians (DoOG). Saliency was obtained through a
center-surround discriminant process through the use of mutual information.
They studied in depth the biological plausibility of their approach, and also
obtained a series of psychophysical results that the model by Itti et al. was
unable to reproduce [GV09]. Harel et al. held a markovian approach to the
extraction of saliency by means of a graph algorithm from the same feature
maps used by Itti et al., and denoted by graph-based visual saliency (GBVS),
showing a high performance in predicting eye fixations on a dataset of gray
scale natural images [HKP07].

Several recent models propose decomposition through the projection of
the image on independent components of natural image patches, avoiding
filter parametrization. This proposal is based on the statistical interpreta-
tion of the standard model of V1 as the result of evolution to match the
statistics of natural images [BS97, O+96]. From these responses, Bruce and
Tsotsos [BT09] proposed an approach to visual attention through informa-
tion maximization (AIM), where saliency is modeled using a self-information
measure. It provided remarkable results in the prediction of eye fixations and
the reproduction of several psychophysical phenomena. Similarly, Zhang et
al. [ZTM+08] proposed a model that computes saliency on independent com-
ponent patches but through a Bayesian approach. This model was denoted as
saliency using natural (SUN) image statistics. Seo and Milanfar [SM09], us-
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ing also a statistical-based decomposition, have proposed a self-resemblance
measure to obtain saliency, again with remarkable results.

Other recent approach hold by Hou and Zhang relies on the process-
ing of the image in the frequency domain, through a very simple compu-
tation of spectral residues [HZ07a], achieving a high performance in terms
of processing speed, while keeping state-of-the-art performance reproducing
psychophysical results. This approach has given place to other models also
computing saliency in the frequency domain. For instance the static and
dynamic models of saliency proposed by Guo et al., that also work in the
frequency domain, but instead of using the amplitude, they rely on the use
of the phase spectrum to compute saliency [GMZ08].

All of these models have been assessed through the capability to reproduce
psychophysical observations, the capability to predict human fixations, and
also through the comparison with -at least- the model of Itti et al.

1.5. Applications in computer vision and im-

age processing and analysis

Most of the mentioned models have also shown their suitability to provide
a generic solution in a wide variety of applications of computer vision. Again
the leading position in the number of applications is clearly hold by the
model of Itti et al. (and a deal of modified versions). In this section, a brief
description of the fields of application of bioinspired models of saliency is
provided, along with a selection of illustrative examples. We do not tackle
here the use of models of saliency in the study of the HVS, since it has already
done in the previous sections. Likewise, we have left appart measures of
saliency that have been extensively used in computer vision for interest points
or ROI selection, but without a biological concern either in its formulation
or in its evaluation procedure.

1.5.1. Visualization

A usual application of saliency is related to improve visualization under
a variety of technical constraints, such as spatial modulation of compres-
sion rates, or the need of resizing found for instance in thumbnailing or in
visualization in mobile devices. Therefore we can find examples of image
[OBH+01] and video [Itt04] compression based on saliency-based foveation.
Likewise, thumbnailing application has been used as an example presented
together with the formulation of a powerful model of saliency by Le Meur et
al. [MCBT06], showing its suitability to drive cropping of images for selection
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of thumbnail views. This is also the case of Hou and Zhang [HZ07b], who
have applied a model of bottom-up saliency to thumbnail generation.

An interesting trend in visualization is found in the application of saliency
to boost video and image resizing and retargeting techniques, which illus-
trates well the benefits of combining saliency with other image processing
approaches. Wang et al. have proposed to combine gradient and saliency
from the model of Itti et al. in an importance map to drive image resiz-
ing with very good results [WTSL08]. Hua et al. have employed saliency
tracking for distortion-free video retargeting [HZL+09]. Hwang and Chien
have applied the model of Itti et al. in image retargeting through adaptive
seam carving [HC08]. Liu et al. have recently shown improved results with
a similar approach with different modifications, among others the use of an
improved measure of saliency [LYS+10].

1.5.2. Segmentation

Saliency has been assessed and applied in the solution of segmentation
problems, comparing the results of saliency based segmentation against hand-
made segmentation by humans as ground truth. Therefore, Hou and Zhang
and Seo and Milanfar have shown the suitability of their models in applica-
tions of generic saliency-based object segmentation [HZ07a,SM09]. Achanta
et al. have proposed a model of frequency-tuned salient region detection
for object segmentation, that achieves remarkable results on a large dataset
of 1000 natural images segmented by humans, outperforming a selection of
models of saliency based on both pure computational and bioinspired ap-
proaches [AHES09]. We also find approaches that use saliency for boosting
models that address more especific segmentation problems. For instance,
in a recent model of human figure segmentation Soceanu et al. have used
modified saliency maps [SBR+10]. Also recently, Sun et al. have proposed
a combination of edge detection with GBVS for automatic pre-segmentation
of high resolution remote sensing images [SWZW10].

1.5.3. Detection and recognition

Models of attention, and specially models of saliency are showing more
and more their suitability for the design of generic models for learning and
recognition of objects. Frintrop et al. [FBR05] have dealt object recognition
using a version of VOCUS incorporating a depth map from a laser scaner,
itself a modified version of the model of Itti et al. Walther et al. have
shown that the use of saliency can considerably boost learning and recog-
nition performance, enabling simultaneous learning of multiple objects from
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one image [WRKP05]. Gao et al. have applied discriminant saliency in the
localization of objects and the classification of images [GHV09]. Han and
Vasconcelos have applied measures of saliency and top-down relevance with
a HMAX network to provide a biologically plausible approach able to achieve
state-of-the-art performance in object recognition [HV10]. Barrington et al.
proposed NIMBLE, a model of visual memory based on fixations extracted
from saliency [BMwHC08]. They showed its capability to recognize faces
from only one fixation. Kanan and Cotrell have recently improved this ap-
proach by using natural image statistics in the extraction of features as well
as in the computation of saliency [KC10]. Their model outperformed other
state-of-the-art approaches clasiffying objects and recognizing faces in pop-
ular datasets. Seo and Milanfar have used salient features as descriptors to
implement an effective algorithm for training-free generic object detection,
that was able to learn objects from one unique example, subsequently achiev-
ing a high recognition performance [SM10]. Very recently, a powerful generic
object detector has been proposed that uses a measure of objectness of a given
window, mainly based on the measure of saliency [ADF10]. This objectness
measure is shown suitable to learn unknown object categories from surveil-
lance of unknown images, but also to improve performance in detection and
localization of known objects and categories.

Several works have theoretically studied the suitability and optimality
of spatial attention in object learning and recognition [HK09]. In any case,
these recent approaches to generic object recognition, pushing forward state-
of-the-art performance, exemplify quite well the benefits of using saliency for
driving learning of novel objects from free surveillance, as well as for efficient
scene checking for recognition of already known objects.

1.5.4. Robot vision

Saliency is being extensively applied in robot vision as a method to select
spatial information. It seams to be quite reasonable since robotic approaches
usually aim to mimic human behavior in a given task. This statement partic-
ularly holds in the context of humanoid robotics, where there are examples
of application of bottom-up saliency, like the approach by Ruesch et al. that
fuses visual and auditory saliency to drive the exploratory behavior of the
iCub robot [RLB+08]. Frintrop et al. used VOCUS, a modified version of
the model of Itti et al., in the basis of an active system for mapping and
robot localization [FJC07]. Siagian and Itti have applied a version of their
model of attention that incorporated a gist module to rapid scene classifi-
cation for robot navigation [SI07]. Meger et al. have used spectral residual
saliency in a robot vision system able to locate objects and to build an
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spatial-semantic map of a region [MFL+08]. Santana et al. have recently
employed the saliency maps of Itti et al. using only intensity and colour
channels to boost real-time trail detection [SACB10]. Likewise, Montabone
and Soto have used saliency-based features inspired in a real-time implemen-
tation of VOCUS [FKR07] to boost human detection in a mobile platform,
outperforming other state-of-the-art approaches [MS10].

1.5.5. Other applications

Since it is a generic, low level and data-driven tool for the analysis of nat-
ural images, saliency has been used in a variety of aplications needing a front
end for selection of interest points or regions. Michalke et al. have proposed a
driver assistance system combining saliency, relevance, tracking and recogni-
tion to provide warnings in dangerous situations [MGS+07]. The system was
mainly based in bioinspired models of attention [IKN98,FBR05,NI06]. Tian
and Yue have proposed an adaptation of the model of Itti et al. for change
detection in remote sensing images, showing a high performance [TWY07].
Mahadevan et al. have used saliency for anomaly detection in crowded
scenes [MLBV10]. Huang et al. have proposed a method for image search
re-ranking based on saliency, that distinguishes cluttered from uncluttered
images using the distribution of saliency inside them [HYZF10]. In a recent
work, Parikh et al. have proposed a real time version of the model of Itti et
al. for the use of saliency-based image processing jointly with retinal prosthe-
ses to allow identification of important objects, in spite of the low resolution
of these implants [PIW10]. One such application points in a very interesting
direction: the development of improved prostheses able to mimic biological
processing of images. It seems reasonable to expect a notable role for a mea-
sure of saliency, and in general for human-like bottom-up processing in such
an approach.



Chapter 2

Whitening in Early Visual
Coding

As described in the previous chapter, existing models of saliency that
have incorporated a biologically plausible scheme of image decomposition,
have done it in a rigid and non adaptive manner. Other models, like the
spectral residual approach have avoided the question of image decomposition,
through a direct measure of spectral dissimilarity on the Fourier transform
of the image.

Therefore, both of the two widely used schemes to decompose images,
either based on filter banks or on independent components analysis, share an
important property: they always use the same basis of vectors in the feature
space to represent any image. Filter bank approaches project a fixed set of
color components on a fixed partition of the spectral domain. Independent
components are determined from a set of training natural images and are
not modified subsequently. In sum, existing models of saliency rely all the
adaptive work in a rigid process of normalization and weighted summation
of the initial responses or directly in a subsequent measure of dissimilarity
or improbability.

This does not match the behavior of the HVS, which adapts its responses
to the global and local features of each specific image. It shows short-term
adaptation to contrast, to color content and to spatial structure. A wide
variety of neural mechanisms of adaptation have been described all across
the visual pathway, from retinal photoreceptors and G cells to striate and
even extrastriate cortical cells [RR09, Koh07, CWS+07]. One of the main
functional benefits of this adaptation is thought to be the decorrelation of
cell responses, in order to improve representational efficiency [Koh07]. In-
deed, neural adaptation under natural stimulation has been shown to produce
overall a decorrelation of neural responses [VG00,EBK+10,ALR93].

27
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It has been pointed that the undertanding of contextual influences will
have important implications for understanding human vision, but also for
the development of applications such as adaptive visual aid [SHD07].

Short-term decorrelation of neural responses seems thus to be a plausible
adaptation mechanism in populations of neurons. Consequently, in this chap-
ter contextual adaptation is approached in early coding, from an ecological
perspective. The underlying hypothesis in such an approach is that adapta-
tion manages to match the response properties of our visual system to the
statistics of the images that we see. Whitening from response decorrelation
and variance normalization in populations of neurons is studied as a possible
overall effect of short-term contextual adaptation. Its biological plausibil-
ity will be examined and discussed, and different results on its impact on
perceptual performance will be shown.

2.1. Temporal scales and types of adaptation

The homogeneity of objects in natural scenes makes images highly redun-
dant, allowing for instance the prediction with high confidence of luminance
and color values of an unknown part of an image from the known values of
part of the image, this is a classical observation already pointed by Attneave
in the 50’s [Att54]. Thereby, this redundancy of information present in natu-
ral images that arises from their statistical characteristics, has been long seen
as a powerful stimulus for sensory adaptation. Particularly, it has motivated
the proposals by Barlow of efficient sensory coding as well as neural decor-
relation as a powerful adaptation mechanism [Bar61, BF89]. This is usually
referred as the efficient coding hypothesis.

In an enlightening review on the relation between natural image statistics
and neural representation, Simoncelli and Olshausen [SO01] point out that
an important issue for the efficient coding hypothesis is the timescale over
which environmental statistics influence a sensory system. This can range
from millenia (evolution), to months (neural development), to minutes or
seconds (short-term adaptation). Indeed, adaptation has been observed to
occur in temporal scales as short as a few tens of milliseconds [RR09,Koh07,
CWS+07,SHD07].

In a more recent review on the neural mechanisms and models of short-
term and mid-term adaptation, Kohn states that to a first approximation,
adaptation effects appear qualitatively similar on a wide range of time scales
with more prolonged adaptation resulting in stronger effects [Koh07]. On the
other hand short-term adaptation mechanisms and the related perceptual
effects use to be tackled under two different paradigms, one is contextual
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adaptation -adaptation to the spatial context- that seems to be mainly re-
lated with intra-areal neural connections, and the other is temporal adapta-
tion -adaptation to the temporal context- that implies a certain involvement
of memory. Despite this differentiation, these two kinds of adaptation seem
to be closely related, both functionally and in terms of their perceptual con-
sequences [SHD07].

The previous observations motivate our approach, aiming to extrapolate
-in a first approximation- the observed long-term adaptation of the visual
system to shortest time scales, that might explain contextual adaptation.
This agrees with the fact that existing functional characterizations of cor-
tical visual areas suggest that their processing either implicitly or explicitly
reflects the statistical structure of the visual inputs [SHD07]. Therefore, the
match of cell receptive fields to the statistics of the set of natural images is
briefly reviewed in the next section. Next the match of the adaptation of
these receptive fields to the statistics of particular images is formulated and
modeled under similar terms, with a concern on biological plausibility.

2.2. Long term adaptation

Arisen from the seminal works of Hubel and Wiesel [HW59,HW68], cortex
cells exhibit receptive fields that are selective to scale and orientation while
being well localized in space, and that can be approximated by a bank of
Gabor-like filters.

This model is also interpreted as the result of the adaptation of the HVS
to the statistics of natural images. It has been shown how this kind of
receptive fields naturally emerge when imposing sparse coding constraints
or when computing principal or independent components from patches of
natural gray-scale images [O+96,BS97].

Besides, natural scenes exhibit a limited range of chromatic distributions,
giving rise to a limited range of adaptation states, similarly to what hap-
pens with spatial structure [WM97]. Consonant with this fact, Hoyer and
Hyvarinnen extended the statistical interpretation of cell responses to color
natural images [HH00]. This work provided a coherent interpretation of spa-
tial and color receptive fields, as an over-representation of the image being
watched, coding it through independent components of the set of natural
images. Furthermore, these extracted components are in fair agreement with
color coding using luminance and two double-opponent components, RG and
BY, as found in psychophysical and physiological observations. With a dif-
ferent approach, Lee et al. have shown from the analysis of hyperspectral
images that color opponency emerges as an efficient representation of spectral
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properties in natural scenes [LWS02].
Since these interpretations support adaptation to the set of natural im-

ages, they find an explanation in a long-term adaptation of the HVS to
chromatic and spatial features.

2.3. Short term contextual adaptation

As pointed above there is a wide variety of evidences supporting the fact
that neurons adapt their responses to different changes in images in small
temporal scales. As small as tens of milliseconds. Numerous evidences, both
psychophysical and physiological, suggest that this short-term adaptation
acts to reduce dependencies between neurons, driving an active recalibration
of neural sensitivity based on experience [Koh07,SO01]. It seems to alter neu-
ral responsiveness to take advantage of the available dynamic range, changing
cell tunning slopes, and hence stretching or compressing the range of stimuli
that influence neural receptive fields.

Besides, at the basis of the efficient coding hypothesis decorrelation is a
mechanism of adaptation that allows the HVS to use fully the limited dy-
namic range of V1 neurons [BF89]. Likewise, gain control and variance (con-
trast) normalization are two widely accepted adaptation mechanisms that
provide a good support for the decorrelation and whitening of responses
[Koh07]. Starting from the standard receptive fields resulting from long
term adaptation of the visual system, the proposal here formulated is that
the adaptive whitening of the corresponding responses, explains contextual
adaptation to particular images. Since color and spatial coding are related
to differentiated neural mechanisms, we will study separately each of them,
but the formal approach to adaptation to both of them will converge in a
unique adaptive paradigm based on whitening.

As it will be shown in the subsequent chapters, short-term whitening in
populations of neurons will also allow us to explain a variety of phenomena
related to bottom-up saliency.

2.3.1. Coding of color

Webster and Mollon pointed that: highly restricted color distributions
characterizing natural images may provide a potent stimulus for adaptation,
inducing strongly selective changes in color appearance. Moreover, the vari-
ability is large enough so that very different contrast adaptation effects will
occur for individual scenes, and observers in specific contexts may thus en-
code colors differently [WM97]. These statements convey an explanation for
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the many evidences already found of such short-term adaptation in both psy-
chophysical and physiological experiments. These evidences had also led to
Atick et al. to propose a decorrelating and gain controlled neural network
for adaptive color coding in the early visual pathway [ALR93].

In an illustrative study combining both physiological and perceptual data,
Wachtler et al. observed the responses of V1 neurons from awake monkeys
with a strong color selectivity [WSA03]. Stimulation was made through
relatively large color patches, covering all the classic receptive field of the
recorded cells. Taken the responses of these neurons as representatives of
populations with color sensitivity they found that the opponent component
representation observed in LGN, is already recoded in V1 through a rather
complex transformation. Besides, they observed changes in tunning proper-
ties of cells driven by changes in the chromaticity of the background, that
is by the chromatic contrast of the stimulus to the background. Likewise,
they also found a correspondence between physiological observations in mon-
keys and perceptual results of color appearance for humans using exactly the
same stimuli, indicating that coding of color in V1 might already contribute
to color appearance. Hence color coding admits schemes different to raw RG
and BY opponencies already in early visual areas, and its contextual adap-
tation seems to be closely related to the corresponding perceptual changes.

From psychophysical experiments contextual adaptation has been ob-
served to produce sensitivity changes that alter color appearance by reduc-
ing the perceived contrast of colors that are similar to the adapting axis,
and by biasing the perceived color of other stimuli away from the adapt-
ing axis [WMBW02]. Rosenholtz et al. reported reversal and alteration of
color search asymmetries depending on the color of the background. They
explained the observed behavior through a simple mahalanobis distance in a
McLeod and Boynton color space [RNB04]. Since they did not propose how
to combine such a measure with spatial saliency, it is difficult to test it in
natural images. But, interestingly, it points in the direction adopted by us,
since a mahalanobis distance is in fact a statistical distance, and hence it can
be taken as the euclidean distance in a whitened representation of a given
original space.

To date, most color-based saliency models, do not consider this contextual
adaptation of color representation. This also holds for the decomposition of
the image through its projection on the independent components of a large
number of patches extracted from natural images, without a specific color
model. These approaches to color coding only reflect long-term adaptation,
and are not altered by the chromatic composition of a particular image.

In a revealing work, in the context of computer vision without any par-
ticular concern on biological plausibility, van de Weijer et al. presented a
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method for boosting saliency to take advantage of color in interest point
detectors [vdWGB06]. In essence, they proposed to adapt the color rep-
resentation to the set of images involved. To do this, several axes of the
color jet in a particular color model were rotated up to get a decorrelated
representation, and next the axes were rescaled up to have a spherical color
distribution in the new space. Hence, the norm in such a space serves as a
measure of distinctiveness. From this representation, the necessary transfor-
mations were applied to obtain saliency with a given interest point detector,
improving its performance. However, this approach still does not provide
adaptation to the image, but only to the reduced set of images to be further
used. It is interesting to note that with different random selections of images
from the same dataset, adaptation parameters were obtained that although
being close, were still clearly different.

According to the previous argumentation, the use of a color model that is
whitened for each different scene is proposed here to account for contextual
influences and to efficiently use the available dynamic range. We propose that
the L,M,S signals from photoreceptors are involved in a process of adaptation
that overall can be modeled by the effects that produces to use other trichro-
matic whitened representation. This ideally would provide a representation
of the chromatic space with points spherically distributed. Actually, for a
single natural image points most probably will not be spherically distributed,
since there use to be strong higher order correlations in the color distribu-
tion. Other important benefit of this approach is that in most of images
it improves discriminability of different chromatic regions respect to a rigid
representation. On the other hand, in such a representation the modulus is
a suitable measure of distinctiveness, able to explain psychophysical results
as shown by Rosenholtz et al [RNB04]. But before calculate the modulus we
can use this whitened representation to analyse the spatial structure of each
of the adapted components. We can hence perform a spatial decomposition
of this already adapted representation of color, to further involve it under
contextual spatial adaptation.

It can be objected that this is a rather coarse approach to color decorre-
lation, since it is globally done between three unaltered components, before
any kind of spatial filtering. This observation seems to detract from the bi-
ological plausibility of our approach because different mechanisms of spatial
pooling occur from the beginning in the retina [RR09]. Moreover it does not
match the continuum of color selectivities observed in V1 [WSA03].

However, the HVS seems to have specific functional subsystems devoted
to color and form processing. Therefore color and spatial selectivity are
thought to arise from different neural mechanisms. An important number
of results in psychophysics, neuroanatomy and neurophysiology give support
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to such a coarse aproach of an amount of independent processing of color
and spatial structure [LH87, GM04] . Indeed color components follow very
early different visual pathways, while most of spatial selectivity is thought to
occur in the cortex. Therefore, in a first approximation color decorrelation
can be modeled without taking into account spatial interactions. Moreover,
it remains a possibility that in fact decorrelation of color information be
produced independently of decorrelation of spatial information. Hence, it is
reasonable to suppose that there is a decorrelation between luminance and
the two color opponent components coded early in the brain. That said,
the simplest option adopted here of modeling color and spatial decorrelation
appart seems legitimate and even advisable for the sake of clarity. This
holds even more since the aim is to model an overall effect and test the
explanatory capability of a simple approach to recoding for representational
efficiency, without going down to a mechanistic level involving real neural
networks in the brain. That is, the approach here proposed is a functional
approach rather than a mechanistic one.

To sum up, whitening of color components constitutes in our view a
plausible contextual adaptation mechanism, which boosts and clarifies the
further computation of saliency, but also provides an adaptive representation
of the image that contributes to an efficient use of the available dynamic
range.

2.3.2. Coding of spatial structure

There are many examples of visual illusions produced by the spatial con-
text in an image in which perceptual estimations become sistematically erro-
neous, accounting for contextual biases in visual processing –see for instance
the review by Schwartz et al. [SHD07]. Correspondingly, contextual adap-
tation of neural responses to spatial frequencies and orientation that rely
outside of the classical receptive fields have been observed in a number of
physiological studies [Koh07, SHD07]. We find hence many examples that
show the existence of strong contextual influences beyond the classical recep-
tive fields [VG00, SGJ+95, SLF03, CBM02]. Besides, neural responses show
strong deviations from the standard model predictions under observation of
stimuli from natural images, with a contextual content very different from
synthetic stimuli [VG02].

One already classic example of contextual influences are illusory contours,
which are perceived as sharp boundaries between two regions that do not
differ in mean luminance or chromaticity. Cortical cells with orientation se-
lectivity have been observed to respond to these contours. Thus cells without
any oriented stimulus in their classical receptive field respond to a contour
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that arises from the contextual texture. Grossberg et al interpreted this fact
as the result of a context sensitive perceptual grouping taking place in V1
and even in a larger scale also in V2 [GMR97]. Montaser-Kouhsari et al have
used fMRI imaging to measure short-term adaptation to illusory contours.
They have found that early (V1 and V2) and a number of higher visual areas
exhibit adaptation to illusory contours, with increasing orientation selectivity
from early to higher visual areas [MLHL07].

Consequently, there is a considerable number of experimental observa-
tions that have already pointed to the insufficiency of the standard model to
explain the V1 functioning. Olshausen and Field consider that these failures
are closely related to experimental setup biases, which affect the standard
model, and that must be overcome [OF05]. The description of responses
of single cells and the use of synthetic stimuli as some of the most relevant
causes of these biases are pointed. Their analysis allows them to assess the
fraction of V1 functioning understood in a maximum of a 15%.

It is worth remarking the need of analyzing and modeling the behavior
of groups of neurons, rather than single neurons. In a neurophysiological
experiment, Chen et al. observed that small visual targets elicit widespread
responses in V1 [CGS06]. Their study on the optimal decoding of corre-
lated population responses indicates that decorrelation at the decoding stage
has to do with noise rejection. Recently, decorrelation has also been shown
even in nearby neurons with similar orientation tuning [EBK+10]. Other
works also show the need of modeling neural behavior in terms of population
codes [PDZ00, ALP06]. It was noticed that this approach can be used to
explain temporal adaptation –long, mid or short-term– as a consequence of
neural plasticity. We find a remarkable example of such an adaptation in the
observation of improvement of orientation coding in V1 neurons by means
of practice [SVQO01]. Therefore population codes might help to explain the
close links between adaptation to the spatial context and adaptation to the
temporal context.

In agreement with these theories, lateral connectivity, present in V1, sup-
ports the idea of a collective organised behavior on the visual cortex. Ol-
shausen and Field also drew attention to the numerous neurophysiological
and psychophysical evidences indicating that a stimulus with a given orien-
tation produces facilitation for other stimuli in the visual field with similar
orientation [OF05]. However, it causes an inhibition, or at least a lesser facil-
itation, for stimuli that are orthogonal to it. This suggests that V1 neurons
have an orientation specific connectivity structure, beyond what is considered
by the standard model. Hence, the lateral connections within cortical layers
might be responsible, at least in part, for adaptation to spatial features of
stimuli and for the deployment of contextual influences. This kind of lateral
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connections resembles common implementations of Hebian NN for forward
whitening.

The above argumentation led us to propose the adaptive whitening of
local scales with orientation specificity. Again, in such a representation of
scale composition, distinctiveness can easily be computed as the modulus. It
must be noticed that this whitening, although based on a local representa-
tion of scales, is spatially global. Thus, the resulting short-term adaptation
is matched to the global structure of the image. This provides a suitable
ground for the important contextual influences already mentioned. It also
agrees with the recent observation that the number of salient stimuli in a
display reduces their saliency, regardless of their proximity [WPPF10]. The
adaptive whitening strategy for spatial features fits the global nature of the
competition for saliency, and its close relation to the capacity limits of per-
ceptual encoding.

2.4. Adaptive whitening, a functional frame-

work approach to early visual processing

Following the line introduced in the previous sections, concrete schemes
of decorrelation founded in known characteristics of the HVS have been im-
plemented to study their explanatory capabilities. The four main schemes
considered consisted of decorrelation of RGB or LMS color components fol-
lowed by multioriented multiscale decomposition and: 1) whitening of scales
within each orientation; 2) whitening of orientations within each scale fol-
lowed by whitening of scales within each whitened orientation; 3) whitening
of color components using as samples all the scales and orientations followed
by the steps of 1); and 4) joint whitening of band-pass responses, mixing
orientations and scales.

The first scheme is the simplest one and is justified by the discussion
in the previous sections. The second scheme aimed to test the effects of
decorrelating not only scales but also orientation, doing it separately. The
third scheme was motivated by the impact of spatial structure in color per-
ception and distinctiveness, and the need to check in a simple and general
manner possible effects of this interaction. Finally, the fourth scheme was
conceived to check possible differences when decorrelating responses without
the assumption that decorrelation is constrained by the orientation specific
connections observed in the visual cortex.

Since computational complexity of whitening is highly dependent on the
number of components (original coordinates) rather than the number of sam-
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ples, an efficient coding approach based on whitening will benefit from in-
dependently whitening of different kinds of magnitudes. Therefore, if no
difference appears between the four tested schemes, it is clear that the light-
est and most efficient approach is given by the first scheme.

To implement spatial decomposition, a measure of local energy at several
bands of orientation oi and scale sj is used. The details of the filters employed
are given in the next chapter. Three different methods of whitening have been
also considered: z-scores from PCA, and independent components from Jade
and FastICA algorithms [CSP93,HO97].

2.4.1. Color statistics and whitened color components

Color statistics in a given natural image present a high degree of corre-
lation in a typical RGB space. This also holds for a LMS space related to
the retinian cones responses. In this section this fact is qualitatively exam-
ined, as well as the effect of both whitening of color components and their
nonlinear transformation to get a Lab space representation.

To this end, a large dataset of calibrated color images [PVV09] has been
used. This dataset provides a representation of the XYZ and LMS compo-
nents of a large number of images. The XYZ components have been used to
obtain the corresponding sRGB image and the components in a Lab color
model. Besides, the LMS components obtained through the classical char-
acterisation of Smith and Pokorny [SP75] have been used as initial color
components for further whitening. This representation of color is related to
the spectral sensitivities of cone photopigments. It can hence be taken as
a representation of the image in the trichromatic color space determined by
the typical retinian sensors of a healthy subject. All the images of the urban,
snow and seaside, and the natural objects 01 groups of the dataset were pro-
cessed after a cut from the left side to remove the calibrating sphere present
in all of them, with the aim of avoiding a possible bias in the results.

The figures 2.1 to 2.8 present some of the results obtained for eight images
that are representative of the typical statistics found all across the dataset.
They show for each color representation –among a selection of four differ-
ent representations –one 3D density plot as well as three 2D density plots
with the posible pairs of components. The 2D plots show a typical colormap
scale from blue to red that varies linearly with density. For the sake of a
good visualization, the 3D plot shows a colormap scale of five steps with a
transparency value of 0.9 that ranges from light blue to dark red, and varies
linearly with the logarithm of the density. That is, each step represents an in-
crease of an order of magnitude in the density value. Therefore, while the 3D
plots catch well the whole distribution also showing the low density regions,
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the 2D plots show the high density regions and they are suitable to estimate
the real strength of correlations between variables. The color four repre-
sentations selected are: LMS retinian responses, Lab color model, z-scores
from LMS responses, and ICA components using the jade algorithm [CSP93]
on LMS responses. In the study, a sRGB and a ICA representation using
the FastICA algorithm [HO97] on LMS responses were also used. However,
they did not introduce any remarkable additional element for the following
discussion. The behavior of the RGB components was very similar to the
LMS components, appearing to be only slightly less correlated. As well the
behavior of FastICA components did not led to different appraciations than
those derived from the comparison between z-scores and jade ICA compo-
nents. For the sake of clarity, they were not used in the figures that give
support to following discussion.

A clear and outstanding fact is that, as expected, LMS components al-
ways show a very high degree of correlation. Transformation to the Lab color
model removes an important amount of the first order decorrelation present
in them. Whitening through z-scores or independent components computa-
tion completely removes the first order correlation and makes apparent the
higher order correlations present in the color distributions of each image.
In principle, the main difference between these two procedures of whitening
relies in the fact that independent components use to provide more discrim-
inative directions that match better directions of higher order correlations
as they also deal with the reduction of higher order correlations. Otherwise,
since these coordinate systems (PCA and most important ICA) simply differ
by a rotation, distinctiveness of a given trichromatic color point will be the
same in both of them.

Otherwise, images that appear to have a higher degree of clutter tend to
show less higher order correlations in their color distribution. For instance the
urban scene with bycicles in the image of the figure 2.3 shows much stronger
higher order correlations in the whitened components than images in figures
2.5 and 2.6. As well natural landscapes of snow or of a sandy beach and sea,
with a low degree of clutter appear to have strong higher order correlations
as can be seen in figures 2.7 and 2.8. In general, since scenes dominated
by the presence of man made objects present a lower degree of clutter than
natural scenes dominated by vegetation, there is a trend of increasing higher
order correlation from natural to man made scenes. It is however far to be a
valid general rule, and nature scenes can also show higher order correlations
as strong as man-made scenes whether clutter is low like in the pointed
landscapes.

In sum, first order as well as higher order correlations are very strong in
any of the images for a LMS representation. A rigid (non-adapted) represen-
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Figure 2.1: Example of color statistics in different representations (I).
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39Figure 2.2: Example of color statistics in different representations (II).
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Figure 2.3: Example of color statistics in different representations (III).
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41Figure 2.4: Example of color statistics in different representations (IV).
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Figure 2.5: Example of color statistics in different representations (V).
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43Figure 2.6: Example of color statistics in different representations (VI).
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Figure 2.7: Example of color statistics in different representations (VII).
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45Figure 2.8: Example of color statistics in different representations (VIII).
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tation like Lab removes much of the first order correlation. However, statisti-
cal distributions are still quite different from one image to another, as pointed
by Webster and Mollon [WM97], thus making sense for short-term adapta-
tion of the color representation to specific scenes. And importantly, whitened
representations that suppress first order correlations are best matched to the
particular statistical structure of the images, providing an improved repre-
sentation for discriminative and comparative purposes, present in any visual
function. To remove higher order correlations different ICA approaches are
needed. An obvious benefit of whitening is a better use of the available
dynamic range in the different components and a more suitable measure of
distinctiveness as statistical distance.

It must be noticed that results of whitening the LMS components ob-
tained from the characterisation of Stockman and Sharpe [SS00] also avail-
able in the used dataset, were equivalent and do not delivered any relevant
difference for the sake of this discussion.

Once the statistics of the images in relevant representations have been
examined, the next step deals with the analysis of the information that re-
tains each of the components of each of the representations considered. As
well, the suitability of the modulus in these representations to measure color
distinctiveness is an important aspect to take into account. Of course such
a measure of distinctiveness is useless in natural images, since it does not
account for spatial structure. With the aim stated above, the figures 2.9 and
2.10 are provided.

In general it can be observed the known fact that a LMS representation
is not suitable for detecting color distinctiveness and that the Lab color
model do manage much better to catch it. Since color disctinctiveness can
be considered as closely related to perceptual distance, and Lab color model
has been conceived to account in average for perceptual distances, this fact
is simply in agreement with known properties of these color spaces.

More interesting are the results provided by whitened representations.
Since they span exactly the same space with the same norm (variance), both
z-scores and independent components provide the same measure of color dis-
tinctiveness. However, z-scores show a remarkable closeness to Lab color
components, so much so that in all the examples examined in the dataset,
each of the z-scores components was closer to one different Lab component.
To check this fact, we have taken into account that intensity is mainly com-
posed by a summation of L+M responses, red-green opponency arises from
the difference of L-M responses, and blue-yellow arises from the difference of
S-0.5(L+M). Labeling each z-scores with L, a, or b by projecting its LMS
composition in these component and checking which was the closest compo-
nent, always delivered an arrangement of the three Lab components. This
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was not true for independent components which often delivered two compo-
nents that were closer to the same Lab component than to any other.

Moreover, in all the cases the first z-score component was related to L
(intensity), the second component was related to b (blue-yellow opponency)
and the third component was related to a (red-green opponency) . Regard-
ing to intensity, this fact seams very reasonable, since the order of z-scores is
inherited from the PCA before whitening through normalisation by variance,
since principal components are ordered by decreasing value of variance, and
since most of variance in a natural image is related to intensity, and only
a small part of it is related to opponent color components. Again this in-
teresting behavior was not observed for ICA components, with an order not
related at all to variance.

Regarding to opponent components, the fact that a and b Lab compo-
nents are always related respectively to the third and second z-score compo-
nents has been quite surprising, since we have not found any reference in this
sense in the literature. However, this behavior has not been observed when
decorrelation is done from RGB components of uncalibrated images from a
digital camera, instead of LMS components. In this case, a and b are approx-
imated by R-G and B-0.5(R+G), while L is computed R+G+B. Again, the
three z-scores correspond to different Lab components and the first z-score
is related to intensity, but the second and third swap the correspondence
with a and b from one image to another. Therefore, this question deserves
further investigation to rule out possible biases in the LMS representation of
the employed dataset.

From the observations pointed above, a natural justification for the hy-
pothesis that z-scores approach better the coding of opponent components in
the HVS, arise as a slight shift of opponent components from an average Lab
representation, associated to contextual chromatic influences. Such a behav-
ior would demand that the opponent components coded early in the HVS,
which are in average decorrelated in the space of natural images, interact
to match the statistics of a given image, providing a specifically decorre-
lated representation of the same. This interaction and adaptation, from a
functional perspective, is biologically plausible as discussed in the previous
sections.

2.4.2. Data-driven perceptual grouping and segrega-
tion and illusory contours from scale whitening

For each of the whitened color components -whenever existing-, an spatial
decomposition in terms of oriented scales has been performed. This is in fact
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Figure 2.9: Image components in different color representations and the cor-
responding measures of distinctiveness from a squared euclidean
distance (for images I and II)



2.4. ADAPTIVE WHITENING, A FUNCTIONAL FRAMEWORK... 49

Figure 2.10: Image components in different color representations and the cor-
responding measures of distinctiveness from a squared euclidean
distance (for images IV and VII)
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Figure 2.11: This typical psychophysical image that clearly generates vertical il-
lusory contours has been adapted from [MLHL07]. Scale responses
for a 45o orientation (top row) and the corresponding decorrelated
scales that manage to catch the illusory contours (bottom rwo)

a decomposition of the image in terms of bands of spatial frequencies in the
Fourier domain for each of the available whitened chromatic components.
The decomposition has been acomplished using a bank of logGabor filters
that are described and examined in detail in the next chapter. According
to the simplest scheme of whitening, each group of oriented scales has been
whitened following the same procedure than color components.

In this section, a qualitative comparison between responses to a given set
of scales and the resulting whitened scales is tackled using representative and
illustrative images. Figure 2.11 shows two examples of illusory contours, the
first is an adaptation of an image used by [MLHL07] in fMRI experiments
involving illusory contours, the second is a representative painting of so called
Op-art (optical art) by Victor Vasarely. As can be seen, decorrelation of
scales in the selected orientations catchs well the obvious illusory contours
present in the image, while simple band-pass filtering is unable to do it.

Op-art is a style of painting and in general of visual art that relies on the
use of visual illusions, concerned with the relation between understanding
and seeing. It provides hence numerous examples of visual illusions that
constitute an intermediate step between synthetic images most often used
in psychophysical experiments and natural cluttered images. This feature
makes this type of artistic creations very interesting for testing computational
models of visual processing. Indeed, though not very frequent, examples of
its use can be found in literature like, for instance, in the work by Troncoso et
al. dealing with corner salience [TMMC05]. This work starts from Vasarely
nested squares to create novel visual illusions that allow to quantify corner
salience in a psychophysical experiment. Instead of squares, they propose to
use nested stars and in the limit star-shaped gradients to study corner salience
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Figure 2.12: Reproduction of a circular illusory contour in a Vasarely’s picture
(left). Top row shows logGabor responses of four scales for the ver-
tical orientation of the first z-score component of color (intensity),
where no circular contour appears. Bottom row shows the result
of whitening the previous set of scales, with a strong contour in
the first and secon z-score scales

for different corner angles. This question will be taken up again in the chapter
5 when explaining the reported results in terms of the model of saliency
proposed in this dissertation. Here we will focus in the fact that the corners
of nested stars and the corners present in star-shaped gradients generate
illusory contours that although not catched by simple bandpass oriented
filters, are well captured however through the decorrelation of their responses.
This is shown in figures 2.13 and 2.14 that are based on images adapted
from [TMMC05]. Clearly, simple bandpass responses catch the contours of
bright regions at different scales, while the whitened scales also capture very
well the center lines of bright and dark regions, that is the illusory contours
produced by corners.

Figure 2.15 shows results on Vega, another famous op-art work by Vasarely,
for all the four orientations as well as for an isotropic set of bandpass filters.
From left to right and from top to bottom, five blocks of two rows with
four images are shown, coresponding respectively to 0o, 45o, 90o, 135o, and
isotropic filters. Similarly to previous figures, the top row of each block shows
the bandpass filters responses, while the bottom row shows the correspond-
ing whitened scales. The results show well how scale whitening can produce
an unsupervised and data-driven perceptual grouping and segregation for a
given image, which provides suitable components allowing for quite direct
figure-ground segregation. Figures 2.16 and 2.17 show similar results for two
exemplars of the Zebra series and for several orientations. The zebras, the
frame and the background are well captured by different whitened scales,
while they were mixed in the corresponding bandpass responses.

In a further step of analysis, the figures 2.18 to 2.23 show results on nat-
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Figure 2.13: Reproduction of illusory contours on a star of grayscale gradients
(left). Image adapted from the Martinez-Conde lab. Top row
shows the responses to four scales of isotropic logarithmic Gaus-
sians. Bottom row shows the results of whitening the previous
scales that are able to detect all the illusory contours

ural images for different orientations of different whitened chromatic compo-
nents, most corresponding to first component (intensity), but also some cor-
responding to the other adapted components (color opponent ones). Again,
the facilitation of figure-ground segmentation in many whitened scales be-
comes apparent for natural images, with different scenes combining different
foregrounds and backgrounds.

Finally, an interesting behavior of whitened scales in a given orientation
is that they appear to allow for shifts in orientation selectivity. We can
observe, for instance in the figure 2.15 how from responses tuned to horizontal
features, the corresponding whitened components provide vertical lines, as
well as horizontal lines from responses tuned to vertical spatial frequencies.
Within the natural images we find a similar behavior, for instance a clear
example is found for the diamond textures in the costumes of figure 2.19.
From vertically tuned responses, whitened scales are able to catch separately
different scales of the tilted structures produced by diamonds. Therefore,
adaptive whitening of scales with orientation specificity can be seen as a
possible contributor to the contextual adaption of orientation sensitivities.

2.4.3. Other levels of whitening

As advanced at the beginning of the section, three other levels of whiten-
ing have been considered: whitening of orientations using multiscale com-
ponents, additional whitening of color components using multioriented and
multiscale features, and joint whitening of orientations and scales.

In the best cases, the results did not improve the already described be-
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Figure 2.14: Similarly to figure 2.13 a star pattern of a gray scale gradient (left),
but without the outline produces several illusory contours. Image
adapted from the Martinez-Conde lab. Top row shows how the
different scales of isotropic logarithmic Gaussians seem to be only
sensitive to the dark fringes. However, bottom row shows how
the corresponding whitened scales are able to catch all the illusory
contours.

havior of the simple scheme of whitening of raw color components first and
whitening of oriented scales next. No advantage was found in terms of capa-
bility to reproduce illusory contours or to reproduce perceptual grouping and
segregation. An additional assessment has relied on the capability of these
alternative adaptation schemes to provide an improved measure of saliency.
In this regard, only whitening of color components using the responses to
a Gabor-like bank of filters have shown marginally improved results in the
prediction of human fixations (see chapter 4).

Therefore, the proposed scheme, under the assumptions of separate whiten-
ing of chromatic features and scale features with orientation specificity has
been adopted in the following chapters as a suitable functional approxima-
tion to dominant mechanisms of contextual adaptation. Such a parsimonious
approach is the ground for a definition of visual saliency and the specification
of the corresponding model that is evaluated in a number of applications, to
all of which the following chapters of this dissertation are devoted.

2.4.4. Mechanistic considerations

The proposal of concrete mechanistic schemes to implement the functional
framework proposed above with biological plausibility is out of the scope of
this dissertation. However it is worth pointing that there is a wide variety of
approaches that would fit both the proposed whitening framework and the
requirement of plausibility at a mechanistic level. Likewise, new mechanistic
models with increasing performance and explanatory capability are being
developed.
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Figure 2.15: Examples of figure-ground separation through scale whitening in
the Vasarely’s Vega artwork (top left). Image. From top to bottom
and left to right five blocks are shown corresponding to log Gabor
responses for four orientations, respectively 0o, 45o, 90o, 135o, and
lastly to isotropic logarithmic Gaussian responses. In each block,
top row contains the filters responses to four scales and bottom row
the result of whitening each of these sets of scales. The geometric
elements and the background are catched by different whitened
components

At the lowest level, that of a neural network layer, several ways to im-
plement computation of principal or independent components, and other
whitening schemes exist [DK96, CA02, Hay09]. In general the different pos-
sible schemes involve lateral connections and/or feedback connections that
produce tuning of different neurons to different decorrelated components.
Many of these schemes are biologically plausible, since they are based in an
Hebbian rule and hence they satisfy the requirement of locality. An early
example of a mechanistic model to deal with color adaptation in cortex was
proposed by Atick et al [ALR93]. It was indeed a neural network able to
compute decorrelated and gain controlled components of input cone signals
thanks to lateral feedback connections.
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Figure 2.16: Example of figure-ground separation on an artwork from the
Vasarely’s Zebra series (left). Top row shows log Gabor responses
for a 45o orientation. Bottom row shows the whitened scales, with
the first component providing a proto-segmentation of the zebra

Recent powerful proposals seek to take advantage of non-linearities to
produce ICA-like learning of inputs in models of neural cortical networks,
yielding highly plausible computational schemes. In a remarkable example,
Clopath et al. have tried to explain the connectivity patterns often found
in cortex using a model of spike-timing-dependent plasticity (STDP). They
found that different connectivity patterns could arise from different coding
principles, and that rewiring the network can be very fast. Moreover, they
showed that their model can be taken as an ICA model that is consistent
with a large body of plasticity experiments [CBVG10]. Other outstanding
work by Savin et al. proposes a model of intrinsic plasticity that regulates the
firing rate of a neuron to guarantee sparse output. This approach yields an
speeded up and robust model of ICA learning, based on a local rule. [SJT10]

At a higher level involving populations of neurons rather than few nearby
ones, population codes support the use of bayessian schemes to model neu-
ral computations [ALP06]. In such schemes it is possible to formulate the
computation of probabilistic PCA, ICA or Whitening [B+06].
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Figure 2.17: Another example based on an artwork from the Zebra series (left).
Two blocks from top to bottom are shown corresponding to log
Gabor filters at 45o and 135o. For each block, top row shows
the responses while bottom row shows the whitened responses.
Again the zebra, the frame, the zebra outline and the background
are catched by different whitened components providing a suitable
figure-gound separation.

Figure 2.18: Example of figure-ground segregation on a natural image (left).
Top row shows responses of log Gabor filters on the firs color com-
ponent (intensity) and bottom row shows the whitened compo-
nents where the group of people and its outline is catched in the
first z-score component.
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Figure 2.19: Example of spatial-chromatic whitening on a natural image (left).
Two blocks of responses from top to bottom are shown correspond-
ing respectively to the first and second z-scores of color. The first
block shows the reponses to log Gabor filters oriented at 90o (top
row) and the result of whitening these four scales (bottom row).
The second block shows the responses to log Gabor filters oriented
at 0o and the result of whitening them (bottom row). Different el-
ements of figures and background are well cached by the whitened
components.

Figure 2.20: Example of figure-ground segregation on a natural image (left).
Top row shows responses of vertical log Gabor filters on the firs
color component (intensity) and bottom row shows the whitened
components where the differen people and their outlines are
catched in the first z-score component.
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Figure 2.21: Example of figure-ground segregation on a natural image (left).
Top row shows responses of vertical log Gabor filters on the firs
color component (intensity) and bottom row shows the whitened
components where the different people and urban object and their
outlines are catched in the first and second z-score components.

Figure 2.22: Example of spatial-chromatic whitening on a natural image (left).
The top row shows the responses to log Gabor filters oriented at
0o for the second z-score color component. The bottom row shows
the result of whitening them. Different colored elements are well
cached by the two first whitened components.
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Figure 2.23: Example of spatial-chromatic whitening on a natural image (left).
Three blocks of responses from top to bottom are shown corre-
sponding the first tow to the intensity z-score and the last to the
second z-score, correponding to a opponent component of color.
Therefore, the first block shows the reponses to log Gabor filters
oriented at 90o (top row) and the result of whitening these four
scales (bottom row); The second block shows the responses to
log Gabor filters oriented at 0o and the result of whitening them
(bottom row); The third block shows the responses of the color
opponent component to log Gabor filters oriented at 0o and the
result of whitening them (bottom row). Different elements of the
scene are well cached by the whitened components





Chapter 3

Optical Variability and
Adaptive Whitening Saliency

In this chapter, a definition of saliency is proposed in terms of the optical
variability present in a given image. This definition is shown to be closely
related to the schemes for representational efficiency studied in the previous
chapter. The modulus in these whitened schemes provides a suitable way
to compute point distinctiveness as an estimation of point contribution to
optical variability in the image. Therefore, this definition allows to interpret
invariance to saliency of the visual system as invariance to cope with the
optical variability in the surrounds. Subsequently, a simple and light imple-
mentation of saliency based on the adaptive whitening of low level features
is described in detail.

3.1. Saliency as a measure of the optical vari-

ability in the visual window

3.1.1. Early coding, between optics and vision

A variety of impairments of vision has an optical nature, and optical
performance of the eyes is closely related to visual performance. Indeed sub-
jective measures of visual performance have shown remarkable correlations
with optical objective measures of image quality. The need to correct vi-
sual impairments and to evaluate the effect of optical corrections of vision
(both prosthetic or surgical) have led to the study and definition of different
techniques and metrics to evaluate image quality. Some of them take into ac-
count not only the optical part but also incorporate a modulation component
accounting for neural mechanisms. An illustrative example is the computa-
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tion of the visual Strehl ratio that makes use of the optical transfer function
(OTF) of the eye, weighted by a neural contrast sensitivity function, shortly
the VSOTF. Its polychromatic version can be obtained from its value for the
different wavelengths involved. The overall polychromatic value can be taken
as the integral of its product by the visual sensitivity function [THBA04].
The VSOTF has recently shown a remarkable ability to predict visual per-
formance in a subjective task, beyond other classical measures do [MTA04].
However the important lack of non-linearity and the rigidity of these mea-
sures makes them weak against changes in viewing conditions [AMT06], and
of low value to gain insights on neural coding of images.

Since saliency attributes a single value to each point of an image, it
seems of main interest to explictly ground its definition in simple optical
magnitudes. Such a foundation would provide a direct formal link between
meaningful physical magnitudes and a variety of psychophysical phenomena
related to bottom-up visual attention. Moreover, since saliency does provide
worthy insigths on early visual coding, and is probably closely related to it,
such a definition would offer an additional bridge between optical description
of images and the description of visual coding. In this section, saliency is
defined in such a manner that naturally roots in a simple optical description
of the image.

3.1.2. Optical variability

The concept of optical variability is usually found in the context of as-
tronomical observations. Most frequently it designates different measures of
combined variance of intensity and spectral composition of observed stars or
other celestial bodies during time. Vision is concerned with images that have
spectral -chromatic- characteristics, but that also have spatial structure as a
main unavoidable feature. Thus, a definition of optical variability in space
is needed. Since this dissertation is devoted to still images, the temporal
dimension will not be tackled, but a very similar handling would be possible.

In Fourier optics any image can be considered as a wavefront piece and
approached as a superposition of ideal monochromatic plane waves (see ap-
pendix). The local contribution to such a superposition of monochromatic
plane waves can be described in terms of the spatial power distributions of
chromatic components -related to electromagnetic wavelength- and of the
corresponding power distributions of magnitude and orientation of the spa-
tial frequencies present for each of them -related to the wave number vector
(i.e. the direction of propagation of the plane wave).

Consequently, the contribution to optical variability by a given point
from an image can be computed from the overall variability shown at that
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point in the image plane by these magnitudes: spectral power and spatial
frequencies power. To obtain the contribution of a particular sample from a
set of samples to variability in a multidimensional space, one typical approach
is to use a measure of generalized or statistical distance. It is given by
the modulus -or a monotone function of it- of the vector associated to the
sample in a decorrelated and whitened representation of the set of samples.
It provides a measure of the distance to the center of the distribution in a
system of orthogonal coordinates that have variance as the norm. Indeed, it
is a measure of sample distinctiveness.

Therefore, we could think of each point as a sample with different com-
ponents of luminous intensity corresponding to each combination of spectral
wavelength and 2D spatial frequency. In a continuous domain the number
of components would be infinite and the problem of whitening would be in-
tractable. It is necessary to impose a discretization, considering a finite num-
ber of spectral wavelengths and spatial frequencies with a certain bandwidth.
This means to assume the corresponding aproximations and change integrals
by sums in the equations drawn in the appendix. Even so, the number of
components can be too large for the typical whitening schemes that have a
complexity cubic or higher against the number of components. Another way
to reduce complexity consists in whitening separately chromatic and spatial
components, as done in the previous chapter, and even only scales of each
orientation.

This strategy has been observed to even improve capability of predicting
fixations. Of course it is a particular definition of optical variability that
assumes that enough reduction of redundancy is achieved by independently
whitening chromatic and scale components. That is, independent whitening
of components of spectral wavelength, and of components of the modulus of
spatial frequencies for a number of orientations.

Formally, being Mc the number of discrete values of spectral wavelengths,
W the whitening unmixing matrix, and λwhitei a given whitened spectral
wavelength the idea is to compute the transformation

I(λwhite1 , ..., λwhiteMc
) = WI(λ1, ..., λMc) (3.1)

that is a coordinate transformation in the spectral domain. Besides, from
equation 3.25, impossing discretization and omitting the point index variable,
we have that

I =
Mc∑
i=1

I(λi) (3.2)

while the squared norm in the whitened representation is the statistical dis-
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tance or T 2 of Hottelling, that is

T 2
chromatic =

Mc∑
i=1

I2(λwhitei ) = ||I(λwhite1 , ..., λwhiteMc
)||2 (3.3)

which is in fact a multivariate measure of variance. Since the samples are the
pixel values, each point has a T 2 value that gives its contribution to variance
through the ensemble of samples. It is hence a measure of pixel contribution
to variance of chromatic spectral components on the image plane.

It must be noticed however, that the relation 3.2 does not hold any more
for the whitened spectral coordinates, that is

I 6=
Mc∑
i=1

I(λwhitei ) (3.4)

Otherwise, the original monochromatic spectral components can be ex-
pressed by equation 3.26, which impossing discretization of spatial frequency
coordinates and omitting again dependency against point index, remains

I(λi) =
ρ1∑
ρ0

α1∑
α0

I(λi; ρ, α) (3.5)

As denoted in equation 3.1, the whitened spectral components are linear
combinations of the original spectral components. Thus, a given whitened
spectral wavelength is a linear combination of real spectral wavelengths. This
means for whitened components that their composition of spatial frequencies
is the corresponding combination of the compositions of the monochromatic
components. As a result, an expression equivalent to equation 3.5 can be
written for whitened components, that represents each of them as a combi-
nation of spatial frequency bands,

I(λwhitei ) =
ρ1∑
ρ0

α1∑
α0

I(λwhitei ; ρ, α) (3.6)

Each of these representations of whitened components can be further
whitened, using as original coordinates those of the spatial frequency bands.
Instead of such an approach, the same simplification done in the previous
chapter is adopted here. Whitening is proposed to be done for each set of
spatial frequency bands at a given spatial frequency angle. That is being
Mo the number of orientations -angles- of spatial frequencies, and Ms the
number of scales (i.e. the number of values of the modulus of spatial fre-
quency) for each whitened chromatic component λwhitei and each angle of
spatial frequency αj
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Iα1

λwhite
1

(ρwhite1 , ..., ρwhiteMs
) = W 1

1 I(ρ1, ..., ρMs)

...
...

I
αMo

λwhite
1

(ρwhite1 , ..., ρwhiteMs
) = WMo

1 I(ρ1, ..., ρMs)

...
...

I
αj

λwhite
i

(ρwhite1 , ..., ρwhiteMs
) = W j

i I(ρ1, ..., ρMc)

...
...

I
αMo

λwhite
Mc

(ρwhite1 , ..., ρwhiteMs
) = WMo

Mc
I(ρ1, ..., ρMs) (3.7)

As already pointed, a measure of saliency grounded on this approxima-
tion has been observed to not reduce the capability of predicting fixations or
reproducing a number of psychophysical results. Indeed it has been observed
to produce an slight improvement of performance in those tasks, in com-
parison with a measure derived from joint whitening of all spatial frequency
bands.

The result is a representation of the image in whitened components re-
spect to part of its coordinates. That is, the following overall transformation
has been done:

I = I(pxy;λ1, ..., λMc ;ρ1, ..., ρMs ;α1, ..., αMo) (3.8)

⇓
I = I(pxy;λ

white
1 , ..., λwhiteMc

;ρwhite1 , ..., ρwhiteMs
;α1, ..., αMo) (3.9)

where point dependency has been made explicit again. From this partially
whitened representation, optical variability (OV ) is derived as the squared
modulus

OV = ||I(pxy;λ
white
1 , ..., λwhiteMc

; ρwhite1 , ..., ρwhiteMs
;α1, ..., αMo)||2 (3.10)

Differently to the case of the starting color whitening, this modulus is not
the T 2 of Hotelling but at most an approximation, arising from the summa-
tion of the T 2 obtained for different subsets of original coordinates. Then, it
is a partial multivariate measure of variance that has indeed units of variance.
To compute the real T 2, all components should be whitened jointly and the
number of coordinates would be Mc ×Ms ×Mo. As mentioned above, the
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complexity of whitening increases strongly with the number of components to
the point to do such a computation too heavy or even unfeasible in practice.
Besides, in the purpose of providing a measure of saliency, we have found that
these approximations do not reduce its effectiveness in explaining visual be-
havior but they even contribute to increase it. It is worth remembering here
that, as explained in chapter 2, these approximations are inspired in coarse
features of the human visual system, namely the independent processing of
color and spatial information as well as orientation specific decorrelation.

A simple characterization of an image closely related to its optical de-
scription in spatial frequencies, can be formulated in terms of local energy
components at different scales and orientations -thus different values of mod-
ulus and angle of spatial frequencies- for different spectral components. The
relation 3.2 is not true for a non-orthogonal wavelet decomposition, but can
be taken as a reasonable approximation. Besides, the accuracy in that re-
lation is not essential in our analysis, but the real importance relies on the
reliability of the resulting whitened components. We have observed that the
computation of whitening through PCA and ICA in our scheme, is barely
affected by the overlaping between the original filters in the Fourier domain,
a behavior expected for any blind signal decomposition scheme. The pro-
posal of adaptive coding drawn in the previous chapter can then be applied
directly in such a decomposition scheme. The only remarkable difference
would involve the use of monochromatic spectral components rather than
LMS or RGB chromatic components. Distinctiveness of a given point taken
as a sample would be easily computed through the modulus in the whitened
representation.

Going a step further, an additional coarse approximation would be to use
the responses to broad spectral detectors rather than narrow spectral bands.
For instance, RGB or LMS detectors. In this case, we can use exactly the
same whitening schemes proposed in the previous chapter, and we can use
the resulting modulus at each point in the image as a measure of relative vari-
ability or distinctiveness. This is the theoretical ground under the adaptive
whitening saliency model, described in detail in the next section.

Otherwise, the implications of approximating chromatic whitening from
broad overlapping detectors rather than from narrow quasi-monochromatic
ones will be examined in more detail in the chapter 6, when dealing with
hyperspectral images in the visible spectrum. There, results using narrow
spectral components and responses to broad detectors will be compared and
analysed. At a first glance, such approximation with LMS detectors can
be understood as the computation of the variability existing in the visual
window, that is in the optical window determined in part by the spectral
sensitivities of the retinian detectors.
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3.1.3. The optical visual window

The term window is usually employed to refer a given limited portion of
the electromagnetic spectrum. For instance in fiber optics communications,
different windows of transmission are available depending on the material of
the fiber core and its absorption spectrum. It is also widely used to refer
spatial limits in works in optics and computer vision. Hence, it is frequently
used to denote limits in the transmission and reception of optical and visual
information from a given domain.

Here the term is extrapolated to apply it to the reception of information
from the environment by the brain, through the capture and representation
of images using the visual system. Therefore, it refers the limited domain of
optical magnitudes that the HVS -or any other visual system- is able to sense
due to different factors. These limits and the discretizations and thresholds
impossed to that magnitudes would constrain any visual transfer function.

If we think of saliency as an objective measure, resulting from the oper-
ation of an adaptive neuro-optical transfer function, then saliency must be
the same for different subjects with the same visual window, when observing
the same image.

Indeed, many of the approximations pointed above, related to broad sen-
sitivities against chromatic wavelengths and spatial frequencies, but also to
discretizations and to independent dimensions for whitening, can be seen as
neural constraints acting on the definition of the optical visual window.

3.1.4. Invariance of saliency in bottom-up visual pro-
cessing

A criticism to the efficient coding hypothesis relies in the fact that it does
not address why the coding catastrophe occurs, because it lacks specification
as to the computational goal beyond representation; rather, it embraces it
without further question [SHD07].

From the previous definitions, a clear specification of the goal underlying
representational efficiency and by extension the corresponding contribution
to the coding catastrophe is derived: the invariance of bottom-up visual
processing to cope with optical variability in the image. Saliency as a con-
strained measure of relative optical variability in the visual window is hence
hypothesized as an invariant in biological visual systems.

Otherwise, the proposed invariance can be expected to apparently fail
under two situations: artificial estimulation with statistically biased images,
that will produce the corresponding artificial alteration of the visual win-
dow from long or mid term neural adaptation; and voluntary constraints on
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sensed magnitudes through top-down bias, although it is not clear to which
extent bottom-up and top-down representations are mixed or separated in
the brain. In the absence of top-down motivations and biased estimulations,
priority should be driven by saliency and thus by optical variability. As far
as priority drives human behavior, like for instance eye movements, these
must be invariant to relative optical variability. The exposed approach pro-
vides a simple and coherent ground to explain inter-subject consistency in
the spatial distribution of fixations in terms of the efficient coding hypothe-
sis: representational efficiency provides a suitable ground for distinctiveness
computation. Since distinctiveness and improbability seem to be two sides
of the same coin, a similar final interpretation can be provided in bayesian
terms. Indeed, as pointed in the previous chapter, the proposed whitening
of responses can be implemented in bayessian schemes.

To sum up, analysing separately bottom-up and top-down parts of vi-
sual processing, it is here proposed -regarding the bottom-up part- that it
exhibits an invariance against a concrete estimation of the optical variabil-
ity existing within the optical window of the visual sytem. This provides
a useful and simple additional link between biological visual processing and
a reduced set of physical magnitudes. Models of bottom-up visual process-
ing aiming biological plausibility must accomplish with this requirement of
overall invariance of saliency, enabling for its computation at some stage of
processing.

An interesting prediction of the proposal drawn is that alterations of the
visual window will affect saliency in the same way they affect optical vari-
ability. This holds for the different kinds of color blindness, for the different
kinds of ocular impairments (astigmatism, myopia, etc.), and even for visual
impairments of developmental nature like amblyopia. Thus, inter-subject
consistency in the spatial distribution of fixations driven by saliency should
suffer the same changes -if existing- for different subjects affected by equal
visual impairments, or in general by equal alterations of the visual window.
These last including alterations from long and mid term adaptation due to
biased estimulation. This observation also raises some questions to which
we have not found answers in litterature. Considering differences of visual
windows arisen from different age, from different biological species, from dif-
ferently biased estimulations or from different visual impairments, do they
produce measurable systematic differences in the perception of saliency for
the same image?. Do they produce different fixation patterns in free surveil-
lance of images?. A comprehensive number of approaches to estimate saliency
from fixations and visual behavior and to compare fixation patterns will be
examined in the chapters 4 and 5, which could be used in trying to answer
the posed questions.
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Otherwise, alterations of top-down processing capabilities like those shown
by subjects affected of visual agnosia should not have any effect in the per-
ception of saliency. This last result has been indeed recently reported in a
work comparing the spatial distribution of fixations in healthy and unhealthy
subjects [MKH09].

The proposed principle can be extended to other portions of the electro-
magnetic spectrum and in general to any other physical-based representa-
tion (even not of electromagnetic nature) of the space to produce visual-like
displays under the constraint of transforming the physical variability into
perceptible visual saliency. That is, to project other physical windows on
the visual window under the constraint of conservation of relative variabil-
ity in the space. In the chapter 6 such extendability of the definition of
saliency proposed, will be used for the proposal of a evaluation procedure of
visualization techniques.

3.2. Preliminary approaches and experiments

Several approaches to compute saliency from an adaptive whitened rep-
resentation of the input image have been considered in the development that
led to this thesis. They all have in common the assumption of scale decor-
relation as a key mechanism of adaptation that supports the computation
of saliency. In a first approach, scale decorrelation has been combined with
center-surround differences on a multioriented and multiscale representation
of luminance. Also color features were used based on the raw definition of
opponent components originally employed by Milanese [Mil93] and by Itti et
al. [IKN98]. The guidelines for the design of this initial model were taken
from the performance in the former visual search experiments used by Itti
and Koch with their model of saliency. Therefore, a main concern was the
obtaining of a highly sparse measure of saliency.

Initial experiments included reproduction of pop-out phenomena, detec-
tion of military vehicles in natural scenes, detection of traffic signs, detection
of emergency triangles and a red can of coke in cluttered scenes using the
open access datasets provided by the Itti’s lab, except the dataset of military
vehicles that has been published by Toet et al. [TBV01]. A winner take all
detector with inhibition of return similar to that implemented by Itti et al.
was used to succesively select detected targets. Some examples are shown
in figures 3.1 and 3.2. In the figure 3.1, pop-out of color and orientation
singletons is demonstrated using the same images previously employed by
Itti and Koch [IK00], the graphs show the number of false fixations before
the singleton is found against the number of distractors in the display. The
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figure 3.2 shows results of (unguided) saliency-based visual serach of targets
in natural images with several datasets previously employed in Itti et and in
Itti and Koch [IKN98, IK00]. Besides, a number of results from psychophys-
ical experiments were also reproduced. Examples of size pop-out, influence
of heterogeneity of distractors and presence/absence asymmetry are shown
in the figure 3.3. Further details on these psychophysical results and their
importance are given in the chapter 5.

This initial approach provided a performance only slightly higher than
using only center-surround differences. The analysis of the different results
obtained allowed to conclude that center-surround DoG filters were too rigid,
too destructive of surround activity and that were not able to provide a
reliable graded mesure of saliency. Therefore its use was nearly constrained
to the detection of strong pop-out phenomena. Moreover, they amplified any
design bias up to make the result useless for a significant number of images.
Indeed, these problems can be also observed for the measure of saliency of
Itti et al. that uses rigid center-surround filters and the late version of Itti
and Koch that reinforces the role of DoG filters, driving also the feature
integration process.

They also revealed the risk of using visual search experiments for the
assessment of saliency. This kind of evaluation, depending on the method
used to select fixations can favor all or nothing strategies, inspite of providing
a poorer and less stable and robust measure of saliency. Besides, depending
on the type of salient target selected for validation, they can hide a variety of
design biases. Such validation procedures are much more suitable for specific
purpose models of detection or ROI selection than for a generic one, as the
measure of bottom-up saliency is.

Otherwise, measures different of local energy were explored. Since local
energy is the modulus of a complex response composed of a pair of filters
in phase quadrature corresponding respectively to real and imaginary parts,
phase sensitive multiorientation and multiscale decompositions were investi-
gated. They were designed to catch different features like phase congruency
or phase symmetry, starting from the schemes proposed by Kovesi [Kov96].
However, no improvement was found, comparing to the use of simple local
energy.

Subsequently, in a preliminary version of the adaptive whitening model
that will be described in the next section, it has been shown that scale
decorrelation of local energy luminance features and multiscale color features
in a Lab color model, without the use of rigid center-surround differences,
achieves a series of results equivalent to other state-of-the-art models. This
preliminary scheme is shown in figure 3.4.

Remarkably, when using a generic assesment procedure like the predic-
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tion of human fixations, it clearly outperformed both versions of the classical
model of Itti et al. and Itti and Koch that were based on different inte-
gration procedures of the responses to centre-surround differences. It also
outperformed other state-of-the-art models in predicting fixations, and it
already showed an outstanding ability to reproduce a variety of psychophys-
ical phenomena. The resulting saliency maps were much more graded than
in the initial approach, and design biases were much less amplified in the
new scheme for feature integration. The overall effect was a better use of the
available dynamic range for the measure of saliency. Besides, the use of a
Lab representation –instead of the raw opponent components employed by
Itti et al. and many other models– improved slightly the performance.

Another problem that has been also tackled is related to the integration
or competition of different preattentive visual dimensions. Support for the
biological plausibility of both a maxima and a summation strategies can be
found in literature [KZ07, TZKM11]. The different schemes studied in our
work allow to test both hypothesis. For instance, in the scale decorrelation
model in figure 3.4 summation of the conspicuity maps can be replaced by
maxima extraction at each point. Using capability of predicting human fix-
ations as a guideline, we have found that the summation strategy performs
slightly better. Consequently, this approach has been adopted.

This preliminary version showed however some problems with color han-
dling. A detailed analysis of images where the model showed low performance
in predicting fixations revealed that certain cases of evident color pop-out
were not well captured by the model, which was based in a Lab represen-
tation of the image. Other models of the state-of-the-art, like the model of
Bruce and Tsotsos and of course the model of Itti et al. were observed to
suffer from the same problem. This behavior pointed to the need of a more
flexible representation of color. It motivated a more in depth study on the
possibilities of employing whitening on different low level features, and on
the decomposition schemes of color. Many of the observations and results
derived have been already exposed in the chapter 2 as well as in this chap-
ter. This study also led to the simple and light model described in the next
section, which makes use of whitening of chromatic and scale features. As
well, an important effort in the selection and improvement of suitable assess-
ment procedures has been done. The corresponding methods and results are
provided in the chapters 4 and 5.
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Figure 3.1: Initial experiments of reproduction of orientation and color pop-out
combining deorrelation and center-surround filtering.
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Figure 3.2: Initial experiments of visual search of concrete targets in cluttered
scenes.
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Figure 3.3: Initial experiments on the reproduction of psychophysical results.
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Figure 3.4: Preliminary version of the model of saliency based on the decorre-
lation of scales.
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3.3. Description of the AWS model

In this dissertation, a simple proposal denoted by adaptive whitening
saliency (AWS) is formulated to compute saliency that grounds on the whitened
representation already introduced in the previous chapter. The scheme pro-
posed here finds as well a simple foundation on the definition of optical
variability drawn in the first section of this chapter.

Therefore, the starting point is the proposed adaptive whitening of mul-
tiscale features for the whole visual field and within a given orientation.
The integration procedure follows the path inverse to decomposition through
simple modulus computation in the whitened spaces, as well as addition of
oriented conspicuities.

That is, after whitening of the chromatic features, each color component
is subject to a multiscale and multiorientation decomposition, by means of
a bank of band-pass filters. As previously pointed, orientation selectivity
of chromatic multiscale receptive fields has been shown to take place in V1
and is thought to influence saliency [LH84,ZS06]. Then, for each color com-
ponent and each orientation, the corresponding scale features are whitened.
Under such process, local receptive fields are tuned to the same orientation
and the same color whitened component in different positions and differ-
ent scales. They interact to deliver a retinotopic representation with the
same orientation and color selectivity, but with decorrelated scale informa-
tion and with the variance as norm. These new receptive fields matched to
whitened scales are biologically plausible, as shown in chapter 2. Indeed,
they are very similar to classical receptive fields for many synthetic stimuli.
To measure distinctiveness a simple squared modulus computation in the
whitened feature space, for each oriented color component, is employed. The
contributions of each orientation are combined through the summation of
corresponding activities at each location to deliver the overall luminance and
color opponent components conspicuities. The final saliency is the result of
a further summation of these three chromatic conspicuities. To sum up, the
AWS consists of whitening and multiscale multiorientation decomposition of
colors, whitening of color oriented scales, squared modulus computation, and
simple summation of location activities.

The model presented here provides a coherent approach to color and spa-
tial short-term adaptation through adaptive whitening. It gives place to a
flexible and non-parametric coding scheme, except for the design of the bank
of filters, which has not shown to be crucial. Since the model is built from
simple chromatic features, namely RGB, it needs neither the extraction and
storage of statistical characteristics of a large set of (representative) natu-
ral images, nor the definition of functions, weights or normalization factors,
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usual in color models. This fact possesses a very interesting advantage from
a technical viewpoint: we can change the (R,G,B) sensors by any others
with different spectral properties. This helps to directly apply the model on
multispectral and hyperspectral images, as it will be shown in the chapter 6.

Next, a detailed description is presented of the implementation that will
be used to perform almost all the experiments reported in chapters 4 to 6.
The main particular choices are related to the whitening method applied in
each case, and also to the initial decomposition of the image in color, scale
and orientation components. In the figure 3.5 a flowchart summarizing the
model implementation is shown.

3.3.1. Whitening procedure

Regarding color information, it has been observed that results are barely
affected by the choice of the whitening procedure, by testing several ap-
proaches based on PCA and ICA [HO97, CSP93]. The results are totally
independent of the whitening method employed with scale information, since
they only differ in a rotation that will not alter the subsequent computa-
tion of modulus. Therefore, decorrelation is done through PCA, since it is
a first order procedure that provides an ordered decomposition of the data.
Its lower computational complexity is a clear advantage against higher or-
der methods, like the diverse ICA algorithms. The benefits of an ordered
representation will become apparent in the next section. Thus, the principal
components are obtained, and then normalized by their variance. This last
step delivers a whitened, and still ordered, representation.

Let x be the representation of the image in the original –color or scale–
space, y the corresponding representation in principal components, and z (z-
scores) the corresponding representation in the whitened coordinates. That
is,

x = (xji)→ y = (yji)→ z = (zji) (3.11)

with j = 1...M and i = 1...N , where M is the number of components, and
N is the number of pixels.

The whitening procedure can be summarized in three steps. First, as well
known, principal components result from diagonalization of the covariance
matrix, ordering eigenvalues from higher to lower. Hence, if C is the covari-
ance matrix, principal components y are obtained from the transformation
matrix U and are ordered using the eigenvalues (lj) as follows:
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Figure 3.5: Adaptive whitening saliency model.
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|C− ljI| = 0 ; lj ≥ lj+1 → L =


l1 · · · 0
...

. . .
...

0 · · · lM

→ UTCU = L

y = UT |x− x̄| (3.12)

The whitened z representation is then obtained through normalization
by variance, given by the eigenvalues. This means that for each pixel and
principal component:

zij =
yij√
lj

; i ∈ [1, N ]; j ∈ [1,M ] (3.13)

These z-scores yield a whitened representation, and the squared modulus
of a vector in these coordinates is in fact the statistical distance in the original
x coordinates.

3.3.2. Measure of saliency

To decorrelate color information, the described whitening procedure is
simply applied to the R, G, B components of the image. This whitening
strategy has been also tested on other color models different from raw RGB,
like Lab or HSV for instance, but the results were not so good, so they were
discarded. The ordered nature of principal components is used to distin-
guish between intensity and color information, since luminance corresponds,
in natural images, to the first principal component, that shows the maximum
variance –usually higher than 90%. In turn, the second and third compo-
nents correspond to typical opponent components. For other procedures, like
ICA, this differentiation can be done by looking at the eigenvectors of the
transformation matrix. In case of luminance, all R, G and B components
contribute constructively, so that the three components of the eigenvector
must have the same sign.

Once color information is whitened, each color component (zc) is decom-
posed with a multiscale and multioriented bank of filters. Log Gabor filters,
which better fit the receptive fields of cortical cells are chosen [Fie87]. These
filters only have analytical expression in the frequency domain, given by

logGaborso (ρ, α) = exp

(
− (log (ρ/ρs))

2

2 (log (σρs/ρs))
2

)
·

exp

(
−(α− αo)2

2 (σαo)
2

) (3.14)
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where (ρ, α) are polar frequency coordinates and (ρs, αo) is the central fre-
quency of the filter, s is the scale index and o is the orientation index. One of
the advantages of the log Gabor filters is that they have zero DC component
and zero value for negative frequencies, unlike the Gabor filters. Besides,
their long tail towards high frequencies yields a more localized response.
The impulse response is a complex valued function, with components being
a couple of functions in phase quadrature, f and h. The modulus of the
complex response of this filter is in fact a measure of the local energy (e) of
a frequency band for the color component c, with scale (s) and orientation
(o) given by (ρs, αo, σρs, σαo) [Kov96,MB88]:

ecso =
√

(zc ∗ fso)2 + (zc ∗ hso)2 (3.15)

In our bank of band-pass filters, four orientations (0◦, 45◦, 90◦, 135◦) are
used, seven scales for luminance, and only 5 scales for each of the opponent
color components. This difference is justified by the observation that the
finest and coarsest scales of color components barely showed any relevant
information. Accordingly, while the minimum wavelength for luminance is 3
pixels, 6 pixels for color have been used instead. The use of orientations in
color components has been observed to improve performance, compared to
the use of isotropic responses, in agreement with a variety of experimental
observations that show its existence in the HVS [LH84]. It has been also
tried to include isotropic responses to luminance in addition to the oriented
responses, but the results were practically the same. Consequently, they
were considered redundant in the computation of saliency, and discarded for
efficiency reasons.

The described whitening transformation is applied on the scales of each
orientation. From the resulting components, the statistical distance is calcu-
lated between the feature vector associated to each point in the image to the
average feature vector of the global scene, by simply computing the squared
modulus:

‖zico‖2 = zTicozico (3.16)

This provides a retinotopic measure of the local feature contrast. In this
way, a measure of conspicuity is obtained for each orientation of each of the
color components. The next steps involve a Gaussian smoothing and the
addition of the maps corresponding to all of the orientations. That is, for
a given color component c = 1...Mc and pixel i, the corresponding saliency
(Sic) is calculated:
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Sic =
Mo∑
o=1

‖zico‖2 (3.17)

Color components undergo the same summation step to get a final map
of saliency. Additionally, to ease interpretation of this map as probability to
receive attention, it is normalized by the integral of the saliency in the image
domain, i.e. the total population activity. Hence, saliency of a pixel i (Si) is
given by:

Si =

∑Mc
c=1 Sic∑N

i=1

∑Mc
c=1 Sic

(3.18)

Regarding the computational complexity of this implementation, PCA
implies a load that linearly grows with the number of pixels (N), and in a cu-
bic manner with the number of components (M), specifically, O(M3+M2N).
Several approaches can be used to reduce this complexity in relation to the
number of components. Since the number of components (color channels and
scales) remains constant and it is low, the asymptotic complexity depends on
the number of pixels. This is determined by the use of the FFT in the filter-
ing process, which is O(Nlog(N)). Most saliency models have a complexity
which is O(N2) or higher.

3.4. AWS versus existing measures of saliency

The adaptive whitening approach proposed for computation of saliency,
provides a unified framework suitable to explain the results of different pre-
vious approaches in terms of their capability to measure optical variability
in a given scene.

As pointed in the previous chapters, most models of saliency ultimately
resort to the same theoretical foundation: a suitable and plausible estimation
of the inverse of the probability density for a given set of low level magnitudes.

Models that seek a close to uncommitted set of low level features, use a
representation of the image in terms of independent components of natural
image patches. Differences in this group of models are found related to the
method to compute the independent components, or the size of the used
patches. But the most important characteristic of each method is related
to the details of the approximation proposed to estimate the inverse of the
probability density. This estimation can be done comparing the distributions
of features within the image in a global [BT09] or in a local manner [SM09],
or comparing that distribution of features against remembered distributions
from a set of training images [ZTM+08].
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Many other models give a rigid approach to compute color distinctiveness,
using a given fixed color representation and relying the measure of saliency
only in the competition of spatial features. These spatial features can be
those obtained from linear filtering of the image with a bank of Gabor-like
filters [GMV07, TOCH06], but also the power of spatial frequencies in the
Fourier domain [HZ07a]. Such a competition is again usually performed
through the computation of a measure of local [GMV07] or global [TOCH06,
HZ07a] comparison of distribution of features. These models have achieved
a quite good performance, in spite of the poor treatment given to color.
This occurs because in natural images most of saliency arises from spatial
structure, and part of color saliency can be well captured in a rigid opponent
component scheme. As shown in the chapter 2, a representation in the Lab
color model achieves a high degree of decorrelation.

Ultimately, all of these models -grounded on a particular estimation of
the inverse of the probability density of features, in a given predefined space
of low level features- allow the interpretation that they rely in an estima-
tion of the optical variability present in the image. Indeed, the measure of
optical variability proposed here is a multivariate measure of variance, and
thus a global measure of the distance of the local optical composition, from
the distribution of optical magnitudes over the image. Models using local
comparisons may be interpreted as computing optical variability in a reduced
neighborhood. Besides, models using a learned distribution [ZTM+08] would
compute a kind of experienced optical variability that would include previous
experience. Such a measure would introduce an additional rigid component
also in the measure of distinctiveness, that is against the proposed strategy
of contextual adaptation. Anyway, as far as these models use a predefined
set of low level features, different from the optical magnitudes involved, they
run the risk of introducing biases in the measure, as comparisons with eye
fixations appear to suggest (see chapter 4). Otherwise, some of them do not
use at all a plausible scheme for pooling of color and spatial features, being
a remarkable example the spectral residual approach [HZ07a].

Models of saliency based on object segmentation can be linked to adaptive
whitening, since whitening of scales provides responses that in many cases
represent separately foreground and background. For instance, in the model
of Achanta et al. saliency is a simple measure of distance to the mean value in
the Lab color model [AEWS08]. This saliency map is segmented to retain the
most salient regions as salient objects. As shown in chapter 2 such distance in
a Lab color space, roughly approximates distance in a color whitened space.
Hence, these models would constitute constrained implementations that take
advantage of one remarkable consequence of an efficient representation, that
is figure-ground segmentation. This solution would be somewhat equivalent
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to compute the distinctiveness in a reduced set of whitened components -
those that provide a data driven foreground segmentation-, catching hence
the optical variability retained by these components.

Other approaches are based on a bioinspired but theoretically unbounded
modelling of visual functions. They are mainly inspired by the hierarchical
organization of the visual cortex [GM04]. Consequently, they have been
referred to as hierarchical models in a recent review by Le Meur et al. [MC10].
Therefore they rely in the realization of a series of visual functions like center-
surround competition, perceptual grouping or visual masking. These models
seem harder to explain in terms of optical variability [IKN98,IK00,MCBT06].
Nevertheless, they claim to look for points distinctive from the surround, and
thereby they ultimately allow a similar interpretation. Besides, the particular
definition of optical variability proposed here is based upon the separate
whitening of color and scale features. This approach is indeed inspired in the
hierarchical functioning of the HVS, thought to seggregate the processing of
color and form. As well it considerably reduces the computational load in
comparison to a joint whitening of optical magnitudes.

The hypothesis underlying most of strategies in modelling of saliency, can
be formulated and formalized then in a simple manner: Human visual system
is naturally tuned to prefer sources of optical variability in the environment,
and only specifical training and/or voluntary behavior is able to tune it to
other kind of relevance that can also be inferred from images using knowledge
or experience. There is a large support for this hypothesis, and we have
provided here evidences that further reinforce this support.

AWS is however the only approach to saliency that can be explicitly linked
to a simple measure of optical salience, defined as the relative contribution
to the spatial variability of few optical magnitudes. At least of the interval of
them comprissed within the optical visual window, that is, the part of these
magnitudes -in terms of range and resolution- that survives the filter of early
vision. As shown in the chapter 6 when dealing with hyperspectral images
the optical visual window retains a main portion of the physically existing
optical variability.

Otherwise, the AWS is compatible as well with a top-down approach to
visual attention like the proposal of contextual influences by Oliva and Tor-
ralba. Both approaches are based on early feedforward representations of
images. According to the experimental results obtained by them, this repre-
sentation is already available in the first fixation, and it retains low spatial
frequencies, to further accumulate information of higher spatial frequencies.
This fast feedforward representation would explain that when a contextual
knowledge influences a visual search, it modifies the spatial distribution of
fixations. As a result fixations are directed to regions of high probability
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to find the target searched. But what happens if no target is looked for
and consequently contextual information does not affect surveillance strat-
egy?. It is reasonable to expect that saliency arising from such a feedforward
representation would guide the deployment of attention. It is striking that
most of saliency is retained in AWS, in spite of a remarkable downsampling
of the input image. This points to intermediate scales as determinant in a
kind of layout saliency that would explain most of early fixations in a free
surveillance task.

3.A. Appendix

In Fourier optics any image can be considered as a wavefront piece and
approached as a superposition of ideal monochromatic plane waves [ST91].
A monochromatic plane wave can be characterized by means of its amplitude
A, its spectral wavelength λ and its wave number vector k (i.e. its direction
of propagation).

E(x, y, λ,k) = A(λ,k) exp (k · r− i(c/λ)t) ; (3.19)

with k being a vector of free orientation and with modulus k = 2π/λ, and
being c the speed of light.

The visual system is only sensible to light intensity, that means to the
squared modulus of the different plane waves, and not to the ultrafast phase
of ligth wavefronts. Besides natural images are in general illuminated by
diffuse or extended sources like the sun, hence the eye can be assumed to be an
incoherent system which is linear in intensity [Goo05,Gas78]. Consequently,
the image intensity can be described by the expression:

I(x, y, λ,k) = EE∗ = A2(λ,k) exp (2k · r) ; (3.20)

Hence, being u and v the rectangular components of the two dimensional
spatial frequencies on an image plane parallel to the x − y plane, they are
related to the wave number vector through the expression

k = 2πui + 2πvj + kzk; (3.21)

so that the spatial frequencies contributed by a given plane wave depend on
the projection of its wave number vector on the x − y plane. That means,
they can be derived from both the angle with the image plane and its spectral
wavelength, so that:
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u = (1/λ) sin θx ≈ (1/λ)θx

v = (1/λ) sin θy ≈ (1/λ)θy (3.22)

where θx and θy are the angles that the wave number vector makes with the
planes y − z and x− z, respectively, and the sinus becomes the angle in the
paraxial approximation (for small angles).

That said, the spectral value determines the chromatic properties of the
plane wave, while both the spectral value and the angle between the wave
number vector and the image plane determine the spatial frequency con-
tributed by the plane wave [ST91]. Besides on an image plane, the plane
wave can be represented by a intensity value at each point. From the previ-
ous argumentation, it follows that the intensity of an image can be obtained
from the integral of the light intensities in the continuum of plane waves,
that is:

I(x, y) =
∫ λ1

λ0
I(x, y;λ)dλ =

∫ λ1

λ0

∫ u1

u0

∫ v1

v0
I(x, y;λ;u, v)dλdudv (3.23)

where

I(x, y;λ) =
∫ u1

u0

∫ v1

v0
I(x, y;λ;u, v)dudv (3.24)

Since spatial information is coded in the spatial frequencies, a given point
can be referred by a single unidimensional index (x, y) → pxy. Using more
conveniently polar instead of rectangular coordinates to represent spatial
frequencies, an image can be formalized by the expressions:

I(pxy) =
∫ λ1

λ0
I(pxy;λ)dλ (3.25)

and

I(pxy;λ) =
∫ ρ1

ρ0

∫ α1

α0

I(pxy;λ; ρ, α)dρdα (3.26)

where ρ and α are respectively, the modulus and the angle of the spatial
frequency.

The local contribution to such a superposition of monochromatic plane
waves can be described in terms of the spatial power distributions of chro-
matic components -related to electromagnetic wavelength- and of the cor-
responding power distributions of magnitude and orientation of the spatial
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frequencies present for each of them -related to the wave number vector. The
spectral power distribution is given by the left side of equation 3.26, while
the power distribution of spatial frequencies for a fixed λ can be represented
by the argument of the integral in the right side of the same equation.



Chapter 4

Prediction of Human Fixations

In this chapter, the results obtained in validation experiments founded on
the predictive capability of human fixations are shown. It must be remarked
that no kind of parameter tuning has been made to obtain the following
results. The setup of the model is exactly the same that has been described
in detail in the previous chapter.

A variety of approaches have been proposed in the assessment of compu-
tational models of saliency. Some of them use an objective measurement of
technical performance in a given task. An example of this can be found in
the use of the improvement on recognition performance by van de Weijer et
al., as a measure of usefulness of their color saliency approach [vdWGB06].
Also, the ability to detect salient objects –like traffic signs– has been used to
assess saliency model performance [IKN98,AL10]. However, the most widely
employed evaluation methods rely on the comparison with human fixations
like for instance in [BT09,GMV08,ZTM+08,SM09,HZ08]. This approach is
more general than specific purpose recognition tasks, and it is clearly related
to saliency. Besides, the use of natural images prevents from experimental
design biases. This is why quantitative measures of prediction of human eye
fixations on natural images are currently seen as the most reliable way to
assess a given measure of saliency. Moreover, most models try to show their
capability in pushing this benchmark further on.

4.1. Capability of predicting fixations

Human fixations are usually obtained through experiments in which sub-
jects observe images or sequences in a screen. In these experiments, eye
movements are recorded and analyzed through the use of an eye tracker,
and the angles of fixations and saccades –or directly their positions on the
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screen–are provided. Depending on the device and the software associated,
a variety of data (like landing time or precision) is recorded, and different
analysis are possible. Usually, to assess models of saliency only the fixations
-positions around which the eye is steadily landing during enough time- are
used. Fixations refer to the positioning and accommodation of eyes that al-
lows the image to be brought into the fovea, and they are hence thought to
be essential for the impression of clarity in the visual perception. Thereby,
they appear to have a major role in visual attention.

In the assessment of saliency with eye-tracking results, the objective is
not the reproduction of fixation times or order of fixations. Most frequently,
the purpose is to test the explanatory capability of saliency for the spatial
distribution of early fixations from a group of subjects, which observe images
without any specific purpose. These conditions try to minimize the influence
of top-down mechanisms on the behavior of the subjects.

4.1.1. Procedure, datasets and results

The saliency maps have been compared with human fixations through the
use of the area under the curve (AUC), obtained from a receiver operator
curve (ROC) analysis, as proposed by Tatler et al [TBG05]. The method has
been employed to validate a wide variety of state-of-the-art saliency models,
providing a reliable measure for comparison. In this procedure, one unique
curve is drawn for a whole set of images. The area under this curve can be
used to measure the capability of saliency to discriminate between fixated and
non fixated points. To avoid center-bias, in each image, only points fixated
in another image from the same dataset are used as non fixated points. As
suggested by Tatler et al., standard error is computed through a bootstrap
technique, shuffling the other images used to take the non fixated points,
exactly like in [ZTM+08] and in [SM09]. The appendix at the end of the
chapter shows results with two other measures based on the Kullback-Leibler
divergence.

The particular implementation of the method proposed by Tatler et al.
and done by Zhang et al. has been adopted by two main reasons. Firstly,
it has been recently used to assess several state-of-the-art models both by
Zhang et al and by Seo and Milanfar [ZTM+08, SM09]. This fact clearly
facilitates comparison in a fairly fashion with existing approaches. Secondly,
it is robust against tricks like border supression used in many models.

Two open-access eye-tracking datasets of natural images have been used.
The first of them has been published by Bruce and Tsotsos and has 120 im-
ages and fixations from 20 subjects [BT06b]. This dataset has already been
used to validate several state-of-the-art models of bottom-up saliency like for
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Table 4.1: AUC values obtained with different models of saliency for both of the
datasets of Bruce and Tsotsos and Kootstra et al. Standard errors,
obtained like in [ZTM+08], range 0.0007-0.0008. For the groups of
the Kootstra et al. dataset, standard errors range 0.0010-0.0018. (*
Results reported by [ZTM+08]; ** Results reported by [SM09]).

Model Bruce
and

Tsotsos
dataset

Kootstra et al. dataset

Whole
dataset

Buildings Nature Animals Flowers Street

AWS 0.7106 0.6205 0.6105 0.5815 0.6565 0.6374 0.7020
Seo and
Milanfar

0.6896** 0.5933 0.6136 0.5530 0.6445 0.5602 0.6907

Hou and
Zhang

0.6823** 0.5750 0.5902 0.5426 0.6086 0.5659 0.6419

AIM 0.6727* 0.5842 0.5766 0.5628 0.5953 0.5881 0.6393
SUN 0.6682* 0.5705 0.5514 0.5484 0.5401 0.6100 0.6458
Itti et al. 0.6456 0.5702 0.5814 0.5478 0.6200 0.5217 0.6509
Gao et
al.

0.6395* – – – – – –

instance in [BT09, GMV08, ZTM+08, SM09, HZ08]. The second dataset has
been published by Kootstra et al. and consists of 99 images and the corre-
sponding fixations of 31 subjects [KNdB08,KS09]. One interesting property
of this dataset is that it is organized in five different groups of images (12 im-
ages of animals, 12 of streets, 16 of buildings, 40 of nature, and 19 of flowers
or natural symmetries). The main purpose of the use of different datasets
in this work was to assess the robustness and reliability of the evaluation
procedure.

In the table 4.1, the obtained rankings of models are shown using both
image datasets of Bruce and Tostsos and Kootstra et al. The results shown
for the model of Itti et al. [IKN98] are higher than in other works [ZTM+08,
SM09] because instead of using their saliency toolbox, the original version has
been used, as made available for Matlab (http://www.klab.caltech.edu/

~harel/share/gbvs.php). In the figure 4.1, the saliency maps obtained with
ten images from each of the datasets with the three best models are shown.
As well, figures 4.2 to 4.12 show all the results for the AWS on both datasets
as well as the fixations density maps provided by the authors.
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Figure 4.1: Illustrative results for comparison with state-of-the-art models and
humans for 10 images from each of the datasets of Bruce and Tsotsos
(left) and Kootstra et al. (right) (see the text for details).
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4.1.2. Discussion of results

As we can see in the tables, this evaluation method suffers from an ob-
vious problem. The tight uncertainty values of AUC obtained for a given
dataset or group of images are clearly incompatible with the ones obtained
with the others. Hence, it is well-grounded to question the validity of these
uncertainties, below the thousandth part, and their use as the minimum
relevant difference between models.

We could be tempted to attribute the differences between datasets to
differences in experiments. But this would not explain the even higher dif-
ferences found between the categories provided by Kootstra et al.. The vari-
ation of results between types of scenes is really high, to the point of making
uncertainties and even differences between models seem irrelevant.

Therefore, it could happen that each of the models catches different kinds
of saliency better and, hence, some models might work better with certain
images than others. That is, we could think that the results are scene-biased
or feature-biased for a given dataset. But there is also something that seems
to question this explanation: despite the high variation in the AUC values,
the resulting ranking is quite stable. It is the same for both datasets, although
it is not the same for all of the groups of images. AWS gets the highest AUC
value for both of the datasets and four of the groups. Only in the buildings
group is slightly outperformed by the model of Seo and Milanfar.

Other factors that could explain differences between datasets are those
related to a different relative influence of saliency on the behavior of humans.
For instance, there might exist differences on the strength of the influence
of saliency in driving fixations, owing to a different spatial concentration of
saliency itself. There could also be top-down mechanisms affecting differently
to different types of images, like in [ESP08] and in [BBK09]. Any of these
two factors could explain the disparity in results observed for the several
groups of images.

4.2. Comparison with humans

From the last observations, it seems reasonable to compare the capability
of the model of predicting human fixations with that shown by humans them-
selves, this is, to use a measure of relative prediction capability, rather than a
simple measure of prediction capability, as usually done. This would suppress
the effect of particularly strong subjective –be random or top-down– behav-
ior in certain images, and as a consequence, would provide a more robust
measure of performance, less affected by inter-scene variance. In case there
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Figure 4.2: Complete results on the dataset of Bruce and Tsotsos. The human
maps are those provided by the authors, obtained through Gaussian
kernels applied on fixations and averaging through subjects (I).
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Figure 4.3: Complete results on the dataset of Bruce and Tsotsos. The human
maps are those provided by the authors, obtained through Gaussian
kernels applied on fixations and averaging through subjects (II).
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Figure 4.4: Complete results on the dataset of Bruce and Tsotsos. The human
maps are those provided by the authors, obtained through Gaussian
kernels applied on fixations and averaging through subjects (III).
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Figure 4.5: Complete results on the dataset of Bruce and Tsotsos. The human
maps are those provided by the authors, obtained through Gaussian
kernels applied on fixations and averaging through subjects (IV).
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Figure 4.6: Complete results on the dataset of Bruce and Tsotsos. The human
maps are those provided by the authors, obtained through Gaussian
kernels applied on fixations and averaging across subjects (V).
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Figure 4.7: Complete results on the buildings group from the dataset of Koot-
stra et al.. The human maps are those provided by the authors,
obtained through distance to fixation transform for each observer
and averaging across subjects.
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Figure 4.8: Partial results on the nature group from the dataset of Kootstra
et al. (I). The human maps are those provided by the authors,
obtained through distance to fixation transform for each observer
and averaging across subjects.
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Figure 4.9: Partial results on the nature group from the dataset of Kootstra
et al. (II). The human maps are those provided by the authors,
obtained through distance to fixation transform for each observer
and averaging across subjects.
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Figure 4.10: Complete results on the animals group from the dataset of Koot-
stra et al.. The human maps are those provided by the authors,
obtained through distance to fixation transform for each observer
and averaging across subjects.
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Figure 4.11: Complete results on the flowers group from the dataset of Koot-
stra et al.. The human maps are those provided by the authors,
obtained through distance to fixation transform for each observer
and averaging across subjects.
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Figure 4.12: Complete results on the street group from the dataset of Koot-
stra et al.. The human maps are those provided by the authors,
obtained through distance to fixation transform for each observer
and averaging across subjects.
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was an important amount of top-down behavior, common to all subjects, this
would result in a decrease of the relative capability of prediction. Thus, such
an evaluation can also give interesting additional information about human
behavior in a visual surveillance task.

4.2.1. Human predictive capability

To implement this measure, priority maps derived from fixations will be
used, following the method described by [KS09]. This method lies in the
subtraction of the distance between each point and its nearest fixation from
the maximum possible distance in the image. As a result, fixated points
have the maximum value and non fixated points have a value that decreases
linearly with distance to the nearest fixation. The resulting maps can be
used as probability distributions of subjects fixations (priority maps), and
can be considered as subjective measures of saliency.

At least with few fixations per subject, as it is the case, this method
yields improved predictive results than the approach to compute priority
maps based on filtering of fixations with truncated Gaussians [Oue04,BT06b].
This other approach has the problem of assigning zero priority to most points,
despite the fact of having different distances to the nearest fixation. Further-
more, the linear distance-based method is parameter free. Of course, it can
be argued that it is not justified to assume that priority drops linearly with
distance to fixations. Nevertheless, it seems actually reasonable to assume
that priority drops monotonically with distance to the nearest fixation. If the
method to compare and evaluate maps is invariant to monotonic transforma-
tions, as ROC analysis is, then there is no issue with using linear, quadratic
or any other monotonic maps.

Hence, through a ROC analysis, the same one employed to evaluate mod-
els of saliency, the capability of these maps to predict the fixations of the set
of subjects can be assessed. This implies the capability of predicting fixations
of all subjects from fixations of a single subject.

The described differences between maps with both methods can be qual-
itatively compared in the figure 4.1 for a selection of examples, or seaching
in the figures 4.2 to 4.12 (in both cases the Human maps column), where
the average priority maps provided by the corresponding authors with each
dataset are shown. In Gaussian-based maps most of the points have zero pri-
ority, while in distance-based maps a gray-scale continuum with several local
maxima covers the image. It must be noticed that we have not used these
averaged maps, but distance-based maps computed for each of the subjects.
Such a procedure emphasizes still more the differences.

The previous evaluation for each subject has been done, only for those
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Table 4.2: Average predictive capability of humans using distance-to-fixation
priority maps.

Bruce and
Tsotsos dataset

Kootstra et al. dataset

Whole dataset Buildings Animals Street
Mean 2σ Mean 2σ Mean 2σ Mean 2σ Mean 2σ

0.6946 0.0248 0.6254 0.0224 0.6154 0.0330 0.6672 0.0356 0.6923 0.0402

Nature Flowers
Max Min Max Min Mean 2σ Mean 2σ

0.7156 0.6805 0.6462 0.6056 0.5874 0.0194 0.6419 0.0245

with fixations for all of the images. One individual has been excluded of the
dataset of Bruce and Tsotsos, whose deviation from the average of humans
was larger than the standard deviation, and who also had just one fixation
in many images. This yields 9 evaluated subjects for the dataset of Bruce
and Tsotsos, and 25 subjects for the dataset of Kootstra.

From there, the predictive capability of each of these subjects has been
obtained for the fixations of the whole set. Computing the average, there
is also the predictive capability of the average subject. Besides, the double
of the standard deviation provides an estimation of the range of predictive
capabilities for the 95% percent of humans, assuming a normal distribution
for AUC human values. This was true for the datasets and groups studied,
with a kurtosis value very close to 3. Moreover, this interval can also be used
as a measure of the minimum relevant distance between two models.

4.2.2. Human-model performance comparison

Examining the obtained results in table 2, it has been found that the
AWS model is compatible with the average human, for both datasets and for
each of the five groups of the Koostra et al. dataset. The model of Seo and
Milanfar is also compatible with the average human in the dataset of Bruce
and Tsotsos, and in two of the five groups of Kootstra et al., but not in the
whole data set of Kootstra et al., clearly outperformed by all subjects. The
model by Bruce and Tsotsos is only marginally compatible with the average
human with their own data set. Furthermore, AWS is the only one that
outperforms several subjects in all the cases, representing nearly half of the
observers of Kootstra et al. dataset, and more than half of them in the Bruce
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Table 4.3: Results of comparing predictive capabilities of saliency models,
subtracting the average predictive capability of humans. Positive
sign means better, and negative sign means worse, than the average
human. (All results derived from tables 4.1 and 4.2).

Model Bruce
and

Tsotsos
dataset

Kootstra et al. dataset

Whole
dataset

Buildings Nature Animals Flowers Street

95% of
humans

± 0.025 ± 0.022 ± 0.033 ± 0.019 ± 0.036 ± 0.025 ± 0.040

AWS 0.016 -0.005 -0.005 -0.006 -0.011 -0.004 0.010
Seo and
Milan-
far

-0.005 -0.032 -0.002 -0.034 -0.023 -0.082 -0.002

AIM -0.022 -0.041 -0.039 -0.025 -0.072 -0.054 -0.053
SUN -0.026 -0.055 -0.064 -0.039 -0.127 -0.032 -0.047
Itti et
al.

-0.049 -0.055 -0.034 -0.040 -0.047 -0.120 -0.041

and Tostsos data set. In this last, our model performs even slightly over the
average human, as well as in the street group of Kootstra et al.

To provide a numerical measure that synthesizes these results, the sim-
plest one has been chosen: the difference between the results of each model
and the average human. Positive values imply higher predictive capability
of the model and negative values imply higher predictive capability of the
average human. As proposed above, the interval of the 95% of humans will
be used as relevant difference, given that AUC errors are comparatively neg-
ligible. The values obtained are shown in table 3, for the different models.

4.2.3. Discussion of results

Results achieved by AWS in both datasets and the groups of Kootstra
et al. dataset are highly consistent, not only in ranking position but also
in the absolute value. Then, it seems to be robust against scene change.
This means that it does not show any kind of scene bias and that it is not
specially fitted for particular kinds of saliency, present in different scenes.
Also, it clearly exhibits the highest performance among the analyzed models
that constitute a representative sample of the state of the art. The model by
Bruce and Tsotsos shows marginal compatibility of results among datasets.
The model of Itti et al. presents also consistency among datasets –with the
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lowest performance in both cases. The rest of the models do not show ro-
bustness when comparing with human performance and AWS is the only that
maintains consistency when the groups of images of the dataset of Kootstra
et al. are considered. This points out to scene or feature biases in the dif-
ferent models, and to a difficulty to catch certain salient features that are
frequent in natural images. One clear example of such failures that can be
observed in fig. 2 is the existing symmetry in many natural images, that only
AWS is able to catch, but also the low sensitivity of other models to high
frequencies and small scales that sometimes are very salient.

As it has been shown, the proposed measure to assess saliency fulfills
the requirement of invariance against the kind of scene. As a result, it can
be used to detect possible biases and lack of robustness in models. It also
provides a realistic estimation of the minimum relevant difference between
them. Therefore, it must be noticed that the 95% of humans is always
among 0.02-0.04 around the average value. This leads us to two conclusions.
Firstly, for any set of different natural images, as large as those employed
here, differences of 0.02 or higher can be considered significant. Secondly, a
ranking could be reverted with a different dataset due to a possible combined
feature bias of the set of images used to perform the assessment and of the
sensitivity of models being evaluated.

Other aspect that it is found to be particularly relevant is the fact that
AWS completely matches the predictive capability of humans, and it always
behaves like another human. In our understanding this means that the model
is able to explain the shared factor that drives human fixations, during the
free-viewing of natural images. Therefore, there do not seem to be shared
top-down effects driving fixations up to increase the predictive capability of
humans to a level that saliency is not able to explain. From our viewpoint,
this fact reinforces the importance of bottom-up saliency in the explanation
of the shared (inter-subject) behavior of the HVS. It also questions the real
implications of results like those provided by [ESP08] or by [BBK09], involv-
ing top-down influences. In relation to this topic,we believe that more efforts
are needed to clarify when shared behavior of humans follows the physical
saliency, and when it is driven by a shared top-down mechanism (interest,
motivation, abstraction, etc.).
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4.3. Robustness of performance against spa-

tial resolution

An interesting aspect related to the performance of a measure of saliency
is the impact of spatial resolution on its capability of predicting fixations.
The figures 4.13 and 4.14 explore this question for both of the studied datasets
and a wide number of state-of-the-art and reference models. All models have
been labeled with abbreviations for the sake of clarity, except the model of
Itti et al, which has been labeled with the name of the first author. Most
of these abbreviations have been already introduced, but two new labels are
used, namely Srf for the model based on selfresemblance by Seo and Milanfar
[SM09] (already assessed in this chapter), and ICL for the incremental coding
length model by Hou et al. [HZ08].

Clearly, the AWS model presents not only the highest maximum per-
formance as already claimed in the previous sections, but also an unrivaled
robustness against the spatial resolution of the input image. This fact reveals
that differently to other state-of-the-art models the AWS model is not biased
to deal with certain scales that are most often involved in the determination
of saliency. As expected from its adaptive nature to the specific context,
the AWS model is able to deal with a wider range of scales (i.e. a wider
spectrum of spatial frequencies) and hence not only with the scales that are
most frequently the salient ones.

In the dataset of Bruce and Tsotsos, there are several models –for instance
the Srf and SRS [SM09, HZ07a]–that increase monotonically their perfor-
mance as the spatial resolution decreases up to a given value from which
they quickly decay. For low spatial resolutions the model of Seo and Mi-
lanfar manages to outperform the AWS (using the same spatial resolution).
The reason is that it is optimized for a fixed (small) value of the size of the
input image of 64x64 pixels, that is, for a low spatial resolution. We have
checked that the AWS can also be tuned to outperform these results at such
low spatial resolution, in fact we believe that the model of Seo and milanfar
is also somewhat tuned to work better in this dataset. Moreover it must be
noticed that the maximum AUC value achieved by their model for such a
low spatial resolution value is still clearly under the maximum achieved by
AWS, as shown in the previous sections. Besides, a tuned version of the AWS
for these low resolution values does not achieve either that maximum value.
This points to an amount of relevant saliency present in lager scales that is
lost with such a drastic downsampling. The same behavior is observed in the
dataset of Kootstra et al, however here none of the models outperforms the
AWS, even at lowest resolution values.
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Figure 4.13: Comparison of the capability of different models to predict human
fixations –measured through AUC values from ROC analysis, as
explained in the first section–against the spatial resolution retained
in the input image. Spatial resolution is expressed as pixels by
degree of visual field for subjects. Results are shown for the dataset
of Bruce and Tsotsos.

Overall we can say that several models have been designed to only work
fine at low resolution values. As well, the fact that they have been assessed
with the dataset of Bruce and Tsotsos used as a benchmark seems to have
biased their performance. Thereby they seem to work comparatively better
in that dataset but they are not able to keep the same performance in a
difference dataset. This observation is in agreement with the analysis done
in the previous sections when comparing with human performance.

Another question that is worth noting is that except models optimized
(in the dataset of Bruce and Tsotsos) for a given size of the input im-
age [SM09,HZ07a] that force that size, the function call of the other models
have a default value of downsampling factor. We have used this unique down-
sampling factor in the previous sections. For the AWS this poses a problem:
since the maximum spatial resolution available in the original images is dif-
ferent between datasets, and since the maximum performance is achieved for
nearly the same value of spatial resolution, different downsampling factors
should have been used to work at maximum performance. This points to
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Figure 4.14: Comparison of the capability of different models to predict human
fixations –measured through AUC values from ROC analysis, as
explained in the first section–against the spatial resolution retained
in the input image. Spatial resolution is expressed as pixels by
degree of visual field observed by subjects. Results are shown for
the dataset of Kootstra et al.

spatial resolution, instead of the downsampling factor, like the relevant pa-
rameter to keep constant across datasets. This difference is not excesive for
the AWS model. For the sake of clarity and a fair comparison we have used
the constancy of the downsampling factor. However, also the performance of
the SUN model in the Kootstra et al. dataset has been considerably under-
estimated due to this issue. As well most of the models would have probably
favored from a fixed value of spatial resolution rather than any other pa-
rameter. An additional problem with models that force the dimensions of
the input image to a fixed square value of 64x64 is that they do not respect
the proportions of the horizontal and vertical dimensions and then they pro-
duce a geometric deformation of the input image, of a variable amount that
depends of the shape of the input image.

Anyway, the point here more than comparing performance is to compare
the robustness of the models against variations in the spatial resolution of
the input image. In this respect, the model by Itti et al. and in less extent
the AIM model by Bruce and Tsotsos show a considerable stability in their
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behavior against spatial resolution of the input image. All of the other models
show an wild lack of robustness to manage with spatial resolution, revealing
strong biases and a very rigid design. This is most probably related to design
choices like the definition of fixed sizes for the receptive fields and their
surround, or the definition of fixed ranges of spatial frequencies to compute
saliency.

Otherwise, as shown in the graphics of the figures 4.13 and 4.14 the
maximum of the predictive capability of the AWS model is not achieved for
the maximum spatial resolution, but for a spatial resolution clearly lower, of
around 10 pixels/degree for both datasets. This fact suggests the existence of
a threshold of the visual acuity that is able to affect intersubject consistency
in the spatial distribution of fixations. That is, for subjects with a lack of
visual acuity that do not put them under such value, fixation patterns will
retain the same consistency present between healthy subjects with normal
visual acuity. Therefore, the hypothesis of adaptive whitening in the HVS
seems to predict a strong robustness in the consistency between subjects in
spite of important variations of visual acuity, that is of important variations
in the spatial characteristics of the visual window. However further analysis is
needed in this respect to determine such a threshold. In particular, it would
be worth using a selection of biased images in which saliency is expected
to be driven by small scales to find how small a scale can be to affect the
spatial pattern of human fixations in free surveillance, in order to determine
the value of such threshold of visual acuity.

4.A. Appendix

Other measures that have been previously used for the comparison of
saliency with the spatial distribution of human fixations have been cosidered.
They do not reveal remarkable differences with the analysis done on the
selected measure based on ROC analysis. Consequently, they have not been
included in the previous discussion for the sake of clarity.

However, for informative reasons we consider convenient to show in this
appendix some results for two of these comparative measures that are based
on the Kullback-Leibler (KL) divergence and that have been previously used
in a number of works with the same purpose. The Kullback-Leibler diver-
gence provides a measure of difference between probability distributions. It
is not a distance, since it is not symmetric. It gives a measure of how much
additional information is needed for a given distribution to equate the other.
Thereby, the higher the KL divergence between two distributions is, the
higher is the difference between those distributions.
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Table 4.4: KL values obtained with different models of saliency for both of the
datasets of Bruce and Tsotsos and Kootstra et al. Standard errors
range 0.001-0.002 for both of the datasets. Higher is better.

Model Bruce
and

Tsotsos
dataset

Kootstra et al. dataset

Whole
dataset

Buildings Nature Animals Flowers Street

AWS 0.4625 0.1425 0.1576 0.0830 0.2709 0.2049 0.4433
Seo and
Milanfar

0.4121 0.1019 0.1592 0.0712 0.2521 0.0818 0.4053

Hou and
Zhang

0.3846 0.0672 0.1107 0.0498 0.1454 0.0707 0.2478

AIM 0.3198 0.0797 0.1007 0.0654 0.1507 0.1225 0.2848
SUN 0.2934 0.0562 0.0664 0.0480 0.0712 0.1402 0.2501
Itti et al. 0.2524 0.0549 0.0994 0.0457 0.1568 0.0356 0.2885

Its formal expression is given by:

DKL(D1, D2) =
N∑
i=1

D1i · log
D1i
D2i

(4.1)

where D1 is typically taken as the true probability distribution, D2 is
taken as the distribution aiming to approximate D1, and N is the number of
discrete values of the independent variable used for both distributions and
it must be the same. If the base of the logarithm is 2, the KL divergence
between the distributions is given in bits. It can be interpreted hence as the
additional amount of information needed to predict D1 from the knowledge
of D2.

Capability of predicting fixations

One of the typical uses of the Kullback-Leibler divergence consists in
comparing the distribution of saliency values in fixated points against the
distribution of saliency values in non-fixated points. It is expected that the
higher is this value, the more discriminative is the measure of saliency when
it is used to decide if a point in an image is to be fixated or not.

This measure still makes a direct use of fixation positions in the defini-
tion of the comparing distributions. Therefore, it can be viewed as a direct
measure of the capability of saliency to predict the spatial distribution of
fixations, that is, to discriminate between fixated and non-fixated points.
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The formal expression is given by equation 4.1, being D1 the histogram
of fixated points in an image and D2 the histogram of the same number
of random non-fixated points from the same image. Like in the previous
sections, center bias is avoided through the same shuffling procedure in which
non-fixated points are selected from points fixated in a different image of the
dataset. Besides this procedure delivers an estimation of the standard error
associated to the measure.

The results are provided in the table 4.5. They support the same discus-
sion done in the first section of this chapter for results from ROC analysis.
The only minor remark that can be added is that the distances between
models are amplified with this measure, making the advantage of AWS more
apparent.

Comparison between spatial distributions of saliency and human
priority

Other use that has been employed by Le Meur et al. relies on the inter-
pretation of a priority map as a measure of the probability of each point to
attract gaze, and the interpretation of a saliency map as a prediction of that
probability [MCBT06]. From this viewpoint, it makes full sense to compare
both distributions through the KL divergence.

It is worth noting that, instead of comparing gray level probabilities of
fixated and non fixated points like in the previous section, the comparison
is done now between distributions of probabilities in the space. This intro-
duces an important difference related to the use of a derived –rather than
direct–measure of human behavior, since priority is obtained through a par-
ticular processing from obtained human fixations. For each of the datasets
we have used the average priority maps provided by the authors that have
been obtained through different procedures, as previously explained in this
chapter.

With this aim, we obtain probability maps simply dividing a given map by
the sum of its gray level values. We denote by hi = h(x, y) and mi = m(x, y)
the priority map deived from fixations and the saliency map from each model
respectively –taken as probability distributions. Modifying correspondingly
the expression 4.1, the KL divergence is now given by:

DKL(h,m) =
N∑
i=1

hi · log
hi
mi

(4.2)

where N is the number of pixels, and the pixel index is the independent
variable i. The pixel index is a unidimensional variable since the pixel order
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or its relative position are not relevant whenever being the same for the
compared distributions.

The results obtained on the Bruce and Tsotsos dataset are provided, for
several state-of-the-art models, in the table 4.5. The AWS model achieves
again the best value, since it shows the least difference value, pointing to a
spatial distribution closer to the priority map. The model of Seo and Milanfar
achieves again the second best value. The remaining models change their
relative positions, comparing to the results obtained with a ROC analysis or
a Kullback-Leibler comparison of fixated and non-fixated points.

Table 4.5: KL values obtained with different models of saliency for both of the
datasets of Bruce and Tsotsos and Kootstra et al. Standard errors
range 0.001-0.002 for both of the datasets. Lower is better.

Model Bruce and Tsotsos dataset
AWS 0.8161 ± 0.0211
Seo and Milanfar 0.8659 ± 0.0257
Hou and Zhang 1.1185 ± 0.0383
AIM 1.0868 ± 0.0254
SUN 1.0082 ± 0.0251
Itti et al. 0.9965 ± 0.0249

However, several problems of this procedure put in question its validity.
Firstly, it is an indirect procedure since it uses comparison with priority
maps and not with fixations. this use is different from the use proposed
in the third section of this chapter, since there the predictive capability of
priority maps was used as a benchmark zero-point value but the comparison
of saliency maps was done directly with fixations. Moreover, here there is no
shuffling procedure but a KL divergence is obtained for each of the images,
and standard error is computed dividing the standard deviation by the square
root of the number of images (i.e. the number of averaged values). The
distribution of values is not normal, making difficult to interpret the meaning
of such stardard error. In agreement with the observation previously done,
values vary wildly from one image to another and if the standard deviation is
used as uncertainty instead of the standard error of the mean, it increases an
order of magnitude up to the point to do nearly all of the models statistically
compatible.

Therefore, at least in the described form this measure seems to be useless.
However, its focus on the comparison of distributions in the space makes it
interesting enough to take it into account, and it possibly would improve if
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using a shuffling procedure to compute it in a whole set of images.



Chapter 5

Reproduction of
Psychophysical Results

The AWS model is able to reproduce a series of psychophysical results,
usually associated to saliency. As explained in the chapter 2, a variety of
psychophysical studies have been devoted to characterize the behavior of
visual attention, as well as more specifically the perception of visual saliency.

The beating of the FIT proposed by Treissman (see chapter 1) can be
found underlying most of these studies. This is the case of the non-linear
effects observed for certain features, arising from its parallel processing in
early vision. Likewise, the search for asymmetries to discard features as sim-
ple ones is also a tool to advance in the research project proposed by the
FIT. Of course, a straightforward strategy is the characterization of search
efficiency, seeking for the separation of simple features able to produce pop-
out from those compound features that produce a serial and inefficient search.
Otherwise, saliency has also been related to phenomena of perceptual am-
plifying that are in the basis of some visual illusions. All of these studies
are here reviewed in the light of the adaptive whitening hypothesis in early
visual coding, without the need of further hypothesis of parallel processing
of primitives nor particular phenomena of perceptual amplifying.

The chapter starts showing the results of two experiments based on per-
ceptual comparisons. They seem to be closely related to early vision and
many of them also to the perceived bottom-up saliency. Likewise, they do
not involve occulomotor performance, and thus they seem in principle less
exposed to perturbations from motoric (non visual) neural functioning. In
the first experiment, an accurate explanation for the illusion of increasing lu-
minance with increasing corner angle is conveyed, while the second is related
with the non-linearity of saliency against orientation contrast. Next, the
AWS model will be shown to suitably reproduce several phenomena related
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to visual search. Namely, Weber’s law and pressence/absence asymmetry,
color asymmetry, and efficient and inefficient search results are shown to be
correctly reproduced by the model.

5.1. Experiments based on perceptual com-

parisons

In this section results of two experiments that are based on the comparison
of the target stimulus -of constant luminance- with a luminance value of
other reference stimulus are considered. These experiments are conceived to
quantify the saliency of the target stimulus by means of the luminance value
of the reference that provides the equilibrium in the comparison. The change
in this value is assumed to arise from the difference in the visual saliency of
the target that depends on its relation to the context.

5.1.1. Linearity against corner angle

Here an experiment inspired in a series of Vasarely’s op-art works devoted
to nested squares is reproduced and explained in the light of the AWS. With
the aim to characterize and explain the illusion of higher luminance in the
diagonals of nested squares, as well as other related visual illusions, Troncoso
et al. have studied the saliency of a corner in a gray scale gradient. [TMMC05]

They measured saliency as a function of corner angle. To do it, they
used seven images of different corner angles, with the middle point of the
gradient within the corner, always with the same luminance. Six of those
images can be seen in figure 5.1. They asked observers to compare the
intensity at that central point of the stimulus, with a standard stimulus.
Such standard stimulus was made of a vertical stripe with 55 segments with
a different luminance value. The order of segments was varied so that any
segment had the same probability to appear at the same height than the
central point of the corner. Given that the physical luminance of the central
point was the same for all of the corners, differences in the luminance chosen
in the standard stripe were attributed to an illusory enhancement, due to a
different magnitude of saliency. The results obtained revealed that saliency
decreases linearly with corner angle.

The authors tried an explanation of such behavior with basis on center-
surround differences. They measured the responses of a DoG filter for all of
the corners in the central point evaluated by observers. They succeded to ex-
plain the trend to decrease of saliency, but not the linearity observed. They
stated that the results pointed to a kind of center-surround competition,
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Figure 5.1: Saliency against corner angle and the six images used, obtained
from [TMMC05].

and hypothesized two possibilities to explain the linear behavior obtained.
Namely, a non-linear component in filtering, or the intervention of mecha-
nisms different from center-surround differences.

In figure 5.1 the results obtained with the AWS model are shown. The
saliency measured by the model decreases with corner angle, for 6 corner
angles (30◦, 45◦, 75◦, 105◦, 135◦, 180◦). This result is in fair agreement with
the reported linear behavior of humans. Saliency for an additional corner of
15◦ used by Troncoso et al. was clearly underestimated by the model, and
has not been used for linear fitting. Other models tested by us have not been
able to reproduce such behavior, and to our known AWS is the only one to
claim it.

5.1.2. Non-linearity against orientation contrast

The next experiment selected is already a classic in attention and saliency
literature. It is related to the observed non-linearity of saliency against fea-
ture contrast that will be tackled again in the last section of the chapter.
Here the feature on focus is orientation.

Nothdurft has shown that the saliency of a target stimulus as a function
of orientation contrast, perceived by humans, varies in a non-linear manner
[Not93]. It varies from an starting threshold value, increasing rapidly at the
beginning, up to a nearly constant saturation value. The experiment here
reproduced consisted in the observation of images with a target stimulus of
variable orientation, among an homogeneous background of equally oriented
stimuli. Four example images similar to those used in the experiment are
shown in figure 5.2. To measure the saliency of the oriented target, the images
included one additional target of variable luminance, embedded in the array
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Figure 5.2: Obtained saliency against orientation contrast of the target and four
examples of the images used (Images adapted from [Not93]).

of background stimuli. This luminance target had the same orientation and
characteristics, except luminance, that the background stimuli had. Positions
of both orientation contrast and luminance contrast targets were random but
in opposite sites of the display. Observers were asked to rate the conspicuity
of each of the targets. The measured rating were fitted to hiperbolic tangents,
and the luminance contrast of equilibrium was determined for each value of
orientation contrast. This value of equilibrium was taken as the measure of
saliency of the orientation contrast target.

In the figure 5.2, a plot of the corresponding measure of saliency against
the orientation contrast provided by the AWS model is shown. Clearly, the
AWS perfectly matches the non-linear behavior described by Nothdurft for
humans. Thereby, the saliency measured by the model increases steeply from
a threshold value of orientation contrast of around 20◦, up to a saturation
value over 50◦ of orientation contrast. This result has also been reproduced
by [GMV08]. However, other state-of-the-art models fail to do it, at least
with the setups made public by the authors [BT09, IKN98].

5.2. Reproduction of visual search results

It has been already pointed that the FIT proposed by Treissman has been
a fostering theory that provided basic concepts guiding the psychophysical
research devoted to visual attention and early visual processing. Two main
topics tackled by Treissman as well as many other authors are related to
visual search asymmetries and to search efficiency.
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The underlying goal was most often related to the identification of simple
features -or integral features, as denoted by Treissman in her seminal paper-
that would have a parallel processing and thus would guide the deployment
of attention [TG80]. A great deal of psychophysical experiments has been
devoted to this task. Otherwise, many of these results are being reproduced
and explained by models of saliency or in general of early coding, that do
not use feature channels, parallel integral features or a subset of low level
primitives, like edges, conectedness, and many other features supposed to
have an idependent and separable processing in the visual system. This is
particularly important in the context of the AWS model, defined in terms of
a computational scheme from few simple optical dimensions that characterize
an image.

Many psychophysical studies have tackled the study of the asymmetric
behavior shown by subjects in visual search tasks. In these kind of experi-
ments, a couple of stimuli differing in a simple feature are used alternatively
as target and as distractor. Search latencies are measured for both cofigura-
tions and asymmetry is reporter wether a different value is found depending
on which is the target and which is the distractor. Actually, this term en-
compasses phenomena of very different nature. It has been pointed in many
cases that the name itself is not suitable. The reason is that the underlying
assumption of symmetric design of the experiment is wrong. Two different
examples of search asymmetries, the first related to the presence and absence
of stimuli and the second related to the change of color of stimuli in different
backgrounds are reproduced and analyzed in the light of the AWS model,
and compared to the results provided by other models.

Wolfe and Horowitz have reviewed in depth the results reported by visual
search studies to provide a classification of the differents studied features in
several groups, in function of the evidence suggesting that they guide or not
the deployment of visual attention. With basis on that review, the ability of
the AWS model to reproduce the efficient and inefficient behavior of humans
for a variety of features is examined at the end of the chapter.

5.2.1. Weber’s law and presence/absence asymmetry

A classical example of search asymmetry is the presence/absence asym-
metry, observed for a pair of stimuli differing only in the presence or ab-
sence of a given simple feature, and analyzed in detail by Treisman and
Souther [TS85]. In this assymetry, while a target presenting that feature
surrounded by distractors lacking it causes a clear pop-up phenomenon, the
reverse target-distractor distribution does not. The interpretation of such
behavior in terms of the FIT is that presence of the feature activates its fea-
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Figure 5.3: Two typical examples of the so called presence-absence asymmetry.

ture map in the corresponding location guiding attention without the need
for a serial examination of the image. However the absence of the feature
does not produce any particular activation, so that subjects need to examine
each position of the image to check if the feature is present or absent.

In the figure 5.3 it can be seen how the AWS manages to reproduce this
behavior. The images as well as the saliency maps obtained for two typical
examples are shown, namely: the plus and minus symbols, and a circle with
and without a bar. Clearly the presence condition targets receive the highest
value of saliency, while the absence condition targets are exceeded in saliency
by the remaining presence condition distractor. This is not an outstanding
behavior of the AWS, since most of the state-of-the-art models of saliency
have shown its capability to reproduce it. It is hence more a requirement to
accept the state-of-the-art plausibility of new models of saliency.

In a subsequent study, Treisman and Gormican, analyzed in more detail
this effect to achieve a quantitative characterization [TG88]. To do it, they
modified a very simple dimension: stimulus length. Therefore they measured
latencies for different lengths of target and distractor. They found that for
a given ratio between the length of the target and the difference of length
between target and distractor search time was always the same. As well, the
variation of search time against this ratio was linear. Again in terms of the
FIT, this linear behavior is easily explained by an increase of location activa-
tion of the corresponding feature map proportional to the relative strength
of the feature in the location.
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Figure 5.4: Left: Saliency against relative variation of length reproduces the
Weber’s law observed in humans. Right: Four examples of the
images used in the experiment.

To check the behavior of the AWS model, the saliency maps have been
obtained for 20 images with different relative values of length between target
and distractors. The resulting plot of saliency against relative increase in
length is shown in figure 5.4. The behavior of the AWS maps is clearly linear
against the relative enlargement in one dimension. Thereby, the behavior
shown by humans is reproduced without difficulties by the model. To our
knowledge only the center-surround discriminant approach proposed by Gao
and Vasconcelos has also been able to reproduce this result before [GMV08].

5.2.2. Color search asymmetry and influence of back-
ground

Search asymmetries have also been observed in experiments on the effects
of color in visual search. Traditionally, psychophysical studies on color made
use of the combination of colored stimuli in a grey -achromatic- background.
Therefore, results were analyzed in the light of the color properties of the
stimuli, without a particular concern aboout the influence of background.

Rosenholtz et al. have pointed a problem of such approaches. The color
grey has its own place in a color model, so that color stimuli will present dif-
ferent chromatic distances to background. These distances are also expected
to be affected by the area covered by stimuli and background. They focused
their study in the so called color search asymmetries, providing a detailed
characterization of the influence of background [RNB04].
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Figure 5.5: Color search asymmetry and its reversal by a change in the back-
ground color. Images adapted from [RNB04]

Again, given a pair of stimuli, now with the same luminance and differing
only in one color coordinate (in a MacLeod and Boynton color space), it
is found that the stimuli exhibit different search times depending on which
is the target and which is the distractor. Nevertheless, as Rosenholtz et al.
showed, the background influences this effect, to the point of reversing it. For
instance, with a gray background, a redder stimulus is more salient than a
less red one. However, if background is red, then the redder stimulus becomes
less salient. Likewise, with stimuli of fixed size Rosenholtz et al. showed that
search latencies were correlated with the Mahalanobis distance of stimuli in
the color space. As previously mentioned in chapter 2 when dealing with
color coding, this result is in agreement with a whitened representation of
color as proposed here. Otherwise, Rosenholtz et al did not tackle how spatial
saliency can be combined with such definition of color saliency.

In the figure 5.5 one example of the images used by Rosenholtz et al.
[RNB04] is shown. As well, the saliency maps provided by the AWS model
are shown. Both the described asymmetry and its reversal by a change of
background are well reproduced by the resulting saliency maps. The redder
stimulus achieves a higher relative saliency on a grey background, while the
less red stimulus achieves a higher relative saliency on a red background.
To our knowledge, the only generic (i.e. tested on natural images) model
of saliency that have achieved shown to reproduce these results is the AIM
model by Bruce and Tsotsos [BT09]. However they employed displays quite
different from those used by Rosenholtz et al., while here reproductions of
the original displays are used.
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5.2.3. Efficient and inefficient visual search phenomena

An unavoidable assessment for a model of saliency relies on its ability
to reproduce a series of pop-out phenomena and, more broadly, phenom-
ena related to efficient and inefficient search. Most of recent state-of-the-art
models demonstrated their ability to do it. A detailed account of the main
phenomea related to visual search efficiency shown by humans and the prob-
ability of different features to guide attention has been done by Wolfe and
Horowitz [WH04].

Regarding the AWS model, it suitably reproduces a variety of pop-out
phenomena related to orientation, color, size or texture, widely reported in
literature. The figure 5.6 demonstrate this statement. It shows different
images -reproduced from popular references- with singletons of color, orien-
tation, size or texture, as well as the saliency maps produced by the AWS
model. The pop-out of these singletons is clearly captured by the AWS maps,
that ascribes a higher value of saliency to each of them, comparing to other
stimuli that do not pop-out.

Besides, the figure 5.6 also shows the behavior of the model in typi-
cal situations where humans perform an inefficient search. The correspond-
ing saliency maps allow a saliency-based explanation for typical cases like a
unique closed circle surrounded by randomly oriented open curves or a cross
surrounded by similarly oriented intersections, which do not pop-out and
undergo an inefficient search. In all of these cases the corresponding stimuli
have a value of saliency equaled or exceeded by the surrounding stimuli.

Other phenomena widely studied in visual search experiments are re-
lated to target-distractor similarity and to distractor heterogeneity. These
works appear to be closely related to studies on feature contrast, already
considered in the previous section in relation to orientation contrast and its
luminance contrast equivalent. Here the reference is not a value of lumi-
nance, but a search time. Like in the previous visual search studies, lower
search times are associated with higher saliency. The observed behavior is a
non-linearity against both target-distractor similarity and distractor hetero-
geneity, in coherence with non-linear behavior against feature contrast -for
certain features- in experiments based on perceptual comparisons.

In the figure 5.7 one typical example of color similarity adapted from
[WH04] and two typical examples of distractor heterogeneity are shown.
Saliency maps catch well the non-linear influence of target-distractor color
similarity, and from a given difference between target and distractors, saliency
does not increase any more. As well, distractor heterogeneity, another im-
portant factor that affects the saliency of a color or orientation singleton in
human observers, gives place to a similar behavior by the AWS model. To
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Figure 5.6: Typical examples of pop-out, efficient and inefficient search ob-
served in humans, and reproduced by the AWS. Images adapted
from [WH04], [BT09], and [HZ07b].

our knowledge, only the AIM model by Bruce and Tsotsos has shown its
ability in reproducing these results.

5.3. Discussion

The early models of saliency assumed in part the use of primitives under-
going parallel processing, being edges an outstanding example [Mil93]. This
choice was very conditioned by the interpretation of psychophysical results
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Figure 5.7: AWS matches human behavior against target-distractor similarity
and distractor heterogeneity. Images adapted from [WH04] and
[BT09].

by the FIT proposed by Treisman et al. In an illustrative passage, at the
beginning of a reference work in the field, Treisman and Gormican state that:
Most theorists agree that the early description derives from spatial groupings
of a small set of simple primitives that are registered in parallel across the
visual field. These primitives, or functional features, need not correspond to
simple physical dimensions like wavelength or intensity. [TG88]

In this dissertation the inverse path has been tried, to explain behavior
commonly associated to early vision in a simple scheme of recoding of few
simple optical dimensions like wavelength, spatial frequency, and intensity.
This trend to simplification from the use of such primitives found in early
approaches to simple computational mechanisms is implicit in the most re-
cent models of saliency and early coding, mostly based on a probabilistic
foundation.
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Here, the computational link to the original optical dimensions is ex-
plicitly formulated in a coherent and comprehensive manner, providing a
functional framework for early coding as well as a highly efficient measure of
saliency directly derived from this framework.

None of the other state-of-the-art models that we have tested using the
code made available by the authors have been able to reproduce the ensemble
of psychophysical results here selected. To our knowledge there is none,
except AWS, claiming to do it. Otherwise, most of the experiments selected
have been used in the validation of one or more state-of-the-art models. The
most popular being probably phenomena of pop-out. We also have used an
experiment not employed for the validation of any other model of saliency
before, related to the linearity of saliency against corner angle.

It is worth noting the importance of reproducing this selection of psy-
chophisical results. After a comparison with eye fixations as done in the
previous chapter, it may be tempting to put all the confidence there. How-
ever as pointed in the previous chapter, the methods used for quantitative
comparison -like the main methods used in literature- have a important ad-
vantage and limitation: they are invariant under monotonic transformations
of the saliency map. This is not the case for several of the phenomena studied
here, particularly linearity with corner angle, non-linearity with orientation
contrast and Weber’s law. Moreover, the linearity against corner angle, and
the behavior against orientation contrast have been observed in experiments
that do not involve eye movements, unlike eye-tracking and visual search
experiments. This fact reinforces the generality of the effect on visual per-
ception of a measure of saliency able to explain them.

To summarize, it has been shown that the AWS is able to reproduce a
wide and representative set of psychophysical phenomena, to our knowledge
not reproduced together by any other model before. Moreover, the setup
of the model was exactly the same that was used in the prediction of hu-
man eye fixations. These facts reinforce the support for the validity of the
adaptive whitening approach to the early visual coding and the subsequent
computation of bottom-up saliency.



Chapter 6

Model Extensions and
Applications

Selection of regions of interest is a problem common to practically all
applications involving image analysis. It is obvious that AWS can be ex-
tended to other visual functions, incorporating new components like depth
or motion. These can be incorporated in the same way as has been done for
previous models of saliency, introducing the corresponding feature map in
parallel to the decorrelated color components like in [MCB07] or in [FNSH],
or using spatio-temporal filtering like in [SM09].

The work shown in this chapter merely exploits the possibilities derived
from the formal generality of the AWS. Therefore, it is focused in direct
applications that do not require any kind of adjustments or modifications of
the model. Firstly, the suitability of resulting maps to extract proto-objects
is shown in a qualitative manner. Secondly, the use of the resulting saliency
maps to alleviate an interest-point based solution to the problem of scene
recognition in robot navigation is tackled. Thirdly, the direct applicability
of the model to multispectral and hyperspectral images is demonstrated,
with interesting results in the visible spectrum. Finally, the definition and
model of saliency described in this dissertation are proposed as the basis for a
quantitative quality criterion in sensor fusion of spatial data for visualization.

6.1. Saliency-based segmentation: context and

proto-object extraction

The AWS model allows the extraction of proto-objects, in a similar man-
ner to that used with previous models of saliency [WRKP05, WK06, HZ08,
SM09]. This ability is very interesting, since it can be useful to reduce the
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Figure 6.1: Examples of saliency-based segmentation. First six images (left)
have been obtained from [HZ08]. The rest are available at
http://merlin.dec.usc.es/agarcia/AWSmodel.html.

search space in many visual operations, such as object detection and recogni-
tion, unsupervised image classification, or natural landmark generation and
detection.

The watershed algorithm has been used to segment images from saliency
information, a state-of-the-art general purpose technique. It has the ad-
vantage of being parameter free, which eases comparison with other pre-
processing approaches. To show the quality of these proto-objects, some
results are provided in the figure 6.1 on 14 images with different degrees of
clutter and lighting –luminance and color– conditions, as well as different rel-
evant scales and spatial structure. For each image, the regions containing the
six highest local maxima have been selected, which delivers six proto-objects.

As can be seen, in general the model extracts some proto-objects that cor-
respond to meaningful objects, or to identifiable parts of them. Also, some
salient textures are caught as proto-objects. Besides, examining the segmen-
tation results (third column), the saliency map not only provides information
related to salient objects, but also a good basis to make a contextual analysis
of the images. This has been shown to facilitate object search tasks and is
thought to play an important role in early vision [TOCH06]. Further valuable
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information can be found in partial saliencies and oriented conspicuities for a
more refined approach. These results give additional support to the validity
of the model, as well as to its usefulness for the application in a variety of
solutions based on automatic detection and analysis of unknown objects.

It is important to remark that, unlike other models that have tuned their
setup or forced the object scale [WRKP05, WK06, HZ08, SM09], here, the
exact implementation described in chapter 3 has been used, without any kind
of additional bias. Furthermore, it has been used a simple and parameter-
free segmentation procedure that delivers results without any kind of special
tuning or adaptation. The goal here is to show the usefulness of the bottom-
up saliency map in general purpose segmentation, rather than developping
any specific approach to a given problem.

6.2. Scene recognition for robot navigation

In this section results are shown that illustrate the usefulness of the model
of saliency proposed to improve a scene recognition application by reducing
the amount of prototypes needed to carry out the classification task. The
application is based on robot-like navigation video sequences taken in an in-
door university facility formed by several rooms and halls. The aim of the
application is to recognize the different scenarios in order to provide the mo-
bile robot system with general location data. Saliency maps are normalised
to the range [0 1]. Scene recognition is firstly performed using invariant local
features to characterize the scenarios, and the Nearest Neighbor rule for clas-
sification. With regards to the invariant local features, we compare two ap-
proaches that currently focus literature attention in this area [MS05,BSP07].
This two approaches are SIFT [Low04] and SURF [BETG08]. Both provide
with distinctive image features that are invariant to scale and rotation, and
partially invariant to change in illumination and 3D viewpoint.

The scene recognition task is related with the recognition of general sce-
narios rather than local objects. This approach is useful in many applications
such as mobile robot navigation, image retrieval, extraction of contextual
information for object recognition, and even to provide access to tourist in-
formation using camera phones. In our case, we are interested in recognize
a set of different scenarios which are part of university facilities formed by
four class rooms and three halls. The final aim is to provide general location
data useful for the navigation of a mobile robot system. Scene recognition
is commonly performed using local features in images that try to collect
enough and distinguishable information to recognize the different scenarios.
For this purpose we used SIFT and SURF alternatives to extract invariant
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local features.
To compute SIFT and SURF features we used the original code by Lowe

and Bay et al. respectively, and the 1-NN rule for classification in all
cases, which is a simple classification approach but robust and fast to com-
pute [Low04,BETG08]. For the 1-NN rule, we needed to previously build a
database of prototypes to collect the recognition knowledge of the classifier.
These prototypes were a set of labeled keypoints obtained from the training
frames. The class of the keypoints computed for a specific training frame
was that previously assigned to the frame in an off-line supervised labeling
process. The entire database was then incorporated into the 1-NN classifier,
which uses the Euclidean distance to select the closest prototype to the test
keypoint being classified. The class of the test keypoint was then assigned
to the class of the closest prototype in the database, and finally, the class of
the entire test frame was that of the majority of its keypoints.

With regards to SIFT features, we used the algorithm of Lowe [Low04].
For each key location it assigns an orientation, determined by the peak of a
histogram of previously computed neighborhood orientations. Once the ori-
entation, scale, and location of the keypoints have been computed, invariance
to these values is achieved by computing the keypoint local feature descrip-
tors relative to them. Local feature descriptors are 128-dimensional vectors
obtained from the pre-computed image orientations and gradients around the
keypoints.

For SURF features we used the original approach by Bay et al. [BETG08].
They make an efficient use of integral images to speed-up the process. There
are two versions: the standard version which uses a descriptor vector of 64
components (SURF-64), and the extended version which uses 128 compo-
nents (SURF- 128). SURF are partly inspired by SIFT, being the standard
version several times faster than SIFT thanks also to a reduction of the num-
ber of features that characterize the keypoints [BETG08]. While SIFT uses
128 features, standard SURF only uses 64.

The experimental work consisted in a set of experiments carried out using
four video sequences taken in a robot-navigation manner. These video se-
quences were grabbed in an university area covering several rooms and halls.
Sequences were taken at 5 fps collecting a total number of 2,174 frames (7:15
minutes) for the first sequence, 1,986 frames for the second (6:37 minutes),
1,816 frames for the third (6:03 minutes) and 1,753 frames for the fourth
(5:50 minutes). First and third sequences were taken in a specific order of
halls and rooms: hall-1, room-1, hall-1, room-2, hall-1, room-3, hall-1, hall-2,
hall-3, room-4, hall-3, hall-2, hall-1. The second and fourth sequences were
grabbed following the opposite order to collect all possible viewpoints of the
robot navigation through the facilities. In all the experiments, we used the
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Figure 6.2: Salient regions in a frame.

Figure 6.3: 3D contour plot of the saliency map.

first and second sequences for training and the third and fourth for testing.
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In the first experiment we computed the SIFT keypoints for all the frames
of the training video sequences. Then, we labeled these keypoints with the
corresponding frame class: room-1, room-2, room-3, room-4, hall- 1, hall-2
or hall-3. The whole set of labeled keypoints formed itself the database of
prototypes to be used by the 1-NN classifier. For each frame of the testing
sequences their corresponding SIFT keypoints were computed and classified.
The final class for the frame was set to the majority class among its key-
points. This experiment achieved very good performance, 95.3% of correct
classification of frames. However, an important drawback was the compu-
tational cost of classification, due to the very large size of the database of
prototypes which was formed by 1,170,215 samples. In next experiment, we
followed the previous steps but using SURF features instead of SIFT. In this
case, the recognition results were very bad achieving only 28.2% of recogni-
tion performance with SURF-128, and 25.1% using SURF-64, being the size
of the database of prototypes of 415; 845.

Although there are well known techniques for NN classifiers to optimize
the database of prototypes (e.g. feature selection, feature extraction, con-
densing, editing) and also for the acceleration of the classification compu-
tation (e.g. kd-trees), at this point we are interested in the utility of using
the saliency maps derived from the visual attention approach. The idea is
to achieve significant reductions of the original database by selecting in each
training frame only those keypoints that are included within its saliency
map. Also, in the testing frames only those keypoints lying within their
corresponding saliency maps will be considered for classification. Once the
database is reduced this way, optimizing techniques could be used to achieve
further improvements.

In next experiments, we carried out the idea showed in previous para-
graph. Nevertheless, we wanted to explore more in-depth the possibilities of
using the saliency maps. As it was commented, the saliency measures is set
in a range between 0 and 1, thus, we can choose different levels of saliency
by simply using thresholds. We will be the least restrictive if we choose a
saliency >0.000, and more restrictive if we choose higher levels (e.g. 0.125,
0.250, etc). We planed to use seventh different saliency levels: 0.125, 0.250,
0.375, 0.500, 0.625, 0.750 and 0.875. For each saliency level we carried out
the scene recognition experiment achieving the percentage of recognition per-
formance, and the size of the database of prototypes. Results using SIFT
and SURF features are shown in Table 6.1 and figures 6.4 and 6.5.

In Table 6.1, S refers to the saliency threshold, Recog. is the % of correct
recognition and DB Size is the size of the database of prototypes, given also
in %, with regards to the original size, when no saliency maps are used.
Only SURF-128 results are shown because the standard version of SURF
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Figure 6.4: Recognition performance and database size given in % for SIFT
features.

Table 6.1: SIFT and SURF-128 results on recognition rate and database size in
percentage.

SIFT SURF
Recog. DB Size Recog. DB Size

Original 95.3 100.0 35.1 100.0
S>0.125 95.2 98.5 25.3 99.1
S>0.250 94.3 77.2 51.8 83.5
S>0.375 91.6 52.7 46.9 59.2
S>0.500 86.5 33.6 88.4 37.6
S>0.625 74.8 19.4 64.3 21.4
S>0.750 58.8 9.5 56.6 10.3
S>0.875 49.1 3.2 40.6 3.4

(SURF-64) achieved worse results.

These results show that although SURF features collect significantly less
interest points than SIFT features (approximately the half) their perfor-
mance is not adequate for the scene recognition application. However, SURF
features have proven to be adequate, and faster than SIFT features, in other
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Figure 6.5: Recognition performance and database size given in % for SURF-
128 features.

applications [BSP07]. Another interesting result is that the recognition per-
formance of SURF features improves as we use more restrictive saliency maps
until a 88.4% peak is reached at saliency level 0.500, then it drops in a sim-
ilar way than SIFT features (Figure 6.4). This means that SURF features
loose distinctiveness as more interest points are used (less restrictive saliency
maps), which does not occur in SIFT features, making us to conclude that
SIFT features present more distinctiveness than SURF features in very large
databases of interest points, as it occurs in the present case.

The best results are achieved using SIFT features, which combined with
saliency maps can reduce the amount of prototypes in the database while
the recognition performance is held, e.g. saliency level 0.375 in Table 6.1 and
Figure 6.4. In this case, the performance drops to 91.6% (only 3.7 points
from 95.3%) while the database size is significantly reduced from 1,170,215
to 616,879 prototypes.
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6.3. Multi- and hyperspectral saliency

A novel application is proposed here for bottom-up saliency, which does
not require to modify our model and retains its efficiency. Slight modifica-
tions that could still improve the model will also be discussed. The main
underlying idea is that, just as R,G,B color components are whitened, dif-
ferent spectral components can be as well adapted. Again, it has been used
exactly the same version of the model that was presented in the chapter 3.

Indeed, similar procedures are common in the analysis of multi- and hy-
perspectral images, the main application being the reduction of the number
of spectral bands. To this end, PCA, ICA, and other procedures have been
extensively used [LSL01, WC06]. This reduction of components has an ob-
vious goal: reduction of redundancies and saving of resources. Reduction
to three spectral bands is also useful to produce visualizations with pseudo-
colors, like for example in [CRHW09]. With that aim, these procedures of
dimensionality reduction can be used to extract a number of decorrelated
components, and alternatively to establish other reduction criteria, like the
percentage of variance to retain when using PCA.

A different approach found is the use of the Karhunen-Loeve transform
to obtain a decorrelated representation, without the purpose of reducing the
number of spectral bands [HS03]. In a recent work, the combination of this
decorrelation procedure with a 2D discrete wavelet transform is evaluated in
the frame of the JPEG 2000 standard, for lossy compression of hyperspectral
images [PTMO07]. This approach outperforms other assessed approaches
and, although it has a different purpose, it has a resemblance with our model:
it combines spectral 1D decorrelation with spatial 2D decorrelation.

The AWS model is compatible with both approaches to decorrelation,
with and without dimensionality reduction. Computational complexity of
spatial decorrelation is linear with the number of spectral bands, but spec-
tral decorrelation has a cubic dependency with them. To alleviate this load
when many spectral bands are involved –like in hyperspectral imagery– a
low complexity version can be used, like those proposed by [PTMO07] or
by [DF08] to decorrelate the spectral bands.

As it is shown in the figures 6.6 and 6.7 with five different examples, the
whitened components extracted from the RGB representation span practi-
cally the same space that the first three whitened components do from the
hyperspectral representation, and consequently saliency from the AWS model
is practically the same. When comparing with the saliency that results from a
space of 33 whitened spectral components, some differences arise, but not too
many. These differences seem to be caused from compression to three compo-
nents. Indeed, this compression appears to reduce noise, probably ought to
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Figure 6.6: Example of saliency computation on two hyperspectral images ob-
tained from [FNA05] with 33 spectral bands in the visible spectrum.
Results of saliency from the first 3 whitened components are also
shown, as well as saliency from an RGB image of the same scene.
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Figure 6.7: Example of saliency computation on three additional hyperspectral
images obtained from [FNA05] with 33 spectral bands (omitted) in
the visible spectrum. Results of saliency from the first 3 whitened
components are also shown, as well as saliency from an RGB image
of the same scene.
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a reduction of the high redundancy in hyperspectral data. Besides, this is in
fair agreement with the proposal of Lee et al., who state that color opponency
may in part be a result of the properties of natural spectra and not solely a
consequence of the cone spectral sensitivities [LWS02]. As a consequence of
the adaptive whitening of color components, the HVS would very robustly
compute the physical saliency that results from the spectral and the spatial
structure of the image. Therefore, this measure of saliency would be highly
invariant against details in spectral sensitivities of the sensors involved, be
the cones of the HVS or any others.

In an interesting work by Nieves et al. [NPVR08], it has been shown
how images from an RGB digital camera were enough to estimate the spec-
tral power distribution of the illuminant. Using a learning-based algorithm
they demonstrated that acquiring spectral infomation suitable for both spec-
tral and colorimetric analysis was possible, while avoiding the need of a
spectroradiometer. Therefore, this observation points to the sufficiency of a
trichromatic representation to code and process all the -redundant- optical
information available in natural images. That is, in normal conditions, and in
the visible spectrum it makes little sense to manage more information about
visual objects, than that is provided by a trichromatic representation from
broadband detectors, like the RGB commonly used in machine vision or the
LMS detectors of human retina. This is in fair agreement with the obser-
vation that saliency measures with an adaptive whitening scheme are highly
equivalent when using an RGB representation or the 3 principal components
extracted from 33 narrow and non-overlaping spectral bands.

Ultimately, the previous observations support the validity of the approxi-
mation done in the chapter 3 when defining visual saliency as closely related
to optical variability. Therefore, regarding the formal definition of optical
variability formulated, it is legitimate to claim that the measure of relative
variability in the visible spectrum is barely affected by the change of the nar-
row, monochromatic and non-overlaping detectors –tuned to monochromatic
sets of plane waves– by three broadband detectors. At least for a measure of
the compressed optical variability, that is, for the optical variability enclosed
by the first three principal components of the spectrum.

In the figure 6.8 is shown an example of a satellite multispectral IR im-
age of a wildfire, and the obtained saliency map. As can be seen, saliency
conveniently captures regions with an outstanding spatial structure through
the set of spectral components. Likewise, the few clouds in this terrain scene
are salient, but also the most active fire fronts, as well as isolated vegeta-
tion regions surrounded by fire. On the other hand, a segmentation of the
saliency map, done like in the first section of this chapter, does provide mul-
tispectral proto-objects and contextual information. Therefore, segmented
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Figure 6.8: Example of saliency computation on a satellite multispectral image
with 4 spectral bands in the infrarred: one in the near-infrared
(NIR), two in the middle-infrared (MIR) and the fourth in the far-
infrared (FIR). The segmentation of the saliency map is also shown
superimposed on an RGB image of the same scene. (Downloaded
from http://l7downloads.gsfc.nasa.gov/downloadP.html)

regions correspond to burned and unburned areas, fronts of fire, as well as
clouds. Hence, it seems to be helpful to apply previous works on visible RGB
images to multi- and hyperspectral images, for recognition and selective lossy
compression based on saliency. But it could also be useful for anomaly de-
tection, a problem of high interest in multispectral and hyperspectral im-
agery [CC02]. Additional information for segmentation or classification can
be obtained again from whitened band partial saliencies. Indeed, previous
specific works dealing with segmentation and classification on hyperespec-
tral images have pointed the need of using spatial –and not only spectral–
information [TCB10].

6.4. Saliency-based evaluation of sensor fu-

sion and spatial visualization

In a recent work on visualization of hyperespectral data in RGB displays,
Cui et al. observed that existing methods map spectral samples to unbounded
3-D Euclidean space. After dimension reduction, they all use not only a
second nonuniform mapping to color space that creates colorful images but
also the illusion of salient features that are not present in the data. They
pointed that this problem arises from the sacrifice of the preservation of
spectral distances to take advantage of the dynamic range of the display.
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Consequently, they proposed a method to avoid this limitation, that
aimed to preserve spectral distance in the projection of the n-dimensional
space of n spectral components to the 3-dimensional chromatic space per-
ceived by humans and spanned by a display. However the term salient was
only treated in an intuitive -non formal- way. Because of this, no objective
measure to evaluate results was provided, but only quality ranking by a set
of subjects [CRHW09].

As advanced in chapter 3, the definition of saliency proposed as a measure
of optical variability provides a suitable ground for saliency to be translated
to and from other physical domains different of the visual window. In fact
conservation of relative variability in the space can be used to this end.
Indeed, the projection of other physical windows in the visual window under
the constraint of conservation of relative variability in the space provides
a general and objective criterion to evaluate sensor fusion techniques in a
generic way not linked to specific purposes.

Moreover, in the case of spectral components or other kinds of sensors,
the proposed measure of saliency takes into account the existence of different
constraints in the spatial characteristics of the corresponding physical win-
dow. As well, it is robust against different bias in the spatial statistics of
different types of sensors and scenes. This is important for instance when
dealing with aerial images, with spatial statistics clearly different from nor-
mal natural images that allow the use of a single predefined scale for robust
matching [Gil98].

To compare the saliency maps of the visualization results to the variabil-
ity map from the original sensor data, different standard measures for the
comparison of probability distributions can be employed, like for example
the ROC analysis employed in chapter 4 or different implementations of the
Kullback-leibler divergence.

Of course, the quantitative evaluation proposed does not give a straight
method to develop visualization techniques, since different approaches to vi-
sualization can produce the same quality in terms of conservation of relative
variability and its translation into visual saliency. However it supports some
guidelines for tasks of dimensionality reduction and projection, like decorre-
lation of the original components and conservation of the maximum amount
of variance, that are indeed in good agreement with the main trends in a
number of works in this field.

A complete quality evaluation procedure of sensor fusion techniques for
spatial visualization -with and without data compression- could combine the
proposed measures of preservation of variability in terms of visual saliency,
with other existing quantitative methods of image quality. Such a combined
measurement would virtually allow the optimization of visualization quality,
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while retaining the actual spatial variability present in the physical window
sensed.





Conclusions

In this dissertation, an explanation has been given to a variety of phe-
nomena commonly associated to early vision. It has been done in a simple
scheme of recoding of few simple optical dimensions like wavelength, spatial
frequency, and intensity. It makes a step further in the trend to simplification
from the use of the Treisman’s primitives –as found in early approaches to
visual attention –to simple computational mechanisms that is implicit in the
most recent models of saliency and early coding, mostly based on a proba-
bilistic foundation. The major contributions of this thesis are the following:

A novel functional framework for early visual coding has been pro-
posed that is based on a simple mechanism of adaptive whitening and
that is biologically plausible. The whitened responses obtained in this
framework are shown to be suitable to explain figure-ground segmen-
tation and to reproduce several visual illusions closely related to it,
usually associated to contextual adaptation. The initial decomposition
used classical receptive fields that have been interpreted in terms of
independent components of natural images, as arising from a kind of
long-term whitening of responses. Adaptive whitening aims to catch
the overall context-driven shift observed in these receptive fields under
particular natural stimulations. From our viewpoint, such a simple ap-
proach, combining long-term and short-term adaptive whitening, could
represent a bridge between local and collective responses observed in
the visual cortex. Indeed, this model is compatible with population
coding strategies supposed to take place in the cortex, as well as with
several existing mechanistic approaches, defined at the level of single
neurons. In sum, this functional framework is in agreement, not only
with center-surround competition phenomena, but also with the con-
textual influences that modulate these phenomena.

From the optical representation of an image as a superposition of plane
waves, a definition of optical variability has been derived. In the con-
text of the previous framework for early visual coding, saliency –defined
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as a simple modulus–takes an equivalent form, except for the domain
of application. Referring the visual domain of physical magnitudes
as the optical visual window, both definitions are shown to be closely
related. Therefore, it is proposed that saliency encodes the optical
variability present in the optical visual window. The proposal is ulti-
mately grounded on the classical efficient coding hypothesys, upheld by
Barlow [Bar61, BF89]. Besides, regarding the coding catastrophe un-
derlying many visual illusions and assumed –but not explained–by such
hypothesis, this thesis yields an explanatory goal for it: the invariance
of the HVS in the perception of saliency. That is, neural adaptation
ensures the invariance of the HVS to cope with the optical variability
present in the visual window.

A particular implementation of the model of saliency has been proposed
that is simple and light. It outperforms other important models of the
state of the art in widely used comparisons with human behavior, while
keeping a low computational complexity.

Regarding the comparison with human fixations, it clearly exceeds the
best reported results in two open access datasets with a standard mea-
sure based on ROC analysis [TBG05, ZTM+08]. Likewise, we point
out a clear incompatibility between the huge variation in the results
depending on the used dataset and the very tight values of uncertainty
delivered by such procedure. To overcome this problem, a compari-
son is proposed with the predictive capability shown by humans them-
selves. Hence, results with two datasets, originally very different, be-
come compatible. With this procedure, it has been found out that
AWS shows the same predictive capability than an average human.
Moreover, it still clearly outperforms all other models that show an
evident lack of robustness –for instance, against salient symmetries or
high frequency textures–, most probably associated to different design
biases. This measure allows us to hold that in these two datasets,
bottom-up saliency completely explains inter-subject consistency. It
does it without the need of any top-down mechanism or any other kind
of bias, different to the well known center bias. We believe that this
appraisal is extensible to other image datasets, under conditions of free
surveillance, and in the absence of a high level task.

The AWS model reproduces a wide variety of relevant psychophysical
results related to both covert and overt attention. Some of these as-
sessment procedures are not invariant to monotonic transformations,
unlike the measures of comparison with human fixations. Because of
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this fact, they pose a further challenge to model saliency. The same
battery of tests delivers failures in other state-of-the-art models, using
the publicly available code for them. To our knowledge no other model
has claimed to be able to reproduce the complete ensemble of tests.

Regarding the direct applications of the model proposed, its usefulness
is shown in the seggregation of proto-objects from context by means of
a simple segmentation of the saliency maps. Likewise, its application
for the selection of landmarks for scene recognition is demonstrated.

Additionally, a novel application of bottom-up saliency to multispec-
tral and hyperspectral images is presented. This application is in the
line of a number of works in that field that share the need to manage
spatial –and not only spectral– information. AWS is to our knowledge
the first bio-inspired model of saliency to be applied with this kind
of images. From the results with hyperespectral images in the visible
spectrum using z-scores in the whitening procedure, it follows an in-
terpretation for the discrete overcomplete representation that springs
up from the visual window. It is equivalent to a lossy compression of
information, retaining the most of variance in the original data. More-
over, this singular feature of the AWS is applicable to other multisensor
spatial representations, as well as to spatial visualizations from sensor
fusion techniques, providing this way a tool to quantitatively assess
the capability of a given visualization technique of projecting physical
variability on the visual window to translate it in visual saliency.

Open paths for future work

An obvious and major direction of future work is related to the extension
of the model to dynamic and stereoscopic scenes, in order to reproduce visual
saliency in an actually unconstrained visual experience. There are a variety
of possibilities to extend the adaptive whitening strategy of short-term adap-
tation to temporal and depth cues. Therefore a detailed investigation should
be still dealt. Even other perceptual modalities like the perception of sound
can be good candidates for an adaptive whitening approach to early percep-
tual coding.

Other important directions for further research, already pointed along
this dissertation are the following:

The implementation of the proposed framework using plausible mech-
anistic models of neural networks for the computation of whitening
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can yield new results and insights in the understanding of early visual
coding and many visual illusions.

The adapted representation proposed has been observed to show a re-
markable ability for object discrimination. From this observation we
expect very good possibilities for the use of whitened components in a
generic object learning and recognition strategy. This has been already
done with succes using center-surround features related to models of
saliency outperformed by AWS, for instance in [SM10].

It has been pointed how saliency can be used for the quantitative as-
sessment of sensor fussion techniques for spatial visualization of the
responses of non-optical sensors. Since it does not exist, to our knowl-
edge, a generic objective approach to the evaluation of such visualiza-
tion techniques, further in depth investigation in this respect poses a
major interest.

Although the perception of saliency has been shown to be quite robust
against spectral sensitivities and spatial acuity, the limits of such a
robustness remain unclear. Correspondingly, several interesting ques-
tions remain unanswered. For instance, to which extent could fixation
patterns be used to detect alterations of the visual window?. Is it
possible to estimate the kind and amount of alteration of the visual
window (loss of visual acuity, loss of color sensitivity) from a pattern
of fixations using an specifically tuned version of the AWS or other
measure of saliency?. To which extent can be suitable eye-tracking
data from the observation of natural images, combined with especific
modelling of saliency and comparative measures of distribution of fix-
ations, to detect and characterize visual impairments?. Otherwise the
interplay between saliency and relevance deserves much more research
related to a variety of questions. For instance, are there age-related
differences of developmental nature that modify the relative strength
of saliency versus relevance in different types of scenes?. We believe
that its demonstrated robustness and unbiased behavior makes AWS a
suitable measure of saliency to tackle such studies on biological vision.
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