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ESCUELA DE DOCTORADO INTERNACIONAL PROGRAMA DE DOCTORADO EN
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Resumen

Las tecnologı́as de Localización en Interiores han cobrado especial importancia en los últi-
mos años. Las personas cada vez pasamos más tiempo en interiores, y estos entornos son cada
vez más grandes y complejos. En lugares como centros comerciales, hospitales o aeropuertos
es fácil perderse o perder tiempo buscando como llegar a un lugar en concreto. La locali-
zación en estos entornos tiene una gran variedad de aplicaciones, como guiado de personas,
monitorización o localización de activos entre otras.

En exteriores existen desde hace años soluciones de posicionamiento y guiado basadas
el uso de GPS (Global Positioning System) o GNSS (Global Navigation Satellite System).
Estas soluciones no funcionan en interiores debido principalmente a que los materiales de los
edificios interfieren con la señal de los satélites, atenuándolas, bloqueandolas por completo o
bien provocando fenómenos como el multipath que provocan errores en la posición estimada.

Como respuesta a este problema, en las últimas décadas han ido surgiendo diferentes tec-
nologı́as de Localización en Interiores. Se han desarrollado soluciones utilizando diferentes
tecnologı́as y sensores, como infrarojos, ultrasonidos, cámaras de video, etc. siendo las que
más éxito ha tenido las basadas en radiofrecuencia. La mayorı́a de estas propuestas, tanto
académicas como comerciales, utilizan dispositivos hardware dedicados, y requieren la ins-
talación de emisores a lo largo del edificio. El sujeto a localizar debe llevar con él un dis-
positivo receptor para escuchar las señales emitidas. A partir de estas lecturas y utilizando
conocimiento previo sobre la distribución de los emisores, se estima la ubicación del sujeto
mediante técnicas como localización por proximidad, triangulación o fingerprinting.

Utilizar hardware dedicado es costoso, dificulta la escalabilidad del sistema y su acep-
tación por los usuarios finales. Un usuario será más reacio a utilizar un sistema de posicio-
namiento si tiene que comprar harware especı́fico. Afortunadamente, la gran mayorı́a de las
personas ya lleva consigo un teléfono que contiene todos los sensores necesarios para imple-
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mentar con éxito las técnicas clásicas de localización en interiores, como tarjetas receptoras
WiFi o BLE. Dado que prácticamente todos los edificios cuentan con una buena infraes-
tructura de red WiFi, se pueden reutilizar para el posicionamiento y no es necesario instalar
hardware adicional, con el importante abaratamiento de costes. Los teléfonos móviles actua-
les, además, incorporan nuevos sensores, como el magnetómetro, acelerómetro o giróscopo,
que se pueden utilizar para estimar el desplazamiento del usuario y ası́ ayudar a mejorar la
robustez y precisión de los sistemas de posicionamiento.

A pesar de que ya se ha realizado investigación sobre el posicionamiento en interiores
con smartphones, todavı́a no existe una solución óptima y existen problemas pendientes de
resolver:

• Para conseguir una mayor precisión es necesario instalar hardware adicional. Muchas
soluciones comerciales requieren la instalación de una gran cantidad de emisores, como
por ejemplo beacons Bluetooth, en el edificio. Hasta cierto punto, a mayor densidad
de emisores, mayor precisión. Por supuesto, esto también implica mayores costes de
despliegue y mantenimiento.

• Además, la mejora de rendimiento que se puede obtener utilizando sólo observaciones
basadas en un sensor está limitada por las caracterı́sticas fı́sicas de la propia tecnologı́a
(los infrarojos no atraviesan paredes, las cámaras necesitan lı́nea directa de visión con
el sujeto y les afectan las condiciones de luminosidad, la radiofrecuencia sufre de ate-
nuación de señal, propagación multicamino,etc.), además del propio ruido del sensor.
Estas limitaciones pueden superarse combinando la información de diferentes sensores.

• Utilizando los sensores inerciales del teléfono es posible estimar el desplazamiento del
usuario. Combinando observaciones con el movimiento del sujeto, es posible relacio-
nar temporal y espacialmente medidas secuenciales de los diferentes sensores para ası́
mejorar la precisión y robustez de las posiciones estimadas. Obtener una estimación
precisa del desplazamiento del usuario a partir de las señales recibidas por los senso-
res inerciales de un teléfono móvil no es trivial. Las personas utilizamos los teléfonos
de maneras muy diferentes. Los llevamos en la mano, en el bolsillo, en una mochila,
los usamos para hablar, etc. Esta variedad en el modo de uso del teléfono o de la po-
sición en que se lleve afectan enormemente a la forma y caracterı́sticas de las señales
percibidas. Muchas soluciones funcionan restringiendo el modo de uso o posición del
dispositivo, obligando a llevarlo en determinado lugar, como en la mano, en la cintura,
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etc. Este tipo de restricción no es deseable ya que el usuario deberı́a poder utilizar su
teléfono libremente, incluso moviéndolo de sitio, sin que su uso afecte a la calidad del
posicionamiento.

• Además, el usuario puede llevar a cabo diferentes actividades, como andar, subir esca-
leras, mover el teléfono, caminar, o desplazarse en un vehı́culo. Todas estas actividades
afectarán de distinta forma a las señales percibidas por los sensores.

• En entornos interiores como parkings subterráneos, es frecuente que las personas se
desplacen en vehı́culos. El posicionamiento en interiores en vehı́culos implica dificul-
tades adicionales respecto al caso de caminar:

– Estimar el desplazamiento del vehı́culo a partir de los sensores de un teléfono
es complejo. Teóricamente, la velocidad se podrı́a estimar integrando la señal del
acelerómetro. Sin embargo las vibraciones, el ruido de los sensores de baja calidad
de los teléfonos, los cambios de inclinación del terreno, hacen que esta solución
no funcione en la práctica.

– La velocidad de un vehı́culo es mayor que la de una persona caminando. Errores
en la estiamción del movimiento implicarán un error de mayor distancia.

– Generalmente, en parkings subterráneos, existen menos puntos de acceso WiFi y
la cobertura es más limitada que en otro tipo de entornos.

En esta tesis abordamos el problema del posicionamiento en interiores con teléfonos móvi-
les con el objetivo de maximizar la precisón de las posiciones estimadas mientras minimiza-
mos la infraestructura necesaria. Además, para que el sistema sea útil para el usuario final,
debe funcionar en situaciones reales. Esto implica que debe ser robusto a diferentes usuarios
(cada usuario tendrá su forma de caminar), permitir el uso normal del teléfono (usarlo para ha-
blar, llevarlo en la mano o en el bolsillo,etc.) y funcionar mientras se llevan a cabo diferentes
actividades.

Para conseguir estos objetivos hemos abordado los siguientes hitos:

1. Hemos desarrollado un sistema de posicionamiento en interiores que calcula la posición
del usuario fusionando la información que proviene de los diferentes sensores presen-
tes en un teléfono móvil. Combinando la información de múltiples fuentes obtenemos
mayor precisión y robustez de la que obtendrı́amos utilizando los distintos sensores por
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separado. Este sistema combina observaciones sobre la posición global del usuario con
la estimación de su desplazamiento y orientación. Este sistema es escalable, fácil de
desplegar y es lo suficientemente flexible como para permitir añadir en el futuro nuevas
fuentes de información sin dificultad. Además el sistema desarrollado se ejecuta en el
propio teléfono en tiempo real.

2. Hemos desarrollado un módulo de estimación inercial capaz de identificar el movi-
miento del usuario. Hemos diferenciado dos casos principales, posicionamiento de pea-
tones y de vehı́culos. Nuestra propuesta es suficientemente robusta como para soportar
diferentes modos de uso, posiciones del teléfono y actividades. Para lograrlo hemos
abordado los siguientes puntos:

a) Hemos desarrollado un módulo para estimar la orientación del teléfono en el es-
pacio utilizando los sensores inerciales del teléfono. Con el objetivo de obtener
el desplazamiento y dirección del usuario primero necesitamos estimar la orien-
tación del teléfono respecto al sistema de coordenadas de la Tierra. Utilizamos
el sistema de coordenadas ENU (East North Up) definido por un eje vertical que
apunta hacia arriba, y dos ejes tangenciales a la superficie terrestre que apuntan al
norte y al este.

Estimar la orientación del teléfono es lo mismo que estimar la rotación que define
el cambio del sistema de coordenadas del teléfono respecto al sistema de coorde-
nadas de la tierra. Para estimar esta rotación combinamos la información de los
sensores inerciales del teléfono (acelerómetro y giróscopo). El giróscopo permite
obtener una estimación precisa a corto plazo de los giros que realiza el teléfono,
pero no proporciona información absoluta de su orientación y tiene cierto error,
que al integrarse, se acumula rápidamente (drift). Por su parte, el acelerómetro,
mide tanto las aceleraciones producidas por el movimiento del teléfono como la
causada por la fuerza de gravedad. Esta información puede utilizarse para estimar
la orientación del teléfono respecto al eje vertical. Combinando la información de
ambos sensores se puede obtener una estimación de los cambios de orientación
del dispositivo eliminando el drift en el eje vertical.

El drift en los ejes Norte/Este se podrı́a eliminar incluyendo la información del
magnetómetro, pero en interiores son frecuentes las interferencias electromagnéti-
cas causadas por maquinaria e instalaciones eléctricas, que pueden introducir un
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error mayor que el propio drift del giróscopo. Es por esto que el drift en el eje
Norte/Este, en nuestro caso, lo eliminaremos posteriormente al combinar la infor-
mación del resto de sensores. Si bien, también emplearemos el magnetómetro de
forma ocasional para mejorar la velocidad de inicialización del sistema.

b) Hemos evaluado y desarrollado diferentes técnicas para estimar el desplazamiento
del usuario. Para esto hemos diferenciado dos modos principales de desplazamien-
to: andando o en un vehı́culo.

i. Estimación de desplazamiento andando:
Existe una amplia bibliografı́a sobre la estimación del desplazamiento de per-
sonas a partir de sensores inerciales, sin embargo, las soluciones existentes
están lejos de ser ideales. Las propuestas clásicas asumen que los sensores se
situan en una posición fija del cuerpo del usuario, como los pies o la cadera.
Esto simplifica la tarea de estimación de distancia pues las aceleraciones a
los que estarı́a sujeto el terminal estarı́an relacionadas directamente con el
desplazamiento del usuario. Sin embargo, para el caso de posicionamiento
con teléfonos móviles, no es razonable asumir que el teléfono va a estar en
una posición fija.
El enfoque habitual para calcular el desplazamiento de una persona caminan-
do usando sensores inerciales, pasa por detectar los pasos dados y asignarle
una estimacion de distancia a cada paso. Cuando una persona camina lle-
vando un teléfono en la mano, y en absencia de otros estı́mulos, la señal
percibida por el acelerómetro muestra un patrón reconocible, casi sinusoi-
dal, en el que cada paso dado produce un pico seguido por un valle. Existe
una amplia bibliografı́a respecto al reconocimiento y conteo de pasos, pero
la experimentación solamente se centra en casos de personas caminando. He-
mos observado que cuando el usuario camina, un simple detector Pico Valle
es suficiente para obtener rendimientos elevados, pero el principal problema
viene a la hora de diferenciar los pasos reales de movimientos del teléfono
que no estén relacionados con caminar. O lo que es lo mismo, discriminar
falsos positivos.
Para solucionar este problema hemos adoptado y evaluado dos enfoques di-
ferentes:

A. Identificación de pasos basada en forma la forma de la señal. Hemos
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desarrollado y evaluado un algoritmo de reconocimiento y conteo de pa-
sos basado en la forma de la señal del acelerómetro producida cuando un
usuario da un paso.
En este algoritmo, hay una fase previa de entrenamiento por parte del
usuario, en la que se graban datos de pasos reales en diferentes posicio-
nes y se genera uno o varios patrones de paso ideal. Posteriormente, se
compara la señal del acelerómetro con estos patrones para identificar si
se ha realizado un paso o no. Este algoritmo se adapta al usuario y son
capaz de identificar pasos llevando el teléfono en diferentes lugares, uti-
lizandolo para hablar, etc.

B. Identificación de pasos basada en caracterı́sticas. En este otro caso cons-
truimos un clasificador a partir del conjunto de caracterı́sticas más re-
presentativo extraı́do de la IMU (Inertial Measurment Unit) del teléfono,
con el objetivo de identificar la actividad de caminar. Estas caracterı́sticas
pertenecen tanto al dominio del tiempo como al de la frecuencia.

Además de identificar los pasos dados por el usuario, para estimar la distancia
total, hemos añadido una etapa de estimación de tamaño de paso. Según la
bibliografı́a, el tamaño de paso depende principalmente de factores como la
altura del usuario o la cadencia de paso. Hemos realizado experimentación al
respecto, y finalmente hemos adaptado el tamaño de paso dinámicamente en
función de la frecuencia de paso. A pesar de que conocer la altura del usuario
serı́a útil para ajustar el tamaño de paso, descartamos utilizarla para evitar ser
intrusivos con el usuario.
Hemos creado un extenso dataset para evaluar los algoritmos de conteo de
pasos. Este dataset consta de las señales de los sensores inerciales con los pa-
sos etiquetados con su timestamp uno a uno. Hemos hechos especial énfasis
en realizar actividades tanto caminando como sin caminar, para poder evaluar
correctamente la detección de falsos positivos.

ii. Estimación de desplazamiento en vehı́culo:
Además de estimar el desplazamiento de personas caminando, hemos con-
templado el caso de uso el posicionamiento para conductores en un garaje.
Teóricamente la velocidad del vehı́culo podrı́a estimarse a partir de la acele-
ración percibida por el acelerómetro. En la práctica, esto no es factible, dado
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que esta señal tiene mucho ruido (los acelerómetros de los teléfonos no son
lo suficientemente precisos, el teléfono puede moverse, etc.). Como solución,
hemos optado por estimar probabilidad de movimiento del vehı́culo, en ba-
se a las aceleraciones percibidas. Conociendo esta probabilidad y asumiendo
que el rango de velocidad permitido en un garaje subterráneo está limitado,
podemos obtener una aproximación del desplazamiento del vehı́culo.

3. Hemos integrado diferentes fuentes de información como observaciones en nuestro sis-
tema de posicionamiento.

a) Fingerprinting de radiofrecuencia. Utilizamos técnicas de fingerprinting para es-
timar la posición del usuario a partir de las señales escaneadas WiFi y BLE. En
una fase previa construimos mapas de señal del edificio, que reflejan con que in-
tensidad se recibe la señal de diferntes puntos de acceos WiFi o beacons BLE,
desde cada punto del edificio. Posteriormente, comparando las señales percibidas
con estos mapas, podemos hacer una estimación de la zona del edificio en la cual
está el usuario.

b) Brújula. Añadimos información de la brújula al sistema para mejorar la estima-
ción de la dirección del usuario. Esto resulta especialmente útil en las fases de
inicialización del sistema.

c) Mapa de zonas transitables. Usamos un mapa para definir zonas transitables del
edificio y ası́ mejorar la precisión del sistema.

4. Experimentación sistema completo en un entorno real con usuarios caminando. Hemos
desplegado el sistema en un entorno real y hemos evaluado su rendimiento. Se ha esco-
gido un edificio de grandes dimensiones con áreas complejas como espacios abiertos,
pasarelas, escaleras mecánicas,etc. con el objetivo de validar el funcionamiento del sis-
tema en un espacio lo suficientemente genérico como para recrear la mayorı́a de situa-
ciones que nos podemos encontrar. Se han realizado pruebas con diferentes dispositivos
en diferentes posiciones y el sistema ha probado ser robusto y preciso.

5. Experimentación con el sistema completo en un entorno real en vehı́culo. Hemos desa-
rrollado una aplicación para el guiado de conductores a una plaza de garaje. Hemos
instalado el sistema en un parking subterráneo de varias plantas y hemos realizado va-
rios experimentos para evaluar la calidad del posicionamiento. Los resultados de esta
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experimentación son positivos y el sistema ha probado ser útil para el guiado de perso-
nas a una plaza de garaje.

El sistema de Localización en Interiores desarrollado ha probado ser robusto, adaptable a
diferentes entornos, usuarios, casos de uso y fácilmente escalable. Finalmente, cabe destacar
que los resultados de la invetigación reflejada en esta tesis han servido para mejorar la tec-
nologı́a de posicionamiento de la empresa Situm Technologies, integrándose en su solución
comercial, mejorando la precisión y minimizando la infraestructura necesaria para el correcto
funcionamiento del sistema. Esta tecnologı́a está actuaknebte instalada en cientos de edificios
por todo el mundo y está siendo utilizada con éxito diariamente por miles de personas.

Además, los resultadosde esta investigación se han reflejado en dos publicaciones en re-
vistas internacionales indexadas en JCR y una publicación en un congreso internacional.

En el transcurso de esta tesis, se han detectado una serie de mejoras potenciales de cara al
futuro. Estas mejoras abarcan diferentes aspectos, desde la mejora de la estimación inercial, el
proceso de calibración para la generación de los mapas de señal, o la incorporación de nuevos
modos de funcionamiento. Algunos de los puntos detectados se enumeran a continuación:

1. Mejorar la estimación inercial. Como hemos explicado, estimamos la longitud del paso
usando el perı́odo de zancada. Esta variable no es la única que afecta a la distancia
recorrida. Aunque la odometrı́a estimada tiene suficiente precisión para la mayorı́a de
los casos, todavı́a hay margen de mejora. Utilizando la información de trayectorias
pasadas del usuario, o incluso con fuentes de información adicionales (como el GPS, si
hay trayectorias exteriores), serı́a posible crear modelos de longitud de paso ajustados
a cada usuario, lo que puede mejorar aún más el rendimiento del sistema.

2. Mejorar la estimación de la orientación del usuario o dirección de desplazamiento.
Nuestro sistema detecta la orientación del usuario en función de la orientación del
teléfono. Esto puede suponer un problema, por ejemplo, si el usuario camina y gira el
teléfono, el sistema interpretará que ha realizado un giro. Después de varios segundos
la información del resto de los sensores terminará corrigiendolo, pero mientras tanto,
la precisión del posicionamiento se degradará temporalmente. Detectar estos eventos y
separar los giros del smartphone de los del usuario ayudarı́a a mejorar la precisión en
estos casos.

3. Añadir nuevos sensores como fuentes de información. Hemos explorado el uso de sen-
sores adicionales para mejorar el rendimiento del sistema en ciertos casos. Sensores
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como el barómetro, presente en algunos teléfonos, pueden ayudar a estimar la planta
en la que se encuentra el usuario y reducir el tiempo de convergencia. También hemos
experimentado con la odometrı́a visual para mejorar la estimación del desplazamien-
to. Esto puede ser especialmente útil para el posicionamiento de vehı́culos en entornos
industriales.

4. Posicionamiento en interiores y exteriores. Hemos explorado también la posibilidad
de utilizar la información del GPS para permitir el posicionamiento tanto en interiores
como en exteriores. Esto hará posible la transición entre diferentes edificios, e incluso
puede mejorar la precisión del sistema en áreas al aire libre como azoteas o patios
interiores.

5. Simplificar los procesos de generación de mapas de señal. Actualmente generamos los
mapas de señal caminando con el teléfono mientras este escanea las señales WiFi o BLE
y marcamos en el mapa del edificio la posicion actual. Este proceso, aunque simple,
puede llegar a ser tedioso en edificios grandes. En el futuro, se podrı́an aplicar técnicas
como SLAM (Simultaneous Localization and Mapping) para generar estos modelos
automáticamente.

6. Actualizar los mapas de señal. Con el tiempo, los mapas de señal pueden degradarse
debido a cambios en la infraestructura del edificio. Se pueden añadir o quitar nuevos
puntos de acceso, lo que con el tiempo puede hacer que la posición sea menos preci-
sa. La aplicación de técnicas como SLAM ayudarı́a a actualizar constantemente estos
modelos, detectando los puntos de acceso perdidos o añadidos e incorporándolos a los
mapas del edificio.

xix
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CHAPTER 1

INTRODUCTION

Nowadays people spend most of their time indoors [1]. Indoor spaces, have turn into large
buildings where people can develop all kind of activities, from work to leisure, without having
to go out at all. Our usual environment includes big shopping centers, subway networks,
hospitals, educational centers, etc. These buildings can be huge and are frequently crowded,
so it is easy to get lost or waste a lot of time looking for a particular place. In order to solve
this issues, indoor positioning has gained great importance lately. With an indoor positioning
system people can know where they are, and the best route towards their destination. In
addition, they can provide useful information to the building managers, allowing them to
extract statistics of visits, time spent in different areas, etc. Indoor positioning is also useful
for tracking assets or workers. For example, in the security sector, it provides a useful tool
that that allows security guards to be found quickly in case of emergency.

Since Global Navigation Satellite System (GNSS) does not work indoors, other approaches
have taken over. Technologies based on different sensors such as infrared, ultrasound [2],
vision based [3], magnetic field, audible sound or radiofrequency, have been explored. Ra-
diofrequency (RF) based technologies are the ones that have become more popular lately [4].
These technologies usually require the location of transmitters along the building and that
the subject to be located carries a receiver. It is necessary to know the distribution of the
transmitters or to have a signal map in order to be able to relate the signals received with the
space. When the receiver detects one or more signals, its position is estimated using the prior
knowledge of the distribution of the transmitters or signals in the building. The most common
approaches for position estimation using radiofrequency are proximity, triangulation or fin-
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gerprinting [4]. Different RF technologies exist, from the expensive and highly accurate Ultra
Wide Band (UWB) to the most popular and inexpensive WiFi and BlueTooth.

Most of the classic indoor positioning solutions relied in the use of dedicated hardware.
These solutions were usually expensive and required complex installations. Using dedicated
hardware is undesirable since it involves extra costs and is more difficult to implement widely.
The final user will be more reluctant to use a location system if he needs to purchase or carry
additional hardware. Fortunately, the vast majority of people already carry an intelligent
device most of the time. Smartphones, tablets and wearables are already fully installed in
our society. This devices have enough processing power and high-end sensors to allow the
reception and processing of information from the environment. They have WiFi and BLE
(Bluetooth Low Energy) reception cards which allow the detection of WiFi access points
(APs) and Bluetooth beacons from the environment which are extensively used for indoor
positioning. They also include inertial sensors like accelerometer and gyroscope that can
be used to estimate the motion of the user and thus improve the robustness of the location
systems. These characteristics and the pervasiveness of the smartphones makes them the
ideal platform for indoor location.

Even though there has been a lot of research about indoor positioning with smartphones,
there are still some issues that must be solved:

In order to achieve high positioning accuracy, the usual approaches still require installing
additional hardware. For example, many commercial solutions rely on installing a high
amount of beacons in the area. To some extent, the higher the density of beacons, the greater
the precision. Of course, installing a large number of beacons also implies higher deployment
and maintenance costs. In addition, the maximum position accuracy achievable from using
only sensor based observations has a limit. This limit comes from the physical inherent char-
acteristics of the sensor technology (infrared can’t go through walls, camera based require
direct vision, RF signal attenuation, multipath, etc. [5]) and the noise of the sensor [6].

Another problem with using smartphones for indoor location is that they can be used in a
great variety of ways. They can be kept on the pocket or in bag, they can be hold on the hand
or used to talk. A great advantage of these devices is that they have inertial sensors, which can
be used to estimate the movement of the terminal and, therefore, the displacement of the user.
However, the position in which they are carried implies important changes in the perceived
signal, as well as the movements that are made with the terminal while using it normally.
Many solutions require the device to be placed in an specific location [7, 8, 9], or carried in
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a predefined way. This is undesirable, because the user should be able to use the device as
desired without affecting the quality of positioning.

Additionally the user can perform different activities, like walking, going up and down
stairs, sitting, driving, etc. The signals perceived from the inertial sensors would be different
in every case as well as the motion of the person. In this thesis we consider both the case of
pedestrians walking indoors, and drivers who travel in vehicles in an indoor car park.

1.1 Goal of the Thesis

The main goal of this thesis is to provide a robust indoor positioning solution for smartphones
that maximizes location accuracy while minimizes the required infrastructure.

At the same time we will make a system that works in real world situations. It must be
robust to different users, as well as allowing the free use of the terminal, without restricting
its position. It should work in different indoor environments as well as performing typical
activities such as going up / down stairs, walking, using the phone without moving, etc.

Our proposal will make use of the sensors of the smartphone in order to estimate and up-
date the position of the user. It will combine absolute position measurements, taking advan-
tage of the already existing infrastructure of the building (WiFi, BLE), with the information
of the inertial sensors of the smartphone (accelerometer, gyroscope, magnetometer) in order
to determine the displacement of the user. Combining this information will allow us to relate
the measurements both temporally and spatially and thus obtain greater precision without the
need to increase the infrastructure.

In order to achieve these goals, we have addressed the following milestones:

1. We have developed an indoor positioning system that calculates the user’s position by
fusing the information from the different sensors present in a mobile phone. By combin-
ing the information from multiple sources, we achieve greater accuracy and robustness
than of the one that we would obtain using the different sensors separately. This sys-
tem combines observations on the global position of the user with the estimation of
its displacement and orientation. Our system is scalable, easy to deploy and flexible
enough to allow the addition new sources of information in the future. In addition, the
developed system runs on the phone itself in real time.

2. We have developed an inertial estimation module capable of identifying the user’s
movement. We have considered two main modes of displacement: walking and in a

3
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vehicle. We do not want to restrict how the user uses the phone, so our solution works
regardless of the position in which the phone is carried (hand, pocket, bag) and the
activity performed such as walking, going up and down stairs, driving, etc. It is also
robust to different users regardless of their sex or age. In order to achieve this we have
addressed the following points:

a) We have developed a module to estimate the attitude of the phone (its orientation
in the space) using the phone’s inertial sensors. In order to do so we combined
the information of the gyroscope, which provides accurate short term rotation
information but ends up accumulating error (drift), with that of the accelerometer
which allows to fix the position of the telephone with respect to the vertical axis.
We also use the magnetometer in order to provide an estimation of the orientation
of the device with respect to the north. However this information is unreliable
indoors, because there are frequently elctromagnetic interferences caused by the
machinery and the electrical installations of the building.

b) We have evaluated and implemented different techniques for estimating the user
displacement. We differentiated two main scenarios: pedestrian ad vehicle dis-
placement estimation.

i. Pedestrian displacement estimation:
The usual approach to calculate the displacement of a person walking using
inertial sensors, involves detecting the steps taken and estimating the step
length. Identify steps is relatively simple in constrained conditions (tele-
phone in a fixed position and the user walking). When a person walks with
a telephone in their hand, and in the absence of other stimuli, the signal per-
ceived by the accelerometer shows a recognizable pattern, almost sinusoidal,
in which each step taken produces a peak followed by a valley. However, if
we do not restrict the position of the telephone and allow the user to make
use of it in a normal way, while performing different activities, it becomes a
complex task.
We have addressed this issue with two completely different approaches:

A. Shape based step detection. In this approach we identify the shape that a
step produces in the acceleration signal and, through a learning process,
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we obtain a pattern against which compare the new signal in order to
identify the new steps.

B. Feature based step detection. In this approach we built a classifier from
the most representative feature set extracted from the smartphone IMU
in order to identify whether the user is walking or not. This classifier
works with feature vectors extracted from the sensor signal, both in time
and frequency domain.

With the information of the steps taken we carried out an study in order to
identify which parameters affect most the step length and developed and al-
gorithm to estimate it dynamically.
We created an extensive dataset in order to evaluate our step detection pro-
posals. This dataset includes the sensor signals of a phone carried by multiple
users while performing different activities. The singularity of this dataset is
that, unlike in the existing public datasets, the steps are labeled one by one
with the timestamp of the moment in which they are taken. This is especially
important to evaluate the main problem of step counting algorithms which
are false positives in sequences with activity, but without displacement.

ii. Vehicle displacement estimation:
We studied and developed a displacement estimation mode for vehicles in
underground car parks. Theoretically the speed of the vehicle could be esti-
mated integrating the acceleration perceived by the accelerometer. In prac-
tice, this is not feasible, since this signal has a lot of noise (phone accelerom-
eters are not accurate enough, the phone can move, etc.). As a solution, we
have chosen to estimate the probability that the vehicle is moving, based on
the perceived accelerations. Knowing this probability and assuming that the
speed range allowed in an underground garage is limited, we can obtain an
approximation of the displacement of the vehicle.

3. We integrated different sources of information as observations in our positioning system
(WiFi, BLE, compass and a occupancy grid map), and observed that the combination
of all of them allows us to obtain an accurate and robust estimation of the user position.

4. We performed an extensive experimental study of our Indoor Location system both for
the case of pedestrian Indoor Location and Indoor Location for drivers. We deployed

5
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our system in different environments: a large shopping center, and a multifloor car
park. In both scenarios our system proved to be accurate and robust enough to provide
positioning and guidance.

The thesis is organized as follows:

• Chapter 2. We describe the algorithms used to fuse the information of the different
sensors. We present the generic global architecture of our proposal whose particular
parts we will describe in more detail in the following chapters.

• Chapter 3. We describe the algorithms used to obtain a rough estimation of the absolute
position of the device in the building. These will be the observations of our system.

• Chapter 4. We describe the inertial framework of the system. We explain how we
process the inertial sensors of the telephone to pass from raw measurements of the
telephone to orientation and displacement estimates applicable to the user.

• Chapter 5. We describe the complete system for drivers in a parking garage.

• Chapter 6. We describe the complete system for pedestrians.

• Chapter 7. We describe the conclusions of this thesis and the future work.

6



CHAPTER 2

INDOOR LOCATION

As we have said in the previous chapter, the goal of this thesis is to obtain an indoor po-
sitioning system for smartphones that maximizes the accuracy while minimizes the required
infrastructure. In addition, for this system to be useful, it must work in real world situations. It
should be robust to different activities and uses of the terminal, it should estimate the position
correctly when the subject is walking, standing, going up or down stairs or even in a vehicle.
It must be robust to different positions, handheld, in the pocket, in a backpack, etc. It must
work correctly in different environments, it should not depend on specific characteristics of
the building and be easily deployable in any environment.

Many of the classic approaches to indoor positioning rely on a single sensor. For example,
estimating the position of the subject triangulating WiFi signals. Nevertheless, the position
accuracy achievable from using only single sensor based observations has a limit. This limit
comes from the physical inherent characteristics of the sensor technology (infrared can’t go
through walls, camera based require direct vision, RF signal attenuation, multipath, etc. [6, 5])
and the noise of the sensor [6]. It is known that fusing the information from different sensors
is more robust than using only one [6].

On the one hand, the physical characteristics of different sensor can complement each
other. For example, the signal emitted by a WiFi access point covers a wide area of space that
even can cross some walls, while an infrared signal covers a smaller area and it is only received
if there is a direct line of sight. For localization purposes, listening to a WiFi signal, you can
estimate a position in a wide area, but the accuracy of that position will be lower than that
obtained with an infrared sensor. On the contrary, in order to positioning only with infrared
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it would be necessary to populate densely with emitters the area. In addition, combining the
information of different sensors can solve the problem of having blind spots. As an example,
there may be an area where no WiFi access point is heard but there is a BLE signal.

In our case, we use the different sensors of the smartphone fusing the information received
to estimate the user’s position. We scan WiFi and BLE signals, as observations, and combine
the accelerometer, gyroscope and magnetometer signals to estimate the motion of the subject.

Combining observations with the motion of the subject allows us to relate (both temporally
and spatially) sequential sensor measurements and thus be able to achieve greater accuracy.

To this extent, probabilistic position estimation has been used in robotics for years with
great success [10, 11, 6, 12]. In this paradigm, there are one or more hypothesis of a state with
its own uncertainty. The state is modified with observations, which provide information of the
environment, and with information of motion or control which indicates the movement of the
subject. Both observations and motion estimations have their own uncertainty. Improving the
accuracy of observations or the motion estimation will affect the precision of the position.

2.1 State of the art

Fusing information from multiple sources allows to obtain position estimates more accurate
and robust than those that would be obtained using only one sensor. Within the fusion of
sensors there are different alternatives, such as interval calculus, fuzzy logic, etc.[13] The
most popular of these is the probabilistic fusion, especially the methods based on Bayesian
Filtering [13, 6].

In the Bayes Filter the variables or state to be estimated can not be observed directly. The
belief distribution is estimated from the control, in our case the motion of the subject, and from
the observations, readings from the sensors that provide information about the environment.

Within the Bayesian fusion paradigm there are multiple approaches, of which some the
most popular are the Kalman Filter (KF) and the Particle Filter (PF).

The Kalman Filter main drawback is that it only works with linear problems. Extendend
Kalman Filter (EKF) solves this limitation by linearising the estimation problem in order
to apply the Kalman Filter. However the probability density function is approximated by a
Gaussian which may distort the underlying real distribution and make the filter diverge [14].

In the Particle Filter, each particle represents a hypothesis of the state to be estimated,
which in our case is the user’s pose. The filter iterates in two main stages: prediction and
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update. In the prediction stage, the particles are displaced using the information of movement
of the user. In the update stage the observations, measurements of the sensors, are used to
weight the particles. Particles that are coherent with these observations will have a greater
weight than the others. After several iterations, one or several particle clusters will be formed
in the areas where the user may be located.

The particle filters have important advantages over other alternatives such as the Kalman
Filter. They allow to represent multimodal probability distributions. This is frequent in local-
ization because there may be multiple plausible positions in a given moment of time. Particle
Filters are highly scalable. Unlike with the Kalman Filter, in which adding new measurements
is complex, in the Particle Filter there can be easily added as many observations as required.

2.2 Architecture

Figure 2.1: Global system architecture

Figure 2.1 represents the global architecture of the system. On the one hand we have the
inertial sensors of the smartphone (accelerometer, gyroscope) which we use for the estimation
of the movement. This is an isolated block, so we can modify the motion models and adapt the
displacement estimation depending of the activity performed, use mode, etc. without affecting
the rest of the system.

On the other hand we have the measurements received from the sensors of the smartphone,
which in our case are comprised of WiFi, BLE and Compass readings. WiFi and BLE readings
are used together with prior knowledge of the building such as maps or signal maps to get
rough estimations of the global position of the subject. These estimations together with the
compass are the observations.

9
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The estimation of the movement and the observations are combined using a particle filter
to obtain, finally, an estimate of the state. This state is the user’s pose.

This architecture allows us to add or remove sources of information easily, maintaining
the robustness of the system and allowing us to adapt it to different situations.

2.3 Particle Filter

In this section we describe a particle filter used to determine the position of the user at each
instant. This particle filter merges information provided by inertial sensors, WiFi access points
(APs), Bluetooth beacons, and an occupancy map.

The Particle Filter estimates at each instant the probability with which the user is in a
certain state st given the set of all previous actions Ut:1 = {ut ,ut−1, . . . .u1} and measurements
Zt:1 = {zt ,zt−1, . . . ,z1}. In our case the state st represents a position of the user on a floor map:

st =


xt

yt

θt

f loort

 (2.1)

where (x,y) is the 2-dimensional position, θt is the heading of the user, and f loort is the
current floor.

The actions ut , ∀t represent the movement of the user at every instant t. In particular ut is
described as the distance traveled by the user and the direction of movement, i.e. ut = [dt ,∆θt ].
The Motion Estimation module shown in Fig. 2.1, will use the inertial sensors of a mobile
phone to estimate these actions ut = [dt ,∆θt ],∀t.

Finally, the measurements Zt = {z1
t , . . . ,z

nz
t

t }, are the sensor readings or observations per-
ceived at an instant of time t from the nz

t different sources of information (e.g. signals received
from a set of Bluetooth Low Energy transmitters (BLE)).

Thus, as it was just pointed out, the particle filter estimates the probability distribution for
the state space at each instant. This probability distribution is usually called belief function

belt(s), and it is often represented as:

bel(s) = p(s|zt ,ut) (2.2)
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where bel(st) represents the probability of the user being in state st . This belief distribu-
tion can be recursively estimated [6]:

belt(s) ∝ p(zt |s)
∫

p(s|st−1,ut)belt−1(s)dst−1 (2.3)

Figure 2.2: Prediction and update iterative cycle.

This equation (2.3) involves two stages: prediction and update (figure 2.2). The first stage,
prediction, estimates the belief distribution ˆbelt(s) considering the previous one belt−1(s) and
the current movement of the user ut .

ˆbelt(s) =
∫

p(s|st−1,ut)belt−1(s)dst−1 (2.4)

The term p(s|st−1,ut) is the motion model. It describes the probability with which the user
evolves from state st−1 to s when it performs the action ut .

The Update stage corrects the predicted belief distribution taking into account the last
sensor measurements.

belt(s) ∝ p(Zt |st) · ˆbelt(s) (2.5)

p(Zt |st) is called observation model, and it represents the probability of receiving the
measurements Zt when the user is in state st . The joint probability p(Zt |st) is not easy to
estimate directly. That is because there are sensors that may not be present in certain device
and even if they are, their readings may not be received synchronously. Because of that, and
assuming that the sensors are conditionally independent we can approximate belt(s) with the
following equation:

belt(s) ∝ ˆbelt(s) ·
nz

t

∏
k=1

p(zk
t |st) (2.6)
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In chapter 3 we will describe the processing of the raw sensor data required to obtain the
motion model, and in the 4 we will describe the observation model.

Once we have the observation and motion models, we can apply a particle filter to esti-
mate the position and orientation of the subject. Particle Filters approximate a belief distribu-
tion (bel(st)) using a set of np variables called particles Xt = {X i

t = (si
t ,ω

i
t ),∀i ∈ 1, . . . ,np}.

Each particle keeps an hypothesis about the current state of the system (si
t ) and a weight wi

t

that somehow, reflects the probability of that hypothesis being true (hypothesis plausibility).
Hence the summation of the weights of the whole set of particles must be equal to one. Both,
the hypothesis si

t , and the weight ω i
t will vary over time. Taking this into account, Particle

Filters represent the belief bel(st) as:

bel(st)≈
np

∑
i=1

ω
i
t ·δ (si

t − st) (2.7)

Where δ (si
t − st) is the Dirac’s delta function centered at si

t . Starting from a set of ran-
dom particles with the same value for their weights, the algorithm iterates over four stages:
prediction, update, resampling and pose estimation.

1. Prediction. At this stage the hypotheses kept by all the particles are updated according
to the motion model:

si
t ∼ p(s|si

t−1,ut)∀i ∈ {1, . . . ,np} (2.8)

Since si
t−1 = (xi

t−1,y
i
t−1,θ

i
t−1, f loori

t−1), ∀i, represents the hypothesis of each particle,
these hypotheses are updated according to the following expression:

si
t =


xi

t−1 +dt · cos(θ i
t−1 +∆θt)+E xt

yi
t−1 +dt · sin(θ i

t−1 +∆θt)+E yt

θ i
t−1 +∆θt +E θt

f loori
t−1

 (2.9)

Where E xt , E yt and E θt represent zero mean Gaussian noise and are randomly drawn
from normal distributions E xt ∼ N(0,σxt),E yt ∼ N(0,σyt), E xt ∼ N(0,σθ t).
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2. Update. At this stage the weights of the hypothesis stored in the particles are updated
using the observation model:

ω
i
t ∼ p(Zt |si

t) ·ω i
t−1 = ω

i
t−1

nz
t

∏
k=1

p(zk
t |si

t) (2.10)

Finally, the updated weights are normalized so that their total sum equals 1.

3. Resampling: This stage will help to avoid the fall in local minima. Particle Filters suffer
from a phenomenon called sample depletion [12], this means that after some iterations
all particles will probably have a negligible weight except one. An approximation of
the amount of depletion can be obtained:

Ne f f =
1

∑
np
i=1(w

i
t)

2
(2.11)

when Ne f f falls under a threshold, it is advisable to perform a resampling, where a
new set of particles is created from the current one. In our case, we will use the Low
Variance Resampling technique [6].

4. Pose Estimation: After some iterations, particle clouds will converge around one or
more plausible locations, from which we can estimate the position of the subject. Ba-
sically we group the particles in clusters[15] (according to their hypothesis si

t ) and then
we select the cluster with the highest total weight (the weight of a cluster is computed
as the sum of the weights of all the particles included in such cluster and that are over a
predefined threshold). After this, the pose of the subject is computed as the average of
all the particles included in the selected cluster.
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CHAPTER 3

MOVEMENT ESTIMATION

In the previous chapter (Chapter 2) we described the particle filter that we use to estimate
the pose of the user. We have explained that we combine the movement of the user (motion

model) with the observations of its global position (observation model). In this chapter we
will describe how we estimate the movement of the user from the data of the inertial sensors
of the smartphone.

3.1 Motion model

In order to be able to known how the user moves through space, we must process the inertial
data and estimate whether or not the device has moved over time, and how much. More
formally, we are trying to model the relationship between accelerometer and gyroscope data

Figure 3.1: Motion model
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with the displacement (d) and change of direction (∆θ ) of the user over time. We must keep
in mind that the displacement and direction of the phone may not be aligned with that of the
user.

This relationship is normally called the motion model, represented in figure 3.1. This
figure represents that the input of the system is the data from the smartphone sensors: ac-
celerometer, gyroscope and magnetometer. From these data we estimate the movement of the
user at each instant of time ut = (dt ,∆θt). The estimation of these variables is carried out in
the module motion estimation. The motion model defines the probability of transition from
the state st−1 to the state st , when the motion ut occurs. In the Particle Filter framework,
the motion model is represented as p(st |st−1,ut), as shown in figure 3.1 . Note that we have
already defined this equation in the previous chapter when we defined the prediction stage of
the particle filter (chapter 2, equation 2.4).

To compute the motion model we work with an stochastic representation of the transition
of the position from one state st−1 to the next one st due to ut = [dt ,∆θt ] (where dt is the
displacement, i.e., distance traversed amongst two time instants, and ∆θt is the change of the
heading of the user amongst these two timestamps):


xt

yt

θt

f loort

=


xt−1

yt−1

θt−1

f loort−1

+


dtcos(θt−1 +∆θt)

dtsin(θt−1 +∆θt)

∆θt

0

+~εt (3.1)

where ~εt is a zero-mean Gaussian noise vector with which we represent the fact that it is
not possible to achieve a precise computation of the displacement and change in heading due
to the noise and bias of the sensors, vibrations, etc:

~εt ≈


N(0,σxt = λx ·dt)

N(0,σyt = λy ·dt)

N(0,σθ t = λθ ·∆θt)

0

 (3.2)

where N(0,~σ) is a Gaussian function with average 0 and standard deviation σ(λ ). The
parameters λx,λy and λθ are constants in the range [0,1] adjusted experimentally to represent
the percentage of error associated to the displacement (dt ) and change of heading (∆θt ).
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It is also important to realize that this motion model does not change the estimation of the
current floor. The change of floor will be detected in another stage, based on the observations.
We will discuss that later on chapter 4.

According to Eq. (3.1), we see that we must estimate the displacement dt and heading ∆θt

in order to approximate its state. We will use the information provided by the inertial sensors
(IMU) of the mobile phone to estimate both dt and ∆θt . This estimation is performed in the
module Motion estimation of the figure 3.1.

3.2 Smartphone Sensors

As shown in figure 3.1 and equation 3.1, we need to process the raw sensor readings in order
to obtain the displacement (dt ) and rotation (∆θ ) of the user. In this section we describe
the characteristics of the sensors present in most smartphones: accelerometer, gyroscope and
magnetometer.

Figure 3.2: Android device sensors axes [16].

• Accelerometer: The accelerometer measures the acceleration forces to which the smart-
phone is subjected. Nowadays, smartphones have triaxial accelerometers, that measure
the acceleration to which the terminal is subjected in each one of the axes of the tele-
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phone, as it is shown in the figure 3.2. We can use the accelerometer readings for two
main goals:

– Orientation estimation: It is important to remember that we do not know how
the device is carried or its orientation. Given that we do not want to impose any
restriction on the way in which the user carries the smartphone, we cannot make
assumptions about if the smartphone is in the pocket, handheld, being used to talk,
etc.

Since accelerometer measures both the linear accelerations to which the phone
is subject and the acceleration of gravity we can use this information in order to
estimate the orientation of the smartphone with respect to the up axis. We achieve
this by identifying how the gravity affects the different axes of the smartphone in
the absence of other accelerations.

– Displacement estimation: We also can use these readings in order to estimate
the displacement of the device. In ideal conditions we could integrate twice the
acceleration in order to obtain the device displacement. However, in the real world
this is not feasible since sensors have noise, that would accumulate through time
exponentially. Nevertheless, there are other alternatives. For example, when an
user is walking carrying a smartphone, the acceleration to which the device is
subjected presents a periodic and recognizable pattern which can be detected. By
identifying and counting the steps, and having an estimation of the step length,
it is possible to provide an estimation of the total displacement. Of course, this
is not so simple, given that the received signal will be different depending on the
person, location and orientation of the smartphone, activity carried out, etc. It
may even be the case of detecting patterns similar to those of walking while the
user is not moving. Finally there are also cases in which a user will move without
walking, such as in a vehicle. We have also addressed this case as we will see in
section 3.5.

• Gyroscope: The gyroscope measures the angular velocity in each of the three axes of
the smartphone (figure 3.2). Gyroscopes are frequently used to estimate rotations by
integration. This allows to achieve accurate estimations of the rotation in short time
intervals, but in the long term, the error accumulates (drift). In addition, these rotations
are relative to the device, which may not be aligned with the user. Also, given that these
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measurements are relative rotations, they do not provide an absolute orientation and it
is required to known the initial orientation of the device in order to estimate it. We will
solve this issue using a map and the particle filter as we will explain in section 4.

• Magnetometer: Finally, the magnetometer measures the electromagnetic field present
in the environment. This includes the Earth magnetic field, which points approximately
towards the north. This provides information about the absolute orientation, which can
be very useful for our purpose. However, the magnetometer is also prone to detect
electromagnetic interferences which are very frequent indoors, and may produce er-
rors in the detection of the true north. In addition the smartphone itself can create a
electromagnetic disturbance which may lead to additional errors.

3.3 Rotation Estimation (∆θ )

In this section we describe how we estimate the change in orientation, ∆θ , from the inertial
sensor readings.

3.3.1 Reference Frames and Orientation Representation

As we pointed out before, we need to know the orientation in the space of the smartphone.
We must be aware of the existence of two reference systems:

1. Sensor Frame: A local reference system linked to the phone (also known as body
frame). This local frame is defined relative to the device’s screen.

2. Earth Frame: inertial reference system, the axes of which always point towards the
same points (with respect to Earth).

In the case of the inertial-Earth frame, we work with a frame analogous to the East
North Up (ENU) coordinate system [17], in which the x-axis points toward the East,
the y-axis points towards the North Magnetic Pole and the z-axis is pointing in the
opposite direction of the gravitational force. The accelerometer and gyroscope readings
are provided in the body frame, and therefore it is convenient to project them into the
inertial-Earth frame in order to estimate the movement of the person who carries the
mobile.
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The attitude of the smartphone is its orientation with respect to the inertial-Earth frame.
There are several ways to represent the attitude of an object in space. Euler Angles, Rotation
Matrix, Angle-Axis or Quaternions are some of the most popular representations.

In order to represent this orientation, we use quaternions [18, 19] because of their many
advantages over other representations. A quaternion is a four-dimensional vector that repre-
sents the relative orientation between two coordinate frames B and A, as a rotation of an angle
θ around a three-dimensional axis r:

A
Bq = [q0 q1 q2 q3] =

[
cos

θ

2
, rxsin

θ

2
, rysin

θ

2
, rzsin

θ

2

]
, (3.3)

where A
Bq is the normalized quaternion that represents the orientation of a frame B relative to

a frame A [19]. Following this notation, we will use S
Eqt to refer to the current value of the

quaternion that represents the orientation of frame E (Earth frame), relative to the frame S

(Sensor frame). This quaternion represents the current orientation of the mobile phone.

3.3.2 Device orientation estimation

Once we have decided how we are going to represent the device orientation, we need to
choose an algorithm to estimate it. Theoretically, knowing the initial orientation of the device
we could integrate the angular rate from the gyroscope in order to estimate this orientation.
However, in the real world, sensor noise makes that the error accumulates provoking drift in
the estimated orientation.

Because of this drift, the usual approaches involve the combination of information from
multiple sensors in order to eliminate or minimize it.

To this extent we use an Extended Kalman Filter (EKF) [20] to estimate the quaternion
that represents the attitude of the device. The EKF is an recursive estimator that calculates
the internal state of dynamical system integrating measurements from noisy sources. In our
case it will work with a process model which is represented as the evolution of the attitude of
the smartphone due to the rotation of the mobile detected with the gyroscope (Sωt ). The EKF
differs form the Kalman Filter in which it can work with non linear models [21]. It works
with statistical models of how the state evolves and how the observations relate to this state
by minimizing the mean-squared error. It works in two stages, prediction and update.
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• Prediction:

In the prediction stage, it obtains the a priori estimation from the previous state and a
known control or motion input.

In our case, in the prediction stage, we integrate the angular rate from the gyroscope
(Sωt ) in order to obtain an a priori estimation (S

E q̂−t ).

Since the gyroscope measures the rate of angular velocity it can be used to determine
the orientation:

S
E q̂−t = S

E q̂+t−1 +
1
2
(S

E q̂+t−1⊗
S
ωt)∆t (3.4)

where ⊗ is the quaternion product, S
E q̂− is the a priori estimate of the state, before

the observations zt are processed, whereas S
E q̂+ is the a posteriori estimate. Therefore,

given an initial orientation, the information provided by the gyroscope can be integrated
to determine the device’s change in position. Nevertheless, in our case we do not know
such initial orientation, therefore, as we described in chapter 2 we will overcome this
limitation using a particle filter.

• Update:

In the update stage, the a priori estimation is corrected using measurements or obser-
vations about this state in order to obtain the a posteriori estimation. In our case, we
correct the initial estimation using the accelerometer readings. We estimate the gravity
from the acceleration in order to use it as an anchor to avoid drift in the vertical axis.

The gyroscope has a high rate of error, its data drifts over time, is unstable, and low
angular velocities might not be properly registered. Because of all this, and to com-
pensate all these errors, the EKF uses a measurement model to compute the posterior
estimate S

E q̂+ , Eq. 3.4. In particular, this observation model works on the basis that
when the magnitude of the accelerometer signal (‖ Sat ‖) is close to Earth’s gravity
(g), which would mean that the mobile phone is not being affected by other forces, the
accelerometer should measure only Earth-gravity in the local device frame.

In this case, the projection of the unit gravity vector in the Earth frame, ~zG =
−→
G/ ‖

G ‖= {0,0,0,1}, into the local reference system (body frame), should coincide with
the information detected by the tri-axial accelerometer signal, after its normalization
Sâ = {0, ax

‖Sa‖ ,
ay
‖Sa‖ ,

az
‖Sa‖}.
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This projection of ~zG into the local reference system can be computed as:

S ~up =S
E q̂−∗t ⊗ ~zG⊗S

E q̂−t (3.5)

where S
E q̂−∗t is the conjugate of S

E q̂−t [19]. According to this, when zG is rotated using
the current estimation of the quaternion S

E q̂−t (Eq. 3.4 and 3.5), we should obtain the
same values as those provided by the normalized accelerometer signal Sât . In fact, this
difference amongst the predicted values of the accelerometer and the ones observed is
precisely what the EKF uses to correct the a priori estimate of the quaternion:

S
E q̂+t = S

E q̂−t +Kt [
S
E q̂−∗t ⊗ ~zG⊗S

E q̂−t − Sât ] (3.6)

where K is the Kalman gain, a dynamic parameter that weights the importance between
the predicted state S

E q̂−t and the information carried out by the observations Sât , which
depends on the process noise and the observation noise [6].

As we just pointed out, one of the reasons why we estimate the quaternion with the EKF,
is to get the changes in orientation of the device. In this case, to extract its heading θt the
components of the quaternion estimated by the EKF. We use the yaw-pitch-roll (YPR) order
of rotation[22].

θ
′
t = atan2(2(q0q3 +q1q2),1−2(q2

2 +q2
3)) (3.7)

Where atan2(y,x) is a function present in many programming languages that computes
the arctangent of (y/x) taking into account the signs of the arguments to determine the correct
quadrant. Note that we will not work with θ ′t , which represents the heading assuming a
known initial value. Instead our motion model (Eq. (3.1)), works with the increments ∆θ :

∆θ = θ
′
t −θ

′
t−1 (3.8)

In order to retrieve the true initial orientation, and sort out this uncertainty about the initial
heading, we will work with the particle filter that merges the information provided by the
inertial sensors of the mobile phone with other sources of information (Chapter 2).
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3.3.3 Compass (θ c)

As we have explained in the previous section, we fuse the information of the accelerometer
and gyroscope in order to estimate the rotations of the device (∆θ ). We have explained that we
do not use the magnetometer in the estimation of ∆θ because of the inaccuracies of the mag-
netometer readings, due to the presence of electromagnetic interferences in the environment
and caused by the device itself.

However knowing the orientation of the device with respect to the north is still very useful
for localization, especially in the context of the particle filter, for the estimation of the orien-
tation in absence of movement. Because of that, we do estimate the orientation respect to the
north, but we do not use it in our motion model (due to the high error rate). Instead we will
use it later in the observation model, as we will explain later (chapter 4).

In order to estimate θ c we use another EKF, like the one described in section 3.3.2, but
in this case we also use magnetometer readings along with the accelerometer readings in the
update stage. Thus the electromagnetic field will be included as an additional update in the
EKF. This update is similar to that of the accelerometer defined in equations (3.5) and equation
(3.13).

The state of this EKF is the quaternion qc. First we project the unit vector that points
towards the North in the Earth reference frame ~zN = {0,0,1,0}, into the local reference frame:

S
E q̂c−∗

t ⊗ ~zN⊗S
E q̂c−

t (3.9)

It is important to keep in mind that this vector is supposed to point towards the geographic
North Pole. It is a vector that points towards the North tangent to the Earth surface.

This is not directly comparable to the readings of the magnetometer. In the absence of
electromagnetic interferences, the magnetometer detects the Earth magnetic field, which is
different from the Geographic North. It has an declination difference in the horizontal plane,
and an inclination (it points towards the Down axis). We will ignore the declination difference
for simplicity, since it is generally negligible in comparison to sensor noise of the smartphone
sensors. However we will deal with the inclination before integrating the reading into the
EKF in order to avoid an error in the vertical axis.

After normalization we obtain an unit vector that points toward the magnetic north in the
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sensor reference frame:

S~Nmag = {0, magx

‖ mag ‖
,

magy

‖ mag ‖
,

magz

‖ mag ‖
} (3.10)

We want to integrate it in the EKF as an observation to update the orientation, without
affecting the up axis. Thus we apply the following transformations.

First, we use the ~up′ vector defined in equation (3.5) and S~Nmag , in order to obtain a unit
vector that points toward the Geographic East and is orthogonal to both vectors.

S~E =S ~Nmag× ~up (3.11)

Then we approximate the vector that points towards the Geographic North:

S~NG =S ~up×S ~E (3.12)

where S~NG is the vector that points towards the Geographic North (ignoring the declina-

tion).
At this point, and remembering the equation (3.9), we can integrate S~NG into the EKF in

the same way that we did with the accelerometer in equation (3.13):

S
E q̂c+

t = S
E q̂c−

t +Kt [
S
E q̂c−∗

t ⊗ ~zN⊗S
E q̂c−

t − S~NG
t ] (3.13)

Finally we estimate the orientation respect to the north θ c
t .

θ
c
t = atan2(2(qc

0qc
3 +qc

1qc
2),1−2(qc

2
2 +qc

3
2)) (3.14)

where θ c
t is orientation of the device with respect to the Geographic North. We will

explain in chapter 4, section 4.3 how we integrate this observation in the Particle Filter.

3.4 Pedestrian Displacement Estimation (dt)

In section 3.1 we have defined our motion model and explained that it depends on the change
of heading, ∆θt and the user displacement, dt . In section 3.3 we described how we estimate
∆θ , thus it only remains to explain how we estimate dt .

The usual approach to estimate the displacement of a person walking using inertial sen-
sors, involves detect and count the steps taken. When a person walks with a telephone in
their hand, and in the absence of other stimuli, the signal perceived by the accelerometer
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shows a recognizable pattern, almost sinusoidal, in which each step taken produces a peak
followed by a valley. This is easily identifiable, if the person is indeed walking, however the
person can perform other activities not related to walking that produce a similar pattern on the
accelerometer signal.

In this section we describe how we estimate, from the raw sensor data, the displacement
(dt ) of a person walking. This involves two stages, first detecting and counting steps, and
finally the estimation of the distance travelled.

We have addressed the step recognition and counting stage applying two different ap-
proaches:

1. Shape based step detection: We train a classifier that uses directly the shape of the
acceleration time series to detect characteristic patterns of walking. When a step is
taken it produces a acceleration with a characteristic shape. This makes it possible to
obtain one or more reference patterns of real steps that we can later compare to the
acceleration signal in order to identify if a step has been taken.

2. Feature based step detection: In this approach we built a classifier from the most rep-
resentative feature set extracted from the smartphone IMU in order to identify whether
the user is walking or not. We will discuss this approach in section 3.4.3.

Finally, after detecting the steps taken, we estimate the step length dynamically as we will
explain in section 3.4.6.

In the final version of the complete Positioning System we opted to use the Feature Based
displacement estimation approach because it is more easily generalizable to different users.
In addition to estimating the displacement of a person walking, we have also adapted our
system to work in vehicles. The approach used to estimate the displacement in a vehicle will
be explained in section 3.5).

3.4.1 Shape Based.

For this approach we decided to learn the step models in the mobile itself. These models
should gather the specific characteristics of both, the mobile and the user.

The strategy we have developed works on three stages: first, our proposal will ask the user
to walk normally. During this first stage, our application will collect some basic statistics of
the information provided by the accelerometer and will collect samples corresponding to a set
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of steps. From this initial set of steps our proposal will build a model (second stage), and the
user will be able to test it and to decide whether the performance is good enough. Finally, a
further improvement in the model can be carried out through a third and final stage in which
the user records false positives (by simply moving the mobile in the arm but without walking).

In the following sections we will explain in more detail these stages.

Segmenting time series to detect steps

In this stage we collect data of the user walking normally and segment the acceleration signal
in order to obtain a set of step candidate. Usually, the movement of walking gives rise to a
very characteristic vertical acceleration signal which looks very similar to sinusoidal waves
[23]. This is the reason why in this stage we will use a simple version of is known as peak
detection [24] to identify steps. For us a step candidate is the acceleration signal obtained in
a time interval and that might reflect the fact that the user has given a step. Therefore this
algorithm chops the acceleration signal into segments that might reflect steps.

Obtaining a model

As it was pointed out at the beginning of section 3.4.1, our system will build a first model
starting from a set of N initial potential steps collected while the user moves. Since most
probably the walking speed of user will not be constant, we must assume that the number
of data points in every gait cycle is not identical. Algorithm 1 shows how through the peak
segmentation of the first stage we obtain a set of accelerations A for each step, as well as the
time instants that these accelerations occurred. Therefore, to build a model, the time-scale of
all the steps is normalized, i.e., T ′j [i] = Tj[i]/max{Tj[]},∀ j = 1, ...,N. After this normalization
all acceleration samples have a time stamp in the interval [0,1], being 0 the time associated
to the first sample and 1 the times stamp corresponding to the last acceleration sample. The
purpose of this is to achieve a solution that is, somehow, robust to differences in walking
speed.

Once all acceleration time series have been normalized, we will look for a template, i.e.,
a representative step that can be used for template matching in order to decide when a step
might have occurred. In order to determine the most representative step we need a similarity
measurement. In this case we have used Dynamic Time Warping (DTW) and in particular
FastDTW [25]. Dynamic Time Warping is suitable to match temporal series, basically it
finds the optimal alignment between the samples corresponding to two different time series,
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counter = 0 ;
A = [] ;
T = [] ;
initial time = current time stamp ;
last state=”not identified”;
while process is not finished do

Sc=”neither peak nor valley”;
if eaz(t)>= max(eaz(t−1),e az(t +1))&(eaz(t)> T hpeak) then

Sc=”peak”;
else if eaz(t)<= min(eaz(t−1),e az(t +1)&(eaz(t)< T hvalley) then

Sc=”valley”;
end
if Sc=”peak” then

last state=”peak”
end
if Sc=”valley” & last state=”peak” then

last state=”valley” ;
steps=steps+1 ;
counter = 0 ;
initial time = current time stamp ;
Analise wheter step(A,T) ;

end
A[counter] =e az ;
T [counter] = current time stamp− initial time;
counter = counter+1 ;

end
Algorithm 1: Detection of peaks and step candidates

minimizing the distance amongst them. Therefore it allows the comparison of time series
even if one of them may be warped non-linearly by stretching or shrinking it along its time
axis [25].

There is another issue we had to deal with, and that is related with whether it is convenient
or not normalizing the time series, i.e. working with steps made up by the same number of
samples. According to [26] length normalization reduces the recognition accuracy in appli-
cation domains where the length of the compared time series matters for their classification.
In our case we do not want such a dependency since it might lead to solutions that are too
sensitive to gait frequency. Another study [27] claims that making the sequences to be of the
same length has no detrimental effect on the performance of DTW. Due to all this, we have
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opted for normalizing the time series that are going to be compared, i.e., when they are of
different lengths, one of them must be reinterpolated.

The step that is going to be used as template for the matching processes, is determined
automatically from the N potential steps collected while the user moves:

rep = argmin j∈[1,N]{max∀k=1,...,N{dtw j,k}} (3.15)

where dtw j,k represents the warping distance amongst time series (steps) j and k. According
to equation (3.15), The pattern that is going to be used as template is the step that minimizes
the distance to the furthest of the N-1 remaining steps in the collection. The matching radius
ρrep is determined as ρrep = max j∈[1,...,N]{dtw j,rep}. Any new pattern exhibiting a distance to
the template rep lower than ρrep will be considered as a valid step, while otherwise it will no
be considered as a step.

Improving the model

Finally, when one template is not enough, it is possible to improve the model after collecting
false positives. In this case, the user is asked to move the arm trying to get our application
counting steps but without walking at all. On this way, a second set of M false positives is
collected. Using the two sets: 1) the N true positives and, 2) the M false positives, the model
is improved (Algorithm 2). The application of this algorithm will issue a new model formed
by the minimum number of templates (each one with its own radius), so that all the N initial
steps are properly recognized but none of the M false positives is misidentified.

3.4.2 Shape Based. Results.

In this section we describe the results of the shape based approach for step detection. We have
carried out two experiments in order to analyze its performance.

Experiment 1

In the first experiment the model is obtained from noisy data, i.e., the initial set of steps to
obtain the model are collected under a wide variety of circumstances: the user walks with
the mobile in his hand, swings it, simulates a phone call, keeps the mobile in the pocket and
walks with it, gesticulates while walking, puts the mobile facing upwards in the palm of his
hand, touches the screen, etc. This is done, without following any kind of regular pattern and
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// Set of true positives
T P = {Ap[1],Ap[2], ...,Ap[N]};
// Set of false positives
FP = {A f p[1], ...,A f p[M]};
templates = {};
// Initialize the set "left" as a copy of the set of true

positives
le f t = T P = {Ap[1],Ap[2], ...,Ap[N]};
while cardinal o f{le f t} 6= /0 do

// Select the "true" positive with the highest number
of neighbours belonging to the set TP

// A true positive "A" is considered neighbour of B
when the DTW-distance amongst A and B is less that
the distance from A to any false positive

w = argmaxi∈T P{cardinal o f{Ap[ j] ∈ le f t |dtwi, j < dtwi,l , ∀l ∈ FP}} ;
// Set the validity radius of w
// Half way amongst the distance to the furthest

neighbouring true positive and the distance to the
closest false positive

Rw =
max j∈le f t{dtww, j |dtww, j<dtww,l ,∀l∈FP}+min{dtww,l ,∀l∈FP}

2 ;
// Increase the set of templates with w and its radius
templates = templates+{(w,Rw)} ;
// Remove w and its neighbouring true positives from

the set le f t
le f t = le f t−{w} ;

end
Algorithm 2: Improving the model

during 100 steps. Once this initial set of steps are collected for training, then first model is
obtained and tested when the user follows a particular 5-stage-sequence: a) 20 steps walking
with the mobile in the left hand, b) 20 steps swinging the mobile, c) 20 steps with the mobile
in the ear (simulating a phone call), d) 20 steps during which the user keeps the mobile in the
right pocket and walks with it in the pocket (the user does not stop walking at any moment), e)
finally, after these 80 steps, the user stops and removes the mobile from the pocket (no steps
should detected here) and checks the screen of the mobile to see how many steps have been
detected. Obviously 80 steps is the desired output. Table 3.1 (first column) shows the output of
the model when it is formed by only 1 template. In general we clearly see that our application
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Table 3.1: Results obtained for five different experiments following the 5-stage-sequence
described in the text.

steps counted false positives number of templates after refinement steps counted
101 (80) 57 FP 22T 80(80)
96(80) 51 FP 21T 81(80)
103(80) 44 FP 15T 84(80)
95(80) 57 FP 20T 79(80)
95(80) 52 FP 22T 75(80)

counts a higher number of steps than the desired output. After this, and for each one of these
experiments we carried out the third stage (model refinement). In this case initially the user
collects false positives without walking and by moving the mobile in the arm sideways, up
and down, keeping the mobile in the pocket, touching the screen, etc. The second column of
table 3.1 shows the number of false positives collected in each experiment. With this set, the
model is refined adding new templates (third column of table 3.1). This model is tested once
again following the 5-stage-sequence aforementioned, the number of steps counted this time
is shown in the last column of table 3.1. As we can see the results are very accurate, as the
numbers of steps that have been counted with our application are very close to the real case.

Experiment 2

In this case during the initial collection of 100 steps the user walked with the mobile placed in
the palm of his left hand.After this, then the model is obtained and tested (Table 3.2). We run
10 experiments. During the first five experiments we observe the output of the model when the
user follows the 5-stage-sequence described in the previous subsection.In this case we observe
that the model misses a significant number of steps (second column of Table3.2). Nevertheless
the model is able to recognize perfectly the steps given by the user when the mobile is in his
palm (columns 4 and 6 of Table3.2, the desired output is 50, we tested the model when is
formed by 1 template (4 column), or after correction(column 6). Nevertheless, if we correct
the model once again and test it with the 5-stage-sequence, the number of steps missed is
even worse than before (column 8). The reason is due to the fact that the model is tuned
to recognize a specific way of walking. Hence, when the model detects an step it is correct
in all cases (low number of false positives, it filters out all the relatives movements of the
arm), but it also misses too many steps when the user moves in a different way from what it is
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Table 3.2: Results when the model is tuned to recognize a specific way of walking

output exp. output(1) false pos. output(2) false pos. output(3) templates
Exp 1 78 (80) Exp 6 49(50) 44 FP 55 (50) 20 FP 46 (80) 9T
Exp 2 59 (80) Exp 7 49(50) 15 FP 49 (50) 18 FP 40 (80) 5T
Exp 3 75 (80) Exp 8 50(50) 166 FP 49(50) 97 FP 35 (80) 10T
Exp 4 78 (80) Exp 9 50(50) 4 FP 49(50) 2 FP 63 (80) 2T
Exp 5 62 (80) Exp 10 50(50) 6 FP 49(50) 9 FP 50 (80) 4T

expected and to what the model has been trained for (high number of false negatives).This can
be useful for specific applications like guiding inside buildings, where the expected position
of the mobile might be restrained, but for the general case is better to follow the procedure
described in the previous experiment.

3.4.3 Feature Based.

In this section we describe our proposal for feature based distance estimation.

Since we want no limitations about where or how the user carries the mobile, our proposal
will estimate whether the person is walking before actually counting the steps. This will
allow filtering chunks of useless signal and thus discarding false positives common in these
kind of approaches. Obviously, with the proposal described in this section, we tried to achieve
a reliable and robust classification, able to achieve high performances regardless of how the
device is being carried or its orientation. Nevertheless, we are aware that an idealistic 100%
reliability is not feasible, which is why we also aim for a error-symmetric prediction (similar
number of false positives and negatives). If this is true, these errors can cancel each other, so
that the number of steps predicted by our proposal in a time interval will be very accurate.
This will make our proposal very appropriate for indoor local navigation.

Figure 3.3 provides a schematic representation of our complete proposal for pedestrian
displacement estimation. This figure represents the block Movement Estimation shown in the
figure 3.1 from section 3.1. We can easily count the steps given by a person applying an Peak
Valley detector to the accelerometer signal. This would work perfectly in ideal conditions in
which the user walks normally with the smartphone in its hand, however, the normal smart-
phone use in real world situations can cause accelerometer signals similar to those that appear
when walking, even when the user does not move. Because of this we need a stage of step
validation in order to discard false positives.
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Thus, we use an Enhanced Peak Valley in order to detect “step candidates”, i.e., a seg-
ment of signal that might reflect a step given by the person carrying the mobile. In parallel,
supervised learning and Bayesian filtering are being used to recognize the walking activity.
Hence, a step is validated and counted in those circumstances in which the detection of a step
candidate coincides with the positive identification of the walking activity in the same signal
segment. Next, we provide details of each one of the parts that make up our proposal.

Figure 3.3: Our proposal to Pedestrian Dead Reckoning in a positioning system.

Lineal Vertical Acceleration

Accelerometer readings are highly dependant of the orientation of the device. In order to
estimate the displacement we need to use a signal independent of the orientation of the de-
vice. Even though some approaches use the magnitude of the acceleration[28, 29] in order to
achieve this orientation independence, it is also more failure prone in the presence of move-
ments that have nothing to do with walking, thus increasing the rate of false positive detec-
tions. Because of that, we use the vertical linear acceleration instead.

Since we know the attitude of the phone (Section 3.3.2), we can now obtain the vertical
component of the linear acceleration experienced by the mobile in the Earth reference system.
To do so, we project the acceleration to the vertical axis, and remove the gravity force:

~lacct =
S
E qt ⊗ S~at ⊗S

E q∗t − ~G, (3.16)

where S~at is the vector that arranges the accelerometer readings. The first term of the previous
equation (Equation (3.16)) represents the projection of the information gathered by the ac-
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celerometer into the Earth frame. ~G = (0,0,0,9.81) is the vector representation of the gravity
force in the Earth frame. The vertical linear acceleration, laccz,t (i.e., the vertical acceleration
experienced by the mobile once the gravity has been removed), is the last component of the
vector represented in Equation (3.16), ~lacct = (lacc0,t , lacc1,t , lacc2,t , lacc3,t = laccz,t)).

Inertial Signal Characteristics

At this point, we have isolated the vertical component of acceleration and eliminated the effect
of gravity from it. When a person walks carrying a phone in its hand, and in the absence of
other stimuli, the signal received (i.e., the vertical component of the acceleration in the Earth
reference system) is often similar to a sinusoidal pattern shown in Figure 3.4a. Consequently,
the signal shown in this figure can be considered as the characteristic signal generated by
a person walking at a relatively low frequency [30]. In this signal, each step taken by the
person is identified by the segment formed by a local peak followed by a valley. Hence, in
this scenario, it might seem that a Peak Valley algorithm should be enough to identify the
steps walked by a person. However, things usually are far from this ideal case, since there is
a problem of perceptual aliasing, i.e., very similar signals to the one shown in Figure 3.4a can
be obtained when the mobile phone is being used in a natural way, but when the person is not
walking at all (Figure 3.4b). This makes the identification and segmentation of the signal into
walking versus non-walking segments a difficult problem. Section 3.4.3 describes the way we
have addressed this issue.

In order to achieve a satisfactory identification of steps, the vertical linear acceleration
should be centered in zero as seen in Figure 3.4, but some devices may have a bias in the
readings of the accelerometer that might prevent this centering. Non centered signals can lead
to errors in the step detection algorithms. To ensure that this does not happen in our case, we
apply a high pass filter to center the signal and thus remove any possible DC offset:

lacch
z,t = αhlacch

z,t−1 +αh(laccz,t − laccz,t−1), (3.17)

where laccz,t is the input (vertical linear acceleration signal), lacch
z,t the filtered signal, αh =

RC
RC+∆t and RC = 1

2π fc
and fc the cutoff frequency (0.5Hz).

Finally, we apply a low pass filter to remove the noise from the signal:

laccl
z,t = αl lacch

z,t +(1−αl)(laccl
z,t−1), (3.18)

where lacch
z,t is the input (i.e., the already centered acceleration after applying Equation (3.17)),

laccl
z,t the filtered signal, αl =

∆t
RC+∆t and RC = 1

2π fc
.
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(a)

(b)

Figure 3.4: Vertical linear acceleration sampled at 16 Hz. (a) signal obtained when the user
walking while holding its phone; (b) signal obtained when the mobile phone is being moved
by the user but without walking.
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Step detection

Step or gait detection can be achieved in different ways. One typical approach is to use a peak
detector [31] to identify events, like heel strikes, where the impacts of the feet are reflected in
the vertical acceleration signal. Other approaches involve exploiting the cyclic and repetitive
nature of walking, and hence using properties such as the signal auto-correlation [32]. In our
case, we have used an enhanced Peak Valley detector that locates local extremes in the signal.
In this case, a step corresponds to a segment of signal in which there is a peak (local maximum
which exceeds a threshold) followed by a valley (local minimum below a threshold). On the
other hand, the time elapsed from the previous detected step to the new step-candidate must
be above a valid walking period for it to be accepted. This is due to the fact that humans
commonly walk within a low range of frequencies [30].

However, this peak valley algorithm is susceptible to detect any motion produced within
the expected range of frequencies, and hence is prone to commit false positives and, on the
other hand, usually has problems detecting changes in the walking speed [33]. Due to this, we
consider the use of another module responsible for filtering out necessary, and, in real time,
those parts of the signal which reflect some kind of movement in the mobile, but which have
nothing to do with walking. This is a challenging task due to the high perceptual aliasing (i.e.,
the existence of many signals very similar but caused by different movements of the mobile
or human actions).

Walking Recognition

In this section, we describe a module aimed at detecting when the user is walking, and thus
discard noisy signals and filter out the false positives detected by the peak-valley algorithm
described in the previous section. This module is strictly necessary to reach a symmetric error:
on one side, the number of false positives will decrease since a step will be counted if, and
only if, it is detected by the peak-valley algorithm and the activity of walking is recognized in
the same signal segment by this module. On the other side, the inclusion of this module will
have the collateral effect of increasing the number of false negatives, as a consequence of the
misclassification of signals (although, as we will see, the rate increase of false negatives will
be low). As we will see in the experimental results, the number of false positives and false
negatives will tend to be very similar, thus canceling each other and making this proposal very
suitable for pedestrian dead reckoning and indoor positioning.
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Bayesian Filtering (p(walkt))

We use supervised learning and Bayesian filtering [34] to differ walking from non-walking
sequences in the signal. Bayesian filtering involves the recursive application of a prediction

and an update stages.

• Predict:

The predictive probability distribution that defines whether the user is walking in an
instant t, can be computed by the equation:

bel(walkt) =
∫

p(walkt |walkt−1)p(walkt−1|Z1:t−1)dxt−1 (3.19)

where Z1:t−1 is the history of measurements up to the time t−1.

Therefore, as we can see, we work with a very simple dynamic model in which the only
important element is 2× 2 transition matrix p(walkt |walkt−1), the elements of which
have been learned by an inductive process using a training data set. This transition
matrix basically introduces a certain amount of hysteresis in the process: i.e., if the user
was detected as walking in the previous time interval, there is a not null probability that
the user is still walking at the current instant, despite the fact that the activity might
not be identified in the current signal segment. Only after a certain time-lapse without
recognizing the walking activity does this module set the probability of walking as null.
Something similar happens in the contrary case.

• Update:

Regarding the update stage, the Bayes’ rule will be applied to estimate the posterior
distribution of the state xt , starting from the current measurement yt :

bel(walkt) = η p(zt |walkt)bel(walkt) (3.20)

where η is a normalizing constant. We write zt to refer to the current observation. In
our case, we work with the overlapping sliding window, i.e., segments of signal and not
instantaneous sensor readings. This means that zt represents the observed signal (laccz)
in a window, while zt and zt−1 represent two different windows that overlap.
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To compute the probability p(zt |walkt), we will merge an ensemble of SVMs (Support
Vector Machines) (psvm(zt |walk)) together with a logistic estimator that works over the
standard deviation of the signal (pstd(zt |walk)).

p(zt |walkt) = psvm(zt |walkt)pstd(zt |walkt). (3.21)

In the following subsections we explain how we estimate psvm(zt |walkt) and pstd(zt |walkt).

SVM Ensemble psvm(zt |walkt)

Regarding the SVM, we opted for an ensemble instead of a single SVM. We work with
an ensemble because we have an unbalanced training dataset, with more walking sequences
than non-walking sequences; therefore, we decided to use Bagging, oversampling randomly
and with replacement from the minority class [35]. The outputs of all the SVMs that are part
of the ensemble were merged to get a probability value:

psvm(zt |walkt) ∝
1
n

n

∑
i=1

zi
svm, (3.22)

where n is the number of classifiers in the ensemble, and zsvm represents the output of the
ith member of the committee. The inputs of these SVMs are feature vectors computed over
windows of 2.5 s that overlap 0.5 s.

Using feature vectors instead of raw data can reduce the number of input elements and
improve the generalization ability. We performed a study to identify which features were
the most relevant for detecting walking sequences from accelerometer and gyroscope data.
First, we collected all the features relevant to activity classification from the literature both in
temporal and frequency domains [36, 37, 38]. Then, we analyzed the relevance of each feature
with Recursive Feature Elimination (RFE) [39]. The selected features in the time domain are:

1. The Signal Magnitude Area (SMA).

It is computed as:

SMA =
1
w

(
w

∑
i=1
|acci

x|+
w

∑
i=1
|acci

y|+
w

∑
i=1
|acci

z|

)
, (3.23)

where accx, accy and accz are the acceleration signals perceived from each axis of the
accelerometer, and w is the size of the window.
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2. Maximum value for each axis of the accelerometer and gyroscope.

3. Standard deviation for each axis of accelerometer and gyroscope.

4. Correlation between axes y and z of the accelerometer.

Finally, the formula for the correlation is:

corr(accy,accz) =
cov(accy,accz)

σaccyσaccz

, (3.24)

where cov(accy,accz) is the covariance and σaccy and σaccz the standard deviation in
each axis.

Regarding the features in the frequency domain, after applying the Fast Fourier Transform
(FFT), we work with:

1. the FFT frequency bins up to 4 Hz for each axis of the acceleration signal.

2. the Dominant frequency in each axis which can be directly estimated from the FFT bin
with the maximum value.

3. the Power Spectral Entropy (PSE) [40]:

PSE =−
N

∑
i=1

pi ln pi, (3.25)

where pi is the power spectral density function:

pi =
1
N |X(wi)|2

∑i
1
N |X(wi)|2

(3.26)

and where X(wi) is the FFT of a signal, wi is a frequency bin, and N is the number of
frequency bins. This feature can be interpreted as a measurement of the uncertainty in
the frequency domain.

Standard deviation estimator. pstd(zt |walkt)

Despite obtaining good performance with this ensemble of SVMs, due to the difficulty of
the task, we decided to use a logistic estimator to reduce the number of misclassification. The
results shown in [33] support the idea of applying a threshold over the standard deviation of

38



Chapter 3. Movement estimation

the acceleration to identify walking sequences in most scenarios. Therefore, we constructed
an estimator of the probability pstd(zt |walkt) as logistic function of the standard deviation of
the vertical linear acceleration laccz:

pstd(zt |walkt) ∝


1

1+e−k(σlaccz−β0)
, if σlaccz < th,

1
1+ek(σlaccz−β1)

, otherwise,
(3.27)

where σlaccz is the standard deviation of the vertical linear acceleration (computed over sliding
windows of one second), k and β0 and β1 are constants set experimentally that define the
steepness and midpoints of the curves respectively, and th is a threshold set in the midpoint
between β0 and β1. The idea behind this function is that typical walking sequences should
have a standard deviation within a certain range of values. The logistic functions ensure
smooth transitions.

Finally, we combined the results obtained with both the ensemble of SVMs, and the lo-
gistic function of the standard deviation p(zt |walkt) , as shown in equation (3.21).

3.4.4 Feature Based. Results.

We want to evaluate the performance of our proposal in realistic situations. To this end, we
carried out the following experiments: First, we evaluated the step identification and counting
when different people—mostly unrelated with our research to avoid bias—moved in a com-
pletely free manner, hence in a natural way, regarding both the walking manner and also the
way they carried the mobile phone.

In order to carry out these experiments, and analyze the performance of the proposal
described in this thesis, we require a way of obtaining the ground truth of the steps given by
the user, i.e., the real number of steps walked by the person carrying the mobile. In some of the
experiments, a visual counting might be enough, but, in some other experiments, where many
users take part, a data set is collected, and where not only do we want to know the number of
steps but also their timestamps—time values corresponding to each step—the visual counting
is insufficient, prone to errors. In these cases, we had to make use of an automatic strategy
described below.
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Obtaining the Ground Truth

As we pointed out,we are going to collect data to analyze the number of steps given, due to
which we need a ground truth. Most articles in the bibliography evaluate the performance of
their algorithms only taking into account the total number of steps detected per experiment.
Nevertheless, in our case, we opted for labeling every single step, in order to analyze the
performance of each part of our proposal, as well as the canceling of false positives and false
negatives thanks to the symmetry in the error. Hence, in our ground truth, each step is perfectly
identified together with its timestamp, i.e., the moment in which the step is given. One option
to obtain this ground truth could be manual counting. However, this method is unfeasible and
prone to errors if we want to perform many experiments involving different people moving
freely. Moreover, manual counting would not allow us to get the timestamps of the steps in
an easy way. There are commercial step-counting solutions that perform well when the user
walks, even though some of them are still susceptible to detect false positives [41], or they
involve sensorized environments that constrain the freedom of movement of the user [42].
Nevertheless, we want to emphasize that, even though there might be commercial solutions
available that would be valid to get the ground truth, we still opted for building our own
mechanism due to two reasons: (1) our solution will require attaching inertial sensors to the
legs (like some of the commercial solutions); as we will see, this will allow the detection
of the movement of legs of the users unambiguously, and hence will provide a very reliable
ground truth. On the other hand, (2) thanks to the use of our own sensors and software, we
can get precise information about each single step walked by the user, and synchronize the
readings provided by the sensors attached to the legs, with the signal that is being detected
in the mobile carried by the person in the experiment and which we can run the proposals
described in this thesis. This synchronization will allow a deep analysis of our proposals.

Attaching inertial sensors (accelerometers) to the legs, unlike the personal smartphone
that can be carried on the hand, the pocket, the backpack, etc., removes uncertainty regarding
when the person is walking. When these sensors detect the presence of important forces, we
know that are due to the direct movement of the legs. Therefore, these sensors give precise
information of when the user walks by the fact of being located on the legs. We have devel-
oped a system that uses two extra smartphone-based IMUs in the legs instead of any other
low-cost integrated IMU. We attach smartphones on the legs instead of other low-cost IMU
sensors, as the mobile phone can be considered a computer that can facilitate some tasks,
such as real-time signal processing or synchronization. Hence, we tied these extra devices
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with sports armbands to the legs of the people who participated in our experiments, as shown
in Figure 3.5.

(a) (b) (c)

Figure 3.5: Sports armbands holding the mobiles of the legs. (a) Frontal view; (b) side view;
(c) rear view.

We developed an Android application that was installed on all three smartphones. The
devices worked in a synchronized manner storing information from the accelerometer, gy-
roscope and magnetometer sensors. The devices interact with each other following a mas-
ter/slave communication protocol. Thus, the main mobile (the master) controls the other
two devices in the legs (the slaves), as shown in Figure 3.6a. For all the devices to be
synchronized as accurately as possible, all of them make a query to the same time server
(time.google.com) using the library TrueTime [43] in order to get an atomic time, which
allows later to compare information of different devices without problems of alteration of
precedence.

Figure 3.7 shows a graphic representation of the ground truth over the signal of the ver-
tical component of acceleration in the main mobile phone. Each peak-valley sequence in the
ground truth signal is equivalent to one step, so it is easy to identify when the user is really
walking and when the main device is experiencing accelerations due to actions different from
walking.

The ground truth was calculated using only the data from the devices in the legs. First, we
got two signals, one for each device fixed in each leg, using the acceleration module at each
moment. In order to detect possible steps, we used a peak-valley algorithm [44], and then
we matched the signals obtained with both mobiles on the legs. In this way, we can ideally
detect each step in the signals coming from both legs, as shown in Figure 3.8a. Nevertheless,
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depending on various conditions, such as the person performing the record, speed and way of
walking, there are diverse situations that require special processing and attention: the signals
detected with both legs might be shifted (Figure 3.8b), making it difficult to determine when
it is the same or a different step. It is also possible to miss a peak in one of the legs due to
an occasional weak signal. Finally, it can also happen that the peak of greatest intensity is
recorded in the foot opposite to the one that has given the step. Nevertheless, we want to
emphasize that our system has been designed to cope robustly with all these situations.

M

S S

CONNECT/
SYNC UP/
START RECORDING/
STOP RECORDING/
DISCONNECT

R
E

C
. D
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(a)

main device:
collects data

smartphone-
based IMUs:
collects ground 
truth

(b)

Figure 3.6: Communication and synchronization between devices. (a) representation of the
master-slave architecture; (b) volunteer obtaining data and its corresponding ground truth.

Given the large number of records performed in which the users walked under very dif-
ferent and greatly varied characteristics, we assume that there might be some steps missing
in the ground truth. In order to somehow analyze to what extent this happens, we have also
validated the ground truth through manual counting and visual inspection, counting steps of
a significant part of the dataset (28%). This analysis allows us to limit the error committed in
our ground truth in ±2%, that is, between one and two steps per record.
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Figure 3.7: Graphic representation of the ground truth (thicker and darker line) over the signal
of the vertical component of acceleration in the phone (thinner and clearer line).
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(b)

Figure 3.8: Peak detection (thick points) combining the signals of the two feet (blue and green
lines) in an ideal situation (a) and a non ideal situation (b).

Step Detection and Walking Recognition Performance Analysis

In this first experiment, we wanted to evaluate the performance of our proposal when different
people use it; to this aim, we have built a large dataset composed of a total of 140 records car-
ried out by 75 different people. The vast majority of them (70, specifically) were volunteers
with no links or connection with the research described in this thesis. We have proceeded in
this way in order to ensure that the data were not biased. Thus, in each record, the participant
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walked under natural conditions, freely or following some basic premises, while the inertial
information of its movements was recorded and processed. Each volunteer walked, on aver-
age, about 2 min, giving around 110 steps. The dataset contains a variety of records that can
be classified according to various criteria, such as the volunteer who performed the record,
speed and way of movement: walking straight, climbing stairs, walking freely, etc. Another
possible classification considers the position of the mobile, or the way in which it was carried:
in the hand, in the pocket, in the backpack, etc. In all of the experiments in the dataset, the
smartphone used was a BQ Aquaris E5 (BQ, Madrid, Spain). We labeled in this dataset each
step taken with its timestamp using the method described in Section 3.4.4.

We have applied a matching algorithm to compare step by step the output of our proposal
and the ground truth. We have analyzed the performance of the Peak Valley algorithm, also
the walking recognition working as a classifier, and finally the complete system. Therefore,
we have detailed information about true step detections (true positives), false positives, as well
as false negatives. We can not compute the true negatives for the peak valley algorithm, since
we speak about steps that do not appear in the ground truth and which are not detected by the
Peak Valley algorithm. In the case of the walking recognition working as a classifier, the true
negatives only reflect those false steps detected by the Peak Valley algorithm but discarded by
the walking recognition working as a classifier.

We evaluated the performance of our algorithm dividing the dataset as follows:

1. Global performance, using the whole dataset.

2. Performance when the user walks freely with the phone in its hand.

3. Performance when the user walks freely with the phone in its pocket.

4. Performance in hybrid sequences, in which the user walks freely using the phone and
changing its position (e.g., walks with it in the hand and then puts it back in the pocket).

5. Performance when the user barely walks but is using and moving the phone.

Table 3.3 shows the confusion matrices for each kind of experiment, while Table 3.4 shows
the total amount of steps detected by the peak valley and by the complete system compared
to the ground truth. To better understand these tables, we explain below the results obtained
for the complete dataset (Table 3.3a and the first column of Table 3.4). The number of steps
in the ground truth is 13,810. From these steps, the Peak Valley algorithm detects correctly
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13,104, misses 706 real steps and counts 1640 incorrect steps. Therefore, the total amount
of steps detected by the peak valley is 14,744, which are the candidate steps used as input
for the classifier (the sum of the values in the confusion matrix of the classifier is equal to
14,744). From these candidate steps, the classifier detects 13,803 steps as correct, from which
12,544 are true positives and 1259 false positives. It also discards 941 steps, 381 of them
being true negatives and 560 false negatives. The right side of the table shows the confusion
matrix of the complete system. In this matrix, the steps detected as true (true positives + false
positives) are the same as that in the classifier matrix. The false negatives are the sum of the
steps missed by the peak valley (706) plus the the steps missed by the classifier (560). Finally,
the number of true negatives is unknown, since it would be the sum of the 381 true negatives
of the classifier plus the true negatives of the Peak Valley.

Peak Valley performs well when the user is actually walking but otherwise counts a high
amount of false positives, as was expected. Our system discards part of the false positives,
but it also misses some of the real steps, thus achieving an error symmetric approach. Our
estimation of the steps missed by the ground truth leads us to conclude that both errors tend
to be roughly the same. Since the error committed by the classifier is reasonable, the false
positives and false negatives cancel each other out, thus achieving a high accuracy (as it is
shown in Table 3.4). In this table, we can see how the total amount of steps counted by
our complete system is significantly closer to the ground truth than the number counted with
the Peak Valley algorithm only. Therefore, we think that this makes our proposal suitable
for tasks such as Pedestrian Dead Reckoning and, in combination with other techniques, for
indoor location.

Our system filters out noise in the signal, which is particularly relevant in sequences in
which the user uses the phone without barely walking. However, it still has a significant
amount of false positives, a problem that we will address in future research.

3.4.5 Final Reflection.

In this section we have carried out a detailed analysis of 2 different alternatives for identifying
if the user is walking or not.

From these alternatives we have decided to use in our final system the feature based ap-
proach described in section 3.4.3. That is because shape based alternatives, while delivering
high performance in our experiments, are more sensitive and less robust than feature-based
alternatives. We have seen this in the operation of our system with the final users in the real
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Table 3.3: Confusion matrices of the Peak Valley detector, the walking recognition working
as a classifier over the candidate steps detected by the Peak Valley, and the Complete System,
for each subset of data. Columns show the output of the system while the rows show the
output of the ground truth (GT).

Complete Dataset

Peak Valley Classifier Complete System
True False True False True False

GT true 13,104 (85%) 706 (5%) true 12,544 (85%) 560 (4%) true 12,544 (83%) 1266 (8%)
false 1640 (10%) - false 1259 (8%) 381 (3%) false 1259 (8%) -

Hand

Peak Valley Classifier Complete System
True False True False True False

GT true 5775 (92%) 213 (4%) true 5630 (92%) 145 (2%) true 5630 (90%) 358 (6%)
false 311 (5%) - false 259 (4%) 52 (1%) false 259 (4%) -

Pocket

Peak Valley Classifier Complete System
True False True False True False

GT true 2848 (83%) 195 (6%) true 2693 (83%) 155 (5%) true 2693 (80%) 350 (10%)
false 398 (12%) - false 320 (10%) 78 (2%) false 320 (10%) -

Hybrid

Peak Valley Classifier Complete System
True False True False True False

GT true 2547 (84%) 163 (5%) true 2410 (84%) 137 (5%) true 2410 (81%) 300 (10%)
false 321 (11%) - false 255 (9%) 66 (2%) false 255 (9%) -

Not Walking

Peak Valley Classifier Complete System
True False True False True False

GT true 137 (26%) 22 (4%) true 114 (23%) 23 (4%) true 114 (30%) 45 (12%)
false 368 (70%) - false 226 (45%) 142 (28%) false 226 (59%) -

world. In spite of having a complete dataset which comprises a high number of ways of
transport of the mobile phone and different activities, the final system is used by thousands of
people and, right now, it is impossible for us to contemplate how all of them will carry their
phones or their peculiarities.
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Table 3.4: Total steps in the ground truth, detected by the Peak Valley (PV) detector and
detected by the whole system (PV with the walking recognition working as a classifier).

Total Steps

Dataset Hand Pocket Hybrid Not Walking

GT 13,810 5988 3043 2710 159
PV 14,744 6086 3246 2868 505
PV + C 13,803 5889 3013 2665 340

3.4.6 Distance estimation (dt).

Figure 3.9: Relationship between walking period and step length.

At this point, we already have information about the steps the user is taking and an a
probability of walking. However, we still need to estimate the length of the steps (l) in order
to compute the displacement of the user.

Some authors estimate the step length as a function of the vertical acceleration (inverse
pendulum) [30], however this requires the accelerometer to be placed in a fixed position at the
hip. Other authors have demonstrated that the step size depends on two main variables, the
height of the user and the walking frequency [45, 31]. In our case we have decided to use a
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function that depends only on the step period, given that we have obtained good results, and
this way we avoid being intrusive with the user asking him to enter personal data.

Due to the fact that there is a relationship between the step length and walking fre-
quency [45], we decided to model the length of the step considering only the walking pe-
riod [31]. Estimating this period from consecutive valid steps is straightforward. Neverthe-
less, for the matter of robustness, we work with the average of the last N detected steps. To
get the relationship amongst the walking period and the step length, we asked several people
to walk along a 20 m hallway at a constant speed. We instructed them to repeat this walk at
different paces. For each record, we calculated the average step length (from the total distance
and the number of steps walked). We also estimated the average walking period. Figure 3.9
plots both variables for the data obtained experimentally showing that there is a clear relation-
ship between them. Finally, we applied Linear Least Squares to relate the step length with the
walking period.

Thus we estimate the step length as a function of the walking period:

l = f (T ) = β0 +β1T (3.28)

, where l is the resultant step length, T is the estimated walking period and βn are constants
that define the line fitted to the data shown in figure 3.9.

Thus, when the peak-valley (Section 3.4.3) detector detects a step, we estimate the dis-
tance traveled by simply applying:

dt = lt ·bel(walkt), (3.29)

where lt is the length estimated for the step, and bel(walkt) is the probability of the user
being walking estimated in Section 3.4.3 in Equation (3.20). Therefore, the system will count
only steps when the peak-valley algorithm detects an step and the walking recognition con-
firms that the user is moving.
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3.4.7 Results Distance Estimation

Besides the analysis of the performance of our proposal when recognizing steps, we also car-
ried out experiments to evaluate the accuracy of the estimations made by our system regarding
the distance walked by the users.

We run 20 experiments with 10 users in which they had to walk along a predefined path
of 44 m. This path is shown in Figure 3.10a. During the experiment, there were marks on
the ground every two meters to indicate to the users the path that they had to follow Figure
3.10b. The users walked following the route and carrying a phone that recorded the data. We
run our system using these data and compared the distance estimated with our proposal versus
the ground truth. It should be noted that the ground truth may have an error of approximately
±1 m, due to some possible experimental artifacts: the last step taken by the user does not
have to necessarily coincide with the last mark on the floor, and there can be a little deviation
between the path followed by a person and the one marked on the ground, etc. The device
used in these experiments was a BQ Aquaris E5.

Figure 3.11 and Table 3.5 show the results of the experiment. In Figure 3.11, we can see
a boxplot with the distances estimated by our proposal. The blue line represents the ground
truth. It can be seen that the median is slightly above the ground truth of 44 m and the
percentiles Q1 and Q3 only deviate from it around 2 m. There are two outliers that identified
a distance greater than 10 m above the real one. It is interesting to note that both belong to the
same person.

Table 3.5: Statistical values corresponding to the distances estimated with our proposal.

Distance (m)

Average 45.11
Standard Deviation 3.31
Maximum 53.8
Minimum 40.38
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(a) (b)

Figure 3.10: (a) path followed by the people taking part in the experiment aimed for the
analysis of the performance of our proposal at estimating the distance travelled by a person
walking; (b) marks on the ground every 2 m placed to indicate the path that must be followed
during the experiment.

Figure 3.11: Boxplot with the distances estimated by our proposal for the 44 m long path.
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As it was previously shown in Figure 3.9, there is a relationship between step length and
the walking period, which is taken into a account by our model. Nevertheless, our proposal
does not consider the influence of other variables like the user height, etc. The only way we
foresee including those other variables is by means of personalized models that can integrate
particular information of the user carrying the mobile. Nevertheless, considering the outcome
of this experiment, our proposal performs well enough and it does not seem necessary to
include this other information to improve the step size estimation.

Analysis of the Independence of Our Proposal to the Hardware Being Used

In this experiment, we will study the impact of the hardware—model of the mobile phone
being used—in the performance of our proposal. Hardware differences generally involve
different acquisition frequencies, differences in the amount of noise in the signal, and some
devices can even have a bias in one or more of the sensor axes. These signal differences should
not affect our algorithm thanks to the subsampling and filtering of the signal, the use of robust
features, an ensemble of classifiers or Bayesian filtering, etc., with which our proposal should
generalize well. However, we performed experiments with different smartphones, in order to
analyze their impact on the outcome of our proposal.

We took different models of smartphones at the same time and walked while running our
system. If our hypothesis is correct, the number of steps detected by each smartphone should
be very similar for each experiment.

We performed four experiments using five terminals at the same time. In the first two,
we carried all of the telephones in the same hand, and, in the next two, in the pocket. In all
of them, we took 60 steps. The results can be seen in Table 3.6. For the experiments in the
hand, there are hardly any variations. In those experiments in which the mobiles are placed in
the pockets, experiments (3 and 4), there is a slightly higher variation regarding the number
of steps counted with our proposal. Nevertheless, even in this case, the difference is not
important, since the maximum difference between the steps counted for the different mobiles
is three steps. Looking at the results, we can say that there are certain differences, especially
when the mobile phone is in the pocket, but they should not represent a serious threat.
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Table 3.6: Steps detected in four experiments running our proposal with different smart-
phones.

Hand Pocket

Experiment 1 Experiment 2 Experiment 3 Experiment 4

BQ Aquaris E5 58 57 58 60
Samsung Galaxy A2 58 58 59 59
Xiaomi Mi A2 58 58 59 62
Motorola Moto G6 plus 58 58 61 60
OnePlus 2 58 58 60 59

3.5 Displacement Estimation in a Vehicle (dt).

In addition to the scenario of a person walking, we also considered that of a driver on a vehicle
in a parking garage.

In order to estimate whether the vehicle is moving or not, we will isolate the vertical
vibrations of the vehicle using the accelerometer signal. This has been proved to be a good
indicator of the vehicle’s movement [46]. Therefore, we estimate the vertical acceleration as
we have done in the case of a person walking (Section 3.4.3, equation (3.16)).

To determine whether the vehicle is moving or not, i.e. the probability of movement, we
work an simple heuristic rule that considers the last values of the vertical linear acceleration
(laccz,t ):

Pmovement =

 1
th σlaccz , if σlaccz ,< th

1, otherwise
(3.30)

Where Pmovement is the probability of movement, (σlaccz ) is the standard deviation of the
vertical acceleration obtained on a window of 0.5 seconds and, finally, th is a threshold chosen
empirically.

In general, we can assume that in parkings people drive within a limited speed range
[0,speedmax]. Therefore, once we now the value of Pmovement it is possible to model the amount
of displacement by applying a simple rule:

d = speedmax ·Pmovement ·∆t (3.31)
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3.5.1 Results Vehicle Displacement and Orientation estimation.

We have analyzed whether our implementation of the EKF meets the required expectations,
i.e., whether the quaternion estimated by the filter conveys enough information to determine
when the car is moving (Eq. 3.30), as well as the change of orientation experienced by the car
(Eq. 3.14).

With this purpose we have driven the car in an underground car park with the mobile
attached to the car’s dashboard. We have developed an Android app which used our EKF to
compute at each instant the probability of the car moving and the change of orientation. In
order to get the ground truth we recorded the experiment in video, from which we can extract
precise information about whether the car is moving, as well as its heading. This video is
synchronized with the mobile app, so that we can compare, at every instant, the outcome of
the filter with the real information about the heading and movement of the car.

Figure 3.12: Performance of the movement estimation predicting whether the car is moving
or not in an underground car park. The blue line represents the ground truth, and the orange
line the probability of movement estimated with Eq. 3.30.

• Movement Probability:

During a first part of the experiment the car stopped and moved several times on purpose
(Figure 3.12). This Figure 3.12 shows the outcome of the experiment in an interval
of almost three minutes. As we can see, the probability resembles quite precisely the
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ground truth, i.e. there is no situation in which our estimation says that the car is moving
when it is not, or the contrary. The probability of the car moving is always high when
the car is effectively moving, or near zero when the car is stopped.

• Orientation:

In a second part of the experiment, we computed the accumulated change of orientation
∆θ . Figure 3.13 shows how reliable the outcome of our estimation is, in comparison
with the ground truth, for an interval of one minute. During the experiment the car was
driven along different lanes thus requiring multiple turns. We must be aware that, as
we will see in the next sections, this estimated change of orientation will be merged
with our sources of information (by means of a particle filter), thus avoiding the drift in
the inertial sensors of the mobile phone. Moreover, the change of orientation detected
with our EKF will be corrected by the particle filter in intervals much shorter than 1
minute, therefore Figure 3.13 shows the performance of the EKF in situations that go
much further than what our complete system will require.
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(a)

(b)

Figure 3.13: Performance of the EKF when estimating the heading change, ∆θ ,
accumulated by a car moving along two different routes in an underground car park. The

blue line represents the ground truth and the orange the output of the EKF.
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CHAPTER 4

OBSERVATIONS

In chapter 2 we have explained that we use a particle filter to determine the position of the user
at each instant. With this filter we combine information of the movement of the user, motion

model, with observations of its position, observation model, in order to update and correct the
initial distribution 2.3.

In chapter 3 we have described the motion model, and how we estimate the displacement
and change of heading of the user from the sensors of the smartphone, both when a person is
walking and when the motion is that of a vehicle.

In this chapter, we describe how we estimate the global position of the user (observations)
from the sensors of the smartphone and how we integrate them in order to estimate our ob-
servation model. In our observation model we combine information from WiFi and Bluetooth
Low Energy (BLE) signals, along with compass information and a occupancy grid map. WiFi
and BLE provide a rough estimate of the devices position in the building (x, y, f loor), the
compass provides information of orientation respect to the north, (θ N), and the occupacy grid
map is used to discard estimations that fall out of the navigable areas.

4.1 Observation Model

The observation model defines the probability of receiving certain readings or observations
from one or more sensors (Zt ), while being on a particular state st .

p(Zt |st) (4.1)
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Figure 4.1: This figure represents the sources of information that we use as observations and
the observation model

The most probable poses will be those with more similarity between the expected and
received sensor data.

As shown in figure 4.1, we combine in our motion model information from WiFi, BLE,
compass and an occupancy grid map. Given that these different sensor readings are not syn-
chronous, one or more of these observations can be present at any given moment of time t.
We use them in the update stage of the particle filter as they come.

Since our sources of information include different sensors, our observation model is the
combination should be estimated as the joint probability of the measurements of all of them.
However, given that the joint probability is not easy to estimate directly especially when the
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sensor data is not synchronized, we approach it as follows [12]:

p(Zt |st) =
nz

t

∏
k=1

p(zk
t |st) (4.2)

where nz
t is the number of sensors available at an instant t, and zk

t the observation for each
one of these sensors. With these approach the number of sensors used as observations can be
easily expanded or reduced as needed.

4.2 WiFi and BLE localization

Nowadays, in most buildings there are deployed a large number of WiFi access points (APs),
in order to provide network coverage in the whole area of the building. In addition, there are
often more than one network provider, such as in commercial environments, where each busi-
ness usually has its own network. It is also frequent to receive WiFi signals from APs located
in nearby buildings. The signal received from all these APs provide valuable information that
can be exploited in order to estimate the location of the receiver. Each one of these APs has
it own unique identifier and it is received with a certain power level from different locations
of the building. A smartphone can listen to these signals, and with help of a radio map of the
building, estimate the area in which it is most likely to be.

However, some smartphone models do not allow scanning WiFi networks, and some ar-
eas, such as car parks, have little WiFi coverage. In order to solve this issue, we can add BLE
beacons for increasing the coverage area of the radio frequency signals and thus complement
the WiFi signals. Beacons area less expensive and easier to deploy than WiFi APs. In addition
some WiFi router models, are already capable of emitting a BLE signal analogous to that of
the WiFi. Given that both WiFi and BLE are radiofrequency signals with similar character-
istics, for the sake of simplicity we use them to estimate the location of the subject with the
same algorithm. We consider them as different observations being those of WiFi zw and those
of BLE zb, but the estimation of its probabilities is analogous. In this section we will describe
the method that we use for both, and will refer to radiofrequency observations as zr.

There are multiples approaches for radiofrequency positioning (proximity, triangulation,
etc.) being the most successful those based on fingerprinting [4].

Fingerprinting techniques are based in the premise that, for each location in the space
there is an identifiable signature, a set of measurements that are possible from that location.
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Figure 4.2: Example of a radio map for a WiFi access point.

In our case that signature is a set of WiFi or BLE readings, each one with its identifier and
RSSI (Received Signal Strength Indication) power level.

In order to relate these signatures with a position, it is required a previous step of cal-
ibration. In this calibration step we have to build a radio map of each AP or BLE beacon
perceived power at every coordinate of the building. A radio map is a probabilistic model
created from a collection of data acquired at the same environment (where each datum is a
vector of power levels, with the WiFi AP or BLE beacon identifier, and the associated physical
coordinate (x,y,floor)). The map is a grid in which each cell ci,∀i = 1, ..,n has a fingerprint
[4] consisting of a Gaussian distribution parametrized by a µi and a σi, both estimated using
all the data obtained for the cell. One example of a radio map for an AP can be seen in figure
4.2.

Therefore we can use the power with which this signals are detected from the smartphone
at an instant zr

t = {zr
t (1),z

r
t (2), . . . ,z

r
t (n)} to build the desired probability p(zr

t |s) (block WiFi

positioning, BLE positioning in Fig. 4.1). In particular we will compare the power of the
readings received with the information stored in the radio map previously created. This way,
these Gaussian fingerprints and the observed vector of signal powers scanned by the device at
any instant t,zr

t , allow the estimation of the conditional probability of each cell p(zr
t |ci),∀i =
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1, ...,n [12]:

p(zr
t |st = ci) ∝

nr
t

∑
i=1

p(zr
t (i)|st)

=
nr

t

∑
i=1

1
σ r

i (st)
√

2π
exp

[
−1

2

(
zr

t (i)−µr
i (st)

σ r
i (st)

)2
] (4.3)

where nr
t represents the number of radiofrequency signals being detected and zr

t (i) repre-
sents the observed power of the ith signal.

It is important to remember that the previous equation (4.3) is applicable both for WiFi
and BLE observations. Thus we already have the WiFi observation model, p(zWiFi

t |s = ci),
and BLE observation model, p(zBLE

t |s = ci).

4.3 Compass

Compass readings (zcompass
t ) provide an estimation of the global orientation of the pose with

respect to the north (θ c) as explained in 3.3.3. This helps the particle filter to converge faster
in orientation in the absence of movement.

Given the inaccuracy of the magnetometer measurements altogether with the uncertainty
about the presence of electromagnetic interferences in the environment, we cannot be very
restrictive about the contribution of this sensor to the observation model.

We define p(zcompass
t |st) as a function of the difference between the state and the observed

orientation, with maximum probability values in the interval (−π

2 ,
π

2 ), that decreases linearly
to ±π

4 .

p(zcompass
t |st) =


minValue, if |θ c−θ |> π

2

1, if |θ c−θ |< π

4

2− 4·|θ c−θ |
π

, otherwise

(4.4)

, where minValue is a value close to 0 defined empirically.

Additionally, we discard all readings in which the magnitude of the detected magnetic
field is out of the normal range of the Earth Magnetic Field. We assume that this deviations
may be caused by electromagnetic interferences, which can make impossible to identify the
direction of the north.
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4.4 Occupancy grid map

Finally, and to complete the observation model, we also use a map to evaluate whether a pose
falls into a passable area or not (block Passable Paths in Fig. 4.1). The displacement of the
particles in the prediction stage of the filter (eq.(2.9)) may provoke that some of these particles
fall in locations that are not physically possible within the building. This map (mapx,y, f loor) is
a grid where each position has a binary value that defines whether each position is passable or
not. Therefore, this map can be considered as another sensor that contributes to the observa-
tion model so that all the hypotheses (candidate positions) that are within non passable areas
have zero probability:

p(zmap
t |st) =

0, if map(st) = 0

1, otherwise
(4.5)

4.5 Observation model

Therefore, considering all these sources of information (WiFi, BLE, compass and the grid
map), the final expression of the observation model is the following:

p(Zt |s) = p(zmap|st) · p(zcompass|st) ·
n

∑
i=1

p(zWiFi
t |ci)δ (st ∈ ci) ·

n

∑
i=1

p(zBLE
t |ci)δ (st ∈ ci) (4.6)

In the absence of one or more sources of information, its corresponding part of the equa-
tion can be removed directly. Likewise, other sources of information can be added directly to
the observation model in the future.
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CHAPTER 5

INDOOR POSITIONING AND GUIDING FOR

DRIVERS

In the previous chapters we have described how it works our indoor positioning system. In this
chapter we describe a final application with a complete solution of positioning and guiding
for drivers in car parks.

Public spaces such as hospitals and malls, usually have large car parks where it is common
to get stuck in traffic or where finding a parking spot can be daunting and time consuming.
Similarly, corporate companies usually have rotating parking spots, where workers waste time
looking for a free place where to park. Not only does this reduce the users’ satisfaction, but it
also has negative economic [47], health and environmental [48, 49] impacts.

Given the importance of this subject, there have been many attempts aimed at helping
drivers and therefore minimizing the time spent looking for a parking spot. For instance,
there are mobile apps with which users can reserve a free parking spot and obtain navigation
instructions towards it. Other apps [50] combine information from different sources to get es-
timates of the time being spent looking for parking in different areas, and thus guide the users
to the least crowded ones. Some of these apps can also help the user to find the place where he
previously parked his car. Nevertheless these solutions rely on GPS positioning, which does
not work indoors, and which in consequence are not suitable for many urban car parks located
underground. In the specific case of indoor car parks, the most common solutions usually rely
on visible elements that help drivers to know where they are (e.g. numeric or colored codes
identifying different areas), or hardware installations that allow to identify free parking spots
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at a glance (e.g. sensors placed over each parking spot with lights that change color if the
space is free). Finally, some but few car parks are able to assign a free parking spot to users
as they arrive. Nevertheless, all these solutions still exhibit important disadvantages such as
the extensive work for deployment and maintenance, besides some of these solutions require
expensive hardware and, finally, some of them are not as user friendly as they should be.

5.1 State of The Art

In the specific case of indoor guidance for drivers, Wagner et al. [51] provide indoor po-
sitioning in parking garages by using a system that combines information related with the
movement of the vehicle, map matching, and GNSS (Global Navigation Satellite System);
they estimate the speed of the vehicle from the rotation rate of the vehicle’s wheels, and ob-
tain its heading from the steering angle and a gyroscope. When the vehicle is outdoors the
system estimates and corrects the error of the wheel radius, used to estimate the speed of the
vehicle. It is indoors when dead reckoning and map matching are used to estimate the position
of the vehicle. Nevertheless, as Wagner et al. [51] point out, the performance of their proposal
is very dependent on the driving patterns, geometry of the parking garage, streets surrounding
the parking, etc.

Kummerle et. al. [52] achieve autonomous navigation in a car park using multilevel
surface maps and laser measurements. A particle filter is useful to localize the car within a
3D map combining wheel odometry, velocities and laser readings. The main drawback of this
approach is that it requires expensive additional hardware and a thorough 3D mapping of the
parking space.

Estimating the movement of a vehicle using only inertial information is difficult. Most
proposals try to solve this problem by integrating the information provided by the accelerom-
eter along time[46, 53]. However, this has several drawbacks, such as the high error usually
caused by the sensor noise, vehicle’s vibrations, etc [54]. Tan et. al. [55] attempt to estimate
the speed of a vehicle using a smartphone, in particular they use the signal provided by the
accelerometer to detect the same bumps when they are traversed by the front and the rear
wheels; knowing the time between these front and rear bumps, together with the dimensions
of the car, allow estimating the speed of the vehicle. The problem of this approach is that
it requires previous knowledge of the vehicle length and therefore it is not easily scalable to
multiple users in different vehicles, on the other hand it also requires bumps, which in many
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parking garages are only at certain places, as in the entrances.
Yu et. al.[46] used the speed of the vehicle estimated with a smartphone to improve the

localization of the vehicle when the GPS signal degrades or is lost for some time.
Perhaps the most similar work to ours is [53], where Liu et. al. use Hidden Markov Chains

to merge RSSI information of the WLAN signals with motion dynamics information acquired
from a smartphone. In this case the authors say that the average error of their proposal is
under 2 m, but the experiments comprise only a short period of time, and no information is
provided about the environment where these experiments have been carried out.

5.2 Guiding

We want the user to be able to find a parking spot using his smartphone while driving a
car. Because of this, our proposal incorporates a module able to generate navigable routes
within the car park, together with guidance instructions. This module will work with a di-
rected weighted graph in which the nodes represent the intersections, the edges are navigable
paths (these edges take into consideration the allowed direction when driving) and, finally, the
weights represent the lengths of the paths.

5.2.1 Route Generation

We apply Dijkstra’s algorithm [56] to compute the optimal route between the initial position
of the vehicle and the desired destination. As a result we have a path in the graph representing
the route: Groute = {N,E}, where N is the set of nodes N = {nodei =(xi,yi, f loori)∀i∈ route}
, E is a set of edges, where each edge has a weight w that represents the distance between the
nodes that it connects E = {((nodei,nodei+1),wnodeinodei+1)}. The route is updated as the
user advances, when the distance from the position of the user to the destination node is under
certain threshold, the guidance finishes. However, if the distance from the user’s position to
the closest point on the route is above a predefined threshold, the route is recalculated, since
the user may have gone in the wrong direction.

5.2.2 Textual guidance instructions

In order to provide an user-friendly guidance, our system provides textual and auditory in-
structions for the driver. The list of instructions I = {instruction1, . . . , instructionn} is gener-
ated based on the geometry of the route[57]. Each instruction is formed by a node (where the
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instruction should be read), a type and a modifier: instructioni = {nodei, typei,modi} where
nodei = (xi,yi, f loori), typei ∈ {turn, f orward,changeFloor} and modi has a different mean-
ing depending on the type of instruction: direction to turn, distance to advance or number of
floors to go up or down.

We iterate over each node to generate an instruction for each pair of nodes nodei,nodei+1:

1. If node f loor
i is different of node f loor

i+1 , we generate the instruction:

instructioni = {nodei,changeFloor,modi} where modi = node f loor
i+1 −node f loor

i .

2. If the floor is the same for the consecutive nodes nodei,nodei+1, we compute the angle
α , between the edges Enodei−1nodei and Enodeinodei+1 .

a) If α is below a predefined threshold, typei = f orward and modi is set to the weight
of the edge Enodeinodei+1 .

b) Otherwise, typei = turn. And modi is set to the direction of the turn based on α .

These instructions are translated into text to be displayed in the screen of the mobile as
the user follows the route. On the other hand auditory instructions are obtained from textual
ones by using an external text-to-speech module.

5.3 Experimental results

We carried out different experiments in order to evaluate the performance of our proposal.
The experiments took place on a two floor underground car park.

We deployed BLE beacons on the walls and columns in each lane, every 14 meters, and
at a height of approximately 3 meters as shown in Fig. 5.1. We configured the beacons
to transmit every second at 0db, which according to the manufacturer allows 32 months of
battery life.

We only defined as passable area the lanes and not the parking spaces. We assume that the
users will drive within the lanes and not cut through parking spaces. If this happens, a position
error could occur temporarily, but the system would end up converging to a correct position
after receiving BLE readings. We do not add any other restriction to the displacement (e.g.
the user can drive in any direction, even if it is forbidden). We can easily allow the parking
spaces be passable areas (Eq. (4.5)), but this might slow down the convergence of the particle
filter.
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(a) (b)

Figure 5.1: (a) BLE beacons distribution. The red dots in the floor map show the locations of
the beacons in the parking garage. The green area represents the highest longitudinal error we
tolerate within a lane.(b) Photo of one of the circular beacons used, the approximate value of
the radius of the beacon was 2.6 cm.

We developed two Android applications, one that implements our indoor positioning and
another one that also facilitates the creation of the radio map by recording BLE readings
while we pinpoint the positions in the map. The recorded data is sent to a server, where
the radio map is generated and stored. When the positioning application is started, the radio
map is downloaded from the server. With this data we can run our location system directly
in the phone without further network communications. Fig.5.2 shows a screenshot of our
positioning and guidance application. As it is already common in these type of systems, it
shows the user’s position and the route to the selected parking space. In our experiments we
used two different mobile phones: a Samsung S7 and a LG G3.

Next, we conducted a series of experiments while driving at different speeds, using the
proposal described in this thesis, and with the smartphone mounted in a holder on the wind-
shield. In addition to these experiments, we carried out a test with 7 users in which they
installed our Android application in their phones and were instructed to drive to a specific
parking spot chosen randomly. All of them were able to arrive easily to their destination
following the visual and auditory instructions.
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Figure 5.2: Screenshot of our Android application for positioning and guiding in indoor car
parks.

5.3.1 Ground truth

We recorded all the experiments in video in order to get the ground truth and validate our
system. In particular we divided the video sequences in frames separated by half a second
and in those frames we obtained the real position of the car (by manual annotation and visual
inspection of the frames). These ”real” positions were compared with the positions estimated
by our proposal, in order to evaluate its performance. In general we considered three different
types of errors: (1) floor errors, (2) lane errors (when the estimated lane, i.e. direction of
movement does not match the real one), and (3) longitudinal errors (when the distance among
the estimated position of the vehicle and the real one is higher than a certain threshold, in our
case 10 meters). This threshold has been set considering the uncertainty in the estimation of
the real position, the usual speed of the vehicles moving in the car park, as well as how long
in advance our application provides instructions to the driver. Hence, differences below this
threshold are unnoticed by the driver.

5.3.2 Convergence time

The first aspect we analyzed was the convergence time, i.e. the time elapsed since the instant
in which the system is initialized to the moment in which it starts showing the position of
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Figure 5.3: Boxplot representing the CT (convergence time) and CTCP (convergence time to
the correct position) when the vehicle is moving and while it is stopped. It also shows the
Heading Convergence Time when moving.

the vehicle, regardless of whether these estimations are correct or not. We also evaluated
the convergence time to the correct position (CTCP). For this measurements we labeled as
correct those frames in which two conditions were fulfilled: (1) on one hand the difference
between the estimated position and the real one (obtained from visual inspection) was below
10 meters, (2) on the other hand the lane of the car park predicted with our system was also
correct. Finally, we also analyzed the time required to estimate the heading θ to the the correct
direction of movement (Heading CT). To evaluate these convergence times, CT and CTCP,
we carried out several tests at two different situations: convergence without movement and
convergence while moving. We performed 102 trials for the case of no movement and 96 for
the case of movement. All starting positions were chosen randomly within the car park.

Fig. 5.3 and Table 5.1 show CT, CTCP for both cases: with the vehicle moving and not
moving. In the case of the heading CT we only considered the scenarios with the vehicle
moving, since without such movement the position can only converge in (x,y).

The CT when the vehicle does not move is between 10 and 20 seconds with a median
around 15 seconds. This value is slightly higher when the vehicle is moving. In almost all
the cases our system converged directly to the correct position,especially when the vehicle
is stopped. Nevertheless, in those cases where there was some kind of mistake in the initial
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 5.4: Particle clouds.This figure shows the distribution of filter particles during several
iterations. The white space represents the passable areas, the green points are the particles and
the ellipse the current estimate of the position of the vehicle. The size of the ellipse represents
the confidence in the estimate –the smaller the size of the ellipse the higher confidence–,
and the line within the ellipse represents the estimated direction once it has converged in
orientation.
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Table 5.1: Convergence (CT,CTCP) not moving and moving, and heading CT

Convergence time Average (s) Std (s) Max (s) Min (s)

Not Moving CT 14,79 2,38 20,5 11,5
CTCP 15,20 3,02 28 11,5

Moving CT 15,75 3,32 28 12
CTCP 17,5 4,22 33 12
Heading CT 22,96 4,02 35 18

estimation, our system required less than two seconds on average to correct it. Heading con-
vergence took almost 33 seconds on average from start, and 5.4 seconds from the moment in
which our system has already converged to a correct position.

Fig. 5.4 shows an example of the particles converging for one experiment. Fig. 5.4a shows
the initial instant of time, in which all the particles are equally distributed throughout the map
in the two floors. After receiving the first BLE readings, particles begin to converge, first to
the correct floor (Fig. 5.4b) and finally to the correct lane (Fig. 5.4c-5.4d). Since the vehicle
is moving, the particles move along the lane (Fig. 5.4e), reaching convergence in orientation
in Fig. 5.4f. Figures 5.4g to 5.4k show the behaviour of the system when the vehicle turns.

5.3.3 Error analysis and comparison

In a second experiment, we estimated the positioning error of the system when different users
drove freely around the parking garage. In particular we run 4 experiments; in each one of
them the vehicle moved for 10 minutes in the underground car park. As it was pointed out
in subsection 5.3.1, we recorded the experiments to get the ground truth, in particular we
recorded in total 41 minutes and 42 seconds of video. We also recorded the data generated by
each smartphone (eg. BLE scans, displacement estimation, and orientation) which allowed
us to carry out offline analyses afterwards. Like in the previous experiment, we divided each
recording in frames and labeled them as correct or incorrect. As it was already mentioned in
subsection 5.3.1, we considered three possible mistakes: 1) Floor errors, if the position given
by the system is in an incorrect floor, 2) lane errors, if the position estimated is in the wrong
lane, and 3) longitudinal errors, if the lane is correct, but the distance from the estimated
position to the real one is above 10 m as shown in Fig. 5.1.

We used these experiments to evaluate the performance of our proposal. In order to es-
timate the relative importance of the information extracted from the inertial sensors of the

71
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Table 5.2: Fraction of time in a correct / error state, and with correct and undetermined head-
ing for the complete system and using only the BLE.

Complete System
Correct Floor error Lane error Longitudinal error

Best 0.9264 0.0085 0.0085 0.0564
Average 0.8871 0.0089 0.0431 0.0606
Worst 0.8254 0.0183 0.0704 0.1975

Correct heading Undetermined heading
Best 0.9235 0.0764
Average 0.9106 0.0893
Worst 0.8871 0.1128

BLE Maximum
Correct Floor error Lane error Longitudinal error

Best 0.7704 0.0119 0.0833 0.1343
Average 0.6197 0.0320 0.1673 0.1810
Worst 0.4502 0.0643 0.2848 0.2006

mobile phone, we have considered the output of the whole system, and the output obtained
using only the maximum of the BLE signal, i.e., the positions considering only the BLE in-
formation. In this second case (BLE Maximum) the position of the vehicle is estimated by
the the cell of the map in which equation 4.3 takes the maximum value.

Table 5.2 shows the percentage of times in which the position estimated was correct or
incorrect, considering the different types of error for the complete system and using only the
BLE Maximum. Although the performance for the complete system shown in this table is
of 89% (in average), we have obtained results with a performance of even 91% (in average)
with a system working in real time and with an optimal combination of parameters adjusted
”in the working place”. Nevertheless, we preferred to show those results of table 5.2, as
they reflect a more objective comparison of the performance, and which have been obtained
after the analysis of the data recorded during the experiments. Obviously we only include the
heading error in the complete system, because with the BLE Maximum there is no heading
information. It is important to notice that the labeling of the change of floor was set at half
of the ramp, and all the errors regarding this aspect in the complete system are just delays,
i.e. the complete system never showed a position in a wrong floor. The percentage of correct
positions acquired using only the BLE is significantly lower than that of the complete system
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(a)

(b)

Figure 5.5: (a) Positions estimated by our proposal when it is running in two different mobile
phones, A and B, and at different time instants t and t ′. The real position of the car in both
instants is within the gray area. (b) Images taken from the car, at time instants t and t ′.

for all the experiments. In the particular case of the BLE, the positions are most of the time
close to the vehicle’s real location, but sometimes they may be unstable and jump between
lanes. There are even some jumps between floors when the vehicle passes near the ramps
probably caused by detecting beacons from the wrong floor.

For the complete system, on average the position is correct more than 88% of the time.
Most of the errors are due to miscalculations in position in the correct lane. This proves
that the error committed by our system is not equidistributed, i.e., there is no error when our
system points out the floor where the vehicle is (probably due to the information provided by
the BLE beacons), the error is also very low when indicating either the direction of advance of
the car, or its position at intersections (the turns of the vehicle are likely detected by the inertial
sensors). But the largest error is committed within the lanes (longitudinal error), especially
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when the vehicle is moving fast. We restrict this error to less than 10 meters, nevertheless this
is a conservative value and almost the worst case scenario. This worst-case-longitudinal error
in a lane is not that bad if we consider the length of the vehicle itself (from 3 to 5 meters), or
the final purpose of our system (guidance of a driver in an indoor car park), where the most
relevant issue is to lead the driver to the correct lane.

Fig. 5.5 shows an example of how the threshold we have set to consider that there is a
longitudinal error, is reasonable and has a low impact from the driver’s perspective. Fig. 5.5.b
shows two images taken from the car when it is at the same location but at different instants
(t and t ′), the real location of the car in both instances is represented by the round area shown
in Fig. 5.5.a. As we can see in Fig. 5.5.b, inside the car there are two smartphones that are
running our application and which therefore provide positioning information (device A at the
top of the image and B at the bottom). Fig. 5.5.a shows with letters A and B the positions
of the car estimated by our application in both mobiles, and at instants t and t ′. As we can
see, although the positions of the car at both instants t and t ′ are roughly the same from the
driver’s perspective (Fig. 5.5.b), the distance among them is of 2.3m according to mobile
phone A, and 9.4m. according to mobile phone B. On the other hand, the average distance
among the positions of the car at t and t ′ estimated by the mobile phone A and the mobile
phone B is 12.4m. These discrepancies are mostly due to the initialization conditions as well
as the differences in the hardware of the mobiles, nevertheless they have almost no impact on
the driver.

Fig. 5.6 shows an example with two of the trajectories generated by our complete pro-
posal. We also show whether our system committed any kind of error. Fig. 5.6a shows a
trajectory with no positioning errors, while Fig.5.6b shows one of the worst scenarios we can
find. In this second case, most positions are correct, except for one moment in which there
are two estimations in the wrong lane. Immediately after these errors, the system corrects the
position, providing the information about the correct lane, although during four timestamps
the estimated position still stays a bit behind the real one (longitudinal errors). Commonly,
most trajectories have no errors at all or some occasional longitudinal error, lane errors like
the ones shown in Fig.5.6b are very rare.

As a final reflection, we also want to point out that we have not considered the outcome of
the Particle Filter using only the map and the motion model (obtained from the inertial sensors
on the phone), but without BLE information. This combination is not very appropriate not
only due to the accumulative errors of the inertial sensors, but also due to the fact that both
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(a) (b)

Figure 5.6: (a) Example of a route with no errors. (b) Route labeled with the kind of error
committed by the system. Green dots represent correct positions, blue crosses positions with
a longitudinal error, and red triangles lane errors.

the map and BLE are necessary to get information about the initial heading of the vehicle, and
thus suppress those particles that have been randomly initialized with a wrong angle. With the
map alone, this convergence is too slow and sometimes not possible due to the symmetries of
the parking lot.
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CHAPTER 6

INDOOR POSITIONING FOR PEDESTRIANS

In the previous chapters we have described how our indoor positioning system works. First
we have made a description of the Particle Filter (chapter 2), to then focus on each of the parts
that compose it (model of movement in chapter 3 and observation model in chapter 4.) In
addition we have described two ways of operation, one for pedestrians, and one for vehicles.

In this chapter we show an example of the system deployed and working in a real envi-
ronment for pedestrian localization. First we describe the environment and the installation
process to continue with a section of experimentation and results in which we analyze the
performance of the system.

6.1 Environment and deployment

Different environments have different physical characteristics and may have a different WiFi
network infrastructure, which can affect directly to the quality of positioning and facilitate or
make it difficult to estimate the user’s position.

Next, we describe several characteristics of the environment that may affect to the accu-
racy that we can achieve:

• Large open areas vs. small, enclosed areas, such as corridors. In open areas, radio
frequency signals propagate without obstacles, so the fingerprint at locations within
those areas are generally similar between them. In enclosed spaces, such as corridors or
small rooms, the signal perceived is more different between areas because of the walls
and obstacles it encounters. Thus it is easier to achieve higher accuracy in position
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estimation with RF fingerprinting in narrow aisles or small rooms than in large open
spaces. In addition, in large environments the particles encounter few obstacles so that
clusters are generated more dispersed than in narrower environments.

• Characteristics of APs:

– Quantity. Generally, in environments with more APs, we can achieve a greater
accuracy than in environments with fewer APs. This obviously has a limit, at
some point the number of APs is so high that some of them are redundant. In
environments with few APs, BLE beacons can be added to cover areas without
sufficient information.

– Power. Access points with more power are received from farther away, so they
cover a larger area than those that have less power. This on the one hand is posi-
tive, given that more area can be covered with few APs, but it has the disadvantage
that only with this type of APs the maximum accuracy obtainable is reduced, given
that they are heard with similar power ranges in larger areas.

– Distribution. The location of the APs has a direct impact on the quality of posi-
tioning in certain areas. If the APs are distributed in such a way that the received
signals are very different between the different areas, the estimation of the position
by fingerprinting will be more accurate.

When choosing an environment to evaluate the performance of our positioning system,
it is necessary to take these aspects into account and choose a building that is sufficiently
representative of the general case. In our case we have chosen a six floor shopping center of
500,000 square meters which has corridors, car parks, open spaces and squares with walkways
at different levels. This building represents a typical scenario in which indoor location is
necessary, and we believe that it is sufficiently representative of the problems that we can find
in different environments.

The installation process is similar to the one described in Chapter 5, Section 5.3, for the
case of vehicle positioning, with the main difference that, in this case, there is a good infras-
tructure of WiFi access points that we can use. In total, we receive readings from 672 different
WiFi APs from inside the shopping center. Although the building has a good infrastructure of
WiFi access points, we have installed BLE beacons as a reinforcement, to improve accuracy
and robustness in potentially complicated areas,and at the same time to reduce the time that
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takes for the system to detect the change of floor. Adding BLE beacons also allows us to sup-
port phones that do not allow scanning WiFi APs. We deployed along the building 44 BLE
beacons in strategic positions such as the exit of lifts, or areas with little WiFi coverage such
as car parks.

The first step to be able to provide indoor positioning is to create the WiFi and BLE radio
maps, as well as the occupancy grid map that defines the passable areas. To generate this
model, we have developed an application that allows you to scan the WiFi and BLE signals
while the user walks and pinpoints his position at the map. At the end of this process we have
a set of trajectories with the WiFi and BLE signals as they are perceived from each position of
the building. We send this data to our server where we build the radio maps and from where
we can retrieve them anytime to provide indoor location to any smartphone that requests it.
With this model and the Particle Filter described in chapter 2 we estimate the user’s position.

6.2 Experimental Results

With the radio maps, and the system deployed we have conducted a series of experiments to
evaluate its performance. First we analyzed the time that takes to the system to return a valid
position from the moment in which it is started (convergence time, Section 6.2.1), then we
analyze the time that it takes to change floors (Section 6.2.2) and finally, we analyze the error
of the whole system (Section 6.2.3).

6.2.1 Convergence Time

First we evaluated the time that takes for the system to reach an initial estimate of the position
(Convergence Time, CT ). At initialization, the particles are randomly distributed over the
entire passable surface of the building. After receiving some observations, the particles end
up converging in clouds around the user’s position. In addition, the displacement of the user
together with the Occupancy Grid Map, makes that the particles located in incorrect positions
end up dying when colliding with the building walls. Because of that we conducted two kinds
of experiments, the first ones starting the system with the user stopped, and the second ones
with the user walking. All starting positions where chosen randomly within the building.

We also evaluated for both cases (walking and stopped) the time it takes for the system to
return a valid heading (Heading Convergence Time). It is important to note that the system
may return a correct position without heading information. This may happen, for example
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when the system is initialized without movement and without using the compass. In this
case the WiFi and BLE readings will make the system converge to a correct position, but
neither these observations by itself provides information about the user’s heading. The user’s
pose will converge in heading after receiving some compass readings, or due to the user’s
displacement if the user walks (particles with incorrect orientations will die when colliding
with non passable areas). Because of that we analyzed how the use of the compass affects the
Heading Convergence Time. To this end, we carried out the experiments while saving all the
sensor data and executed the system offline deactivating the compass input signal. Thus, we
could compare the effect of the compass in the Heading Convergence Time using the same
exact data as input.

We used two different phones in these experiments,a Motorola Moto G6+ and a Nokia 5.

Figure 6.1: Boxplot representing the CT (convergence time) a when the user walks mov-
ing and while it is stopped. It also shows the Heading Convergence Time with and without
compass information.

Table 6.1 and Figure 6.1, show the Convergence Time (CT) when the user is stopped and
walking, and also the Heading Convergence Time, both walking and stopped with and with-
out compass. We do not show the Heading Convergence time for the case of being stopped
without compass, because the position never converges in orientation. This is the expected
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Table 6.1: Convergence time (CT) not moving and moving, and heading CT

Convergence time Average (s) Std (s) Max (s) Min (s)

Not Moving
CT 5,9 2,46 12 4
Heading CT (without compass) - - - -
Heading CT (with compass) 5 1,24 7 2

Moving
CT 5,78 2,84 14 2
Heading CT (without compass) 20,52 2,12 24 16
Heading CT (with compass) 2,95 0,86 5 2

behavior, given that none of the information sources (WiFi and BLE) provide orientation in-
formation in the absence of movement.

As we can see, Convergence Time is similar for both cases, walking and stopped, having a
smaller standard deviation in the case of being stopped. When walking, the minimum Conver-
gence Time is lower than stopped (2 seconds versus the 4 seconds of being stopped), but the
maximum increases from 12 to 14 seconds. The convergence time in the absence of move-
ment is more consistent because it depends directly on the scanning frequency of the WiFi
and BLE sensors. When the user walks, there is more variability because it depends of the
characteristics of the area in which the user is within the building. For example, in enclosed
areas the particles with incorrect heading will die when moving against non passable areas
and the ones that displace with the user will acquire more weight faster than in large open
areas. In this case (large open areas), the initial movement will disperse the cloud of particles,
and it will be again the WiFi and BLE observations the ones that will give more weight to the
particles that have moved in the right direction. It takes longer to remove particles by WiFi
and BLE weighting ( it takes around 3 seconds between scan) than if they collide directly with
a non passable area, in which case the particles die immediately.

Heading Convergence Time, as we can see, drastically improves when using the compass.
It goes from an average time of 20,52 seconds when walking without it to an average of 2,95
when using it and an average of 5 seconds when using the compass without walking. Without
a compass, clouds of particles will form with random directions around the user’s position.
When the user moves these clouds will become more dispersed, and when new observations
are received, the particles that have moved in the correct direction will acquire more weight.
Finally they will converge in orientation. This process takes longer than in the case of using
the compass, since particle clouds will already form with a large part of the particles oriented
in the correct direction. As the user moves, most of the particles will be moving with him and
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the particle clouds will be more densely grouped around the user position.

6.2.2 Time to Change Floor

In a second experiment we evaluated the time it takes for the system to detect when the user
changes from one floor to another.

We carried two phones as we went up and down floors by different stairs in the building.
In total we performed 30 changes of floor. For each change of floor, we labelled the timestamp
and the floor we got to. We marked as ground truth the moment in which we arrived to the
new floor, e.g. if we go up some escalators, we labeled when we reach the top. Because of
that,there are some seconds from when we leave a floor until we reach the next one in which
the floor in which we are is not defined.

Table 6.2: Time to change floor results

Time Required to Change Floor (s)
Average 2,4
Standard Deviation 2,29
Max time 8

Table 6.2 shows the time elapsed from the moment in which the ground truth says that
there is a change of floor until it is detected by the system. As we can see, on average, the
system takes 2,4 seconds in change floor, with an standard deviation of 2,29 seconds and a
maximum time of 8 seconds.

We believe that these are reasonable periods of time for detecting the change of floor even
for the case in which the delays become more evident to the user as it is when the the system
is used for navigation in real time.

6.2.3 Error analysis

In the third experiments we measured and quantified the error of the positioning system. In
order to do this, we walked freely through the building while carrying two phones, one in the
hand and the other one in the pocket. In this case we used two phones of the same model
(Moto G6 plus) in order to minimize the differences in performance caused by the hardware,
and thus focus on the difference in performance due to the device position. We recorded a
total of 41 minutes of data with each phone.
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While performing the experiments, we pinpointed the actual position on the handheld
phone in order to use this as a ground truth. Given that the system returns one position per
second, we needed to obtain a ground truth with the same frequency in order to be able to
compare them. Instead of pinpointing the position every second, since it is cumbersome
and prone to error, we only marked it in easy to recognize landmarks, such as intersections,
stairs, or shops . Then, we estimated the ground truth intermediate points by interpolation.
Subsequently, these ground truth points were synchronized with the positions returned by the
system for both phones. This way of calculating the ground truth may have some error due
to the following. The positions marked on the map may not correspond exactly to the actual
position and the position interpolation assumes a constant step rate, which may not always be
the case. In any case, this error is low enough to not be appreciated when walking in the real
environment and we estimate that it is below one meter.

Figure 6.2: Example of a trajectory detected by the system. The purple dots and line represent
the estimated positions and trajectory. The green area is a particle cloud around the user
position at that moment of time.

Figure 6.2 shows a part of one of these trajectories. The dots represent the positions
returned by the system and the line the followed trajectory. We can also see as a green area a
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particle cloud formed at the current location of the user.

Table 6.3: Positioning error walking

Error handheld (m) Error in pocket (m)
Average 2,5 3,91
Standard Deviation 2,33 2,96
Percentile 0,9 4,74 7,86
Percentile 0,75 3,03 5,28

Figure 6.3 and Table 6.3 show the results of the positioning error analysis. As we can
see the error is lower in the case of positioning in the hand compared to the positioning with
the phone in the pocket. For positioning with the phone in the hand the average error is 2.5
meters, while for positioning with the phone in the pocket of 3.91. In addition, the error
of positioning in hand, has a smaller dispersion, with a standard deviation of 2.33 meters
compared to 2.96 meters of the case of carrying the phone in your pocket. This is also clearly
seen in the histograms in figure 6.3.

These differences in performance may be due to several factors such as greater accuracy
in odometry when carrying the phone handheld, or less shielding of radio frequency signals
compared to carrying the phone in the pocket. It is also important to notice, that the largest
positioning errors, are usually provoked at initialization, when the system is still converging.
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(a)

(b)

Figure 6.3: Positioning error histograms. The first histogram represents the positioning error
in meters when carrying the phone in the hand, and the second one when carrying it in the
pocket.
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CHAPTER 7

CONCLUSIONS

The goal of this thesis was to provide a robust indoor positioning solution for smartphones that
maximizes location accuracy while minimizes the required infrastructure. We also wanted to
make a system able to perform good in real world situations. We considered two scenarios,
pedestrians and drivers. In the particular case of pedestrians this involved being robust to
different users, allowing them to carry the phone in different positions and to use it freely
while performing different daily activities, such as going up / down stairs, walking, using the
phone without moving, etc.

We achieved that by developing a robust indoor positioning system that combines infor-
mation from multiple sources such as radio frequency readings and inertial sensors.

1. We developed an indoor location system that combines data from multiple sources of
information. This system is scalable and easy to deploy. It combines information of the
motion of the user with sensor observations. The input used as motion estimation and
the number of sensors used can be easily expanded in the future if needed.

2. We developed an inertial estimation module capable of identifying the displacement of
the user that is robust enough to support different uses and activities. In order to do this,
we addressed the following points:

a) Attitude estimation: Using the inertial sensors of the smartphone we obtained its
orientation, which allows us to estimate the heading of the user. In order to do so
we used an Extended Kalman Filter and quaternions as rotation representation.
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b) Pedestrian displacement estimation. We estimate the displacement of a walking
person by identifying steps and estimating its length. We used supervised learn-
ing in order to detect the user activity and thus minimize false positives when the
phone is being user in absence of displacement. To this end we analyzed two dif-
ferent approaches, shape based and feature based. For the shape based approach
we applied Dynamic Time Warping to compare the acceleration signal to refer-
ence patterns. For the feature based approach we extracted feature vectors from
the signal, both in time and frequency domain in order to identify whether the
user is walking or not. We decided to use in our final system the feature based
approach described in section 3.4.3 because shape based alternatives, while de-
livering high performance in our experiments, are more sensitive and less robust
than feature-based alternatives.

c) Displacement estimation in vehicles. We designed a system capable of identifying
the displacement of a vehicle based on the accelerometer that is sufficient to let
the system work in car parks.

3. We combined multiple sources of information as observations for our system.

a) Radiofrequency fingerprinting. We used WiFi/ BLE fingerprinting in order to
estimate the position of the user from the perceived radiofrequency signals.

b) Map. We used an occupancy grid map of the building in order to define passable
areas and thus improve the positioning accuracy.

c) Compass. We added the compass information to the system in order to improve
the estimation of the user’s heading. This proved to be especially useful at the
initialization of the system.

4. We deployed our system in real world scenarios and carried out experimentation in
order to evaluate its performance. We differentiated two main scenarios:

a) Positioning of vehicles in an underground car park. We developed and app to
guide drivers to parking spots. We deployed BLE beacons, created the radio maps
of the car park and carried out experimentation in order to evaluate the system
performance. Our solution proved to be accurate enough to provide guidance to
the drivers to their parking spaces.
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b) Pedestrian positioning in an shopping center. We deployed our system in a shop-
ping center. We chose a building with enough complexity to represent the most
frequent scenarios and challenges of indoor positioning. We carried out experi-
mentation in order to evaluate the performance of the system.

The systems developed in this thesis have been integrated into the commercial solution of
Situm Technologies. This solution is deployed in hundreds of buildings around the world and
it is being used daily by thousands of customers.

7.1 Publications

Because this thesis is an industrial PhD and has been developed in a company, it has been
more focused on development and implementation than on seeking a large number of publi-
cations. Nevertheless, the work carried out in this thesis has been reflected in the following
publications.

7.1.1 International Journals

1. G. Rodrı́guez, F.E. Casado,R. Iglesias, C.V. Regueiro and A. Nieto. ”Robust Step
Counting for Inertial Navigation with Mobile Phones”. Sensors 2018, 18, 3157. doi:
10.3390/s18093157

2. G. Rodrı́guez, A. Canedo-Rodrı́guez, R. Iglesias and A. Nieto, ”Indoor Positioning and
Guiding for Drivers”, in IEEE Sensors Journal, vol. 19, no. 14, pp. 5923-5935, 15 July,
2019. doi: 10.1109/JSEN.2019.2907473

3. F. E. Casado, G. Rodrı́guez, R. Iglesias, C.V. Regueiro, S. Barro and A. Canedo-
Rodrı́guez, ”Walking recognition in mobile devices”, in Knowledge-Based Systems,
In review.

7.1.2 International Conferences

1. R. Iglesias, C.V. Regueiro, S. Barro, G. Rodriguez and A. Nieto. (2017, June). ”Robust
step detection in mobile phones through a learning process carried out in the mobile”. In
International Work-Conference on the Interplay Between Natural and Artificial Com-
putation (pp. 345-354). Springer.
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7.2 Future Work

During the course of this thesis, a number of potential improvements have been detected for
the future. These improvements cover different aspects, from improving the inertial estima-
tion, the calibration process, or adding new modes of operation. Some of the detected points
are listed below:

1. Improve inertial estimation. As we have explained, we estimate the step length using
only the walking period. This variable is not the only one that affects the distance
travelled. Although the estimated odometry has sufficient precision for most of the
cases, there is still room for improvement. By using the information from the user’s
past trajectories, or even with additional information sources (such as the GPS, if the
user goes outdoors), it would be possible to create step length models adjusted to each
user, which can further improve the performance of the system.

2. Improve heading estimation. Our system detects the orientation of the user based on
the orientation of the phone. This has a problem, if the user walks and turns the phone,
we interpret that he has made a turn. After several seconds the information of the rest
of sensors will fix the problem and correct this, but meanwhile the precision of the
positioning degrades temporarily. Detecting these events and separating the turns of the
smartphone of those of the user would help to improve the precision in these cases.

3. Add new sensors as sources of information. We have explored the use of additional
sensors to improve system performance in certain cases. Sensors such as the barom-
eter, present in some phones, can help estimate the plant the user is in and reduce the
convergence time. We have also experimented with visual odometry to improve the
displacement estimation. This can be especially useful for positioning of vehicles in
industrial environments.

4. Indoor and outdoor positioning. We have also explored the use of GPS for allowing
positioning both indoor and outdoor. This will also make possible to transition between
different buildings, and can even improve the accuracy of the system in open-air areas
such as rooftops or interior courtyards.

5. Simplify the signal map generation processes. Currently we generate the radio maps
by pinpointing the position the building map while walking with the phone. This pro-
cess, although simple, can become tedious in large buildings. In the future we could
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apply techniques such as SLAM (Simultaneous Localization and Mapping) in order to
generate these models automatically.

6. Update radio maps. Over time, radio maps can degrade due to changes in the building
infrastructure. New APs can be added or removed, which over time can make the
positioning less precise. Applying SLAM would help to constantly update these models
by detecting lost or added APs and incorporating them.
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