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Resumo

Seguindo o regulamento dos estudos de terceiro ciclo da Universidade de Santiago de
Compostela, aprobado na Xunta de Goberno o d́ıa 7 de abril de 2000 (DOG de 6 de
marzo de 2001) e modificado pola Xunta de Goberno de 14 de novembro de 2000,
o Consello de Goberno de 22 de novembro de 2003, de 18 de xullo de 2005 (artigo
30 a 45), de 11 de novembro de 2008 e de 14 de maio de 2009; e, concretamente,
cumprindo as especificacións indicadas no caṕıtulo 4, artigo 30, apartado 3 do devandito
regulamento, móstrase a continuación un resumo en galego da tese.

Na era multimedia, o procesado de imaxe converteuse nun elemento de singular im-
portancia nos dispositivos electrónicos. Dende as comunicacións (p.e. telemedicina), a
seguranza (p.e. recoñecemento retiniano) ou control de calidade e de procesos industri-
ais (p.e. orientación de brazos articulados, detección de defectos do produto), pasando
pola investigación (p.e. seguimento de part́ıculas elementais) e diagnose médica (p.e.
detección de células estrañas, identificación de veas retinianas), hai un sinf́ın de apli-
cacións onde o tratamento e interpretación automáticas de imaxe é fundamental. O
obxectivo último seŕıa o deseño de sistemas de visión con capacidade de decisión. As
tendencias actuais requiren, ademais, a combinación destas capacidades en dispositivos
pequenos e portátiles con resposta en tempo real. Isto propón novos desaf́ıos tanto no
deseño hardware como software para o procesado de imaxe, buscando novas estruturas
ou arquitecturas coa menor área e consumo de enerx́ıa posibles sen comprometer a
funcionalidade e o rendemento.

Pola súa banda, o procesado de imaxe é unha tarefa complexa que pode dividirse
en tres niveis diferenciados de subtarefas que están conectadas xerarquicamente. As
tarefas de procesado de imaxe de baixo nivel, ou ’visión temperá’, non requiren de
coñecemento adicional e actúan na imaxe localmente, independentemente do contido,
preparando os datos para o seguinte nivel. As tarefas inclúıdas neste nivel son normal-
mente de tipo convolución, repetitivas, sinxelas e de baixa precisión, e están normal-
mente orientadas á restauración ou mellora das caracteŕısticas da imaxe para o seu pos-
terior procesamento. Con todo, son moi esixentes computacionalmente debido á gran
cantidade de datos a procesar. As tarefas de procesado de imaxe de nivel intermedio
extraen información simbólica sobre a imaxe dos datos proporcionados polo nivel an-
terior mediante métodos globais principalmente. A cantidade de información requirida
aqúı é baixa, as tarefas son máis complexas e operan sobre os datos preprocesados,
é dicir, sobre unha pequena parte dos datos contidos na imaxe orixinalmente. Final-
mente, o procesado de alto nivel supón tarefas complexas dirixidas dalgunha maneira á
comprensión do contido da imaxe. Estas utilizan a descrición simbólica proporcionada
polo nivel intermedio e requiren unha cantidade significativa de información adicional
para interpretar a imaxe.
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Un sistema de visión inclúe estes tres niveis co obxectivo de tomar decisións
autónomas. É o que se denomina Visión por Computador. Aı́nda que estas operacións
se poden realizar nunha computadora von Neumann clásica, a alta carga computacional
e o paralelismo inherente (especialmente, ambos, na fase de baixo nivel) fai dela unha
opción non axeitada para o procesado de imaxe. Débese ter en conta que, áında que
as operacións realizadas a alto nivel son moito máis complexas, son as operacións de
nivel máis baixo as que en moitas ocasións definen o ’colo de botella’ no algoritmo, pois
representan máis do 50% da carga computacional. Os procesadores modernos inclúen
unidades paralelas e unidades replicadas e explotan o paralelismo a nivel de instrución.
Con todo, a súa orientación a punto flotante de propósito xeral fainos pouco eficientes
para o procesado de baixo nivel de imaxe máis aló do desperdicio de recursos non nece-
sarios. Os Procesadores Dixitais de Sinais (DSP) están optimizados para o procesado
de sinal e poden ser adecuados para aplicacións de baixa esixencia.

As matrices bidimensionais de procesadores celulares (CPAs) cunha memoria de
programa almacenado principal dentro dunha unidade de control global que transmite
as instrucións a efectuar por un conxunto de elementos de procesamento (PEs), son,
pola súa banda, unha implementación natural das operacións de procesado de imaxes de
baixo nivel. Ademais, os sensores CMOS permitiron integrar o sistema de adquisición
da imaxe e o procesador no mesmo chip, eliminando o ’colo de botella’ entre ambos e
dando orixe aos procesadores de plano focal ou chips de visión. A máquina universal
baseada en redes non lineais celulares (RNCs ou CNNs) é unha proposta espećıfica de
CPA de propósito xeral para procesamento de imaxe de baixo nivel integrable neste
tipo de chips. As conexións locais, a robustez da sáıda non-lineal e a simplicidade do
control SIMD fan das CNNs opcións axeitadas para a implementación hardware. Á súa
vez, os operadores de convolución xunto coa dinámica de evolución con capacidade de
procesamento global e o paralelismo masivo fan as CNNs axeitadas para o procesado
de imaxe de baixo nivel.

As contribucións desta tese céntranse neste tipo de implementacións masivamente
paralelas para procesamento de imaxe de baixo nivel. No desenvolvemento do tra-
ballo contemplamos unha vertente hardware e unha vertente funcional. No primeiro
aspecto traballamos na redución da área ocupada ao través da limitación na conec-
tividade entre PEs, entendendo nesta tanto os circúıtos que ponderan as contribucións
dos veciños como as propias conexións entre PEs. Na segunda cuestión abordamos a
mellora da funcionalidade de sistemas de visión baseados en matrices de procesadores
celulares (CPAs) permitindo a aplicación de operacións que involucren comunicacións
de longa distancia ou, o que é o mesmo, operacións de grande veciñanza, mantendo a
conectividade hardware local e incluso redućındoa.

Estas dúas vertentes son abordadas mediante o desenvolvemento da denominada
metodolox́ıa de División e Desprazamento (Split and Shift (S&S)). Esta metodolox́ıa
está destinada a xestionar a aplicación de matrices ou kernels de tamaño superior ao
permitido pola conexión f́ısica (conexións local e circúıto de ponderación) en CPAs,
inclúındo tanto a realización de operacións de gran veciñanza como a redución do
número de conexións inter-cela (inter-PE) para a redución do consumo de área. No
desenvolvemento da metodolox́ıa propoñemos varias técnicas con dous obxectivos prin-
cipais: a mı́nima penalización en tempo de procesamento, e absolutamente ningunha
penalización a nivel funcional. Ademais búscase tamén a minimización nas restricións
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do hardware CPA de partida e o menor impacto posible no mesmo. A única condición
estrita é o requirimento de sáıdas definidas e predicibles, que nos leva a xeneralizar
a arquitecturas discretas no tempo, áında que arquitecturas continuas como o modelo
continuo de CNNs permiten a aplicación parcial da metodolox́ıa con tamén interesantes
resultados. Para o desenvolvemento da metodolox́ıa centrámonos nas CNNs de tempo
discreto. O traballo de investigación desenvolvido está a medio camiño entre o nivel
algoŕıtmico e o nivel de implementación f́ısica no campo de matrices de procesador
celulares orientadas ao procesamento de imaxe.

O compromiso entre área e tempo de procesamento derivado da aplicación da
metodolox́ıa é valorada a través dunha Figura de Mérito (FdM) definida a tal fin.
Xunto coa análise de forma das operacións a aplicar, este FdM permite: 1) propoñer
conxuntos reducidos de circúıtos de ponderación máis adecuados, e 2) xustificar a
elección clásica da conexión NEWS (Norte-Leste-Oeste-Sur). A validación da proposta
reaĺızase a través de estimacións realizadas sobre implementacións f́ısicas reais e con
algoritmos do estado da arte (”state-of-the-art”) como son o SIFT (Scale Invariant
Feature Transform) e o SURF (Speed-Up Robust Features), que, por outra banda,
non foron previamente aplicados sobre CPAs, o que constitúe outra contribución deste
traballo.

O punto de partida da investigación foi permitir as comunicacións de longa dis-
tancia (traducidas en operacións de gran veciñanza) en redes de elementos de proce-
samento localmente conectados e con paralelismo de grado fino para o procesamento
de baixo nivel de imaxes. Posteriormente, observouse que a metodolox́ıa desenvolvida
para abordar este problema pod́ıa ser aplicada sobre a conectividade local co obxecto
de reducir o número das conexións e dos circúıtos de ponderación asociados a elas e,
en consecuencia, a área dos elementos de procesamento.

Esta memoria comeza cunha revisión da particularización da arquitectura CPA
adoptada, as redes celulares non lineais, conclúındo que representan unha boa opción
na realización de microprocesadores visuais dado que proporcionan conectividade local,
clave para alcanzar o paralelismo masivo esixido no baixo nivel de procesamento de
imaxe. A metodolox́ıa proposta impón, con todo, unha restrición na elección do modelo
de hardware; estados internos ben definidos e predićıbeis en calquera momento. En
CNNs isto significa usar o modelo de tempo discreto ou o template de control do
modelo de tempo continuo. Non hai máis restricións con respecto ó tipo de datos, de
feito, a metodolox́ıa considerara dous modos de aplicación, un para implementacións
traballando con niveis de grises e outro que é válido tanto para implementacións en
niveis de grises como implementacións binarias que traballan con imaxes en branco e
negro.

Os obxectivos de preservar a funcionalidade e mesmo ampliala coas comunicacións
de longa distancia con modificacións mı́nimas de hardware tanto en procesamento
binario como en escala de grises exclúen solucións suxeridas na literatura baseadas
en dispositivos ou arquitecturas espećıficas, pero tamén metodolox́ıas que requiren
manipulación de valores en niveis de grises ou que só sexan aplicables a arquitecturas
binarias, aśı como propostas só aplicables a certos tipos de kernels como a obtención de
comunicación de longa distancia mediante a aplicación reiterada de patróns de tamaño
mı́nimo 3 × 3 . Nós buscamos unha proposta aplicable a calquera tipo de modelo li-
neal e adaptable a calquera particularización hardware con limitacións mı́nimas. É por
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iso que diriximos os nosos esforzos a solucións a nivel de sistema. Outras dúas metas
para o desenvolvemento da nosa proposta son: 1) a sinxeleza de deseño e aplicación,
e 2) unha penalización aceptable a nivel de tempo de procesamento. Tomando isto
como base desenvolvemos a metodolox́ıa de Split e Shift (S&S) con base na propiedade
asociativa da adición, mediante a cal un determinado patrón é dividido en patróns
máis pequenos ou con menos coeficientes que son aplicados de forma independente e que
recuperan o valor proporcionado polo patrón orixinal mediante a acumulación axeitada
dos seus resultados individuais. Propuxemos aśı mesmo dous modos de aplicación,
dependendo de como apliquemos os desprazamentos para reunir os resultados dos sub-
patróns: des- prazando a imaxe para que a aplicación de cada sub-patrón ofreza o
seu resultado na cela correcta (modo de desprazamento de imaxe) ou desprazando ós
resultados parciais unha vez obtidos ata a cela onde deben ser acumulados (modo de
desprazamento de resultado). A primeira opción fai que a metodolox́ıa sexa aplicable
sobre implementacións completamente binarias que manexan imaxes en branco e negro.

Para a aplicación da metodolox́ıa desenvolvimos diversas técnicas tanto para a
división de patróns como para o desprazamento de imaxe ou resultado e analizamos as
consecuencias destas técnicas en hardware e tempo de procesamento.

Na emulación de gran veciñanza (LN) medimos o custo de estender a funcional-
idade CPA como o número de operacións necesarias para a aplicación das operacións
LN. Da análise das diversas técnicas desenvoltas conclúımos principalmente que os
métodos de separación deben comezar a partir dun canto dos patróns, solapando os
sub-patróns incompletos segundo conveña para manter os seus centros próximos á cela
central. Sobre as técnicas de desprazamento observamos a conveniencia de compar-
tir desprazamentos tanto para desprazamento de imaxe como para desprazamento de
resultado. Un proceso regular unido ao compartimento de desprazamentos ofrece ben-
eficios en termos de simplicidade e de automatización. Suxerimos, como boas opcións,
a técnica de descomposición concéntrica e as técnicas de desprazamento espiral ou
zig-zag. Con todo, o desprazamento central ofrece resultados lixeiramente mellores en
número de operacións que pode compensar a maior irregularidade en implementacións
máis esixentes.

No caso de redución de hardware, temos un valor de compromiso entre o beneficio
obtido na redución de hardware e o número de operacións necesarias para manter a
funcionalidade do sistema. Isto non depende só do número de circúıtos de ponderación
(CC), senón tamén da configuración de cela seleccionada. Para a elección da configu-
ración da cela propoñemos catro criterios.

O primeiro criterio asegura a preservación da funcionalidade completa, sen res-
tricións sobre a forma de patrón orixinal ou tamaño do mesmo. Este criterio impón un
número mı́nimo de 3 CCs e unha distribución de CCs que permita de forma directa ou
indirecta todos os desprazamentos necesarios para a comunicación con todos os veciños.

O segundo criterio ten en conta o rendemento do sistema a través da definición
dunha figura de mérito, a RPO (Redución de hardware Por Operación incrementada
por cada operación orixinal), que permite escoller as técnicas e configuracións máis
axeitadas. A RPO def́ınese como a relación entre a porcentaxe de CCs reducida (iden-
tificada como HR) e o incremento no número de operacións por operación orixinal.
En xeral, para un único patrón seleccionaremos unha configuración de 6 CCs sen CCs
na columna central como a mellor opción de valor de compromiso. Con todo, se se
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permite a distribución do CC nos dous patróns caracteŕısticos dunha operatión CNN,
obtemos mellor valor de compromiso cunha configuración de 3+1 CC en disposición
lateral con desprazamento de resultados parciais, dado que se require un menor número
de operacións con menor número de CCs debido ao solape entre operacións permitido.
Para unha operación CNN de dous patróns, re-empregar o mesmo hardware para a
aplicación de ambos patróns, tanto cos CCs nun único patrón como en dous, é a mellor
opción.

O terceiro criterio na elección da configuración da cela xorde dunha análise máis
profunda da definición de RPO e da evidencia de que a coincidencia da forma do patrón
coa configuración da cela proporciona un mellor resultado. Afondando neste criterio
realizamos un estudo da forma dos patróns contidos na libreŕıa de patróns máis rep-
resentativa das CNN, a CSW. A partir deste estudo, conclúımos que a maioŕıa das
operacións CNN mostran unha distribución diamante dos seus coeficientes e mostran
simetŕıas, o que, combinado co desprazamento de resultado, pode servir para reducir o
número de operacións. Operacións cun único CC central para realizar operacións arit-
méticas ou Booleanas son tamén significativas. Como consecuencia, a configuración
diamante de 5 CC, é dicir, o NEWS clásico inclúındo o coeficiente de realimentación,
representa unha boa opción de valor de compromiso, o que, ademais xustifica a eficien-
cia xeralmente aceptada para a conectividade limitada desta configuración NEWS.

O criterio final é, obviamente, o cumprimento dos obxectivos de deseño da im-
plementación, que marcaŕıan os ĺımites reais no tempo de procesamento e ocupación
da área. En consonancia con eses criterios, a aplicación da metodolox́ıa de división e
desprazamento non ofrece técnicas rigorosas para a súa aplicación, senón que dá liñas
xerais. Isto significa que podemos desenvolver distintas técnicas ou modos de apli-
cación con resultados similares, que serán mellores canto máis particularizadas sexan.
A principal achega da análise de técnicas e configuracións é, pois, un conxunto orga-
nizado de directrices de aplicación para obter unha penalización mı́nima no tempo de
procesamento e absolutamente ningunha penalización a nivel funcional.

A combinación da emulación LN e da simplificación do hardware é completamente
asumible. Con todo, como a emulación LN esixe un número significativo de despraza-
mentos, a configuración da cela e as técnicas de desprazamento en LN deben escollerse
de forma conxunta. O posible uso de simetŕıas (con desprazamento de resultado) e as
configuracións con dous patróns tamén se amosan como un dos recursos máis vanta-
xosos.

Para validar as propostas aplicamos as técnicas desenvoltas a implementacións
CNN reais documentadas na literatura e a algoritmos de baixo nivel no procesamento
de imaxes. A partir da análise de implementacións f́ısicas conclúımos que, como se
esperaba, a aplicación da redución de hardware é moito máis rendible en arquitecturas
G/S onde os CCs son en xeral de maior tamaño, e onde a memoria analóxica local
está normalmente inclúıda. Con todo, a redución de hardware obtida polas técnicas de
división e desprazamento en implementacioóns binarias pode compensar a superficie
ocupada pola LAM extra necesaria en xeral para estas implementacións, tamén se
simplemente precisamos dotalas de comunicacións de longa distancia coa metodolox́ıa
de división e desprazamento.

A análise de implementacións CNN sobre FPGA coa axuda da nosa metodolox́ıa
confirma en xeral as nosas previsións de redución de hardware. Como a realización
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de celas con 9 CCs non cabe na nosa área de FPGA, os datos da súa execución non
poden ser tomados como referencia numérica estrita para, por exemplo, a avaliación da
porcentaxe de redución de hardware. Con todo, podemos tomar os valores relativos de
área entre as distintas configuracións. Observamos que obtemos valores lixeiramente
diferentes para disposicións diferentes de CCs, pero, en xeral, o factor HR demostrou
ser unha boa ferramenta para a avaliación da área reducida na comparación de con-
figuración de celas. Ademais, considérase probada a non significativa contribución das
conexións inter-PE, neste caso, o que reforza a nosa elección da definición máis simple
de HR. Debe notarse tamén que esta conclusión non se pode xeneralizar, pero en cal-
quera caso, a diferenza entre o número de CCs e enlaces eliminados é, como máximo, de
2 e non implica diferenzas na comparación de configuracións máis alá da consideración
de que configuracións co mesmo número de CCs ocupan menos espazo se un ou dous
dos CCs se empregan para realimentación.

No aspecto de rendemento temporal estudamos a aplicación da metodolox́ıa a
algoritmos de procesamento de imaxes de baixo nivel inclúındo comunicacións de LN.
Neste caso, non nos limitamos a algoritmos CNN. De feito, os algoritmos SIFT e SURF
non foron aplicados en CPAs antes, e a primeira conclusión é que a nosa metodolox́ıa
permite a súa aplicación sobre elementos de procesamento localmente conectados e
masivamente paralelo, a pesar das súas necesidades de operacións de gran veciñanza.
Os resultados son de feito prometedores, estimándose que a xeración dun espacio de
escalas de 4 oitavas no SIFT pode levar ∼ 1 ms con preto de 1000 operacións 3 × 3
nunha configuración 5 CC NEWS, e que a aplicación completa dos 12 filtros Spin 7×7
reaĺızanse con un total de 136 operacións 3× 3 nunha configuración NEWS con 4 CCs.

O caso da xeración do espazo de escalas no algoritmo SURF é un pouco diferente.
A aplicación da imaxe integral sobre CPAs leva á paralelización do seu cálculo, algo
buscado na literatura. Con todo, debido á especificidade da definición de imaxe inte-
gral, o paralelismo limı́tase a unha liña de cada vez na imaxe. Isto lévanos a propoñer
o uso de LPAs no canto de CPAs, porque, ademais, o seu menor número de PE per-
mite a utilización de memorias de maiores dimensións, o que resulta ser fundamental
para a imaxe integral. Esta primeira parte do algoritmo redúcese a desprazamentos
e acumulacións, coa excepción de aplicación do sub-patrón inicial empregado para re-
ducir o número de operacións necesarias. A segunda parte da xeración do espazo de
escalas no SURF implica a aplicación dos filtros Box, que poden ser considerados como
operacións LN. Aplicados á imaxe integral, estes filtros son reducidas a unhas poucas
adicións de valores situados a gran distancia, que poden ser realizadas coas técnicas
de división e desprazamento sobre unha CPA. Neste caso, o número de operacións de-
pende do tamaño de imaxe para o cálculo de imaxe integral, resultando en N+M 3×3
operacións para un tamaño M × N de imaxe. A aplicación destes filtros pode levar
preto de 3000 operacións para catro oitavas, tanto para un patrón completo de 9 CCs
como para nha configuración NEWS de 5 CCs, sendo outro exemplo da ineficiencia de
implementarunha configuración con 9 CCs.

Para a análise completa do valor de compromiso optamos por unha implementación
orientada á aplicación do algoritmo PLS. Á vista dos resultados temos que coa metodolox́ıa
proposta non só se aumenta a funcionalidade da implementación permitindo as ope-
racións LN, senón que as melloras de área superan as inconveniencias da introdución
dunha memoria analóxica de acumulación. Nótese que, neste caso, o principal aforro
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de área ven da retirada de conexións locais xa que ocupan o 80% da área reducible.
A análise do valor de compromiso tamén nos permitiu comprobar o grao de co-

rrespondencia entre a configuración da cela e os resultados esperados da análise xeral
das técnicas de división e desprazamento. Obviamente, eliximos configuracións que
respectan a plena funcionalidade da cela. Tamén analizamos a forma dos patróns
implicados, conclúındo, como no estudo xeral, que a conectividade NEWS é a máis
axeitada. Vimos tamén que en configuracións con poucos CCs e aplicando o modo de
desprazamento de resultado é interesante distribúır o CCs en dous patróns.

Recollemos tamén a análise de forma dos patróns implicados en varios algorit-
mos suficientemente detallados na literatura CNN, inclúındo o PLS. As estat́ısticas a
partir desta análise apoian a elección da conectividade NEWS en 4 dos 5 algoritmos
analizados. Tamén é interesante o número de ocorrencias de operacións que implica
só o CC central como operacións lóxicas locais, operacións aritméticas ou incluso de
saturación, a partir do que se pode conclúır a conveniencia de inclúır tamén o CC de
realimentación, polo menos nun dos patróns.

Como na validación, a nosa perspectiva sobre o traballo futuro ten dúas liñas prin-
cipais, a algoŕıtmica e a hardware. Dentro da liña algoŕıtmica propoñemos a xeración do
espazo de escalas do algoritmo SIFT en plataformas CPA. A aplicación da metodolox́ıa
de división e desprazamento sobre arquitecturas totalmente dixitais comprendendo só
unha ALU por PE, ou un MAC é tamén unha cuestión de traballo futuro. Un segundo
obxectivo na liña algoŕıtmica é a adaptación da metodolox́ıa para a súa aplicación so-
bre arquitecturas con menor grao de paralelismo, onde os elementos de procesamento
tratan con varios ṕıxeles no canto de só un.

Dentro da liña de hardware, temos tres aspectos principais: a análise das impli-
cacións da metodolox́ıa sobre o consumo de enerx́ıa e sobre a precisión requirida polos
circúıtos de ponderación, e a implementación de memorias analóxicas axeitadas ao
labor de acumulación requirido pola metodolox́ıa.

Sobre o consumo de enerx́ıa esperamos un menor consumo instantáneo debido ao
menor nmero de CCs, pero quizais maior consumo medio debido ao maior número de
operacións e ao consecuente maior tempo de procesamento. Con todo, se se considera
que as ponderacións por coeficientes nulos tamén consumen enerx́ıa, a redución do
número de circúıtos de ponderación aplicada xunto coa elevada incidencia de patróns
pouco densos dentro das operacións CNN conduciŕıa a unha mellora neste aspecto.

Con todo, a precisión requirida impón un mı́nimo no consumo de enerx́ıa dun
circúıto. E este, xunto coa maior área requirida por unha maior precisión, lévanos á
segunda análise sobre o hardware. Nun principio agardamos que a non igualdade entre
transistores nominalmente idénticos, a fonte principal de erro nun circúıto analóxico,
diminúa a medida que o número de compoñentes tamén se reduce. Ademais, a área
liberada pola eliminación de CCs pode usarse tamén para mellorar a precisión.

Finalmente, áında que as arquitecturas de tipo G/S xa ofrecen memorias analóxicas
que poden usarse para a metodolox́ıa de división e desprazamento, seŕıa interesante
atopar unha memoria de tamaño mı́nimo para as arquitecturas binarias. Ademais,
os moitos ciclos necesarios para unha aplicación real poden obrigar tamén a adoptar
algunhas estratexias para refrescar a memoria, a fin de evitar a degradación de valores
almacenados en memorias analóxicas.

vii



viii



Contents

Preface 1

1 Cellular Non-linear Networks 7
1.1 The CNN Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The CNN Universal Machine . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Discrete Time CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Hardware Oriented Variations of the CNN Model . . . . . . . . . . . . 12

1.4.1 Full-Signal Range Model (FSR) . . . . . . . . . . . . . . . . . . 13
1.4.2 2Q, 1Q and 1Q-1bit Coefficient Circuits . . . . . . . . . . . . . 13

1.5 CPA and CNN Implementations . . . . . . . . . . . . . . . . . . . . . . 16
1.5.1 ASIC Implementations . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.2 FPGA Implementations . . . . . . . . . . . . . . . . . . . . . . 18
1.5.3 Software Implementations . . . . . . . . . . . . . . . . . . . . . 18
1.5.4 Novel Current Working Lines . . . . . . . . . . . . . . . . . . . 19

1.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Research Motivation and Related Work 21
2.1 Large Neighborhood Challenge. Related work . . . . . . . . . . . . . . 21

2.1.1 Template Decomposition Solutions . . . . . . . . . . . . . . . . 22
2.1.2 Hardware Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Template Partition Solutions . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Other Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Area Reduction Challenge. Related Work . . . . . . . . . . . . . . . . . 25
2.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Split and Shift Methodology 29
3.1 S&S Methodology General Lines . . . . . . . . . . . . . . . . . . . . . 29
3.2 S&S for LN Template Emulation . . . . . . . . . . . . . . . . . . . . . 32
3.3 S&S for the Hardware Reduction . . . . . . . . . . . . . . . . . . . . . 43
3.4 S&S for LN Emulation over Simplified Hardware . . . . . . . . . . . . . 56
3.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Validation 67
4.1 Implementation Requirements and Time Conditions . . . . . . . . . . . 67
4.2 Expected Hardware Improvements Evaluation . . . . . . . . . . . . . . 68
4.3 S&S Techniques over LN Reference Algorithms . . . . . . . . . . . . . . 71
4.4 S&S Area-Processing Time Trade-off Evaluation . . . . . . . . . . . . . 81

ix



4.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 88

Conclusions and Future Work 91

A Published papers gathering the thesis work 97
CNNA05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
DCIS05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
CNNA06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
DCIS06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
ISCAS07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
ECCTD07-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
CNNA08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
ISCAS12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B FPGA implementations using S&S methodology 155
DCIS08-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
DCIS08-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
ECCTD07-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
ECCTD09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C Acronyms List 177

Bibliography 181

x



Preface

In multimedia era, image processing has become a very important element on electronic
devices. From communications (e.g. telemedicine) to security (e.g. retinal recognition)
or industrial processes/quality control (e.g. articulated arms guidance, product defects
detection) going through research (e.g. elemental particles tracking) and medical diag-
nosis (e.g. strange cells detection, retinal vessels identification), there is a huge number
of applications where the automatic image treatment or even understanding is funda-
mental. The ultimate goal would be the design of vision systems with decision-making
capability. In addition, current trends require the combination of these capabilities on
small and portable devices with real-time or at least fast response. This poses new
challenges in both hardware and software design in image processing, looking at new
architectures or structures with the lowest possible area and power consumption and
without compromising the functionality and performance. The contributions of this
thesis focus on the optimization of area usage and the improvement of the functionality
of vision systems based on Cellular Processor Arrays (CPAs), being particularized for
Cellular Neural Networks (CNNs). The research presented is placed midway between
the algorithm and hardware level design. In the following we try to contextualize the
realized work by going through the different abstraction levels.

Image processing (Task level)

Image processing is a complex task that can be divided in three differentiated levels of
sub-tasks that are connected hierarchically [Dudek, 2000]. Low-level image processing
tasks, or ’early vision’, require no additional knowledge and act locally in the image,
independently of the content, preparing the data for the next level. Tasks included at
this level are usually very simple low precision repetitive convolution-like operations,
usually oriented to restoration or feature enhancement. Nevertheless, they are compu-
tationally highly demanding due to the large quantity of data to process. Intermediate
level image processing tasks extract symbolic information about the image from the
data provided by the previous level through global methods mainly. The quantity of
information required here is low, tasks are more complex and they operate over the
preprocessed data, i.e. over a little part of the data originally contained in the im-
age. Finally, the high level processing involves complex tasks directed to understand
in some way the content of the image. They use the symbolic description provided by
the intermediate level and require a significant quantity of additional information to
interpret the image.
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Image processors (Hardware level)

A vision system includes these three levels with the aim of making autonomous deci-
sions. This is what is called Computer Vision. Although these operations can be done
on a classical von Neumann computer, the high computational load and the inherent
parallelism (specially, both, in the low-level phase) make it a non-suitable option for
image processing. Note that although the operations performed at high-level are far
more complex, they are the lower level operations which on many occasions set the
bottleneck in the algorithm as they represent more than the 50% of the computational
load [Nudd, 1980]. Modern processors include parallel units and replicated units and
exploit instruction level parallelism. Nevertheless their general-purpose floating point
orientation makes them not particularly efficient in low-level image processing (more
than 50% of the load) apart from the waste of resources not needed. Digital Sig-
nal Processors (DSP) are optimized for signal processing and can be suitable for low
demanding applications.

But market drivers in the semiconductor industry demand ever more functionality
on portable gadgets with as high a reliability as possible. Some medical instrumen-
tation, cell phones or any other portable device in consumer electronics like digital
cameras are clear examples of such demands. From the perspective of the circuit de-
signer, these specifications are translated into programmable integrated circuits with
as low a power dissipation as possible and small area. On many occasions, the resultant
circuits become actual systems-on-chip (SoC) with heterogeneous technologies. This
might be the case of a digital camera, or a mobile phone, where sensing and processing
could be built up on different semiconductor technologies, and where analog and digital
computation could be laid down on the same substrate. Systems-on-chip comprising
processing elements (PEs) working in parallel and customized for specific functions
combined with local and global memory along with peripheral control circuitry are
posed by the ITRS (International Technology Roadmap for Semiconductors) as power-
efficient architectures to meet the demands of some of the above market drivers [ITR,
2009-2010].

Cellular Processor Arrays for Computer Vision: Vision Chips

Cellular Processor Arrays (CPAs) suit this architecture. CPA chips usually contain a
main stored-program memory within a global control unit that issues and broadcasts
the instructions to be executed by an array of PEs. This array executes the same
instruction over different data on every PE appearing as a massive data parallel system
(Single Instruction Multiple Data, SIMD computation). 2-dimensional CPA mesh with
a pixel to processor correspondence is, then, a natural implementation of low-level
image processing operations.

The work of Unger in the 1950s represents the initial work in this sense [Nudd,
1980]. Since then, technological evolution and reduced complexity PEs have made it
possible to have these SIMD solutions implemented even onto a single chip. Partic-
ular implementations go from dedicated hardware implementing a specific algorithm
to universal machines, and from Application Specific Integrated Circuits (ASICs) to
reconfigurable hardware as Field-Programmable Gate Arrays (FPGAs). CMOS sen-
sors have allowed to integrate imager and processor on the same die, eliminating the
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imager-processor bottleneck and giving birth to the focal-plane processors or Vision
Chips [Moini, 2000]. In addition, the need to optimize critical performance parameters
like area, processing time or power consumption leads to CPAs with PEs partitioned
into several customized modules, each specialized in a particular function and being
the general program which decides in which module a certain function will be executed
[Földesy et al., 2007, Lopich and Dudek, 2011a]. Another aspect that influences the
suitability of the PEs as it affects area and processing time, is the number of connec-
tions, i.e. the number of weighting circuits employed for collecting the contributions
from neighboring PEs in convolution type operations and their associated routing.
This is particularly important when large neighborhood operations are involved. The
research work presented in this thesis deals with this aspect.

All in all, focal-plane processing is particularly suitable for low-level image pro-
cessing but it is not efficient when dealing with high-level image representation. In a
whole vision system, the combination of SIMD with other paradigms of computation on
the same monolithic solution would be, then, an option. The advent of new emerging
technologies like CMOS-3D opens the way for such solutions. In the particular case of
a CMOS-3D-based architecture the functionality is distributed among different tiers,
which might lead to low- as well as medium- and high-level processing on the same
monolithic solution [Rodŕıguez-Vázquez et al., 2010].

Cellular Non-linear Networks

Cellular Non-linear Network (CNN)- Universal Machine (CNN-UM) [Roska and Chua,
1993] is a specific proposal of general purpose CPAs that can be integrated on a single
chip. The original CNN paradigm [Chua and Yang, 1988a] includes the possibility of
spatial dependent (i.e. Multiple Instruction Multiple Data -MIMD- architecture) and
non linear operators. For us CNN chips are conceived as vision chips for low-level image
processing. In this case it is generally enough with linear spacial invariant operators or
“cloning templates” (i.e. SIMD) that operate identically over each pixel and taking into
account a certain neighborhood. Local connections, non-linear output robustness and
simple SIMD control make CNNs suitable for hardware implementation, convolution-
like operators with global processing capability and massive parallelism make them
suitable for low-level image processing.

We have developed our work over the CNN paradigm. Nevertheless, our propos-
als are general enough to be extended to similar CPA implementations with the same
restrictions. This work contributes to two main issues in CNN architecture, namely
the extension of the functionality to operations implying large neighborhood commu-
nications initially limited by the local connectivity and the area saving through the
reduction of the number of local connections and weighting circuits.

Research contributions

In this work we develop the so-called Split and Shift (S&S) methodology. This method-
ology is intended to deal with the implementation of kernels of sizes that overflow
the physically implemented connectivity (local connections and weighting circuits) on
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CPAs, including the realization of large neighborhood operations and/or the reduc-
tion of the inter-PE connectivity in order to drop the area consumption. In the de-
velopment of the methodology we propose several techniques under two main goals:
minimum penalty at processing time, and absolutely no penalty at functional level.
The area-processing time trade-off derived from the application of the methodology is
assessed through an ad-hoc Figure of Merit (FoM). Together with a kernel shape anal-
ysis, this FoM allows us to propose more adequate reduced sets of weighting circuits
and to justify the classical choice of NEWS (North-East-West-South) connectivity.
The validation of the proposal is realized by means of estimates over actual physi-
cal implementations and state-of-the-art algorithms as SIFT (Scale Invariant Feature
Transform) and SURF (Speeded-Up Robust Features) algorithms, that, on the other
hand, have not been previously implemented over CPAs. The methodology is appli-
cable in general over synchronous binary (B/W) or gray-scale (G/S) image-processing
CPA implementations. For the development of the methodology we have focused on
the Discrete-Time CNN model [Harrer and Nossek, 1990].

During the research time we have gathered the contributions in several publications
that are listed below:

N. A. Fernández, D. L. Vilariño, V. M. Brea, D. Cabello, “ On the Emulation
of Large-Neighborhood Templates with Binary CNN-Based Architectures,”
in Proceedings of the 9th IEEE International Workshop on Cellular Neural Networks
and their Applications, CNNA 2005, pp. 274-277, Hsinchu, Taiwan, May 2005.

N. A. Fernández, D. L. Vilariño, V. M. Brea, D. Cabello, “ Large Neighborhood
Templates with Nearest-Neighbor Connected Patterns in Binary-Based Cel-
lular Neural Networks”, in Proceedings of the XX Conference on Design of Circuits
and Integrated Systems, DCIS 2005, Lisbon, Portugal, November 2005.

N. A. Fernández, V. M. Brea, D. L. Vilariño, D. Cabello, “ On the Reduction
of the Number of Coefficient Circuits in a DTCNN Cell,” in Proceedings of
the 10th IEEE International Workshop on Cellular Neural Networks and their Appli-
cations,CNNA 2006, Istanbul, Turkey, August 2006.

N. A. Fernández, V. M. Brea, D. L. Vilariño, D. Cabello, “ Hardware Simpli-
fication in Cellular Non-linear Networks for Complex Algorithms,” in Pro-
ceedings of the XXI Conference on Design of Circuits and Integrated Systems, DCIS
2006, Barcelona, Spain, November 2006.

N. A. Fernández-Garćıa, V. M. Brea, D. Cabello, “ Area and Time Efficient
Cellular Non-linear Networks,” in Proceed. of IEEE International Symposium on
Circuits and Systems, 2007. ISCAS 2007, pp.2682-2685, New Orleans, USA, May 2007.

N. A. Fernández-Garćıa, J. Albó-Canals, V. M. Brea, J. Riera-Baburés, D. Ca-
bello, X. Vilaśıs-Cardona, “Verification of Split&Shift techniques for CNN
hardware reduction,”in Proceedings of the 18th European Conference on Circuit The-
ory and Design, 2007. ECCTD 2007, pp.88-91, Seville, Spain, 27-30 August 2007.
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N. A. Fernández Garćıa, M. Suárez, V. M. Brea, D. Cabello, “Template-oriented
hardware design based on shape analysis of 2D CNN operators in CNN tem-
plate libraries and applications,” in Proceedings of the 11th International Workshop
on Cellular Neural Networks and Their Applications, 2008. CNNA 2008, pp.63-68,
Santiago de Compostela, Spain, July 2008.

N. A. Fernández, V. M. Brea, M. Suárez, D. Cabello, “ Scale- and Rotation-
Invariant Feature Detectors on Cellular Processor Arrays,” in Proceedings of
IEEE International Symposium on Circuits and Systems, 2012. ISCAS 2012, pp.2657-
2660, Seoul, Korea, May 2012.

N. A. Fernández, V. M. Brea, D. Cabello, “Split and Shift Methodology on
Cellular Processor Arrays: Area Saving vs. Time Penalty,” under review in
International Journal of Circuit Theory and Applications with major revisions (May,
2012).

Other published contributions not belonging to the main line of the thesis but
related to it:

V. M. Brea, M. Laiho, N. A. Fernández, A. Paasio, D. Cabello, “ Relating Cellu-
lar Non-linear Networks to Threshold Logic and Single Instruction Multiple
Data computing models,”in Proceedings of the 18th European Conference on Circuit
Theory and Design, 2007. ECCTD 2007, pp.92-95, Seville, Spain, August 2007.

Jordi Albó-Canals, N.A. Fernández-Garćıa, Jordi Riera-Baburés, Victor M. Brea,
Diego Cabello, “ Discrete Time Cellular Non-linear Networks Implementation
over FPGA,” in Proceedings of the XXIII Conference on Design of Circuits and
Integrated Systems, DCIS 2008, Grenoble, France, November 2008.

A. Nieto, N.A. Fernández-Garćıa, Jordi Albó-Canals, V. M. Brea, D. L. Vilariño,
Jordi Riera-Baburés, Diego Cabello-Ferrer, “ Single Instruction Multiple Data
and Cellular Non-linear Networks as Fine-Grained Parallel Solutions for
Early Vision on FPGAs,” in Proceedings of the XXIII Conference on Design of
Circuits and Integrated Systems, DCIS 2008, Grenoble, France, November 2008.

J. Albó-Canals, J.A. Villasante-Bembibre, J. Riera-Baburés, N.A. Fernández-Garćıa,
V.M. Brea, “An efficient FPGA implementation of a DT-CNN for small image
gray-scale pre-processing,” in Proceedings of the European Conference on Circuit
Theory and Design, 2009. ECCTD 2009, pp.839-842, Antalya, Turkey, Aug. 2009.
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Thesis overview

This manuscript is divided in five chapters and two appendices. The first chapter
reviews the main characteristics of the CPA paradigm over which we have developed
the research work. The research motivation and the related work found in the literature
are gathered in the second chapter. In the third chapter we describe the methodology
proposed in depth, and we develop the required techniques and guidelines for the
two challenges considered, large neighborhood templates application and connectivity
reduction, and for the combination of both. A fourth chapter presents the validation
tests realized and analyzes the results obtained. The proposed CPA implementation
of the SIFT and SURF algorithms deserves a particular comment as they are not only
part of the validation of the methodology, but also part of the main contributions of
the thesis as it is the first time in the literature where those algorithms are proposed
to be implemented over CPAs with a pixel per processor approach. The final chapter
summarizes the main conclusions drawn from the research work, and presents future
work lines.

Finally, two appendices gather the papers where the main contributions of the
thesis were published. The first appendix conveys the papers directly related to devel-
opment and validation of the methodology. In the second appendix we have included
those papers that gather a particular usage of the methodology, including a theoretical
reflection over the relationship between the SIMD paradigm, the Threshold Logic and
the application of our methodology to CNNs. Along the text we refer the published
papers in several occasions from a critic point of view to provide other ways of illus-
trating the proposals as long as to indicate discrepancies that illustrate the evolution
of the research work.



Chapter 1

Cellular Non-linear Networks

In this chapter we introduce the main aspects of the CPA particularization we have
chosen to develop our research. We present the original paradigm, its generalization to
universal machine and the modifications introduced in order to improve its versatility
and hardware implementation. In the last section we review some hardware imple-
mentations found in the literature to give an overview of the main milestones and the
state-of-the-art.

1.1 The CNN Paradigm

The Cellular Non-linear Network (CNN) is a massively parallel paradigm that has
appeared as very suitable for both real time image processing and hardware implemen-
tation. First introduced by Chua and Yang in 1988 [Chua and Yang, 1988a,b], this
paradigm gathers the key characteristics of neural networks (parallelism and global in-
teraction) within a structure typical of cellular automata (local interactions and regular
spatial distribution together with the parallel processing).

The original CNN paradigm is conceived as an analog massive parallel processor
composed of an N-dimensional mesh of identical, analog and dynamical processing
elements (PEs), cells in CNN literature. These cells interact in a limited radius n but
the system keeps the global interaction capacity thanks to the propagative effects of
the local interactions [Chua and Roska, 1993, 2002]. For image processing we typically
consider 2-dimensional topologies with n = 1, what is, in addition, more suitable for
integrated circuit implementation (Fig. 1.1). It is usual to consider a pixel to cell
correspondence, natural assignment if we think of vision chips with sensor integration
[Moini, 2000].

Cells interaction is governed by two synaptic operators. The first one, initially
called feedback operator/template/kernel and identified as A, acts over the state vari-
able X (through the output value Y obtained after applying the output function) of the
cells in a radius n, including the own cell under consideration. The second operator is
identified as B and was called control operator/template/kernel. It acts over the input
data U (either an external image or stored data) of the cells in the same radius. The
bias term I modules the effect of the operators. The global result is gathered in the
central cell state. This dependence of the cell state on the neighboring cells’ values

7



8 CHAPTER 1. CELLULAR NON-LINEAR NETWORKS

Cij

Figure 1.1: 2D square mesh with 8-connectivity and n = 1. Cells in gray are
physically connected to the cell under consideration Cij .

explains the capacity of global processing of the system.
The general case includes the possibility of non linear and spacial dependent op-

erators what would mean a Multiple Instruction Multiple Data (MIMD) architecture.
For image processing it is generally enough with linear spacial invariant operators
or cloning templates that operate identically over each pixel (i.e. Simple Instruction
Multiple Data -SIMD-). In our case the operators are, then, weighting templates or
matrices that act over the input (U) and output (Y) images in a convolution-like way.
On its side, the bias term could be in general different from cell to cell but it is typically
constant in the mesh.

The dynamics of the original model, considering linear operators, is gathered in
a system of coupled differential equations of first order like that shown in Eq. 1.1. ij
indices refer to the cell to be processed and kl ones refer to the cells in the neighborhood
Nn around the ij cell. aijkl are the corresponding template A coefficients, bijkl the
corresponding template B coefficients, iij the bias term at the processing cell position,
and ykl, ukl and xij the output, input and internal state at the indicated cells.

d

dt
xij(t) = −xij(t) +

∑
k,l∈Nn(i,j)

aijkl ykl(t) +
∑

k,l∈Nn(i,j)

bijkl ukl + iij (1.1)

The output of the cell is determined by a non-linear function of the cell state that
can be of several types [Chua and Roska, 1993, Roska and Rodŕıguez-Vázquez, 2002].
Typically we choose an output function with strictly monotone-increasing behavior
within a linear region and saturated values outside that linear region. The choice of the
output function affects not only its own hardware implementation but the processing
type and the physical implementation of the whole cell as long as it influences the
range of variables’ values. The original proposal in [Chua and Yang, 1988a] is a piece-
wise linear function (Eq. 1.2, Fig. 1.2(a)). Nevertheless, it is usually substituted by
a sigmoid function (Eq. 1.3 Fig. 1.2(b)) in physical implementations as it is easily
obtained from an amplifier. The threshold function (Eq. 1.4, Fig. 1.2(c)) implemented
with a comparator is an interesting option that allows optimizations in the physical
implementation but it can only be applied to binary output processing [Brea Sánchez,
2002].
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Figure 1.2: Output functions: a) piece-wise linear (Eq. 1.2), b) sigmoid
(Eq. 1.3) and c) threshold (Eq. 1.4).

f(x) =
1

2
(|x− 1| − |x+ 1|) (1.2)

f(x) =
2

e−mx
− 1 (1.3)

f(x) =

{ −1 x < 0
1 x > 0

(1.4)

The system level structure of a basic CNN cell is summarized in the block dia-
gram of Fig. 1.3. U and Y refer here to the inputs and outputs of the cells in the
neighborhood selected, including the cell to be processed. I is the bias term. x and y
are, respectively, the internal state and the output of the central cell (the cell under
processing). A and B are the weighting templates. All these elements take continu-
ous values as a general rule. G is the law that governs the system dynamics that is
described in the state equation (Eq. 1.1) and F is the output or transfer function.

A

B

G F

I

Y

U

x y

Figure 1.3: Functional block diagram of a CNN cell.
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Once the cell dynamics is fixed, the interaction templates (A and B) and the
offset term I determine the functionality of the CNN mesh. Considering a typical
two-dimensional 8-connectivity topology, translation-invariant templates, and neigh-
borhood order of n = 1, we need 19 coefficients at most to implement a particular task
(9 coefficients per template and one more for I), independently of the number of cells
in the array.

1.2 The CNN Universal Machine

To allow the execution of complex algorithms on a CNN system it is necessary to add
new functionalities, namely, template programmability, local memories and global con-
trol mainly. In this direction authors in reference [Roska and Chua, 1993] introduce
the CNN Universal Machine (CNNUM) concept to fully exploit the CNN processing
capabilities. In fact, authors in reference [Crounse and Chua, 1996] show CNNUMs as
universal in Turing-sense. Besides, it opens the possibility of stored-program computa-
tion, i.e. software reconfigurability, making it possible to realize an enormous quantity
of tasks over the same hardware. It is necessary, nevertheless, that the area and time
for storing and changing an instruction is negligible compared to the processing area
and the execution time of a nontrivial instruction respectively. This is only possible if
we consider a translation-invariant cloning template (A, B and I), that requires the
specification of just 19 coefficients per operation for n = 1.

The CNNUM model consists of a matrix of extended cells and a Global Analogic1

Programming Unit (GAPU), see Fig. 1.4. The extended cell includes the original CNN
core, some Local Analog Memories (LAM), and some Local Logic Memories, (LLM).
In addition, it includes units to realize simple analog operations (additions and sub-
tractions) and basic logic operations at cell level (Local Analog Output Unit -LAOU-
and Local Logic Units -LLU- respectively), although these operations could be done
through CNN templates. They are redundant but require little hardware and are more
efficient in terms of computation time than the equivalent CNN operation. The set is
completed with a Local Communication and Control Unit (LCCU) that governs the
extended cell behavior in relation to the other cells and to the GAPU. The GAPU is
mainly composed of analog and digital program and configuration registers (Analog
Program Register -APR-, Logic Program Register -LPR-, Switch Configuration Reg-
ister, SCR), used to keep the analog and digital instructions and the configuration of
the cells during the program execution, and a Global Analogic Control Unit (GACU),
that controls the instructions issuing, timing, data transferences and synchronism of
the communication with external control devices. Finally, it is possible to include an
Optical Sensor (OPT) to acquire the images directly over the processing network what
results in a proper vision chip.

1The CNNUM introduces a new kind of computation that incorporates analog and logic operations
separately, without A/D and D/A converters. It is called ‘analogic’.
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Figure 1.4: Global architecture of a CNNUM [Roska and Chua, 1993].

1.3 Discrete Time CNNs

Although time discretization was already used to show the suitability of CNNs for
image processing in [Chua and Yang, 1988b], the implementation of CNNs working in
discrete time was firstly proposed in 1990 in [Harrer and Nossek, 1990].

The DTCNN dynamics is governed, according to its original proposal, by a system
of synchronous linear equations like that in Eq. 1.5, where T represents the temporal
step, ij is the central cell location and kl the location of a neighboring cells within the
n order neighborhood Nn. DTCNN definition is completed with a threshold output
function (Eq. 1.4) that restricts the outputs to binary values.

xij (T + 1) =
∑

k,l∈Nn(i,j)

aijkl ykl(T ) +
∑

k,l∈Nn(i,j)

bijkl ukl(T ) + iij (1.5)

Thanks to the temporal discretization it is possible to control and even predict the
values of all variables in each temporal step without the uncertainty of controlling a
transient by estimations of the time constant of a CTCNN. As a consequence, process-
ing velocity is improved for non-propagative operations, being it not necessary to wait
up to 5 times the time constant (the estimated settling time) to consider an output as
stable, what, furthermore, makes unimportant the lack of a global convergence theo-
rem for DTCNNs ([Harrer and Nossek, 1990]). On the other hand, global processing
capacity with local connectivity is preserved through a synchronized feedback of the
binary outputs in a radius n in each temporal step, instead of the transient dynamics
of the continuous time model (CTCNNs) that takes continuous feedback in time and
value. Nevertheless, this makes CTCNNs faster in propagative operations.

Another advantage of DTCNNs is the easy interconnection between different levels
of processing, even with different architectures [Harrer and Nossek, 1993]. This allows
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the implementation of multilayer architectures that can be implemented with one-
layer reconfigurable architectures, i.e. through time variant templates. This advantage
is completed with the ease of template designing either heuristically or through the
resolution of linear non-equalities systems provided by the binary outputs, both thanks
to the exact prediction of outputs [Harrer and Nossek, 1990]. Furthermore, template
A can be used independently and interchangeably with template B thanks to output
control and threshold output function that makes it not necessary to wait for output
saturation. In addition, this makes it possible the combination of two operations in
one.

At implementation level we have advantages in intercommunications, chip testing,
chip design and even chip simulation. In the first one, the characteristic of binary and
synchronous output make interconnections between different circuits and communica-
tion with the outer world easier and more reliable. Secondly, it is possible to control
the propagation velocity through the modification of the system clock, what simplifies
the chip testing process. With reference to chip design threshold function implies an
improvement in the system robustness 2 and the physical design can be eased by an ad-
equate selection of the template coefficients. Finally, chip simulation is less costly due
that it is not necessary to implement numeric integration algorithms [Brea Sánchez,
2002, Vilariño, 2001].

1.4 Hardware Oriented Variations of the CNN Model

Since the original model was introduced in 1988, several modifications to improve the
implementability of CNNs systems have been proposed. These modifications affect the
highest levels of design, i.e. the model description. Apart from improvements in the
output function implementation, the proposals are mainly focused on improving the
weighting or coefficient circuits implementation given their importance in the main
figures of merit, namely area and power consumption and their influence in the pro-
cessing time. The modifications basically affect the output function definition and the
variables (inputs, outputs, state and template coefficients) range.

With reference to the variables range, variables are originally continuous and re-
stricted to [−1, 1] ( −1 corresponds to white and 1 to black in CNNs for image pro-
cessing) in the case of input and output, and are non-restricted in the case of the
state and template coefficients. It is important to take into account that modifications
over the range of some variables will affect the values of other variables to keep the
input-output mapping. The same occurs with the output function definition and the
variables’ ranges, what stresses the importance of no strict restrictions over the output
function.

Further improvements can be obtained by focusing on template design. Sparse
templates will lead, for example, to smaller power consumption and better robustness
values and robustness can be improved as well for particular architectures [Paasio and
Dawidziuk, 1999, Brea et al., 2005a].

2An important issue in the determination of template coefficients is the robustness, defined as
the capacity of preserving the input-output mapping from variations over the nominal values of the
physical elements of the circuit. It can be translated into the coefficient values tolerance and will mark
the accuracy required in the circuit, that is key in the circuit size [Paasio and Dawidziuk, 1999].
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1.4.1 Full-Signal Range Model (FSR)

This model modification restricts the state range to [−1, 1]. With this, output and
state are equivalent at every moment and, as a consequence, it is not necessary to im-
plement the output function if we consider a one-slope linear function between [−1, 1].
This proposal reduces area and power consumption at the same time that the limited
state excursions improve the processing time. It led to the largest gray-scale (G/S)
implementation at that time with 128× 128 cells [Rodŕıguez-Vázquez et al., 1993, Es-
pejo et al., 1994]. This model can be combined with a high-gain non-linearity to add
to the limited state improvements the inherent robustness and fast convergence of this
output function.

1.4.2 2Q, 1Q and 1Q-1bit Coefficient Circuits

The coefficient or weighting circuits are the circuits associated to the local connections
that play the function of weighting the neighbors’ contributions if we see them from
the template point of view (Fig. 1.5), or that weights the cell value to send it to the
neighbors if seen from the hardware point of view (Fig. 1.6).
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Figure 1.5: Inter-cell communications. Template perspective.
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Figure 1.6: Inter-cell communications. Hardware perspective.

The high level optimizing proposals focused on the multipliers implementing the
coefficient circuits can be summarized in the reduction of the number of quadrants of
operation (Fig. 1.7) and the operands programmability reduction.
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Figure 1.7: Two operator product quadrants.

2Q Coefficient Circuits

The first step is the reduction from four to two quadrants of operation. In this case,
inputs and outputs sign is limited to positive or negative and the result of the weighting
can only fall in two of the four possible quadrants (Fig. 1.7). The use of 2Q multipliers
[Mead, 1989] improves area and power consumption, and processing time with respect
to the full four quadrant multipliers like those in [Gilbert, 1968].

For input range, the transformation is directly realized in the codification of the
image, independently of the CNN cell. On the other hand, the output range transfor-
mation requires the output function modification as is shown in [Hegt et al., 1998] or,
more generally, in [Fernández Garćıa, 2006].

In [Paasio, 1998] it is defined a positive range model. In this case the input
and output range changes from [−1, 1] to [0, 1]. Fig. 1.8 shows the piece-wise-linear
and threshold output functions for positive range outputs. To keep the input-output
mapping these transformations will entail modifications over the template coefficients
[Paasio, 1998, Fernández Garćıa, 2006].

1-1

-1 -1

-1

1

1

1
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Figure 1.8: Positive range output functions.
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Authors in reference [Paasio and Halonen, 2001] introduce as output function
non-linearity a combination of the positive-range, high-gain and limited state range
proposals, i.e. the Positive range High gain State limited CNN model (PHS-CNN).
This is an easily implementable option that offers a very simple structure for multipliers
implementation. In combination with the robustness and fast convergence of the high-
gain model a reduced area consumption is expected as well as a higher processing
capacity. As a consequence the processing is limited to binary outputs.

1Q Coefficient Circuits

A step forward is to add to the input/output sign restriction, the limitation in sign
of the template coefficients. With this, we have just positive or negative operands
and the weighting result can only fall into one quadrant (Fig. 1.7), with positive
or negative values. This made it possible to implement the coefficient circuits with a
reduced area consumption, just with NMOS or PMOS transistors, improving as well the
processing time and the power consumption. Apart from the heuristic decomposition
of the operations that can be used to obtain the new template coefficients, an analytic
method is introduced in [Brea et al., 2004a].

1Q-1bit Coefficient Circuits

In addition to the 1Q implementation, the restriction of one or two of the operands
(template coefficients or input/output values) to 1-bit values (0 or 1) makes the pro-
gramming and the computation simpler and faster, and reduces the circuit connections
given that there is a unique digital signal programming [Paasio et al., 2004, Flak et al.,
2004]. This is called reduced programmability. Binary template coefficient utilization
requires the redefinition of the templates and will usually increase the number of op-
erations [Laiho et al., 2005], partly compensated for the processing time improvement.
On the other hand, the utilization of a high-gain non-linearity to provide binary out-
puts contributes to a less restrictive hardware design thanks to its inherent robustness,
at the same time that it simplifies the output function implementation [Paasio, 1998,
Paasio and Halonen, 2001].

The restriction of input/output range to binary values introduces limitations in the
processing and in the initial conditions. In particular, the limitation to binary image
processing with the introduction of a high-gain non-linearity, makes it impossible to
realize operations like gray-scale gradients detection, for example.

It is interesting to note that the positive range models (both 2Q and 1Q) and even
the reduced programmability templates are less aggressive modifications than the high-
gain non-linearity and/or the restriction to binary inputs, given that in the first case
there is not a limitation on the system functionality but just affects to the template
design and ranges definition.

DTCNNs experience the same evolution as CTCNNs with respect to the number
of quadrants required for weighing circuits. 4Q to 2Q system transformation were
adapted to classical DTCNNs in [Brea Sánchez, 2002]. 1Q architecture was analyzed in
general for both, discrete and continuous time, in [Brea et al., 2004a]. In [Brea et al.,
2005b] and [Brea et al., 2005c] the reduced programmability 1Q-1bit architecture is
taken in order to reach significant improvements in area, processing velocity and power
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consumption. Coherently, DTCNNs inherit the same limitations given by quadrants
reduction. Nevertheless, in this case, binary outputs are part of the starting point.

1.5 CPA and CNN Implementations

CPA implementations are realized both over general purpose platforms (CPA emula-
tion), and over specific or reconfigurable hardware. The first option allows more flexi-
bility in the implementation but it is less efficient than the massive parallel computation
offered by specific hardware implementations. The latter option is, consequently, the
one chosen nowadays for final implementations, especially in real time and/or portable
applications. Nevertheless, there are very competitive emulated implementations that
should also be considered. In this review we focus on CPA architectures developed
for the performance improvement of the low-level image processing, where 2D-CNN
implementations have a significant contribution.

The first implemented CNN circuits lacked programmability, being devoted to the
application of just one weighting template. The earliest realization we have found in lit-
erature, [Cruz and Chua, 1991], implemented a typical connected component detection
(CCD) operation. Since that, different proposals were shaping the implementation-
oriented simplifications of the original model: time discretization [Harrer et al., 1992],
high gain [Espejo, 1994], full range [Espejo et al., 1994, Espejo, 1994] or positive range
[Anguita et al., 1996], confirming the hardware and performance improvements ex-
pected. The work in reference [Espejo et al., 1994, Espejo, 1994] already included
photo-sensors for the direct focal plane image capture and [Espejo, 1994] gave the first
steps towards programmability.

We have chosen some representative implementations to illustrate the evolution
and the state of the art of the CPA for image processing implementations. We have di-
vided them in ASICs (Application-Specific Integrated Circuits), implementations over
reconfigurable hardware (basically Field-Programmable Gate Array -FPGA-), software
implementations over commercial parallel processors, and novel technologies including
3D architectures and nanotechnology.

1.5.1 ASIC Implementations

Specific implementations are typically mixed-signal circuits that have as basis a matrix
of analog processing elements with extensions for local operations and a digital control
system. Analog nature of the processing matrix allows the integration of photo-sensors
within the same processing element without the need of A/D converters, eliminating
the bottleneck of image transfer. The implementation of a distributed processor with
a pixel-PE correspondence and with sensor integration is the basis of the Vision Chips
and the horizon of CNN implementations for image processing.

ACE family are general purpose CNNUMs that make use of the FSR CTCNN
model. They include programmability and stored-program capabilities and all opera-
tive implementations, ACE400 [Domı́nguez-Castro et al., 1997], ACE4K [Liñán et al.,
2002] and ACE16K [Rodŕıguez-Vázquez et al., 2004], include integrated photo-sensors
for focal plane processing. Including D/A and A/D converters, the 128×128 ACE16K
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gray-scale implementation is prepared to be integrated in a fully digital system [Car-
ranza et al., 2005]. In fact, the ACE16K was integrated in the Bi-i Vision System
[Zarándy and Rekeczky, 2005] that has been recently used to realize a bionic eyeglass
prototype [Karacs and Radvanyi, 2010].

A redesigned version of the ACE16K was employed as the front-end of the first
Eye-RIS Vision Systems generations. The Eye-RIS family unifies into a single
chip the low and high level processing. They are conceived as the core of embedded
real time image processing systems that include the whole vision process (sensing -
processing - understanding and decision-making) at a high speed. In the last Eye-RIS
generations the ACE16K chip is substituted by the QCIF Q-Eye chip. The Q-Eye
chip significantly differs from ACE16K both at architectural and circuit design level.
Mainly, it incorporates a MAC (Multiplier Accumulator Circuit) unit that processes
the template application serially, despite of what computation times are similar to
those obtained with its predecessors. The Q-Eye improves the chip robustness, the
cells density and the power consumption and it even includes new functions in the cells
thanks to the area saving given by the MAC utilization instead of the replication of
multipliers [Rodŕıguez-Vázquez et al., 2008]. The Eye-RIS Vision Systems implement
actual commercial solutions by Anafocus [AnaFocus].

High gain [Paasio et al., 1996] and positive range [Paasio et al., 1998, Paasio, 1998]
output non-linearities led to significant simplifications into a completely binary image
processing CNN cell with binary (B/W) images in both inputs and outputs. On this
basis, the work in reference [Paasio et al., 1999a] achieves the QCIF standard video
format resolution (176× 144). Furthermore, [Paasio et al., 2002] proposes several new
optimizations starting from a separate implementation of B/W and gray-scale process-
ing cores. For example, gray-scale facilities can be conceived as dedicated while the
B/W core is programmable as implemented in [Paasio et al., 2003]. Another proposal
is the simplification to templates with 1-bit of programmability. On the one hand,
[Laiho et al., 2005] showed that this simplification does not imply any functionality
limitation, as any template operating over B/W images can be decomposed in a set of
1-bit programmable templates with a 2-bit programmability bias. On the other hand,
this proposal allows significant improvements in B/W implementations [Flak et al.,
2006c].

Based on these features it is proposed the MIPA4k a mixed-mode 64×64 cell array
image processor. This implementation includes image sensors, A/D/A converters, em-
bedded digital and analog memories and hardware optimized gray-scale (5-input order
filter and absolute value extraction) and binary processing cores [Poikonen et al., 2009].
In addition it can implement global OR and summation functions, synchronous and
asynchronous propagating neighborhood logic operations and space-dependent tem-
plate and bias operations [Laiho et al., 2009]. Although it does not implement the
theoretical universality of the original model, it implements a wide range of low-level
image processing operations with improved performance over other more universal im-
plementations.

SCAMP family represents a different approach for massively parallel focal plane
image processor. These implementations does not start from the CNN model but share
with it defining characteristics as analog processing with digital control and the hori-
zon of vision chip (SIMD paradigm with a pixel to cell correspondence and integrated
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sensors). SCAMP processing elements are programmable and general purpose. Local
connections are limited to the main cardinal points (4-neighbors connections, NEWS)
and are non simultaneously accessible but controlled by switches. System evolution
is governed by switches configurations [Dudek and Hicks, 2005] that realize the corre-
sponding analog switched-current operations in a discrete-time fashion. Latest imple-
mentation SCAMP-3 ([Dudek, 2005]) consists of a 128× 128 mesh of general purpose
highly optimized digitally programmable PEs. The SCAMP3 vision chip has been
successfully integrated in a low power vision system in [Carey et al., 2011].

ASPA family does not follow the CNN model either. It prefers a digital im-
plementation, more robust and more immune to noise, specially important as CMOS
technology evolves [Lopich and Dudek, 2011a]. In this case each PE combines a photo-
sensor with an A/D converter. ASPA2 [Lopich and Dudek, 2010] is the latest imple-
mentation of this family. It includes 80× 80 processing elements in a rectangular grid
with NEWS local connections and photo-sensor integration that operates in a SIMD
way with a central controller. It supports global operations (OR and summation) by
asynchronous binary propagation. A vision system including the ASPA2 vision chip
has been presented in [Lopich et al., 2011].

1.5.2 FPGA Implementations

Realizations over FPGA offer shorter time-to-market and lower price than ASIC in
exchange for parallelism reduction and no photo-sensor integration, what implies pe-
nalizing processing time, power consumption, and form factor or footprint. Although
mainly used for fast prototyping, as technology advances this is becoming more and
more feasible as a final product option.

Falcon architecture iterates the forward-Euler discretization of the CNN equa-
tion under the FSR model to digitally emulate a CNNUM [Nagy and Szolgay, 2003].
This architecture allows accuracy, and template and matrix size reconfigurability. Fur-
thermore, the GAPU implemented over the Xilinx MicroBlaze [Vörösházi et al., 2008]
makes it possible to implement complex CNN algorithms making it feasible a low cost
programmable CNNUM.

The implementation in [Nieto et al., 2008] proposes a topographic 48× 48 FPGA
implementation. It is devoted to B/W image processing with an SIMD type compu-
tation and NEWS local connections. It is area optimized and it provides a CNN-UM
functionality, although it does not implement the CNN model. In this proposal, op-
erations are realized through the combination of Boolean functions. Another general
purpose FPGA SIMD for image processing implementation is presented in [Nieto et al.,
2009]. In this case, it processes 8-bit gray-scale images by windowing images over 90
PEs. PEs comprise in this case an ALU providing addition, subtraction and multipli-
cation operations apart from the Boolean ones.

1.5.3 Software Implementations

As commercial CPUs and GPUs are improved in terms of parallelism, speed and power
consumption, software implementations are becoming an interesting low-cost option for
cellular processor arrays (CPAs) in general and CNN in particular.
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Cell heterogeneous multi-processor array and Storm-1 stream processor were
chosen, for example, for the implementation of a CNN simulation kernel [Nagy et al.,
2007, Furedi and Szolgay, 2009]. In both cases the CNN array is implemented from
the Euler-like discretized form of the original equation and the FSR model. The imple-
mentations achieve very good performance in the application of linear and, especially,
non-linear templates.

We have found as well several CNN emulators/simulators realized over GPUs [Soos
et al., 2008, Fernández et al., 2008, Dolan and DeSouza, 2009] that implement a dis-
cretized version of the CT-CNN model by making use of the CUDA (Compute Unified
Device Architecture) multiprocessor core programming language of NVIDIA. They are
intended to provide an accessible and fast CNN algorithm development environment,
but they can also deal with simple image processing algorithms offering real-time execu-
tion. In reference [Potluri et al., 2011] it is presented a GPU DT-CNN implementation
using the OpenCL framework as programming language. It makes the applications
vendor-independent, and makes it possible to develop the image processing algorithms
on multi-core CPUs, on GPUs or on clusters of GPUs. In all these cases, having that
GPU is a co-processor, the CPU still executes several tasks like those related to the
communication of data with the local memory, for example.

From another perspective, the platform-independent module APRON appears
as a general CPA fast emulation by making use of the CPU resources. It is intended
to support the whole CPA design cycle from the initial conception, modeling and
prototyping of the hardware to serving as algorithm development platform, simulator
and even hardware interface [Barr and Dudek, 2008]. Furthermore and thanks to its
high performance it could be used as a stand-alone array processing system in several
applications.

1.5.4 Novel Current Working Lines

The evolution in massively parallel systems requires nowadays new architectural and
device features to deal with the technology scaling problems.

CMOS 3D implementation technology has appeared as a good solution for the
low fill factor (ratio of photosensitive area to the total pixel area) associated to smart
sensors. This is due to the processor’s placement next to the sensors that at the same
time provides the pixel to processor correspondence and the avoidance of the transmis-
sion bottleneck. With 3D CMOS technology it is possible to keep the advantages of
smart sensors, providing full autonomous Vision-System-on-Chip (VSoC), and reduce
its impact to spatial resolution and optical sensitivity. The main idea in 3D technol-
ogy is splitting the multi-functional feature of the pixel among several stacked layers
vertically connected: the upper one is reserved for sensor integration and some others
for processing units and memory. In addition, it allows the use of different fabrication
technologies for CMOS sensing and processing circuitry to obtain an optimal imple-
mentation of both. Two smart sensors prototypes following this approach are presented
in [Lopich and Dudek, 2011b] and [Rodŕıguez-Vázquez et al., 2010].

In a different aspect, as downscaling in CMOS technology advances, undesirable
quantum effects appear. At the point where these effects become dominant new devices
that make use of the quantum mechanics emerge. They are the so-called Quantum
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nanodevices. Single-Electron Tunneling (SET) transistors are a good example of
these new nanodevices that could take up the baton of CMOS ones even without re-
quiring any new fabrication technology. Another devices in the same line are Resonant
Tunneling Diodes (RTD), Carbon Nanotubes (CNT), Memristors, or molecular, ferro-
magnetic or spin logic devices. At the same time architectures as Quantum Cellular
Automata or CNNs reveal as more suitable to combine with these nanodevices in order
to avoid the routing downscaling limitations [Flak et al., 2006a]. CNN implementa-
tion with SET transistors was analyzed in [Gerousis et al., 2002]. In [Flak et al.,
2006b] it was already introduced a neuron structure suitable for CNN implementation
in SET technology that could be used to build an extremely dense CNN for B/W im-
age processing. In [Khitun and Wang, 2005], authors introduce a nanoCNN scheme for
image processing based on RTDs, and in [Laiho and Lehtonen, 2010] it is suggested a
4-connected CNN implementation using memristors.

1.6 Summary and Conclusions

In this chapter we depict the characteristics of the CPA particularization we will use
along this thesis to illustrate our proposals. The Cellular Non-linear Network is a well
defined paradigm that has been completed as a universal machine and that has been
widely implemented from different approaches and with different optimizations, and
that in any case it is considered as a a good option for the implementation of visual
processors offering massive parallelism and, still, implementability with its character-
istic local connectivity. We will focus on the discrete-time model as our proposals will
require well-defined and predictable internal states at any moment. Nevertheless, our
proposals could be applied to the B template in a CTCNN, as its application also fits
those requirements.

Moreover, although the methodology proposed in this thesis is intended to be ap-
plicable to any discrete time hardware realization under the classical CNN system level
architecture, we have mainly focused on the B/W implementations with 1Q coefficient
circuits and 1-bit of programmability in the coefficient circuits, as they are more restric-
tive in the kind of techniques applicable (they do not admit gray-scale image feedbacks
and require binary template coefficients), and it is more difficult to have significant
optimizations at hardware level due to their intrinsic reduced area. We consider this
the worst case in the application of our proposal.



Chapter 2

Research Motivation and Related
Work

This thesis deals with two interesting challenges in CPA implementations: 1) the re-
alization of large neighborhood kernels while keeping local connectivity and 2) the
execution of any-sized kernels (3× 3 minimum sized or larger) with a reduced number
of local inter-PE connections and weighting circuits, and thus a reduced area compared
to conventional solutions. Actually, these two goals can be considered as two aspects
of the same objective: the implementations of kernels that overflow the hardware re-
sources, i.e. the number of weighting or coefficient circuits (CC). Both aspects are
tackled from the system-level point of view, trying to make the approach applicable to
any hardware realization with minimal modifications. In this chapter we give a brief
overview of the challenges to be tackled and we review the main works which deal with
them.

2.1 Large Neighborhood Challenge. Related work

A CPA is characterized by being a massively parallel system with global processing
capacity but local connections. This implies that a PE is physically connected only with
its nearest neighbors but it can interact with separated PEs thanks to the propagative
effects of the array dynamics of kernel application. The basic characteristic of local
connections makes this kind of systems very suitable for its hardware implementation.
But, as a consequence, the natural size of the templates to be applied is limited to the
smallest one (3× 3).

This is, on the other hand, an important limitation in the functionality of a CPA
as larger neighborhoods are needed in several image processing primitives as diffusion
or low-pass filtering operations [Vilariño, 2001], halftoning [Crounse, 1997], texture
analysis [Roska et al., 2000] or matching and hit&miss operations [ter Brugge et al.,
1998b], some of them used in algorithms like modern scale- and rotation-invariant
feature extractors like Scale Invariant Feature Transform (SIFT) and Speed-Up Robust
Features (SURF) [Lowe, 2001, Bay et al., 2008].

As it was previously indicated, a CPA can realize global processing taking into ac-
count the whole image information thanks to the propagative effects of the architecture.
According to this we can think in solving the remote neighbors interaction through the
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recursive application of templates. In fact, a recursive process can be summarized in
the application of a large neighborhood template. Nevertheless, the inverse process,
the decomposition of a LN template into several templates to be applied recursively, is
not trivial and different approaches have been developed to deal with this challenge.

The challenge is then to implement any kind of Large Neighborhood (LN) oper-
ations while keeping the local connectivity with affordable penalties in performance.
Our goal is to do it, in addition, with the minimum impact in the architecture at hard-
ware level. In this section we review the different approaches in the emulation of LN
templates found in the literature and we analyze the pros and cons of each one of them.
To ease the review we divide the approaches into three groups. The first group gathers
those solutions based on the mathematical decomposition of templates. The second
group goes through different approaches at hardware level. And finally, the third group
is based on the partition of large templates and the shifted-accumulation of the results
from applying the minimum size templates obtained. To complete the analysis we add
a forth group that gathers other solutions that do not fit in the previous categories.

2.1.1 Template Decomposition Solutions

The most representative work of this kind of approaches is the one presented by Slot
in [Ślot, 1994]. In this work the author addresses a set of solutions to have a suitable
decomposition of an any large neighborhood template into summations of applications
of 3× 3 templates. The proposals are based on the associative property of convolution
and convolution relationship with correlation (basic operation in CNNs) and are focused
on DTCNNs with a piece-wise linear output function.

These solutions can be applied to a generic N × N template that is recursively
decomposed in two (N − 2)× (N − 2) sub-templates up to have 3× 3 sub-templates.
The recursive nature of the approach is at the same time its main drawback as it leads
to a number of operations growing exponentially with the neighborhood order as a
worst-case upper-bound [ter Brugge et al., 1998c]. Likewise, the computational cost
of obtaining the adequate sub-templates can limit the utilization of this methodology.
Nevertheless these methods can offer good decompositions for small neighborhoods
(5× 5) and/or symmetric operators.

This proposal has two main disadvantages that we will try to overcome with our
approach. On the one hand Slot’s approach implies a high pre-application compu-
tational cost due to the mathematical decomposition in convolutions required. The
complexity of the decomposition can also be a drawback when implementing auto-
matic compilers to execute LN templates. On the other hand, Slot’s methods show
exponential growths in the number of resultant operations. It is interesting to note
that there are cases for which there exists a 3 × 3 that, applied recursively, emulates
the effect of the original larger template, being the number of iterations directly related
to the template size. This results in the most efficient general emulation technique and
it can be considered that Slot’s approach collapses to it in those particular cases.
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2.1.2 Hardware Solutions

Within this group there are solutions that implement the so-called LN-CNN imple-
menting the long distance connectivity in some way. For example, the authors in
[Akbari-Dilmaghni, 1998] suggest the grouping of the template coefficients by lines and
to pre-calculate the possible values of the contribution of each line when applied to a
bipolar image with +1 or −1 values. The actual image values select the actual contri-
bution to be added to the next line contribution. This proposal, limited in scalability
and versatility, requires bipolar image processing and it is more suitable for symmetric
templates. On its side, [Paasio et al., 2002] introduces the reduced programmability (1
or 2 bits) in binary image processing, which results in an efficient implementation even
with extended, but limited and fixed, second order neighborhood. Also, the authors of
[Wu and Chen, 2009] introduce the use of the so-called ”propagating connections”, ex-
tra weighting circuits within the cell that communicate the cell neighbors in horizontal
or vertical directions without incrementing the number of connections. With this it is
possible to realize diamond-shaped LN templates and approximate 5×5 templates with
some restrictions: the LN diamond-shaped template has to be a diffusing template (the
coefficient values have to decrease as the diamond neighborhood order increases) and
a coefficient in an inferior layer cannot be zero if the following layer coefficient is not
zero. The circuitry proposed can be shared between A and B templates to save area.

In a complete different line there are proposals of modification at device level. For
example, the POAC (Programmable Optical Array/Analogic Computer) introduces
an optical processing system that provides improvements at processing time, paral-
lelism, image resolution (array size), and template size (> 100 × 100), allowing the
realization of feedforward operations at the speed of light. This implementation is
combined with a CNN-UM chip with optical input that performs the computations
required for feedback and complex algorithms [Tökés et al., 2000, Ayoub and Tökés,
2003, Ayoub et al., 2004]. Another example is the implementation realized in [Yen and
Wu, 1999, Wu and Yen, 2001]. With the neuron BJT (νBJT), they take advantage of
the diffusion transport mechanism providing reduced chip area and easy photo-sensor
integration as well as large neighborhood connections [Chen and Wu, 2004] in a 4-
connectivity. Quantum-dot Cellular Automatas are used for cell implementation with
connection through the Coulomb law in [Chen and Wu, 2001], where the large neigh-
borhood interaction is implemented in a natural way. In a more classical CNN way,
authors in [Laiho and Lehtonen, 2010] suggest a 4-connected (NEWS) implementation
using memristors, nano-scale resistive memories of resistance programmable by pass-
ing charge through the device, as CNN weights. In this case LN operations can be
implemented at the only cost of increasing the programming time with a very reduced
area occupation. Unfortunately, CMOS/memristor hybrids are still just a promising
solution, but they are not commercially available yet.

The main disadvantage of this group of proposals is the dependence on the hard-
ware particularization. Our goals in the realization of large neighborhood communica-
tions are not impose special constraints over the characteristics of the LN kernel and
to keep the hardware modifications to a minimum. Of course, the area improvement
in absolute terms would depend on the original size of the realization in comparison
with the area occupied by the possible additional hardware required.
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2.1.3 Template Partition Solutions

The basic technique that brings together the solutions in this group is the direct par-
tition of the original template and the utilization of shifts to correctly accumulate the
partial outputs from applying the resultant fragments. We have found two main ref-
erences in the literature in this line, namely, [Crounse, 1997] and [ter Brugge et al.,
1998c].

In the first reference, [Crounse, 1997], the author starts from the associative and
distributive properties of convolution to establish a general partition-shift algorithm
to implement any-neighborhood templates, although the proposal presented is limited
to rectangular templates of dimensions multiple of 3. This approach is focused on B-
templates into CTCNNs, as it requires to know precisely the outputs at every moment.
In this case, the partition phase groups spatially the template coefficients in 3 × 3
templates, starting from the coefficients around the center of the original template.
The shifting is realized through convolutions over the partially-weighted images. The
number of operations grows following approximately a cubic law in the order of neigh-
borhood. Although not analyzed it is also commented the possibility of sharing shifts
to reduce the number of operations required, and the possibility of shifting the input
image before applying the sub-templates instead of shifting the weighted images.

An interesting contribution of this work is that it presents a canonical form based
on the convolution properties that gathers the so-called partition-shift algorithm and
the decomposition approach of Slot [Ślot, 1994]. Nonetheless, the kind of templates
provided and the way of applying them sets a significant difference in the applicability
of the different solutions. The solution in [Crounse, 1997] is considered more useful
when implementing LN templates that are sparse, asymmetric or have a complicated
non-zero support.

The second work, [ter Brugge et al., 1998c], starts from mathematical morphology,
stating its correspondence with DTCNNs operations, and the associative and distribu-
tive properties of the dilation and erosion operations. The basic idea is to decompose
the large structural element (SE) of the morphological operation into the union of
several shifted minimum-sized sub-elements of 3 × 3 pixels. This implies that the ap-
plication of each sub-element can be independent of the rest (distributive property)
and so realized by means of minimum size DTCNN templates. This analysis has two
main limitations. On the one hand, it is limited to those DTCNN operations that are
straight derivatives of morphological functions [ter Brugge et al., 1998a], and it limits
the image processing to binary images and templates or implies the utilization of non-
linear templates (gray-scale morphology, [Zarándy et al., 1996]). On the other hand,
as in [Crounse, 1997], it is limited to templates with dimensions multiple of 3. Other
methods of fragmentation devoted to obtain an optimal fragmentation ([ter Brugge
et al., 1998c], [ter Brugge et al., 2004]) do not have this restriction, but are strongly
based on the structural element shape and are restricted to certain characteristics of it.
The shifts are referred to the sub-elements, although we understand that in the actual
application they would be applied over the initial image or the partially-weighted image
as in [Crounse, 1997], what is coherent within the description thanks to the dilation
property that implies the equivalence of shifting the SE with shifting the image to be
dilated or the dilated image. As in [Crounse, 1997], the number of operations grows
with a cubic order in the template size. This growing is improved by the sharing of
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the shifts, also mentioned in [Crounse, 1997], leading to a quadratic law.
Another reference to a kind of partition and shift method is found in [Koskinen

et al., 2004]. In this case it starts from splitting templates and shifting results to im-
plement a 9 × 9 (n = 4) template with a certain hardware modification. The novelty
of this proposal is that it gathers the contribution of the 3 × 3 sub-templates in their
correspondent central cell and shifts the results by means of physical connections be-
tween the central cell in the original template and the sub-templates central cell. This
proposal lies midway between a physical implementation of the large neighborhood and
the partition and shift concept. The main limitation of this proposal is that it is no
more effective in large neighborhood orders because of the hardware complexity that
implies.

The methodology and techniques presented in this thesis belongs to this category
of approaches and can be considered together with [Crounse, 1997] and [ter Brugge
et al., 1998c] ones. In our case we set a simpler scientific foundation (the associative
property of addition) and we develop particular techniques for each phase extending the
methodology applicability to templates of any size in both G/S and B/W realizations.

2.1.4 Other Solutions

Within the oldest approaches for the LN template emulation we find [Akbari-Dilmaghni
and Taylor, 1996]. This work is based on the assumption that there is a 100% corre-
lation between adjoining pixels from different neighboring orders in the input image.
Under this supposition the pixel value is extracted as a common factor in the weighting
equation, making the large neighborhood template to collapse into a 3 × 3 template.
The possible error introduced by the initial assumption grows with the neighborhood
and it is corrected through a space-variant polarization map Iij. The work is set for
CTCNNs with bipolar [−1, 1] images. The still complicated application of this ap-
proach together with the requirement of polarization maps are the main disadvantages
of this approach.

Finally, in [Geese and Dudek, 2010] Geese proposes the use of Marching Pixels to
realize operations requiring long distance data transfer in SIMD. Although the proposal
does not refer specifically to LN operations, these could be thought as a possible appli-
cation of the same technique. This approach consists of the movement and switching
of pixel values in the grid and is based on the use of memory to save the pixel and
desired positions and in the use of a checkerboard mask. The use of an extra register
makes them affordable in number of steps. The main disadvantages are the required
usage of memory and the requirement of a checkerboard mask. Nevertheless it is just
an application hypothesis as it was not applied to LN operations yet.

2.2 Area Reduction Challenge. Related Work

The CPA characteristic of massive parallelism represents a great contribution to image
processing but it is, at the same time, one of the main challenges in its physical imple-
mentation. In fact, on focal-plane processors with a pixel-to-PE/processor assignment,
the area occupation is not only a matter of cost or hardware size but it affects the
image resolution and, in the classical 2D implementations, the pixel fill-factor. The
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second challenge to be tackled is the reduction of the area occupied by the PEs in or-
der to implement a significant number on a single chip to actually exploit the inherent
parallelism of the CNN paradigm.

The different ideas found in the CNN literature are mainly devoted to the weighting
or coefficient circuits, either reducing their size or their number, as they represent an
important part of the PE area. Of course, the most significant results would come from
the combination of both possibilities.

Leaving aside pure circuit improvements, the most important approaches at system-
level within the hardware simplification option are the transitions to systems limited in
sign (from 4Q systems to 2Q or even to 1Q [Hegt et al., 1998, Brea et al., 2004a]) and
value (binary images and kernels with 1 bit of programmability [Paasio et al., 2004]).

On the reduction of the number of coefficient circuits we have different contri-
butions that come from the simple analysis of operations (in reference [Paasio et al.,
1999b] authors reduce from 18 to 10 coefficient circuits at the sight of most common
operations), to time multiplexing between A and B kernels (just one complete 3 × 3
template physically implemented -9 CC- as in [Paasio et al., 2002]) or multiplexing
in time the application of the elements of the kernel over a single coefficient circuit
implementation ([Sargeni et al., 2005]), both for DTCNNs. Within this line we have
as well solutions that emulate an 8-connectivity with a 4-connectivity as that shown
in [Ślot, 1994] or the referred in [ter Brugge et al., 1998c].

Supporting this second line, the work in [Dudek, 2004] discusses the inefficiency of
9 coefficients implemented per template and it suggests that a drop in the number of
coefficient circuits might lead to a better performance, i.e. to a cell with better figures
of merit. Following this, we look for a reduction in the number of CC required without
drawbacks at functional level, allowing even the LN kernels implementation.

2.3 Summary and Conclusions

In this chapter we have gone through two challenges in CPA visual processing solutions:
the implementation of operations implying large neighborhood interaction and the
reduction of the area occupation. Both challenges can be seen as two aspects of the
same one: the application of templates that overflow the hardware resources, seen these
as the coefficient circuits physically implemented. We have also reviewed related work
and previous solutions found in the literature for both challenges.

The contributions about LN implementation found in the literature go from dif-
ferent ways of physically implementing the long distance connections, including new
devices, to mathematically decomposition or the straightforward breaking of the tem-
plate. Our goals in the realization of large neighborhood communications are do not
impose special constraints over the characteristics of the LN kernel and keep the hard-
ware modifications to a minimum. In so doing, we look for making the proposal appli-
cable to any kind of linear template and adaptable to any hardware particularization
with minimum limitations. Taking this into account, we have headed our efforts to
algorithmic or system-level general solutions. We look, as well, for the applicability
of the approach to both B/W and G/S processing. This implies that approaches as
the simple template recursion, when possible, or even the template decomposition of
Slot, cannot be taken as solutions as they require G/S image feedback, not applicable
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in architectures that only deal with B/W images like [Paasio et al., 2004]. Template
partition solutions fit this requirement when considering image shifting as the mini-
mum sized templates are applied independently and the partial output is not fed back.
Furthermore, these techniques imply smaller performance drawbacks than Slot’s de-
composition in G/S processing for templates of neighborhood larger than two. The
complexity of obtaining the 3× 3 templates is another advantage of the partition and
shift techniques as they only require spatial grouping of coefficients from the original
template. The simple template recursion is, whenever possible, the best performance
option but, unfortunately, it is not generally applicable.

The second of the challenges is the reduction of the area occupation by acting
over the weighting circuits. Apart from pure circuit improvements, we have found
approaches within two lines in the literature: the circuit optimization by means of
system-level restrictions and the reduction of the number of coefficient circuits. The
first line leads to B/W implementations with even reduced programmability and the
second line leads, in some cases, to a reduction in the functionality. Both lines are
combined to obtain larger area reductions. Our goal in area reduction looks for no
penalties at functional level in being applied to both B/W and G/S realizations. Al-
though our proposal goes through the reduction of the number of coefficient circuits, we
also consider the possibility of combination with demanding system-level restrictions
leading to B/W implementations.





Chapter 3

Split and Shift Methodology

In this chapter we develop the Split and Shift (S&S) methodology, our proposal for
dealing with templates that overflow the weighting circuits availability on a CPA, which
includes long distance communications in the application of large neighborhood (LN)
kernels, and the application of any-size kernels over a reduced connectivity CPA imple-
mentation. In the methodology development we set guidelines and propose techniques
within an in-depth and rigorous analysis of their implications at hardware and process-
ing time level. For the assessment in the area occupation reduction we have defined
a Figure of Merit (FoM) to evaluate the benefit-penalty trade-off (area reduction vs.
processing time increment) and we have used it to choose the most adequate techniques.

Although the same methodology deals with both challenges (LN and reduced
connectivity), the techniques and required analysis are different in each case, and they
are treated separately after the introduction of the general lines of the methodology.
The combination of both challenges are thoroughly analyzed at the end of the chapter.

3.1 S&S Methodology General Lines

Split and Shift (S&S) is the name we give to the partition and shift methodology that
we have developed to allow the application of templates that require more weighting or
coefficient circuits (CC) than those available on a particular CPA implementation. We
have focused, then, on dropping the number of required inter-PE connections along with
their corresponding CCs, however the template dimension, 3×3 or larger neighborhood
ones.

In short, our methodology is based on the DTCNN state equation (Eq. 1.5) seen
as a summation of products (Eq. 3.1). With this, the associative property of addition
can be applied and the equation can be re-written into several sub-additions. This,
in turn, suggests splitting large neighborhood or 3 × 3 templates into smaller ones
by grouping the coefficients spatially. These sub-templates are applied separately as
an associated group of template coefficients. The partial outputs are then summed
to complete the original template application, obtaining the new state x(T+1) from
which the output is calculated. The result is exactly the same as that of applying the
original template over a full-coefficient-circuit implementation. Although illustrated
for DTCNNs, the S&S methodology is applicable to CPA architectures in general with
the only requirement of having accessible, predictable and stable states at every clock

29



30 CHAPTER 3. SPLIT AND SHIFT METHODOLOGY

cycle, i.e. it can be applied to synchronous deterministic implementations, including the
control template B in a classical Continuous Time CNN implementation. In addition,
although DTCNN definition is originally completed with a threshold output function
(Eq. 1.4) that restricts the outputs to binary values, similarly to the expected saturated
outputs in the continuous time version, this is not a S&S requirement, and different
output functions allowing G/S outputs can also be possible.

xij (T + 1) = aijkl ykl(T ) + aijpq ypq + aijrs yrs(T ) + . . . +

+bijkl ukl(T ) + bijpq upq(T ) + bijrs urs(T ) + . . . + iij (3.1)

Based on the interchangeability of A and B templates in DTCNNs, we generally
start our analysis from the consideration of an 8-connected kernel of 9 elements, and
not from the whole CNN classical operation comprising two, A and B, templates.
Furthermore, this one-kernel is a more usual case on a CPA executing classical low-level
image processing operators. The two-template CNN case is considered as a particular
extension, where the two templates are executed in parallel if the required hardware
is available, or run successively to combine their results in other cases. As it will be
shown, the physical availability of hardware for two templates widens the possibilities
of the proposed techniques. The bias term does not have influence in the application
of the S&S techniques as it can be added at any moment prior to the application of the
output function. 4-connected patterns are also considered as a particular case within
the hardware reduction part.

The S&S methodology comprises two phases that can be understood as a prepara-
tion phase and an application phase. The first one, Split Phase, consists of grouping the
coefficients that compound a template into several minimum-sized 3×3 sub-templates,
either full dense, or sparse if considering a reduced connectivity pattern (reduction of
the CC), always respecting their original relative positions. That is, we ”split” the
original (2n+ 1)× (2n+ 1) template (with n being the neighborhood order, an integer
number greater or equal one) into several sub-templates. This phase has to take into
account the final resources availability in order to adapt the new sub-templates to them.
The second phase (Shift Phase) comprises the appropriate application of the resulting
sub-templates and the collection, by means of shifts, of their outcomes at the central
cell of the original (2n+1)×(2n+1) neighborhood. The (2n+1)×(2n+1) original tem-
plate response is then approached by the combination of two types of minimum-sized
kernels or templates:

• Decomposition templates or sub-templates, obtained from spatially grouping the
coefficients of the original (2n+ 1)× (2n+ 1) template.

• Shift templates, needed to have the contributions gathered by the sub-templates
at the central cell of the (2n+ 1)× (2n+ 1) window to be accumulated.

The methodology has two variants depending on the order of application of these
templates. If we first apply a sub-template the weighting result is obtained in general in
a cell different from the original central one and it has to be shifted to it. On the other
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Figure 3.1: System-level architecture for the application of S&S methodology
in image shifting mode.

hand, if we adequately shift the original image prior to a sub-template application, we
have the partial results directly in the referred central cell. In so doing, we have two
different system-level architectures and application algorithms:

• Partial result shifting mode. It is the most straightforward approach. In this
variant the sub-templates are applied over the original image, and the results
have to be shifted from the cell where they have been obtained to the central cell
to be accumulated. We also refer to it as the fixed image mode.

• Image shifting mode. This variant shifts the image to be weighted to make coin-
cide the large neighborhood template center with the center of the sub-template
to be applied. The partial output is directly obtained at the cell of interest,
where it is accumulated. This variant has the advantage of not requiring G/S
feedback when working with B/W images. We also refer to this variant as the
shifted image mode.

Additionally, we can consider the possibility of sharing shifts in order to reduce
the number of operations. In the fixed image mode, to share shifts implies that the
partial outputs are gathered on their way to the central cell, being added to the next
sub-template partial result at the cell where the latter is obtained. In the shifted image
mode it means that new shifts are applied to the previously shifted image, without the
need to keep the original image if we always use shift-sharing.

The system-level architecture for the image shifting mode is shown in Fig. 3.1.
The image (original or shifted) is taken from a locally distributed memory (either
analog - Local Analog Memory, LAM - or logic - Local Logic Memory, LLM) and it is
shifted. Afterwards, if no other shift is required, the sub-template is applied over the
shifted image. The internal state (the partial result is taken before the output function
application) is accumulated in a LAM as a gray-scale value. The process is repeated
until all the sub-templates have been run and all their contributions are gathered in
the LAM. At that moment, the value in the LAM is exactly the same as the internal
state that would be provided by the original template application. The last step will
be the application of the output function to this value.

The system-level architecture for the fixed image mode (Fig. 3.2) interchanges the
order of application of the two kinds of operations. First, the sub-template is applied
and then the partial output is shifted to the LN template central cell if we opt for the



32 CHAPTER 3. SPLIT AND SHIFT METHODOLOGY

LAM

+

(B/W-G/S)

(G/S)

ShiftSub-temp.

Image
Mem.

(G/S)

Figure 3.2: System-level architecture for the application of S&S methodology
in partial result shifting mode.

non-sharing option, or to the central cell of the next sub-template to be run, if we decide
to share the shifts. The accumulation is realized in the LN template central cell in the
first case and in the subsequent centers of the sub-templates in the second one. This
fixed image mode demands the feedback of gray-scale images to be shifted, the partial
outcomes to be accumulated, and could be affected by internal state range restrictions
that should have to be tackled. In both, image shifting and result shifting modes, the
combination of shift-sharing and no-shift-sharing will require the availability of one or
two more memories.

3.2 S&S for LN Template Emulation

After the general introduction of the methodology, in this section we tackle the appli-
cation of the methodology in the emulation of large neighborhood templates by the
application of minimum-sized templates (3× 3). The objective is to improve the func-
tionality of locally connected implementations with minimum penalty at hardware or
processing time level.

In Section II of the CNNA05 paper (Appendix A, page 99) we introduce the S&S
methodology through its particularization for 5× 5 templates to ease the understand-
ing of the process. Section III of the same paper and Section II (erroneously named
“Large-neighborhood splitting methods” instead of “Large-neighborhood S&S meth-
ods”) in the DCIS05 one (Appendix A, page 105) refer the methodology application for
a general (2n+1)×(2n+1) template. Both papers depict the system-level architecture
for the image shifting mode, what is the only option for the binary implementation
they consider, with some differences if compared to Fig. 3.1 shown above. Fig.2 in
CNNA05 paper represents the system-level architecture limited to a 5 × 5 template
realization. Fig.1 in DCIS05 paper redraws the architecture including recursive shifts,
needed for larger templates (more than one shift step is required per sub-template) and
for shift-sharing. According to the binary implementation, in both papers the image
(original or shifted) is taken from an LLM and shifted. In addition, in those figures
we show shifts as complete CNN operations including the output function application.
Actually, this step is not necessary in the shifting operations and it is avoided in the
sub-template application. Whether or not it is applied would depend on the particular
circuit realization.
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Splitting Techniques

To choose the adequate technique for the splitting is critical for the final number of
operations (both shifts and sub-templates). If we have templates with a size multiple
of 3 × 3, the spatial grouping and split is straightforward and we will have sparser or
denser templates in function of the value of the coefficients in the original template.
Nevertheless, with a different template size (e.g. 7×7 or 11×11), we obtain incomplete
3× 3 templates during the split phase that have to be completed with zeros. We have
several options for grouping the template coefficients, leading to different number of
sub-templates and shifts in the following phase, hence different time performances.

We have observed that, as a general rule, we reach the minimum number of sub-
templates with a regular grouping process starting from the template corners, against
the intuitive thought of beginning from the central sub-window adopted in Crounse
[1997] or ter Brugge et al. [1998c], which were devised for templates of sizes multiples of
a 3×3 neighborhood. Otherwise, corner coefficients might be left isolated, yielding more
sub-templates. In addition, incomplete sub-template overlapping reduces the number
of shifts as the sub-template centers are moved closer to the LN template central cell.
Overlapped template elements are substituted by zeros that can be distributed within
the neighboring sub-templates to make the power consumption more homogeneous
in the sub-template application (assuming that zero coefficients imply lower power
consumption).

These issues are illustrated for a generic 5×5 template in the second section of the
(CNNA05) paper (p.99). Clearly, in a 5×5 neighborhood the minimum number of 3×3
sub-windows is four and it comes out from corner starting (see Fig.1 in this paper).
The sub-templates centers are chosen taking into account the sub-template overlapping
option as the distance between sub-templates and template centers are clearly shorter
with it. Overlapped template elements made null are shown in Fig.3 in the paper.
Sub-template overlapping is introduced there as an interesting way of obtaining a more
robust template by reducing the number of non-null template elements. Nevertheless,
this statement is not completely true as the considered robustness definition is applied
over complete CNN operations, i.e. including the output function application. In our
case the partial output provided by the sub-templates application have to be summed
before applying the output function and so we cannot extract any conclusion from that
definition.

With these guidelines we propose three split techniques that are shown over a
13×13 template in Fig. 3.3: concentric (Fig. 3.3.a), by rows (Fig. 3.3.b), and recursive
(Fig. 3.3.c). As 13 × 13 is not a multiple of 3 × 3 the splitting results in incomplete
sub-templates that have to be completed with zeros. In the image we have grouped
the coefficients over the original template, and we have marked the groups with thick
lines. We have also marked with dashed thick lines the starting groupings. The first
two techniques directly group the template coefficients in minimum-sized templates
starting in the four corners in case a), and in the upper-left one, for example, in case
b). They produce the same number of sub-templates, which is given by Eq. 3.2, where n
is the order of neighborhood and we assume squared templates of size (2n+1)×(2n+1).
The ceiling function d e produces the smallest upper integer of its argument.
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a) b) c)

Figure 3.3: Different splitting methods over a 13×13 template. a) Corner start-
ing and concentric decomposition. b) Corner starting and by rows
process. c) Corner starting with recursive decomposition. Starting
groupings in dashed thick lines. Sub-templates centers shadowed.

D(n) =

⌈
2n+ 1

3

⌉2

(3.2)

The third technique implies recursive decomposition into four main sub-templates
that are sub-sequentially divided until achieving 3× 3 ones. Fig. 3.3.c shows the four
5 × 5 starting sub-templates in dashed thick lines, that are afterwards sub-divided
in already minimum-sized sub-templates, mostly incomplete in this case. Due to the
recursion, it provides larger or equal number of incomplete sub-templates and, conse-
quently, larger or equal number of total sub-templates than the first two techniques.

As a rule of thumb, we will have less number of decomposition templates if 1) we
choose non-recursive, i.e. direct 3 × 3, splitting; 2) if we start the splitting from the
corners; and 3) if we follow a continuous ordered process by rows or in a concentric
way. Nevertheless, the recursive technique could render less shift operations due to the
natural spatial result gathering if we decide to combine CNN and hardware shifting
applying the proposal of Koskinen et al. [2004] for the final shifts. Still, provided that
this technique implies a more complex decomposition and it would be interesting only
with hardware specifically dedicated to shifting operations, we will center the study
over the two first techniques. Finally, the centers of the incomplete sub-templates, and
thus the allocation of coefficients in them, will be selected with a view to having a
minimum number of shifts in the partial-outputs path to the LN template central cell.
This will depend on the shifting technique.

Shifting Techniques

The minimum number of shift operations (i.e. the number of shifting templates) relies
1) on the window-split method that determines the position of the sub-templates,
and the distance between their centers and the LN template center, and 2) on the
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shifting technique chosen, that determines the shifting path/s. In the incomplete sub-
templates the center is not fully determined by the splitting technique and can be
chosen in the most favorable position according to the shifting technique. The shift-
sharing avoids redundant shifts, diminishing the actual number of operations and, thus,
the computation time.

Neither the number of shifting operations, and clearly nor the number of sub-
templates, depend on the S&S mode chosen, image or partial-result shifting. Never-
theless, it is important to take into account that the choice implies a different order in
the application of the sub-templates when applying shift-sharing. In the case of partial
result shifting with shift-sharing we start from the outer part of the LN template. We
apply an outer sub-template and we shift the result to the central cell of the next
sub-template (i.e. the cell where we are going to obtain the next sub-template contri-
bution) to pick up the new partial result, and so on until reaching the LN template
central cell. In this case, shift-sharing can imply keeping partial result accumulations
to wait for partial accumulations of different shifting paths that converge in the same
path to the LN central cell. In the case of image-shifting we start shifting the image to
make the central pixel of an inner sub-template coincide with the LN template central
cell. The result of applying the sub-template is calculated, then, directly in the LN
template central cell where we will accumulate all the partial results. The next shifts
are applied over the shifted or the original image as convenient to yield the minimum
number of shifting operations. According to the shifting technique, shift-sharing can
imply to keep different shifted versions of the image when the route to the LN template
central cell is divided in branches.

Regarding hardware implications, the number of memories required is the same
for image and result shifting S&S modes. The difference lies in the type of memories
required: in general we would require analog or digital memories with several bits but
they could be 1-bit memories for image shifting if we have binary images except for the
S&S partial results accumulation memory. This is coherent with the processing type
required in each case.

Taking into account these considerations we have developed the shifting tech-
niques. Fig. 3.4 displays the three main techniques. They are shown over a 13 × 13
template with a corner starting concentric way splitting. We have chosen this splitting
option because it is more symmetric around the central cell, which can improve the
technique homogeneity and, depending on the chosen shifting technique, even reduce
the number of shifts. We consider shift-sharing in all of the selected proposals. Of
course, not sharing shifts is also an option, but it implies a larger increment in the
number of operations, more important as the neighborhood order increases. In that
case each partial result is independently shifted to the LN template central cell in out-
put shifting, and the image is shifted for the application of each sub-template starting
from the original image in image shifting.

In Fig. 3.4 the arrow heads mark the beginning of the shifting path along the sub-
templates centers (shadowed) over the 13× 13 region covered by the original template.
In the case of image-shifting the image is shifted to apply the sub-template over the
correct part of the image and provide the result directly at the cell of interest. The
arrow heads mark in this case the last pixel shifted to the central cell on a given route.
In the case of result shifting the sub-template is applied over the original image and the



36 CHAPTER 3. SPLIT AND SHIFT METHODOLOGY

a) b) c)

Figure 3.4: a) Central shifting. b) Zig-zag shifting. c) Spiral shifting. Sub-
templates centers shadowed. Shifting path beginnings marked by
the arrow heads.

result is obtained at the cell that corresponds to the center of the sub-template. The
result is afterwards shifted to the cell of interest following the shifting path through the
rest of the template centers and gathering the rest of the partial results in the path.
All the paths showed consider shift-sharing.

In the central shift technique (Fig. 3.4.a) we have to re-start the shifting several
times, i.e. taking several times the original image in image shifting or realizing several
partial accumulations in result shifting. In both cases this technique implies more
usage of memories. In the case of the zig-zag technique (Fig. 3.4.b) we have a two-
starting-point process, which means to start again from the original image to apply
the second half of templates or to accumulate the partial results in two parts. As
shown in Fig.5.b in CNNA05 paper (p. 99), zig-zag could be realized as a continuous
process with only one starting point with some more shift operations, those required
to start with a corner template application in image shifting or to shift the final result
accumulated from a corner, but with less usage of memories. The spiral technique
(Fig. 3.4.c) implies a one starting point process, i.e. a continuous result accumulation
or consecutive image shifting. One of the advantages of the latter approaches over
the central one is the regularity in the template application what makes the process
simpler both for manual and automatic application. In addition it has a consequence
as well on the number of memories required. In the first case (central) we will need
four memories, one for the original image, one for the final result accumulation, and
two for the intermediate steps. In the second case (zig-zag) we will need three, one
for the intermediate step. In the spiral case we will need just two memories, one for
the image (shifted or original) and one for the partial output accumulation and final
result. They will be two as well for the zig-zag case if we realize a continuous process
instead of starting from two different points.

The number of shifts is given by Eq. (3.3), Eq. (3.4) and Eq. (3.5) for the central,
zig-zag and spiral shifting respectively. These equations have been obtained by induc-
tion, taking into account three different classes of templates: those that are multiple of
3× 3 (n = 1 + 3i, being i an integer ≥ 0); those that provide incomplete sub-templates
with dimension 2 (2 × 3, 3 × 2 or 2 × 2), being the representative template the 5 × 5



3.2. S&S FOR LN TEMPLATE EMULATION 37

(n = 2 + 3i); and those that provide sub-templates with dimension 1 (1 × 3, 3 × 1
or 1 × 1), being the representative template the 7 × 7 (n = 3 + 3i). These different
classes present particular situations in the sub-templates center distribution and re-
quire corrections in the general equations. These corrections are gathered in Eq. (3.3),
Eq. (3.4) and Eq. (3.5) governed by the remainder function (rem), that provides the
remainder of the division contained, and the floor (b c) and ceiling (d e ) functions, that
provide the nearest lower and upper integers of their respective arguments. Eq. (3.3)
is corrected for the 5 × 5 template class; Eq. (3.4) is corrected for the 5 × 5 template
class in the first correction term and for the 7 × 7 in the second one; and Eq. (3.5) is
corrected for both, 5 × 5 and 7 × 7 classes, in the same term. Note that Eq. (3.3) is
valid for n > 1 (i.e. > 3× 3). In all of the equations we have a quadratic behavior, but
with slightly better results for the central technique. Fig. 3.5 shows graphically the
behavior of the number of shifts with the neighborhood order for the three techniques.
Note that the spiral and the zig-zag techniques result in the same number of shifts in
template sizes multiple of 3× 3 but spiral technique slightly improve the zig-zag num-
bers in the rest of the cases. The main advantage of the zig-zag and spiral approaches
over the central one is the regularity in the template application, which makes the
process simpler both for manual and automatic application. We can improve the spiral
results for the 5 × 5 and 7 × 7 classes, and the zig-zag results for the 5 × 5 one if we
combine the techniques with the central shifting in the 5×5 and 7×7 resulting central
templates in a concentric split. It is shown in Fig. 3.6 for the spiral shifting technique
where 5× 5 and 7× 7 central cores are shadowed and the corresponding sub-templates
centers are shown in a darker gray. Arrow heads indicate the beginning of the shifting
routes in the template sizes shown. The zig-zag improvement process for the 5 × 5
class is the same as that illustrated for the spiral technique in Fig. 3.6.a. Nevertheless,
these improvements imply more irregularity in the S&S application, what is the main
advantage of these two approaches over the central one, with a not very significant
lower number of operations.

S(n) =
4

3

(
n2 − n+ 3− 2 · ⌊rem(2n+1

3

)
2
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3
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2
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In the LN emulation generalization presented in Section III of CNNA05 paper
(p. 99) we also consider the non-shift-sharing approach (”independent shift approach”
in the paper) and it is clearly shown its inefficiency in Fig. 6 of the same paper. The
three shifting techniques considered (independent a), zig-zag b), and spiral - named
concentric- c)) are shown in Fig. 5 in the paper. Note that the independent technique is
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Figure 3.5: Comparative of the number of shifts required for different shifting
techniques in function of the neighborhood order.

a) b)

Figure 3.6: a) Shift optimization for a 5 × 5 core. b) Shift optimization for a
7× 7 core.
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a central technique, non-optimized if we apply shift-sharing. The figure corresponding
to the spiral technique (”concentric” in the paper) presents an error that is corrected in
Fig. 2 of DCIS05 paper (p.105). Fig. 3.4 c) in this section shows a different election of
the sub-templates centers that does not affect to the total number of shifts but to the
distribution of template elements in the sub-templates affected. The zig-zag technique
in CNNA05 paper (p. 99) uses the by-rows split technique just affecting the allocation
of sub-template centers and the distribution of template elements. It does not affect
the number of operations in the zig-zag technique but it is not adequate for the spiral
one. Its regularity could be advantageous in automating when choosing zig-zag shifting
technique.

A final interesting comment is that we can apply two operations simultaneously
in a DTCNN with a two-template hardware implementation. In the output shifting
mode we could apply simultaneously a sub-template and the shift-accumulation of
the previous partial result. Similarly, in the image-shifting option we could apply
simultaneously two sub-templates over different shifted images, which, on the other
hand, would lead to an extra image memory. If we have a one-template operation
this combination of two operations in one would reduce significantly the number of
operations. We reduce the number of operations in half of the sub-template applications
in the case of image-shifting and in almost as many shift operations as sub-templates
obtained in the splitting phase for output-shifting. If we have a two-template operation
both templates emulation can be applied simultaneously, except for the image shifting
in image shifting mode if input and initial state are different.

S&S for LN Emulation: Example of Application

Fig. 3.7 illustrates the whole LN emulation process for a 5× 5 diffusion template with
the S&S image shifting mode. Original 5 × 5 template is shown in the upper-left
part of the figure. The template is already broken in four groups of elements. We
opt to distribute the elements in the groups in a more homogeneous way to balance
the power consumption in the sub-template application. The resultant sub-templates
are all incomplete and they have to be completed with zeros. We overlap the sub-
templates in those new-null positions to reduce the distance between original template
central position and sub-templates central positions, what reduces the number of shifts
required. The resultant sub-templates (Di) and the required shifting templates (Si)
are shown in the upper-left part of the figure. In the process representation, shifts are
circled and sub-template application squared. Original image and final internal state
are framed. Internal states resultant of shifts and sub-templates application and partial
accumulations are shown along the sequence. Shifts outputs are shown over a grid to
ease the perception of the effect. The final image matches the internal state given by
the direct application of the 5 × 5 template. All these images come from simulations
of CNNs of minimum and large neighborhood connectivity in Matlab.

Figures 3 and 4 in CNNA05 paper (p. 99) show another view of this application
example. Despite the G/S final output, this example was thought to be implemented
with a particular binary implementation with a G/S module that operates with this
output Brea et al. [2004b]. The diffusion template is considered, there, homogeneous
with all its coefficients set to 1. Here the diffusion template is kept in real numbers
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Figure 3.7: Application of a 5×5 low pass filtering template with 3×3 templates
and image shifting.
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to easier the following of the example. The application of this example is shown in
Sections III and IV of DCIS05 paper (p. 105). The extraction of an internal potential
that guides the binary contours to smooth their shapes is originally realized through LN
diffusion kernels. This kind of kernels are substituted in G/S circuits by the recursive
application of minimum-sized kernels. With the S&S methodology they can be applied
even in binary implementations with an additional LAM implementation. The effect
of the internal potential in smoothing contours is shown in Fig. 6 and 7 in DCIS05
paper. Fig. 8 in that paper illustrates the application of this feature to a robot guiding
algorithm.

S&S Techniques Discussion

Fig. 3.8 shows the total number of operations of the S&S techniques considered (central,
spiral and zig-zag with concentric splitting) together with the number of operation
required by other LN emulation techniques, in particular the Slot’s decomposition
proposal (Ślot [1994], considering the number of operations given in ter Brugge et al.
[1998b]) and the Crounse and Brugge’s template partition approaches (Crounse [1997],
and ter Brugge et al. [1998c] and ter Brugge et al. [1998b] respectively). We have
used an upper bound approximation for the Crounse proposal as the function given in
Crounse [1997] is recursive and dependent on the LN template size. For Brugge we
have included both shift-sharing and no shift-sharing approaches. Crounse approach is
probably closer in number of operations to the no shift-sharing Brugge’s approach. Note
that we do not include line connection in these three last representations. This indicates
that these proposals are restricted to certain neighborhood orders, in particular to those
that provide 3× 3 multiple templates. We include as well the unit slope function that
represents the number of operations required by the simply recursive application of a
3× 3 seed template when it exists.

It is apparent that, when possible, the 3 × 3 seed is the best option. Within the
generally applicable decomposition techniques, we observe in this figure the inefficiency
of the general Slot’s proposal versus the partition techniques. Partition techniques are
the only ones that can apply LN template emulation in binary architectures. Within
the S&S approaches those that do not consider shift-sharing offer worse results. As it
could be expected Brugge’s approach coincides with zig-zag and spiral approaches in
template sizes multiple of 3× 3 . Central technique is the best of the S&S proposal in
number of operations but it is irregular.

At Fig. 4 in DCIS05 paper (p. 105) we can see that, under supposition of 50
ns per operation for binary implementations (for S&S) and 1 µs per operation for
general gray-scale implementations (for seed recursion), the proposed techniques can
be comparable (and even better) than the 3×3 recursive seed technique up to orders of
neighborhood of 10 (i.e. 21× 21 templates). This is also true up to n=5 if we consider
100 ns per CNN operation in the binary implementations. Finally, we could have up to
400 µs per operation to keep video rate processing (25 frames/s) with 100 operations
per frame. Considering 1 µs per 3 × 3 CNN operation we could apply 100 of 31 × 31
templates. The numbers shown were obtained for the spiral technique.
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Figure 3.8: Comparative of the number of operations required for different LN
emulation techniques in function of the neighborhood order.
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3.3 S&S for the Hardware Reduction

In this section we apply the S&S methodology to shrink the PE area by reducing the
number of coefficient circuits physically implemented, with no drawbacks at application
level and affordable processing time penalty.

S&S Methodology over 3× 3 Kernels

Our proposal for hardware reduction consists of the application of the S&S methodology
to 3 × 3 kernels. The basic idea is the same as in the LN emulation: the coefficients
in the original template are distributed in several sub-templates that are run together
with shifting templates that allow the gathering of the correct contributions of the
neighbors at the cell of interest.

In this case the original template is a 3×3 kernel, i.e. the minimum size template,
and so the sub-templates are not smaller, they are 3 × 3 kernels too, but sparser, i.e.
with several new null elements. The objective is to re-use the same coefficient circuits
and neighbors’ connections in the application of all the sub-templates in which we
break the original 3× 3 template. In so doing, we can remove the non-used coefficient
circuits and connections. This idea implies that all the sub-templates have the same
non-null elements arrangement. The issue now is how we choose the sub-templates
sparse shape.

As we are working at the interface of system and hardware-levels it is important to
have in mind both perspectives in the template application, the template perspective
shown in Fig.1.5, and the hardware perspective shown in Fig. 1.6. In the system-level
convention the cell gathers the weighted contributions of the neighboring cells (Fig.1.5).
In the hardware-level convention each cell weights its own value prior to sending it to
the neighbors (Fig. 1.6).

In Fig. 3.9 we show the inter-PE connections and the contributions that can be
gathered with a particular restriction in the coefficients circuits (remaining CCs marked
as dots). From a hardware point of view, the usual implementation is to weight the
own value at the cell under study and to distribute adequately the weighted results to
the surrounding cells. In dashed arrows (Fig. 3.9) we have the neighbors’ contributions
that will be gathered at the central cell (template point of view), and with solid arrows
we have the contributions of the central cell to its neighbors (hardware point of view).
With this configuration the information flows to the right neighbors only. Note that
template coefficients allocation is a mirror of the corresponding CC positions. The cell
configuration will represent the actual connections and remaining coefficient circuits
in a cell, i.e. the hardware-level perspective. The importance of the cell configuration
election lies in that it sets the neighbors that are connected to the cell of interest,
and so the template elements that can be applied, and the shifts that can be realized.
This issue is also illustrated in the second section of the CNNA06 paper (Appendix A,
page 113).

Split and Shift Phases

Now the split phase consists of grouping template elements in the shape selected, but
preserving the original relative positions. There is no limitations imposed to the sparse
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Figure 3.9: Cell communications with a particular reduced set of CC and its
correspondence to the template coefficients application.

shape by the split phase as we can correctly place all the elements in any shape with the
enough number of sub-templates. On the other hand, the shift phase has to gather all
neighbors’ contributions at the correct cell. The required shifts are determined by the
sub-templates center allocation but they have to be allowed by the cell configuration
as it limits the neighbors communication. This imposes a restriction in number and
shape in the remaining coefficient circuits to allow all the required shifts. Coherently,
our analysis now deals about the implications of choosing different cell configurations.
The split and shift techniques are mostly determined by the sparse shape.

Finally, as in the LN emulation, we have the option of shifting the image to be
weighted or the weighted image, and the option of sharing or not sharing the shifts.
Of course, the consequences of choosing one or another option are as well the same
as in the LN emulation: result shifting implies G/S processing and memories, shift-
sharing can imply a greater usage of memories, and non-shift-sharing a greater number
of operations. The application of these different options in hardware reduction is
illustrated in Fig. 3.10 for a particular cell configuration. In this example, we need three
sub-templates to have the 9 original coefficients placed over allowed positions. Shifting
operations require one extra coefficient circuit that is only set to one on the shifting
template (S). Image-shifting is represented by straight arrows and result shifting by
convex arrows over the grid. The non-shift-sharing option implies one extra shifting
operation that is represented in dashed circle and lines in both image and partial result
shifting modes.

The operation sequences proposed can easily be described by identifying the pixels
of the image around a cell through the cardinal points (N, NE, E, SE, S, SW, W, NW),
and the pixel that coincides with the cell as C. In so doing, the first sequence, based
on the image-shifting, can be described in the following steps:

1. Gathering of the NW, W and SW contributions in the cell of interest by means
of the application of the left side coefficients of the original template.

2. One pixel shift to the left of the original image.

3. Gathering of the N, C and S contributions in the cell of interest by means of the
application of the central coefficients of the original template to the shifted image
and accumulation to the previously obtained result.



3.3. S&S FOR THE HARDWARE REDUCTION 45

a12

a22a21

a13a11

a23

a33a32a31

a13

a23

a33

-

-

-

0

-

-

a12

a22

a32

-

-

-

0

-

-

a21

a11

a31

-

-

-

0

-

-

-

-

-

1

-

-0

0

0

S=

D1= D2= D3=

Im

+

D2S SD1 D3

Original template

Operations sequence for image shifting mode (with and whithout shift-sharing)

+

S

Im D2S SD3 D1

Operations sequence for partial result shifting mode (with and whithout shift-sharing)

S

++

Figure 3.10: CPA with 4 CC per PE. Full-dense 3× 3 template emulation em-
ploying image shifting mode or partial result shifting mode. Cell
under study marked with a thick square.



46 CHAPTER 3. SPLIT AND SHIFT METHODOLOGY

4. One more pixel shift to the left of the shifted image (step 2). (Two pixel shifts
of the original image if shift-sharing is not used.)

5. Gathering of the NE, E and SE contributions in the cell of interest by means
of the application of the right side coefficients of the original template over the
shifted image of step 4 and accumulation to the previously obtained results.

The second sequence, based on the output-shifting follows these steps:

1. Gathering of the NE, E and SE contributions in a cell placed two cells to the right
of the cell of interest by means of the application of the right side coefficients of
the original template to the original image.

2. Shifting the obtained result two pixels to the left to reach the cell of interest.
(Shifting of one pixel to the contiguous cell where the next partial result will be
obtained if we consider shift-sharing.)

3. Gathering of the N, C and S contributions in the cell on the right of the cell
of interest by means of the application of the central coefficients of the original
template over the original image.

4. Shifting of the obtained result one pixel to the left to reach the cell of interest
and accumulation to the previous shifted result, or accumulation to the previous
shifted result and shifting of that accumulation value one pixel to the left to reach
the cell of interest if we consider shift-sharing.

5. Gathering of the NW, W and SW contributions in the cell of interest by means of
the application of the left side coefficients of the original template. Accumulation
of the obtained result to the previously accumulated results.

If we do not consider shift-sharing the order of coefficients application can be the
same as that considered in the image-shifting sequence.

Figs. 5 and 6 in CNNA06 (p.113) also illustrate the different alternatives for
the application of a full-dense 3 × 3 template over a reduced connectivity realization.
The non-shift-sharing option is represented there with the number ”2” as a two-step-
shifting operation. Especially illustrative is the Fig. 6 of CNNA06 for the output
shifting. There it is illustrated in which cell are collected the corresponding weighted
contributions along with the shifts required to move them to the cell under study.
In the image shifted option (Fig. 5 in CNNA06) all the contributions are obtained
at the cell under study by weighting differently shifted images. In both cases the
shifting template element should be set to zero in the sub-templates instead or being
considered as ”indiferent”. Note the error in the number of remaining CC and inter-cell
connections in explanation of these figures in the paper: in both cases the number is 4
instead of 3.
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Figure 3.11: Emulation of a full-dense 3× 3 template over a 3 CC cell configu-
ration with image shifting and shift-sharing when convenient.

Application Example

Fig. 3.11 illustrates the application of the methodology over a 3 CC configuration
with image-shifting and shift-sharing when advantageous. In this case we need five
sub-templates to cover all the elements in the original template and 3 shifting direc-
tions to gather all the contributions. Sub-templates are squared and identified as D
(decomposition templates) and shifting templates are circled and identified as S. In
this example we save one shift at the cost of an extra memory as we allow to re-start
the shifting from the original image instead of always shifting the previously shifted
image. Other alternatives with different sub-templates choice are also possible but we
expect the same number of operations under the same considerations.

Cell Configuration Election

We have selected four criteria for the cell configuration election to help in finding
configurations with no functional penalty and good time performance.
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Functionality Criterion

The first concern in the cell configuration election is to keep the functionality of the CPA
(and even extend it to LN kernels). Consequently, any election imposing restrictions
to the kernel shape is rejected. Nonetheless, within the allowed configurations, it is
very interesting to adapt the election to the most used shapes as it is going to lead to
the minimum number of operations.

As it was previously indicated, the restrictions come from the required matching
between the shifts needed by the sparse sub-templates and the shifts allowed by the
correspondent cell configuration. This can be translated in being communicated, either
directly or indirectly, with all the eight neighboring cells. In our analysis we assume
that shifts are realized by kernels application and we do not consider time multiplexing
in the CC usage, i.e. one CC is connected to only one neighboring cell. With this, the
remaining CC have to offer a basis of movements from what all the connections can be
recovered. The set of the four cardinal connections (NEWS) is the most straightforward
primitive set. Nevertheless, we can reduce the number of CC to three by using the
diagonal coefficient circuits taking into account the following rules:

1. At least one CC has to be on vertical or horizontal connections to avoid the chess
bishop effect: we cannot achieve NEWS neighbors by just diagonal movements.
This implies as well that the configuration with the four diagonal CCs is not
allowed.

2. Two CC movements cannot cancel each other, and the third one has to complete
the directions set. That is, if we have two diagonal CCs they have to belong
to different diagonals, and the non-diagonal CC has to be on the direction not
covered by the diagonal ones. Similarly, if we have two non-diagonal CCs one
of them has to be on the vertical direction, and the other one on the horizontal.
The diagonal CC has to cover the non-covered directions.

For example, if we want to keep the NE and NW coefficient circuits we have to
keep the S CC as well and we can substitute the S and E CC by the SE if we keep the
N and W, the W and NE or the SW and N.

Fig. 3.12 shows three cell configurations that, together with their rotations, repre-
sent the basic primitive sets that can be obtained under these rules. Starting from one
of these 4 or 3 CC basis we can add other coefficient circuits in order to reduce the num-
ber of operations required by the full dense template emulation. A cell configuration of
any size has to contain a 3 or 4 CC allowed configuration. The first configurations we
reject are, then, those with one or two CC that cannot reproduce the communication
to all neighbors. In cell configurations with more than two CC it is the shape what
marks if the configuration is allowed or not. As an example, Fig. 3.9 (Figs. 3 and 4 in
CNNA06 paper (p.113)) shows a 3 CC configuration that is not allowed (the horizontal
CC does not complement the diagonal ones) and it has to be completed for its usage
with an extra CC (Figs. 5 and 6 in CNNA06 paper and Fig. 3.10).

Performance Criterion

Having discarded the not-allowed configurations we look at the performance as the
criterion in the cell configuration election. The performance is assessed in this case as
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a) b) c)

Figure 3.12: Possible minimal cell configurations.

a function of the number of coefficient circuits remaining and the number of operations
required for a full dense template emulation, i.e. the area-processing time trade-off.
The relationship between the number of operations required and the number of CC
kept is not univocal but it depends on the CC allocation. Fig. 3.13 (Fig. 7 in CNNA06
paper in page 113) shows the minimum number of operations required by the best
configurations of a given number of coefficient circuits. These numbers are obtained
when the required shifts are mostly directly implemented. We apply shift-sharing
whenever it is convenient. Note that in Fig. 7 of CNNA06 paper the number of
operations for 3 CC configuration is 5+5 instead of 5+4. This difference is due to the
fact that we have considered shift-sharing in any case in the paper, but we can have 5+4
operations if we combine shift-sharing with independent shifts (shifts from the original
image in the image-shifting case). As a first filter we observe that configurations
with 6, 4 and 3 multipliers (we consider 9 CC as the starting CPA configuration)
require the same number of operations for a generic full-dense template emulation as
configurations with more CCs. Examples of these configurations are also depicted in
Fig. 7 of CNNA06 paper. Along this section we will see that configurations with 5
coefficient circuits, initially discarded, can be particularly interesting.

Number of Operations
(Sub-templates + Shifts)

Number of Coefficient
Circuits

9
8
7
6
5
4
3
2
1

1
2+1
2+1
2+1
3+2
3+2
5+4

Figure 3.13: Possible number of CC and minimum number of operations cor-
respondence. Minimum number of CC for equal number of oper-
ations appear circled. Not allowed number of CC showed crossed.

To formally analyze the relationship between the benefit in area and the penalty
in time-consumption, and compare the different cell configurations, we define a Fig-
ure of Merit (FoM), the RPO. The RPO is defined as the percentage of hardware
Reduction Per Operation increased per original operation for the S&S template em-
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ulation. Eq. (3.6) summarizes the RPO definition. nc is the number of coefficient
circuits kept, HR is the Hardware Reduction factor and it is defined as the ratio be-
tween the number of CC removed and the original number of CC, and OIF is the
Operation Increment Factor and represents the ratio between the number of S&S op-
erations required after the hardware reduction and the original number of operations.

RPO(nc) =
HR(nc) · 100

OIF (nc)− 1
(3.6)

The 100% RPO is never reached for the emulation of one generic full-dense 3× 3
template with this definition. Conceptually it would imply to remove all the coefficient
circuits at the cost of one extra operation. In fact, having that we require to have
as minimum 3 CC, the upper limit would be set to 67%. Nevertheless, actual values
for one generic template emulation are much smaller, as we can see in Table 3.1 for
the configurations selected in Fig. 3.13. For the general case we can see that the 3
CC configuration is much less efficient than the ones with 4 and 6 coefficient circuits.
This is due to the complexity of the shifts and coefficient distribution in realizable 3
CC cases. The 6 CC configuration is the one that offers a better trade-off value for a
general case.

Table 3.1: RPO for a generic 3 × 3 template emulation over different cell con-
figurations.

Number of CC (nc) HR OIF RPO(%)
9 0 1 0/0
6 1/3 (33 %) 3 17 %
4 5/9 (56 %) 5 14 %
3 2/3 (67 %) 9 8 %

We can improve the results by allowing the distributed implementation of the CC
in the two typical templates of a CNN operation A and B at the cost of complicating
the control. In the case of image-shifting we could apply two different sub-templates
over two shifted versions of the image. In partial-result shifting we could apply one
sub-template and accumulate a previous result within the same CNN operation or
apply simultaneously two different shifts over two partial-outputs to be accumulated.
The advantage obtained from this two-template CC allocation will strongly depend on
the cell configuration considered. In the case of image-shifting, for example, we can
apply simultaneously 2 of the 5 sub-templates of a 3 CC configuration by distributing
the CC in 2+1. Nevertheless, we do not obtain any benefit in applying it to a 3 CC
with output-shifting or to a 6 CC parallel configuration with image or output-shifting
and we can reduce to 1+1 the number of operations for a 6+1 configuration. With
a 3+3 CC configuration in diamond shape we can apply simultaneously 2 of the 3
sub-templates with image-shifting requiring 2+2 operations, or the 2 shifts in just on
operation for output shifting (3+1), but we require 2+1 operations if we distribute the
6 CC in parallel. In general, a significant improvement in the minimum-sized template
emulation is more difficult for image-shifting as it would usually require more physically
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Figure 3.14: Example of CC distributed in two templates. Coefficient circuits
are represented as dots or crosses depending on in which template
are allocated. Sub-templates are squared and shifts are circled in
the sequence of operations. Operations applied simultaneously are
put together in a gray rectangle.

implemented CC in both templates to simultaneously apply two sub-templates, while
result-shifting can obtain improvements with just one CC in a different template to
simultaneously shift a previous partial result. With the proper election of the CC
distribution we can even hide all the shifting operations for result-shifting as it is
shown in Fig. 3.14 for a 3+1 configuration, while for image-shifting it is usually better
to keep all the CC in the same template. With that configuration we reduce the total
number of operations from 5 to 3 in a full-dense 3×3 template emulation by hiding the
shifting operations. Additionally, we can consider that the CC in the second template is
specialized as shifting coefficient and we can simplify it to a 1-bit programmability CC
even within a G/S implementation. The same result would be obtained with a 3+2
CC configuration in diamond shape. All in all, the two-template cell configuration
approach will be especially useful in the application of LN templates over a reduced
PE as it will be shown in the next section.

In considering typical two-template DTCNN operations we distinguish two ap-
proaches. In the first one we keep a two template implementation with the correspond-
ing hardware reductions (either the same in both templates or a different number of
CC in each template). In this case we can apply simultaneously the sub-templates of
both templates. Shifts for each template can be combined just if we have the same
configuration in both templates and the same image is weighted by the two templates
(Y = U), or if we choose partial-result shifting. In these cases we have the same per-
formance as for one-template operations (Table 3.1). In any other case, shifts have
to be performed in different CNN operations, and their outputs (shifted images) must
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Table 3.2: RPO for the emulation of a generic two-template operation over cell
configurations selected in Fig. 3.13.

Tnc
Separated Hardware Hardware Sharing

(Simult. Shifts) (Sequential Shifts) (Sequential Shifts) (Simult. Shifts)
9 0/0 0/0 50 % 50 %
6 17 % 11 % 13 % 17 %
4 14 % 9 % 9 % 11 %
3 8 % 5 % 4 % 6 %

be saved separately. As a consequence, the RPO drops with respect to the cases of
one-template operations.

A second option is to re-use the same hardware for the application of both A and
B templates (one-template implementation, hardware sharing). This was proposed,
without extra reduction in the number of CC, in [Paasio et al., 2002] with the difference
that we do not obtain a transient mask from the application of one of the templates
but we consider the accumulation of the outputs from each template application.

Performance calculations for these cases are shown in Table 3.2 as a function of
the number of remaining CC per template (Tnc). In this case the reference for the HR
is nc = 18, that corresponds with the original implementation of two templates. The
second column shows the results of considering separated hardware for each template
(A and B) application, under the consideration of the same CC configuration for both
templates, and simultaneous shifts. In absolute terms the total number of CC is dou-
bled in this case, but the HR is the same as for the case of one-template operations as
now the reference hardware is a two-template implementation with 18 CC. Together
with the simultaneous shifts (A and B sub-templates application is already simulta-
neous in separated hardware), it provides identical results as that of the one-template
analysis. The third column displays the values rendered by considering sequential shifts
with the two-template hardware available. In both situations the case of 9 CC keeps
the original total of nc = 18, and there is not increment in the number of operations
(HR = OIF = 0 and RPO = 0/0). The fourth column shows the performance of the
hardware sharing option. The HR for a 9 CC configuration is 1/2, and the number of
operations is doubled because of the sequentially application of the A and B templates
and shifts, what results in an RPO of 50%. In the last column we consider that the
shifts are always applied simultaneously for both templates (restricted in this case to
the Y = U situation) over a shared hardware. In the 9 CC case we do not have shifts
to apply simultaneously, and so the RPO is the same as in the previous column. It is
in the rest of the cases where we can observe the improvement of having half of the
shifting operations. In all the cases we have used the S&S shift-sharing option when
advantageous.

With half of the CC, the performance in the hardware sharing option is similar to
or even better than that of the separated option for the same configurations, having
that the number of operations is not doubled due to the shifts particular consideration.
In addition, if we compare the total number of CC we conclude that, for the general case
of a two-template operation, it is a better option to keep all the CC implementing the
same template, i.e. a hardware sharing option. Within this hardware sharing option



3.3. S&S FOR THE HARDWARE REDUCTION 53

we can consider as well the distribution of the CC in two templates with the same
improvements as in the single template case. It should be noted that this analysis holds
for a synchronous CPA implementation as DTCNN where A and B are interchangeable
templates, but not for CTCNNs where S&S are only applicable to B template.

Tables 3.1 and 3.2 were also included in the CNNA06 paper (p.113) as Figs. 8
and 9. The difference in the 3 CC configuration reported before is also extended to the
RPO values that in addition have been rounded.

As a final remark we should note that the HR definition used in the RPO anal-
ysis considers the reducible area as a function of the number of CCs. Nevertheless,
when we remove a CC the connection to the corresponding neighbor is also removed.
Having that the number of CCs and the number of connections differ in the number
of central CC considered (one if we consider a one-template implementation and two
in a two-template implementation), the actual area accounted for in the HR factor as
defined is the area corresponding to the removed CCs plus the proportional part of the
area occupied by the connections. On this basis, when we remove a central CC (not
connected to any neighbor) we are overestimating the reduced area and we underesti-
mate it when we remove a non-central CC. This is the simplest consideration of the
hardware reduction, but it hides the differences between reduced cell configurations
with and without central coefficient circuits for the same number of CCs. To take this
into account and refine our discrimination between cell configurations we can define
a new hardware reduction factor HRAV E as the average of the HRc and the HRCC ,
defined the former as the ratio between the number of connections removed and the
original number of connections and the latter as the ratio between the number of CCs
removed and the original number of CCs. With this definition we consider that both
groups, connections and CCs, occupy the same area, what is not true in general, but
allows a fairer comparison. Due to the different initial number of CCs and connections
this assumption implies that we consider that the area occupied by one CC is lower
than that occupied by one connection, what is more likely in B/W implementations.
Nevertheless, the numbers given by this hardware reduction definition, HRAV E, can
only be taken as guidance and its usage for RPO calculation can lead to erroneous com-
parisons. Besides, this average definition makes an error in the cell configuration area
comparison if the starting point configuration is a two template configuration with two
central CCs and the area of a CC is larger or equal than the area of a connection (more
likely in G/S implementations). In those cases the average definition of the hardware
reduction (HRAV E) provides a better value for configurations with two central CC in
comparison with configurations with one less CC but with no central CCs, what is
just true when the area occupied by the CC is smaller than the area occupied by a
connection.

For a completely fair comparison we should know the exact percentages of occu-
pation of the CCs and the inter-cell connections. We can account for the actual area
reduced by using a weighted average hardware reduction definition (HRweight), where
the HRc and the HRCC are weighted by they corresponding values before adding them.
With this definition we observe the particular behavior of the configurations with two
central CCs in implementations where the CCs are smaller than the connections, which
is not observed in the opposite case. Nevertheless, at the sight of the particular shapes
exhibited by the configurations with one-less-CC and no centrals, this is just a second
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order nuance in the cell configuration election to be taken into account in particular
cases and if we have enough knowledge about the implementation characteristics. For
a general analysis, and particularly when considering a one-template starting point, we
should use the simple definition, just taking into account that configurations with the
same number of CCs as the more central CCs (1 or 2) the lesser the area.

Shape and Symmetry Criterion

By analyzing the RPO definition we observe that it would provide a 100% value when
the number of operations is increased in the same percentage in which the hardware is
reduced. In this situation we could consider benefit and penalty as balanced. Values
over 100% would appear with a number of operations increment (penalty) less signifi-
cant than the hardware reduction (benefit). Both situations, balanced and improved,
require values of OIF under 2, i.e. less than one operation increment per original op-
eration. For just one template emulation we can have only integer values of the OIF,
1 when all the elements in the template have their corresponding CCs implemented,
and 2 if they require, for example, a shift prior to the template application.

An OIF value less than 2 is achievable if we consider the particular shape of the
templates to be emulated in the cell configuration election. In fact, if we consider a
particular algorithm we can get a variety of RPO values depending on the grade of
matching of the templates implicated with the cell configuration selected as OIF values
between 1 and 2 are provided. This led us to an application-led cell configuration
election. In this case, RPO allows us to easily compare the cell configurations not only
for the general case but for particular applications. Note that infinity values are reached
with hardware reduction without increment in the number of operations, i.e. without
penalty. This identifies the cell configurations that fit the template or templates under
consideration. It is interesting to note that the RPO behavior with the OIF value is
similar to the f(x) = 1/x function, and thus little variations of the OIF when its value
is lower than 2 cause big variations in the RPO value that do not correspond to such
big actual improvements. This application of the RPO to algorithms or complex tasks
is illustrated in section IV of the CNNA06 paper (p. 113), and more widely in the
DCIS06 paper (p. 121) and in the Validation chapter of this thesis.

Going further we have studied the template shapes in an attempt to find out
predominant shapes and symmetries in the most usual CNN templates and determine
the existence of a more adequate distribution of coefficient circuits in a general pur-
pose CPA architecture. The study is gathered in the CNNA08 paper (Appendix A,
page 141). The study was realized over the Cellular Wave Computing Library (CSW)
[Roska et al., 2000]. Note that templates gathered in the CSW library are to be applied
to continuous-time CNNs. The translation of the library to DTCNNs is indicated in
Fig. 5 of CNNA08 paper (p. 141).

The first conclusion we draw from the statistical study of the templates featured
in the CSW library is that a dense configuration might be inefficient as the percentage
of CNN operations with four or more null coefficients amounts to more than 70% (see
Fig.3 at CNNA08 paper), being also remarkable the high percentage of very sparse
templates with only two or three non-null template coefficients (see Fig.4 at CNNA08).
Note that we have not taken into account templates with only one central coefficient
in these percentages as they are just used to perform Boolean operations in DTCNNs.
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This can suggest even an S&S configuration with only one, two or three coefficient
circuits that can be used alternatively (time-multiplexed) to weigh neighbor values in
a diamond shape [Sargeni et al., 2005, Dudek, 2000]. This means one, two or three
coefficients, with four NEWS inter-PE/cell connections.

From Table I (CNNA08 paper), the second main conclusion is that the S&S con-
figuration of five coefficient circuits in diamond shape (NEWS + central) represents a
good trade-off between hardware reduction and processing time penalty for a general
purpose realization, especially if we take into account the presence of symmetries. In
fact, it can approach more than 30% of CSW templates considered in only one step
(complete matching with the template shape), with an average number of S&S opera-
tions lower than 3. Also, it is relevant the importance of the central coefficient circuit
as the configurations considering it shows an improvement between 0,6 and 1 in the
average number of steps, and, more significantly, they realize between 10 and 30% of
the templates considered in one step versus the 0% obtained by the same configurations
without central CC. Moreover, it could even be interesting to have an extra central
coefficient circuit in a second template for the case of pixel-to-pixel operations between
two images like Boolean or arithmetic (addition and subtraction) functions. We have
checked, as well, that these tendencies are similarly followed for both gray-scale and
binary (B/W) operations.

It is also interesting to remark the significant appearance of symmetries, being, for
example, less than 1% the amount of dense templates without, at least, axial/mirror
symmetries. With a smart use of such symmetries in the S&S methodology result
shifting mode we could reach significant reductions in the number of operations. We
illustrate the procedure in Fig. 3.15. We consider the most inhomogeneous dense
template element distribution with axial symmetry of the CSW library according to
CNNA08 paper (p. 141), i.e. distribution 5 in Fig. 1, and the 5 CC diamond cell
configuration. In this situation, at the same time that the contributions of the neighbors
N, S and central are collected at the cell under study the contributions of the neighbors
NW, W and SW are collected in the W neighboring cell as its own N, S and central
neighbors contribution. This is the same with NE, E and SE neighbors contributions in
the E cell. And so, as the template shows an axial symmetry (same weights in NW and
NE, W and E, and SW and SE, in this case), we can accumulate in just two operations
the contribution of the six lateral neighbors by taking advantage of results calculated
in different cells. Note that most of the non-diamond distributions, i.e. with non-null
diagonal (SE, SW, NW or NE) elements, exhibit this kind of symmetry and this way
of taking advantage of it reinforce the 5 CC diamond cell configuration preference.

From the analysis of real-life applications in the CNNA08 paper study, and far
from being determinant due to the reduced number (just five) of applications analyzed,
we extract some conclusions that can complete the guidelines given by the general
study. The first one is that Diamond, Dense and Central (only central coefficient)
are the most used shapes in these applications. Irregular or Diagonal templates are
rare. Templates with only non-zero central coefficients in the applications studied are
employed for Boolean operations and are usually substituted by a specialized unit.
Diamond templates would be implemented with a reduced number (five) of coefficient
circuits. Finally, if dense templates have symmetries, these can be easily approached
started from a diamond template applying the S&S methodology. This is the case of
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Figure 3.15: Example of taking advantage of template symmetries in S&S
partial-result shifting mode.

the most of the templates of the applications discussed.

Goals Criterion

Finally, we have to take into account that the RPO value is a measure of the trade-
off. The final decision on the particular number and arrangement of coefficient circuits
in a cell would be led by the actual requirements of area and processing time in the
application.

Section V in CNNA06 paper (p. 113) gathers some details about the trade-off
assessment and possible consequences of the CC remove to be taken into account in
reaching particular time or area goals. These details are also analyzed in the Validation
chapter of this thesis.

3.4 S&S for LN Template Emulation over Simpli-

fied Hardware

As it was mentioned before, the hardware reduction by application of the S&S tech-
niques can affect the processing time but it does not affect the functionality of the
implementation. A good example of this is the application of the S&S techniques for
LN templates emulation over a reduced implementation. Although it was considered
as a particular complex algorithm in the CNNA06 and DCIS06 papers (pages 113 and
121 respectively) we consider it is interesting to dedicate a particular section to this
combination.

The most straightforward solution is to perform each LN sub-template as if they
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Figure 3.16: 4 and 6 CC configurations with one and two templates (templates
CC differentiated as circles and crosses) for LN emulation.

were templates of a given algorithm. Nevertheless, the number of operations can be
dramatically shrunk if we take into account that it is possible to directly split the
original large neighborhood template taking into account the new cell configuration
without the limits of the initial 3 × 3 splitting. In addition, the shifts required by
the hardware reduction are hidden by the shifts used for LN emulation. Moreover,
it is interesting to have a good fit between the cell configuration and the LN shifting
technique in order to require just one step per shift operation. For example, from
the analysis of the LN shift techniques we observe that zig-zag and spiral ones need a
reduced number of shift directions (four cardinal points if we do not consider diagonal
shortcuts). This suggests a NEWS cell configuration. Of course, we consider again the
sharing of the shifts as a good way to drastically cut the final number of operations.

From the RPO values in Tables 3.1 and 3.2, we see that configurations with six
and four coefficient circuits are the most efficient ones in a general template case. By
considering the shape analysis we have also seen the convenience of configurations with
five coefficient circuits in a diamond shape. The elected cell configuration and shifting
technique have to match each other as much as possible to require a minimum number
of operations. A priori we assume shift-sharing and mainly horizontal shifts as in the
zig-zag shifting techniques. We choose the configurations in Fig. 3.16, that implement
horizontal shift directions. We differentiate configurations with all the coefficient cir-
cuits implemented in one template (nc + 0), and configurations that implement two
templates (ncA + ncB), where coefficient circuits from the two templates are differen-
tiated as dots and crosses in Fig. 3.16. The second option, two templates, complicates
the hardware control and compromises the memories availability, but it achieves bet-
ter performance, especially if we consider partial-result-shifting. Image-shifting takes
less advantage in general of the two-template implementation than the partial-result-
shifting, which can apply simultaneously a sub-template and a shift operations just
requiring one CC in a separated template.

Table 3.3 shows the performance values in the implementation of a full-dense 9×9
template (n = 4) for the selected configurations. Partial-result-shifting is considered
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Table 3.3: RPO for 9×9 template emulation over cell configurations of Fig. 3.16.
Cell HR OIF OIF RPO (%) RPO (%)

Config. (ref. Zig-zag) (ref. Central) (ref. Zig-zag) (ref. Central)
3+1 5/9 (56%) 36/33 36/29 611 230

3+1 (D) 5/9 (56%) 40/33 40/29 262 146
3+3 1/3 (33%) 36(42)/33 36(42)/29 367(122) 138(74)

3+3 (D) 1/3 (33%) 38(48)/33 38(48)/29 220(73) 107(51)
3+2 (D) 4/9 (44%) 34/33 34/29 1467 258

4+0 5/9 (56%) 57/33 57/29 76 58
4+0 (D) 5/9 (56%) 57/33 57/29 76 58

6+0 1/3 (33%) 39/33 39/29 183 97

in the two-template configurations (3 + 3, 3 + 1, 3 + 1(D) - Diamond -, 3 + 3(D) and
3 + 2(D)). For the 3 + 3 and 3 + 3(D) configurations we consider also image-shifting
as they have enough CC in both templates to take advantage of the simultaneous
application of sub-templates, and the results are presented between brackets. To adapt
the shifting technique to the cell configuration we choose the previously used zig-zag
for the diamond configurations as they implement both horizontal and vertical shifts.
For the rest of the configurations is more efficient to shift each line contribution to the
central cell directly because they do not allow direct vertical shifts, but diagonal ones.
This by-rows technique is shown in Fig.3.17 for the non-symmetric 3 + 1 configuration.
Sub-templates center election depends on the cell configuration. We calculate the OIF
with two references: the original S&S LN implementation (not hardware reduction)
with zig-zag (regular technique) and central (very irregular but with the best results
in LN) shifting techniques. HR reference is one template with 9 CC.

In the two-template configurations with partial-result-shifting we hide the shifts
that can be realized with the idle hardware by applying them simultaneously to the
sub-template application. Note that this situation is more significant in symmetric
configurations (3 + 3, 3 + 3(D) and 3 + 2(D) in Fig. 3.16) because it can be applied
regardless the direction of the shifting (left or right in the case of spiral or zig-zag
techniques). For the non-symmetric configurations (3 + 1 and 3 + 1(D)) we have to
apply sub-templates and shifts separately, at least in the right or in the left hand-side
around the central cell to reach it (right hand-side in Fig.3.17). We only apply image-
shifting in the two-template symmetric configurations. In this case we shift the image
in opposite directions, for example, and we can apply two sub-templates simultane-
ously. It is interesting to note that two-template configurations (3 + 1, 3 + 1(D) and
3 + 3) overcome one-template equivalents (4 + 0, 4 + 0(D) and 6 + 0 respectively) in
number of operations for result-shifting, but not for image-shifting, where 6 + 0 offers
equal or better results than 3 + 3 depending on the way of shifting the image. The
3 + 3(D) configuration could be interesting in implementations where image-shifting
is mandatory (completely binary implementations, for example), the number of oper-
ations is more critical than the area occupation, and we have to implement diagonal
templates frequently. Otherwise, one-template configurations are more interesting for
image-shifting. In the partial result shifting mode, the 3+2(D) configuration offers the
best trade-off value and the best number of operations, with just one more operation
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Figure 3.17: By-rows shifting technique.

than the original 9 CC configuration with a zig-zag shifting technique (Table 3.3). In
addition, it offers the better shape for most usual 3×3 implementation as it was shown
in a previous section. 3 + 1 configuration also offers a good trade-off with lower area
occupancy, but perhaps the diamond shape could make the 3 + 1(D) configuration
more interesting for a generic implementation. We also observe that lateral configura-
tions require less number of operations than diagonal ones for the LN emulation with
two-template configurations. This is due to the isolated elements that diamond config-
urations leave in a square-shaped LN template. Finally, a 5 + 0(D) configuration does
not improve the results of the 4 + 0(D), but it could be more interesting for a generic
implementation with only one template according to the dominant shape extracted
from the CNNA08 paper study (Appendix A, page 141).

Interesting remark is that RPO values that overpass the 100% indicate the supe-
riority of the hardware improvement with respect to the number of operations penalty.
This is the result of an average increment of less than one operation per original oper-
ation. This improvement is due to the re-splitting of the LN template, the good match
of the configuration to the shift technique and, in the two-template configurations, the
simultaneous application of operations.

In Fig. 3.19 we illustrate the general process of LN emulation over a limited connec-
tivity hardware through its application to an homogeneous binary diffusion template
(Fig. 3.18.a) that requires a small number of different sub-templates. This particular
diffusion template was originally intended to the implementation of the internal po-
tential of the pixel level snakes algorithm presented in [Vilariño and Rekeczky, 2004]
for its application over the binary hardware introduced in [Brea et al., 2006]. The
aim was to smooth a curve depicted as a series of connected black pixels over a white
background, partially removing rough concavities. Sub-templates centers are empha-
sized by shadowing over the original template shown in Fig. 3.18.a together with the
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Figure 3.18: a) Binary 9× 9 diffusion template to be emulated. Sub-templates
centers shaded. Shifting directions and route marked with arrows.
b) Cell configuration: 4+0. c) Sub-templates (D) and shifting
templates (S).

image-shifting route. We have chosen to realize the sub-templates application in zig-
zag with two starting points, as shown in Fig. 3.4, as it saves 4 shifts with respect to
the one-starting point zig-zag technique. In this case we do not need diagonal shortcuts
because the size of the template (9×9) is multiple of 3×3 . To use the same configura-
tion in a different case we have to substitute the diagonal shifts by one horizontal and
one vertical shift. Following the consideration of directly implemented shifts (one shift
operation per shift direction required) and selecting image-shifting according to the bi-
nary implementation, we choose a 4 CC diamond configuration (Fig. 3.18.b). Required
sub-templates and shift templates are depicted in Fig. 3.18.c. Fig. 3.19.a shows the
system-level operations required for the image shifting mode with shift-sharing except
in the starting of the second half of the template, the second starting point. Shift
operations are indicated by circles and sub-template application by squares.

We had chosen for our example image-shifting and only one template configuration.
In considering a G/S physical implementation, and using partial-result-shifting, we
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Figure 3.19: S&S emulation of a 9 × 9 diffusion operation. a) System-level
implementation for S&S image-shifting mode. Image feedback for
shifting as dashed arrows. b) System-level implementation for
S&S partial result shifting mode and homogeneity simplification.
In both cases, shift-sharing is used when convenient.
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could take advantage of the template homogeneity by taking into account that while
the first line of partial results is being accumulated at the central cell of the last sub-
template, the corresponding accumulation is being obtained in the last sub-template of
the other two lines, and thus we have only to add them to obtain the whole template
result and shift it to the LN template central cell. In so doing, we would need 15
S&S operations instead of the 29 required with the central shifting technique with
image-shifting in a full-dense configuration (9 CC). The system-level operations for a 4
CC NEWS configuration and zig-zag technique is shown in Fig. 3.19.b resulting in 27
S&S operations instead of the initial 57 of the original Fig. 3.19.a process, illustrated
in the figure for image-shifting. We could further improve the number of operations
if we distribute the four CCs into two templates, by applying a sub-template and
accumulating the previous result in the same operation. Note that it could be only
realized if the shifting coefficient is not required by the sub-template application, i.e.
the hardware required for shifting is idle.

Fig. 3.20 shows the scheme of the application of the methodology to a G/S 9× 9
diffusion template with other two different cell configurations. In the a) case we have
a single template 6 CC configuration that cannot implement vertical shifts but imple-
ment the required movement through diagonal shifts with a by-rows shifting technique.
b) case shows a 6 CC cell configuration where the CC have been distributed in two
templates, a 3+3 CC diamond cell configuration in this case. In both cases templates
centers are marked with thick lines and in the second case we differentiate the templates
centers by using dash lines in those corresponding to the second one. In the application
of the zig-zag shifting technique we mainly use the left template as sub-template and
the right template for shifting for the first and half of the second line in b). For the
implementation of the rest of the sub-templates the roles are exchanged.

In both a) and b) cases we could use the same scheme for image and partial-output
shifting, just by taking into account that for image-shifting we start the shifting from
the arrows head. In the second case, as we have a two-template configuration, we
can apply simultaneously two sub-templates (image-shifting) or a sub-template and a
shift-accumulation operation (output-shifting). Case a) requires less number of sub-
templates but the same number of shifts as case b). On the other hand, for a partial-
output shifting option, case b) would hide most of the shifts, what leads to better
results. Fig. 3.21 detaches the templates to show in detail the operations for the upper
zig-zag half in this case b). As all the sub-templates are different we directly display
them in the sequence of operations. In a total of four occasions we apply both templates
at the same time as sub-templates. Those are marked with a smaller rectangle within
the square in Fig. 3.20. We have just one shift in the central line that cannot be hidden
by the sub-templates application (it belongs to the second half and it is required to
reach the central cell). The other 6 non-hidden shifts corresponds to the line change.

Note that we have mirror symmetry in the template elements but not in the derived
sub-templates. In this case we could take advantage of the symmetry if we have, for
example, a 5 CC diamond one-template configuration. With that configuration we
could use the central coefficient circuits to apply the sub-templates and the lateral
ones to shift the obtained output in both directions right and left. As the partial
output should be gathered in different memories depending on the side it comes from,
the shifts have to be applied in different operations. Nevertheless, in this case the



3.5. SUMMARY AND CONCLUSIONS 63

0,1

3.2

3,8

2,7

10,1

11,7

24,7

0,1

0,6

0,6

0,6

0,6

0,6

1,81,8

1,8 1,8

3.2

3.2

3.23.2

3.2

3,83,8

2,7 2,7

6,4

6,4

6,4 6,4

6,4

10,1

10,1

10,110,1

10,1

11,7

11,7

15,4 15,4

24,7

24,7 24,7

24,7

24,7

29,4

29,4

29,4

36,4

43,2

54,243,2 43,2

43,2

36,4 36,4

36,4

0,6 6,4

0,1 1,8

1,8 15,4

1,8

15,429,4

3.23,8

6,410,111,7

24,7

0,1

0,6

1,8

0,6

2,7

6,4

3.2

10,1

24,7

b)a)

x

--

x

x

--

--

x

x

x

Cell config.:

Templates shapes:

0,6

0,1

3.2

3,8

2,7

10,1

24,7

0,10,6

0,6

0,6

0,6

1,81,8

1,8 1,8

3.2

3.2

3.23.2

3.2

3,8

2,7

6,4

6,4

6,4 6,4

6,4

10,1

10,1

10,110,1

10,1

11,7

11,7

15,4 15,4

24,7

24,7 24,7

24,7

24,7

29,4

29,4

29,4

36,4

43,2

54,243,2 43,2

43,2

36,4 36,4

36,4

6,4

0,1 1,8

1,8 15,4

1,8

15,429,4

3.23,8

6,410,111,7

24,7

0,1

0,6

1,8

0,6

6,4

3.2

10,1

24,7

0,6

3,8

2,7

11,7

2,7

Cell config.:

Template shape:

x

x

x

x

x

x

-

-

-

--

-

-

-

--

- -

Figure 3.20: Schemes of LN implementation over two different simplified cell
configurations. a) 6 CC single template cell configuration. b) 6
CC two templates cell configuration (3 + 3(D)). Arrows indicate
the shifting routes.

symmetry usage does not provide a definitive improvement. It would provide the
correct output with 45 operations (15 sub-templates and 30 shifts), 12 less shifts than
the 5 CC diamond without usage of symmetry and just six more shifts than the 6 CC
configuration in Fig. 3.20.a, but 11 more operations than that obtained if we divide
the CC in two templates (3 + 2(D)), having the CC dedicated to shifting in a different
template and allowing the simultaneous application of sub-templates and shifts as was
shown in Fig. 3.21 for a 3 + 3(D) configuration.

3.5 Summary and Conclusions

In this chapter we propose a common methodology to deal with both large neighbor-
hood emulation and hardware reduction, seen as the implementation of templates with
sizes that overflow the physically implemented resources.

The so-called Split and Shift methodology can be placed within the partition and
shift proposals for LN emulation. The main contributions of our proposal are the
simplicity of the conception and an organized set of guidelines of application to obtain
a minimum penalty at processing time and absolutely no penalty at functional level in
the achievement of the goals.

In the LN emulation we measure the cost of widening the CPA functionality as the
number of operations required for the LN operations application. From the analysis
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Figure 3.21: Detailed operations for the upper zig-zag half of a 9× 9 template
for the 3 + 3(D) cell configuration under the scheme in Fig.3.20.b

we mainly conclude that the splitting methods should begin from a template corner
and overlap incomplete sub-templates when necessary to keep the sub-template centers
close to the central cell. About the shifting techniques we observe the convenience of the
shift-sharing option in both image and partial-result shifting modes. A regular process
together with shift-sharing can benefit in terms of simplicity and automation. We
suggest, as the best option, a concentric decomposition and spiral or zig-zag shifting.
Nevertheless, central shifting offers slightly better results in number of operation at
the cost of irregularity for more demanding implementations.

In the case of hardware reduction we have a trade-off between the benefit obtained
in hardware reduction and the number of operations required to keep the functionality
of the implementation. This trade-off does not depend only on the number of CCs, but
on the selected cell configuration. We have gone over the cell configuration election
under four criteria. The first criterion ensures the preservation of the full function-
ality without restrictions at kernel shape or size. This criterion imposes a minimum
number of 3 CC and a distribution of CC that allows all the shifts required to com-
municate to all neighbors. The second criterion takes into account the performance
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of the implementation by defining a Figure of Merit. This FoM is called RPO and
measures the relation between the percentage of CC reduced and the number of op-
erations increased per original operation. For a general single-template operation we
would select a 6 CC lateral configuration, with no one CC at the central column, as
the best trade-off option. Nevertheless, if we allow the distribution of the CC in two
different templates we obtain better trade-off value with a 3+1 CC lateral configuration
for partial result shifting mode as it requires the same number of operations with less
number of CC thanks to the operations overlapping. For a two-template operation to
re-use the same hardware for the implementation of both templates, either considering
the CC allocated in a single template or distributed in two, is the best option. The
third criterion appears from a deeper analysis of the RPO definition and the evidence
that cell configuration and template shape matching would provide a best case. We go
further in this criterion and we realize a study of template shape through the most rep-
resentative CNN template library, the CSW. From this study we conclude that most of
the gathered CNN operations exhibit a diamond distribution of the template elements
and that they are mostly symmetric, what when combined with result shifting, can
be used to reduce the number of operations. Operations with just central CC as logic
or arithmetic operations between others, are also significant. As a consequence, a 5
CC diamond configuration, i.e. the classical NEWS with a central CC, represents a
good trade-off option, what in addition justifies the generally assumed efficiency of the
NEWS limited connectivity. The study also analyzes the symmetries and proposes a
way of taking advantage of them. The final criterion are, obviously, the goals to be
reached in the implementation, that would set the actual limits in processing time and
area occupation.

At the end of the chapter we analyze the combination of both LN emulation
and hardware simplification. We have seen that it is completely assumable under the
combination of LN and HR guidelines. In summary, as the LN emulation demands a
significant number of shifts, the cell configuration and LN emulation shift technique
should look to each other. The usage of possible symmetries (with result shifting) and
two-template configurations are also shown as an advantageous resource.

Finally, we would like to remark that the application of the S&S methodology does
not have strict techniques to be applied but guidelines for its application. This means
that we can develop different techniques or ways of application with similar results, as
better as most adjusted to the particular case.





Chapter 4

Validation

This chapter validates the presented methodology by quantitatively analyzing both
their hardware improvements and their processing time penalties. Although we have
treated the application of the S&S methodology to LN emulation and to hardware
reduction separately, for its validation we consider the methodology globally.

Implementation requirements and time conditions are reviewed in Section 4.1.
For the hardware improvements assessment (Section 4.2) we have chosen two general
purpose physical CNN implementations whose area data are accessible in the literature.
We present as well the results from the utilization of the S&S techniques on CNN FPGA
ad-hoc realizations. In a subsequent point (Section 4.3) we evaluate the consequences
at number of operations/processing time level of LN S&S techniques with and without
hardware reduction over some well-established LN algorithms detailed in the literature.
The realization over CPAs of two of these applications, namely the Scale Invariant
Feature Transform (SIFT) and the Speed-Up Robust Features (SURF) algorithms, were
not previously introduced in the literature by other authors, being another contribution
of this thesis. Finally, in Section 4.4, a well-known complex real time algorithm and
its physical implementation are deeply analyzed to provide trade-off data.

4.1 Implementation Requirements and Time Con-

ditions

To begin with, it should be emphasized that the S&S methodology can only be used
with CPA implementations that provide predictable stable outputs like DTCNNs or
continuous time CNNs with B-type templates only (i.e. no feedback template A). In
addition, it is apparent that the starting architecture determines the data type to be
used. In this sense, for example, architectures that strictly realize the binary 1-bit 1Q
CNN model like the one introduced in [Flak et al., 2006c] would need an extra analog
memory (LAM) to accumulate partial outcomes from sub-templates. Furthermore,
even with an extra analog memory, these architectures are restricted to the S&S image
shifting mode as the coefficient circuits are designed to work on binary variables and
the results to be shifted are in general G/S values. On the other hand, synchronous
gray-scale architectures with cells of the type introduced in [Rodŕıguez-Vázquez et al.,
2004] can easily adopt the S&S methodology as they count on analog memories to store

67
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sub-template results and can deal with both binary and gray-scale data.
Another concern is the extra time caused by the extra number of operations.

Based on the general initial estimations from Table. 3.1, one can conclude that the
highest number of processing steps resultant from applying the S&S methodology to
an operation of 2 full dense 3 × 3 templates with the barest of the configurations (3
coefficient circuits only) is 18 (10 sub-template applications and 8 shifts, being 20,
10&10, if we force the usage of the previous shifted image in all the shifts). This
number is sharply cut in actual applications thanks to the shape or symmetries of
the templates, common images for A and B templates that allow to share the image
shifting, or even the distribution in two templates of the coefficient circuits (when not
the implementation of the same or different cell configurations in both templates) that
adds the possibility of overlapping S&S steps as it was shown in the previous chapter.
Apart from the number of operations, the time required for a processing step depends
on the hardware solution. In solutions like [Rodŕıguez-Vázquez et al., 2004] and [Dudek,
2005], running B-type templates lasts few µs. This time is easy to cut down with today
digital CMOS technologies. In fact, in current sub-micron technologies processing steps
of less than 100 ns are easily achievable with 1-bit programmable architectures [Flak
et al., 2006c, Brea et al., 2006]. These times include the uploading of the templates
or instructions from a global memory to the cell array. Keeping all these numbers
in mind, and accounting for the image acquisition and the output data downloading
times, the designer can judge whether or not the S&S methodology still complies with
the time requirements of the application.

4.2 Expected Hardware Improvements Evaluation

As absolute numbers will depend on the particular hardware solution, until here we
have assessed the hardware reduction in function of the number of coefficient circuits
removed. In order to give some numbers that allow us to evaluate the actual possi-
bilities of the methodology we have gone through two different architectures, one G/S
and one B/W, reported in the literature with enough details to allow at least rough
estimations of the area savings. These estimations were introduced at the ISCAS07
paper (Appendix A, page 129). At the end of the section we include the conclusions
derived from the implementation of a DT-CNNUM over an FPGA by using the S&S.

The G/S architecture is the ACE16K chip discussed in [Rodŕıguez-Vázquez et al.,
2004] and, more detailed, in [Liñán, 2002]. This architecture consists of a 128 × 128
cell grid implemented with a standard 0.35-µm CMOS technology. Each cell occupies
an area of 73.3 × 75.7 µm2. From the references we know that the area occupied by
the synapses is the 20.25% of the cell area, what means around 1124 µm2. Every cell
counts on 8 multipliers for neighborhood connectivity plus the feedback term and three
multipliers for additional inputs. In order to provide higher accuracy, the latter four
multipliers are doubled.

Let us apply the S&S reduction to the 8 connectivity CCs reducing their number
down to 3. The number of connections removed would also be 5. We suppose that
the inter-cell connections are included in the area percentage given and, in absence
of further information, we consider that the connectivity area is reduced in the same
percentage as that of the multipliers area. Each of the multipliers occupies a 6.25%
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(1/16) of the synapses area and so it is reduced in a 31.25% with the 5 CC removing.
This means an area saving of 6.3% per cell, which is around 351 µm2. In a 128× 128
array this amounts to 5.8 mm2. Conceptually, and whenever we could operate in
a controlled mode, the S&S methodology could be applied as a usual algorithm in
the G/S architecture as it counts on several LAMs (8), just taking into account the
possible range corrections required to avoid value saturation during S&S application
and with no extra hardware. It is also interesting to remember that in continuous
time CNNs, as it is the case, the S&S are only applicable to the template B, and
that CTCNN operations can be translated to B-template operations following the
equivalences shown in the statistical study of the CSW template library gathered at
CNNA08 paper (Appendix A, page 141). Further considerations in the S&S application
would require deeper knowledge of the particular architecture.

As a reference for implementations where we have to include the LAM, we have
estimated that in the ACE16k (0.35-µm CMOS technology) each of the 8 capacitor-
LAMs, occupies an area of around 145.7 µm2, provided that the 8 LAMs available
occupy a 21,01% of the cell area [Rodŕıguez-Vázquez et al., 2004, Liñán, 2002]. From
the SCAMP3 chip [Dudek, 2005] we estimate that the analog current memories S2I
used occupies around 156 µm2, again in a 0.35-µm CMOS technology.

The B/W architecture is the 1-bit programmable approach addressed in [Flak
et al., 2006c]. It was implemented with a standard digital 0.18-µm CMOS process. In
this case, the cell contains 9 coefficient circuits that occupy an approximate area of 32
µm2 within the 155 µm2 of the total cell area. The S&S methodology could reduce the
number of multipliers until 3. In area, this means to save 21 µm2, which is around 14%
of the total cell area. In a 128× 128 array this would mean around 0.35 mm2. These
numbers are obtained from the analysis of the layout provided in the reference. Without
further information we also estimate here that cell interconnections are included in the
estimated area and their particular area is reduced in the same proportion as that of
the CCs. All in all, we should take into account the area to be occupied by, at least,
one analog memory to accumulate the partial results that have to be included. This
extra hardware may override the S&S area gains obtained over an already reduced area
implementation with tiny coefficient circuits. Still, the additional memory is needed
when tackling large neighborhood kernels and the hardware reduction helps to minimize
the impact of the integration of the required memory.

An interesting alternative for binary DT-CNN implementations is the template
partition proposal made by Brugge in [ter Brugge et al., 1998c] and introduced in
Chapter 2. This proposal is applicable to binary input-output operations that can
be expressed as morphological operations as indicated in [ter Brugge et al., 1998a].
The correspondence between morphological operations and DT-CNNs has been made
considering 4-quadrant weightings with no restricted weight values, and they should
be translated to 1-quadrant weightings and 1-bit weight values following, for example,
the proposals in [Brea et al., 2004a], to apply them in implementations as the one
in the example. This would imply two translations, the first one to mathematical
morphology, and the second one to the limited range values. A priori, this would imply
the decomposition of the original operation in several ones. After the translation we
would have LN kernels that can be split in minimum-sized templates to be applied
independently and combine their results to emulate the original one as propose the
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author in reference [ter Brugge et al., 1998c]. As the LN output is binary and it is
obtained from unions and/or intersections of the saturated binary partial outputs, the
”accumulation” would be also binary and it would not require a LAM. Over the DT-
CNN kernels obtained (LN or even the minimum-sized if we want to reduce the area
consumption) we can also apply the S&S techniques proposed in this thesis, with the
only consideration that now the ”accumulation”, as being realized through union and
intersection operations translated to DT-CNN operations, should be taken into account
in the number of operations assessment. To avoid this we should apply the DT-CNN
operation equivalent of combination of morphological operations shown in [ter Brugge
et al., 1998a].

Finally, we have realized a topographic fine-grain parallel implementation of a DT-
CNNUM over an FPGA using the S&S methodology to study the performance of the
methodology over this fully digital platform programed through VHDL language, at the
same time as we tested the feasibility of actual topographic DTCNN implementations
with the help of the S&S methodology to reduce the area occupation. In this first
incursion on the FPGA test we chose an Altera Stratix-EP1S25 FPGA to realize a 1Q
1-bit programmable binary implementation, almost reaching a 30 × 30 effective grid
for a 9 CC configuration. Further implementations have been developed for actual
applications and they are gathered in Appendix B.

We have realized different tests to analyze the consequences and the convenience
of using the S&S on FPGAs. In particular we have analyzed the performance in
implementations with different number of CCs in different configurations, including
the analysis of the effect of keeping the feedback CC and the effect of the symmetry in
the allocation of coefficient circuits. We have also implemented grids of different sizes
for two configurations to study the behavior of the implementation with the number
of cells implemented and to check if the conclusions are valid for any grid size.

In summary, we have obtained significant area savings by reducing the number
of CCs, what leads to the possibility of implementing a larger number of processing
elements for a given FPGA. In particular, we have a saving of 14 logic elements (LEs)
per cell over 27 when reducing the number of multipliers from 9 to 3 CC. This leads
to around half of the area occupation when comparing the 9 CC realization (103%
occupation over the Altera Stratix-EP1S25 FPGA selected) with the minimum 3 CC
one (55% occupation), taking into account the area occupation increment due to the
higher control and dummy cells complexity and the required accumulator to perform
the addition of the partial results. In fact, the 9 CC implementation cannot be actu-
ally realized over the selected FPGA, and the data are probably underestimated for
it, having that with 6 CC with have a 99% occupation. If we choose a 4 CC imple-
mentation the cell area is reduced in 10 LEs and the total area saving is reduced to
the 30%, but the S&S steps per template are as well reduced from 10 in the 3 CC to
5 in the 4 CC realization. As area savings can be directly translated into the possi-
bility of implementing more cells over the same device, a reduced number of CC can
lead to reducing the windowing process when tackling larger images, what partially
compensates for the increment in the number of operations, even more if we take into
account the highly probable template-configuration election matching for a particular
application. It is also worth noting that the extra hardware required to implement the
S&S techniques, an accumulator, provides the reduced CC option with the capability
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of applying 2-template operations or LN kernels, which is not possible in the 9 CC
implementation.

Concerning to have or not to have the central coefficient circuit implemented, we
conclude that in this implementation the influence of the inter-cell connections is much
less significant than the size of the hardware directly related to the number of CC
in the PE as the encoder and the number of registers. Finally, regarding symmetry,
we only find differences in the area occupied by the dummy cells with better results
in the less symmetric configuration. This difference is due to the reduced number of
connections on one of the sides of the cell and not to the absence of symmetry.

From the grid size analysis we see that it does not affect the conclusions drawn
from a size of 5×5 on, where the CC area reduction starts to compensate for the extra
hardware required by the S&S . Only the working frequency and the global memory
control complexity, that are not affected by the CC reduction, get worse with the grid
size due to larger fan-out of the global lines that deliver the control signal and template
values, and to the larger size of the image to be managed respectively.

The details of the implementation as long as the whole experimentation data
are gathered in the ECCTD07-1 paper (Appendix A, page 135). These results were
successfully applied for a B/W implementation in the DCIS08-1 paper, and for a G/S
implementation in the ECCTD09 paper (both in Appendix B, page 155), and their
functionality was proved in [Albó and Canals et al., 2010].

4.3 S&S Techniques over Large Neighborhood Ref-

erence Algorithms

The processing time is the other side of the trade-off. In general, the lesser the number
of multipliers the higher the number of processing steps, and higher in any case if the
application counts on LN operations. Nevertheless, we have seen that a good election
of techniques and configurations limits the time penalty. All in all, the feasibility of the
approach would be determined by the time needs of the application. To get an idea of
how the S&S methodology performs we analyze its usage in some well-known algorithms
with LN kernels, namely the Spin filters [Yu, 1988], the SIFT [Lowe, 2001], and the
SURF [Bay et al., 2008]. Its application to the PLS algorithm [Vilariño et al., 2003]
will be also throughly analyzed in the following section within the trade-off analysis.

Spin Filters

The first algorithm comprises a set of directional operators called ”Spin Filters”. These
operations were introduced to remove noise from interferometric patterns without the
loss of information caused by blurring [Yu, 1988]. The number of spin filters depends
on their neighborhood size, which in turn depends on the pattern fringe curvature,
fringe density and noise level. These operators can be expressed as CNN operations,
and their CNN implementation has been suggested as a good option to deal with their
high computational cost [Vilariño et al., 2007].

In the case of a 7×7 window, a reasonable assumption, we can define 12 directional
7×7 filters [Vilariño et al., 2007]. Fig. 4.1 shows the shape of these filters by shadowing
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Figure 4.1: Spin filters of dimension 7× 7. Non-null positions shadowed.

the corresponding non-null positions. A 9 CC one-template approach will require 7
minimum-sized CNN operations, 3 sub-templates and 4 shifts, per each one of the
directional 7 × 7 filters. This low OIF is feasible thanks to the sparse nature of the
directional filters [Vilariño et al., 2007], and it can be cut down to 6 minimum-sized
CNN operations with a two-template full 18 CC CNN configuration. As a result, the
original 12 7×7 directional filters can be realized with 84 3×3 operations for the 9 CC
version and 72 in the case of the 18 CC CNN configuration thanks to the simultaneous
application of operations both for image or result shifting mode. The sparse 3 × 3
resulting templates suggest us that its realization over CNNs with a reduced set of CC
could be rewarding. In this case the coefficients cover all the possible template positions
along the different directional filters and it is difficult to extract a more convenient
configuration. An approach as the diamond configuration with 4 CC, the classical
NEWS in an SIMD architecture, leads to 8 to 14 3 × 3 operations per original 7 × 7
operation, depending on the particular shape, with a total of 136 3×3 operations for the
whole 12 directional filters (OIF = 1, 6 with respect to the 3× 3 LN decomposition).
Again, this result can be improved with two implemented templates as for example
in a configuration 4+4 CC or even just distributing the 4 CC between them. As an
anecdote, in this NEWS case it would be more interesting to keep the horizontal CC
in one template and the vertical CC in the other one if we consider output shifting,
but if we consider image-shifting it would be more efficient to keep in each template
one horizontal and one vertical.

Directional filters were successfully implemented with S&S techniques in [Perfetti
et al., 2007] for retinal vessel segmentation. In this case they dealt with 12 directional
15 × 15 averaging filters. A proper memory usage combined with an adaptation of
the S&S techniques addressed in that paper leads to only 92 steps (4 sub-template
application and 88 shifts) for the whole process. In particular, they identify 4 different
sub-templates to be applied just only once, and then they combine the results into the
12 desired outputs in just 92 S&S steps (4 sub-template application and 88 shifts). It
was thought to be applied over the ACE16K [Rodŕıguez-Vázquez et al., 2004] with a
slight memory extension required by the techniques adaptation. This is an example of
the translation of the S&S to a particular hardware and application.



4.3. S&S TECHNIQUES OVER LN REFERENCE ALGORITHMS 73

Scale Invariant Feature Transform (SIFT)

The SIFT (Scale Invariant Feature Transform) is a method for extracting distinctive
scale- and rotation-invariant features that could be used, for example, for matching
and object recognition [Lowe, 2001]. This method consists of four stages, of which,
the first one, scale-space extrema detection, implies the application of several Gaussian
filters of increasing σ values to generate a group of images, known as scales or σ levels,
called octave. Depending on the image size, three to four octaves with six images each
are usually needed. Every new octave starts from a half resolution image obtained by
downscaling with a factor 2 the fourth image from the former octave, leading it from
M ×N to M/2×N/2 pixels.

If we assume 4σ as the order of neighborhood for the Gaussian filters truncation in
their approach from the continuous space to discrete kernels, the kernels will be of size
(8σ+ 1)× (8σ+ 1). Considering an initial σ value of 1.6, and a factor between sigmas
of 21/3, the scale space generation will require six kernels per octave of sizes 13 × 13,
17 × 17, 21 × 21, 27 × 27, 33 × 33 and 41 × 41. By using the S&S methodology to
implement the 6 templates of significant LN required per octave over a CPA we would
need 1796 operations (sub-templates application and shifts) with 9 CC. Given that
2D Gaussian filters are separable in horizontal and vertical 1D Gaussian filters (H/V
separability), we can consider N×1 and 1×N kernels. This drops the number of S&S
operations to 372 on a CPA with 9 CC or even with a 5 CC Diamond configuration
(NEWS plus feedback circuit). This number is further dropped in a CNN approach
with a two-template configuration 4 + 4 CC Diamond, reaching 292 S&S steps.

Until here we have considered that all the σ levels or scales are provided by ap-
plying the Gaussian filters on the original image. Nevertheless, if the Gaussian filters
are run on the previous filtered image or scale we can reduce the size of the kernels
required to: 13 × 13, 5 × 5, 5 × 5, 7 × 7, 7 × 7, and 9 × 9. Together with the S&S
methodology and the 1D H/V separation this result in 92 and 80 S&S steps in a 5
CC Diamond and a 4 + 4 CC Diamond implementation respectively. Going further,
Gaussian filters belong to the particular case of large neighborhood templates that can
be emulated by running a 3×3 kernel recursively. In this case it would be enough with
19 recursions to obtain the 6 images required if we use the previous scale as indicated.
In a CPA with a 5 CC Diamond configuration these numbers would be multiplied by 3
(2 with the 4 + 4 CC Diamond configuration or if we consider the 1D H/V separation).

But this is only valid for the first octave. The reason is that Gaussian kernels do
not change across octaves but image resolution does. In the case of a serial processor
everything remains the same, but with a smaller number of operations in every new
octave as it works over a smaller resolution image. Nevertheless, for massively parallel
processing as CPAs with a pixel-per-processor-approach (including RC networks, the
natural approach for the diffusion operation [Fernández-Berni and Carmona-Galán,
2009]), to go across octaves is not straightforward. The reason is that, unless consider-
ing a reallocation of the selected pixels by reading out, downscaling and writing back
the image as stated in [Zarándy and Rekeczky, 2011], every pixel does not interact
with its nearest neighbors after the downscaling. For instance, in the second octave
the pixel at i, j interacts along E and S directions with the pixels located at i, j + 2
and i + 2, j. The pixels in between are not used any more. The distance is increased
up to i, j + 4 and i+ 4, j for the third octave and to i, j + 8 and i+ 8, j for the fourth
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one due to the successive down-scalings.
On a CPA with a pixel-per-processor-approach we can deal with this situation

by expanding the 3 × 3 Gaussian seed used in the first octave and applying the S&S
methodology to implement the resultant large neighborhood kernels. Eq. (4.2) shows
the result of the expansion of a generic 3 × 3 kernel (Eq. (4.1)) in a 5 × 5 template
caused by the half resolution downscaling required for the second octave generation.
The order of neighborhood doubles in each downscaling and thus seeds of 9 × 9 and
17× 17 pixels appear for the third and fourth octaves. These expanded kernels cannot
be achieved by the simple 3 × 3 recursion as the corresponding minimum-sized seed
does not exist. This can be tackled, then, by changing the grid topology with every
new octave with a mechanism to account for only the pixels of interest. But, it is also
possible to avoid this by running the S&S techniques to approach all the seeds of every
octave with minimum-sized kernels (3× 3) as it was seen in the previous sections, and
with a reduced number of operations thanks to the sparse character of the LN seeds
to be applied.

 a b c
d e f
g h i

 (4.1)


a 0 b 0 c
0 0 0 0 0
d 0 e 0 f
0 0 0 0 0
g 0 h 0 i

 (4.2)

Taking advantage of Gaussian separability and of the sparse character of the new
large neighborhood seed template (actually we expand the H and V components of the
original minimum-size Gaussian filter) we just require 2N S&S operations to emulate
the new N×N seed template (N > 5). The sparse 5×5 seed template for second octave
(Eq. (4.2)) would require 8 S&S operations regardless 2D or 1D Gaussian filtering. The
9× 9 seed in the third octave would require 33 operations in the first case and 18 for
the H/V, becoming 65 and 34 respectively for the 17× 17 fourth octave kernel.

Each octave requires 19 iterations of the correspondent seed to generate the six
demanded scales. We have, then, that the first octave is realized with 19 3×3 operations
(38 with H/V), the second octave would require 152 S&S operations for both options,
the third octave would need 627 for the 2D Gaussian filtering and 342 for H/V, and
the fourth octave would require 1235 steps in the first case and 646 steps in the H/V
one. This makes a total of 513 steps for a SIFT process with 3 octaves and 1159 for 4
octaves, in both cases with 9 CC and H/V consideration from the second octave on. A
5 CC Diamond configuration would lead to just 19 additional operations for the first
octave requiring the H/V option (for the rest of the octaves the same numbers remain)
with a significant reduction in area per PE. Furthermore, a two-template CNN solution
with just a central coefficient circuit in the second template to implement the central
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template element would drop 38 operations at the third and fourth octaves (a total of
76) in both 9 and 5 CC configurations.

Although these numbers might be affordable for SIFT-based video rate applica-
tions, given for example 1µs per operation, they can be slightly improved if we combine
the application of the S&S techniques with Berni’s proposal in [Fernández-Berni et al.,
2011]. Therein it is said that through appropriate averages we can implement 3 × 3
kernels with certain symmetries (Eq. (4.3), which corresponds to the symmetries ex-
hibited by the discretized 2D Gaussian filter Eq. (4.5)) with ”2× 2” kernels (Eq. (4.4),
where we have completed the kernel with zeros to mark the central cell, showing a more
conventional 3 × 3 kernel). This is especially advantageous in the SIFT for the seed
kernel expansion caused by the image downscaling through octaves as it reduces the
expanded kernels sizes. With this method the second octave can be generated through
a new 3× 3 seed kernel(Eq. (4.7), the third one with a 5× 5 kernel (Eq. (4.8), and, if
needed, a fourth one would need just a 9× 9 seed kernel (Eq. (4.9).
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Berni’s proposal is based on the use of a resistive network (RC grid) where the
averaging process comes out naturally, having that after a long enough time all the
pixels involved have the same average value. Berni’s method starts with two consecutive
averaging operations. The first averaging involves groups of 2× 2 pixels selected from
the upper left corner of the image and is realized straightforwardly. This averaging
is supposedly intended to produce a half resolution image through a factor 2 down-
sampling. For the second averaging every new 2 × 2 group comprises the pixels of
four adjacent groups of 2 × 2 pixels used during the first averaging process. This
procedure obliges to set a proper control mechanism to select the pixels of interest.
Berni states that the application of 3× 3 kernels like the one shown in Eq. (4.3) over
the half resolution image obtained from the first averaged image is equivalent to the
application of the ”2× 2” kernel in Eq. (4.4) over the half resolution image taken from
the second averaged one [Fernández-Berni et al., 2011].

In the translation of Berni’s proposal to CPAs we eliminate the pixel value repli-
cation (it is neither natural nor necessary on CPAs). In so doing, the first averaging
step is not necessary and the 3 × 3 - 2 × 2 equivalence through the second averaging
is fulfilled even considering the original size image. Our CPAs adaptation realizes the
second 4-pixel local averaging through the application of the 3 × 3 kernel shown in
Eq. (4.10). Thus, the result of applying the template in Eq. (4.3) over the original
image is the same as that of applying the one in Eq. (4.4) over the averaged image.
Coming back to the SIFT, in the downscaling process across octaves the averaging ker-
nel is also expanded. Both, averaging (Eq. (4.10)) and ”2 × 2” equivalent (Eq. (4.6))
kernels, are equal to each other through octaves from their expansion in the second
octave on (Eq. (4.7), Eq. (4.8) and Eq. (4.9)).
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The combination of S&S methodology with our CPA adaptation of Berni’s pro-
posal yields a total of 988 operations for 4 octaves (380 for three octaves) in a 9 CC
configuration. This number is increased up to 1064 (456 for three octaves) if we con-
sider a 5 CC Diamond configuration. Slightly better results are met if we combine the
H/V option for the first octave and Berni’s for the rest, being 969 (361) and 1026 (418)



4.3. S&S TECHNIQUES OVER LN REFERENCE ALGORITHMS 77

Table 4.1: Number of S&S operations for scale space generation in SIFT
Cell Conf. (Opt.) 3 oct. 4 oct. Cell Conf. (Opt.) 3 oct. 4 oct.
9CC (3× 3 + H/V*) 513 1159 5CC (H/V) 532 1178

9CC (Berni**) 380 988 5CC (Berni) 456 1064
9CC (H/V + Berni) 361 969 5CC (H/V + Berni) 418 1026
* H/V separability
** [Fernández-Berni et al., 2011]

respectively. In the case of having an implementation very demanding in area occu-
pation we can even resort to a 3 CC configuration which implies 836 S&S operations
for three octaves and 1748 for four octaves applying Berni’s proposal with the CPA
adaptation in all of them. These results do not depend on the image resolution if we
have a pixel per processor correspondence.

Table 4.1 summarizes the number of S&S operations corresponding to the main of
the presented options, always considering seed recursion and previous scale utilization.
At the sight of the results we conclude that we can implement the SIFT scale-space
generation over CPAs with very acceptable results by making use of the S&S . For
instance, if the clock cycle was only 1 MHz, as is the case of the implementations
reported in [Dudek and Hicks, 2005, Rodŕıguez-Vázquez et al., 2004], and each S&S
operation takes one cycle, the scale-space generation would be ready in ∼1 ms, leaving
a relatively long time for the rest of operations, which might be enough for video rate
processing. Best results are achieved if we combine the H/V Gaussian filter decompo-
sition in the first octave with Berni’s proposal adapted to CPAs for the rest of octaves.
Little worsening is obtained if we consider a reduced configuration (5 CC Diamond,
almost half of the CC). Note that it could be convenient to implement Berni’s in all
the octaves, with little worse numbers, in order to have 1-bit coefficient values.

In considering at the same time the H/V separability characteristic and Berni’s
proposal, we can decompose the Gaussian kernel in four kernels with one of their
dimensions equal to 1, as shown in Eq. 4.11. In so doing, we just need a 5 CC NEWS
configuration, and the requirements over the memories are reduced as the results are
re-used more frequently. The number of operations is the same as that obtained for a
5 CC NEWS configuration with the only application of Berni’s proposal.
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Finally, and as a matter of fact, we state here that RC networks are the most
efficient approach to the diffusion filtering, outperforming every CPA implementation
[Fernández-Berni and Carmona-Galán, 2009]. Nevertheless, a CPA approach permits
to have more functionality per PE/cell, which might be beneficial on a monolithic
solution.

The application of the S&S methodology to the SIFT’s scale space generation
was introduced in the ISCAS12 paper (Appendix A, page 149). We point here the
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inconsistence in the numbers given as totals for three and four octaves prior to the
application of Berni’s proposal, 1159 and 1805 respectively in the paper. There was a
mistake in the data introduced in the paper due to the double addition of the number
of operations corresponding to the fourth octave. In addition, it should be indicated
that those numbers (the correct ones, 513 and 1159) are obtained when considering
H/V separability from second octave on and considering the full dense 3×3 in the first
octave coherently with the 9 CC configuration selected in that case. In fact, the H/V
separability consideration for the four octaves leads to 19 additional operations, the
same as considering a 5 CC NEWS + central CC configuration. Nevertheless, these
numbers are correctly shown in the Table I of the same paper.

Speeded-Up Robust Features (SURF)

The SURF (Speeded-Up Robust Features) [Bay et al., 2008] is another state-of-the-art
computer vision algorithm implementing a scale- and rotation-invariant detector and
descriptor. The algorithm consists of three main steps: the interest point detection,
description and matching. We focus on the low-level image processing stage, the first
one, that involves LN kernels.

As in SIFT, the interest points in SURF need to be found at different scales, im-
ages produced by convolving the original image with increasing size filters (increasing
Gaussian σ values). The scale space is again divided into octaves that now are gen-
erated by up-scaling the filter size instead of iteratively reducing the image resolution
as in SIFT. In this case, such filters are 2-D Gaussian second order derivatives along
horizontal (xx), vertical (yy) and diagonal (xy = yx) directions that conform the Hes-
sian matrix. These Gaussian second order partial derivatives have to be discretized
and cropped for practical reasons with slight decrease in performance. A further ap-
proximation as ”box filters”, where the kernels are simplified to rectangular areas with
a common weighting value within each region (0, 1, -1, or -2, in this case), provides
similar or better performance. The 9 × 9 filter is considered the initial scale, and its
size is increased in 6 pixels on each dimension in the first octave until having the four
filtered images per octave required by the algorithm. For the first octave we have, then,
filters of sizes 9 × 9, 15 × 15, 21 × 21 and 27 × 27 pixels. Each new octave begins at
the second filter of the previous octave, and the neighborhood order difference between
successive filters doubles with respect to the previous octave (e.g. filters in the second
octave will be of sizes 15 × 15, 27 × 27, 39 × 39, etc.) [Bay et al., 2008]. According
to the image size three or four octaves can be needed, yielding filters up to 195× 195
pixels (four octaves).

Nevertheless, these filters application imply a high computational burden in a serial
processor. The same happens with the S&S techniques application over a massively
parallel processor as a CPA approach. Actually, this option would require around
65000 operations with the box filters approximation, which would put a real-time
application in jeopardy unless the clock cycles were very short. Nonetheless, box filters
are especially interesting when combined with the well known ”integral image” [Viola
and Jones, 2001] that, once computed, reduces the summation of any size rectangular
area in an image to the four corner pixel summation (Sum = DownRight−DownLeft−
UpRight + UpLeft). The integral image (II) is an intermediate image representation
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which gives each pixel the value of the summation of all the pixels from itself to the
left and above in the original image. The box filters consist of 3 or 4 rectangular
areas where the pixels have to be summed, and the results are weighted and combined.
The integral image reduces the box filters application to 11 or 15 additions each (3
per rectangular area plus 2 or 3 for the areas combination depending on the box
filter shape), regardless the filter size. The difficulty now roots in the integral image
computational burden. Reference [Viola and Jones, 2001] introduces recurrences to
avoid redundant operations. With this the number of additions is reduced to 2NM for
an N ×M image.

CPAs can parallelize the II computation reaching an order of N + M steps in an
image of resolution of N ×M pixels and a total number of additions of around N2M .
This represents 256 CPA operations for a 128× 128 image or 1120 in a 640× 480 VGA
one, for example. These are affordable numbers for real-time implementations. Fig. 4.2
illustrates the II calculation on a CPA through an ad-hoc S&S technique. In this case
we reduce the number of sub-templates to one that adds the N, W and NW pixels to
the central one (D1 in Fig. 4.2). Afterwards, the partial outputs are, first, horizontally
gathered in the corresponding pixels by shifting the obtained image two shifts to the
right (S1 template) repetitively, and by accumulating the successive shifted versions
of the image. When the horizontal accumulation has finished we have two rows of the
II calculated. The rest of the rows are obtained by repeating the same process in the
vertical-down direction (S2 template) but now the shifted image is the one obtained
from the horizontal accumulation. At the sight of the operations required, we can use a
reduced 4 CC Diamond configuration (NEWS) by just implementing the D1 operation
in three steps as is shown in the lower part of Fig. 4.2. In fact, if not required by other
different operations, we could reduce the cell configuration to only the three upper
CCs. Ia identifies the image obtained through any of the ways, which is the starting
point for the horizontal shifting.

It is interesting to note that this is just one of the possibilities of implementing the
II with CPAs. We have analyzed several different possible ways with similar results in
number of CPA operations. We can, as well, directly parallelize the proposal in [Viola
and Jones, 2001] by accumulating the pixel values in each row in a column fashion
way and, once this row cumulative image is calculated (S in [Viola and Jones, 2001]),
calculating the II in a row fashion way by accumulating the values of the pixels in
the columns. It requires, again, N + M CPA operations. This computation makes
most of the hardware idle during the whole process (just one row/column working at a
time), which makes us think of an SIMD with lesser degree of parallelism than a pixel-
per-processor CPA. This might be even necessary as the integral images yields very
wide words, leading to PEs with a larger area. The approach reported in [Ehsan and
McDonald-Maier, 2009] reduces to 21 or even 19 bits the word length needed by SURF.
Note this is not a constraint in a modern microprocessor with words of 64 bits, but it
makes hard, if not impossible, to think of an analog solution with a pixel-per-processor
assignment on a CPA architecture. Proposals as the Linear Processor Array (LPA)
Xetal-II in [Pu et al., 2011] are promising. If its 16-bit words would suffice for SURF,
their 320 16-bit PEs working at 125 MHz would lead to 560 steps for the integral image
calculation in less than 5 µs for a QVGA image, under the assumption that memory
accesses do not limit the processing time. In addition, the sparse shape of the box
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Figure 4.2: CPA 8× 6 integral image calculation with 9 CC and 4 CC.

filters as they are applied to the II are also advantageous in this kind of architectures
under the assumption of freely acceding any line of the image. This lets us think that
further improvements could make it possible an LPA for the II calculation, and even
SURF scale space generation.

Once we have the integral image we can apply the box filters to generate the
scale-space of the SURF algorithm. Although box filters require the same number of
operations on a serial processor independently of the kernel size, this does not hold for a
CPA as, in the absence of global operations, the four pixels summation is implemented
through sparse LN kernels. Being Q × Q the box filter size, we would require 5Q/4
S&S operations for the xx or yy Hessian matrix elements and 4Q/3 for xy/yx ones.
Again, it would be enough with a NEWS (4 CC Diamond) configuration. If we can
deal with the data size problem the whole scale space generation for an N ×M image
would take N +M +3184 CPA operations for four octaves and N +M +1584 for three
octaves. If we would consider a 2-template implementation we would have N+M+3044
and N + M + 1472 respectively. A further hardware reduction (3 CC) would require
N + M + 4294 CPA operations for four octaves and N + M + 2128 for three. These
numbers are summarized in Table 4.2. Note that we are always considering that we
have an N×M physically implemented grid and that windowing is not necessary, what
is not always possible and is even more difficult with the data size requirements of the
II calculation.

The SURF’s scale space generation over CPAs with the aid of the S&S method-
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Table 4.2: Number of S&S operations for scale space generation in SURF
Cell Config. (Approach) 3 oct. 4 oct.

(9 CC or 4 CC) N +M + 1584 N +M + 3185
(9 CC or 4 CC - 2 temp.) N +M + 1472 N +M + 3044

(3 CC) N +M + 2128 N +M + 4294

ology was also introduced in the ISCAS07 paper (Appendix A, page 129). We should
note that it uses the data from the Xetal-II LPA to give a global estimation of the time
required for the scale-space generation but using the number of operations required on
a CPA with pixel-per-processor correspondence for the box filters application. A more
in-depth analysis of the template application process on the LPA would be required
to give a more accurate estimation. In fact, Xetal-II LPA is used to implement LN
kernels and it could take advantage of the sparse shape of the box filters as applied to
the II without the application of the S&S techniques to them.

4.4 S&S Area-Processing time Trade-off Evaluation:

a Real-Time Algorithm Implementation

To comparatively evaluate the area and time efficiency of the S&S we use the Pixel
Level Snakes (PLS) algorithm version addressed in [Vilariño et al., 2003]. The PLS is
an active contour-based algorithm mainly oriented to real-time contour tracking and
segmentation. Its development at pixel level makes it very suitable for CPA imple-
mentations. Regarding the processing data type, PLS contains differentiated modules
for gray-scale and B/W tasks. The gray-scale module extracts the guiding information
for the contours from the original input image. Afterwards, contours are moved and
deformed according to the guiding information by the B/W modules. In this section we
analyze the area-processing time trade-off when applying the S&S methodology to the
B/W modules of the PLS. The great variety of operations along with their high time-
consuming nature (propagative and LN templates included) make PLS an appropriate
real-time benchmark for our methodology.

We will address the algorithm version discussed in [Vilariño et al., 2003] under its
implementation in [Brea et al., 2006]. B/W processing comprises morphological oper-
ations like erosion and dilation, logical functions (AND, OR), propagative templates
like hole filling, large neighborhood operators like diffusion, and some other specific
hit-and-miss operations. Fig. 3 and 4 in DCIS06 paper (Appendix A, page 121) show
a scheme of the modules and the corresponding templates involved in the algorithm
version we analyze. Nevertheless, for us, the internal potential extraction recovers its
original form as a diffusion operation ([Vilariño et al., 2003]), instead of the four B/W
operation approach given in [Brea et al., 2006]. We have also considered an estimation
of the external potential proposed by the author of the algorithm in an internal report
[Vilariño, 2005] consisting of a subtraction, a threshold, and an open/close for noise
removal; and an edge detection, 15 dilations, and a 3× 3 diffusion.

Regarding the physical implementation, the B/W modules are realized over a
synchronous 1Q binary CNN architecture with 1-bit of programmability. It was im-
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plemented with a standard digital 0.18-µm CMOS process and each PE occupies an
area of 40× 32µm2. The gray-scale block is implemented with specific non CNN type
hardware that is kept and considered in the cell area without modification. The B/W
cell core implements two templates, one of them with 9 possible non-null coefficients,
and the other one with the central coefficient as the only non-zero element. Thus,
the initial number of CC is 10 [Brea et al., 2006]. This is coherent with the two
types of CNN operations comprised in the algorithm, either one-template operations
or two-template AND/OR logical operations just requiring the central elements of both
templates. The diffusion operation is allowed in this 1Q-1bit-BW architecture thanks
to considering a homogeneous version of the operation (all template elements set to
one) and to the S&S methodology for the LN version application. The actual usage of
this alternative (homogeneous kernel) should be carefully analyzed taking into account
the effect of non considering a progressive decreasing in the weighting values with the
neighborhood order.

The Topological Transformation (TP) Module

Prior to the complete trade-off analysis we will use a PLS module to illustrate the
analysis process. We choose the Topological Transformation (TP) module because
this is the most time-consuming module in the PLS due to the hole-filling propagative
task. Apart from the hole-filling, TP comprises an opening (erosion & dilation) and a
binary edge detection. The S&S implementation of this module was used in CNNA06
(Appendix A, page 113) to illustrate the performance of the methodology in complex
algorithms where, taking into account the particular shapes of the algorithm templates,
we can achieve RPOs larger than 100% or even infinity.

First of all we have to analyze the restrictions of the original implementation and
the characteristics and requirements of the involved operations. On the first aspect, the
starting point implementation, [Brea et al., 2005b], is a complete binary architecture
and this imposes a fundamental constraint to the processed data type. In this case the
use of image-shifting is mandatory as partial-result shifting would require to feedback
gray-scale images to the binary multipliers. On the second issue, this module realization
implies two types of CNN operations, one consisting of one template with 5 possible
non-zero coefficients, and another one devoted to logical AND/OR operations and
consisting of two templates with only one non-zero template coefficient each, the central
ones.

Fig. 4.3 displays the TP module operations implemented in the B/W architecture
presented in [Brea et al., 2006]. It should be noted that in our synchronous architecture,
and differently from a classical continuous-time CNN, A and B are interchangeable
templates. A simple visual inspection reveals that it is enough to have a 4-connected
NEWS configuration with central coefficient in one of the templates and only the central
term in the other one. This would lead to 6 coefficients circuits (5 + 1 configuration).
This area improvement comes without penalty at processing time, which means an
RPO →∞.

A further analysis shows that simultaneous running of the two templates is just
used to perform Boolean operations. It is possible, then, to choose a 4+1 configuration
and execute the logical functions in two steps (we do not have the central CC in the
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Figure 4.3: Operations and templates in the TP module of the PLS algorithm
reported in [Vilariño et al., 2003] with the implementation presented
in [Brea et al., 2006].

first template). In this case RPO drops to around 150-100% depending on the number
of hole-filling (HF) iterations required (150% for just one HF iteration and 100% for
a large number of iterations). Furthermore, seeking bigger area improvements, we
can select an option with two templates in a 3+1 configuration. This is the situation
illustrated in Fig. 4.4. The cell configuration is represented with dots for the A template
coefficient circuits and with crosses for the B ones. Sub-templates, shift templates, and
system level processing steps to emulate the original CNN operations functionality are
also shown. This configuration would lead to an RPO between 45 and 60% (45% for
just one HF iteration and 60% for a large number of iterations) with an HR of 6/10
(60%) with respect to our starting point.
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Figure 4.4: CNN operations in the TP module of a PLS algorithm imple-
mented with a 3+1 CC configuration. Shifts appear circled and
sub-template applications squared.
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PLS S&S Trade-off Analysis

After the process illustration we analyze the whole algorithm to offer an appropriate
and complete analysis. The results are summarized in Table 4.3.

For the selection of the cells’ configurations we have followed the criteria indicated
in the previous chapter. To begin with, we have chosen cell configurations respecting
the full functionality of the cell and we have also analyzed the shape of the involved
templates, concluding, as in the general study, that diamond configurations with feed-
back CCs are the most adequate. In a first rough performance evaluation of the selected
cell configurations, we have chosen those configurations that starting from the diamond
general shape require less number of operations for the same number of remaining CC.
Note that even the selected 3 CC configurations follow the diamond shape as much as
possible. A especial mention is deserved by the 4+1 configuration. This configuration
takes as basis an allowed 3 CC configuration and incorporates both template central
CCs. We have included this configuration because of the incidence of operations in-
volving just central CCs and operations involving very sparse templates with just one
CC, which suggests us that a very sparse configuration including feedback CCs could
be interesting. In addition, in the PLS original implementation the area occupied by
one CC is significantly smaller than that occupied by one connection and this makes a
PLS a good candidate to perform better in a two-central-CC configuration when com-
pared with a one-less-CC with no centrals configuration as the 3+1(D) in this case.
This is the particular behavior in area observed in the analysis of HR definitions in
Section 3.3. The selected configurations are shown in the first column of Table 4.3.
For 3 CC we show two different configurations, with the CCs in just one template, and
with them distributed in two, to illustrate the convenience of two templates, especially
indicated in this case to execute pixel-to-pixel logical and arithmetic functions. In the
analysis we also include for comparison the starting point configuration, a two-template
implementation with 9+1 CC.

The second column in Table 4.3 lists the number of operations per frame needed
to implement PLS with each configuration. In this evaluation we account for both the
B/W and the initial gray-scale task. The latter is accounted as one time equivalent
B/W CNN operation [Brea et al., 2006]. Ten iterations in the four cardinal directions
(40 iterations per frame) were assumed. This number is high enough for applications
like surveillance [Brea et al., 2006]. The total number of operations for B/W processing
is calculated under the consideration of worst case for the hole-filling in a 128 × 128
image (64 iterations). This task is carried out twice in PLS [Vilariño et al., 2003].
The number of operations (processing steps) per frame also varies with the size of the
diffusion operator. Table 4.3 gives numbers for two different orders of neighborhood,
namely 3 × 3 and 9 × 9. The 9 × 9 is implemented through the S&S techniques
over the configurations selected. The number of operations slightly increases with
this order of neighborhood. The number of additional operations dedicated to the
LN implementation of the 9 × 9 diffusion template is the same for the 6, 5, and 4
CC configurations (2040 in 10 iterations of the four cardinal directions) and around
25% more for the 3 CC configurations (2640). It is interesting to note the number
of operations obtained for the 4+1 configuration, which performs even slightly better
than the 4+0 (D) cell configuration with the classical NEWS connectivity thanks to
the central CCs availability although it exhibits a worse shape for the general case.
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Needless to say that shift-sharing is applied when convenient.

As we have selected S&S image shifting mode, we did not expect significant extra
advantages of distributing the CC in two templates out of logic operations, and related
to the simultaneous application of operations. Nonetheless, we have found several
examples in this algorithm that take advantage of this distribution. For example, in
operations involving two templates with one non-null element (central or not), the 3+1
(D) configuration performs better than the classical 4+0 (D). In particular, it saves
one step in 9 of the 12 operations involved in the algorithm, including logic operations,
leading to a 20% less of operations. Another example is the dense 3 × 3 diffusion
operation emulation in the 2+1 CC configuration, where we can apply simultaneously
two operations involving 1 CC each, and reduce the number of steps from 9 to 8 because
of the irregular shape of the configuration. This is shown in the 3 CC configurations,
where the two-template 2+1 CC configuration performs better than the one with all
the CC in only one template. The case of the 5 CC (D) and 4+1(D) configurations is
different as they just differ in the template allocation of the feedback CC, resulting in
the same number of operations. We have selected the simpler one, the 5 CC (D).

Hardware reduction (HR) factor is calculated by two ways: the simplified (the
initial definition) and the weighted way. The weighted version of the HR factor takes
into account that the CCs occupy a 20% of the reducible area and the inter-cell con-
nections the 80%. Differences are not very significant and they show the overestimated
and underestimated cases, depending on the CC-connection correspondence in the re-
moved CC. The only case where they coincide is the 5+1 (D) configuration, where
the percentage of area saved in the connections area is equal to the one saved in the
CCs area as they are both reduced to the half. A notable difference is the obtained
for the 4+1 configuration, that actually outperforms the reduction obtained for the
one-less-CC configuration 3+1(D), confirming the irregular behavior expected for two-
central-CC configurations with this particular area distribution. At the bottom of the
table cells we include as well the estimated absolute value of total area saving (CAreduc)
accounting for the reduction of CCs and connections separately. These numbers are
calculated from the data gathered in the PLS cell layout shown in [Brea et al., 2006]
related to the actual cell area (40 × 32µm2). From this we consider that the B/W
blocks occupy around a 56% of the total cell area, the CCs+connections occupy the
60% of the B/W area, and this is divided in 20% for CCs and 80% for connections. The
hardware reduction entails savings in the total cell area from around 16% for the 5+1
(D) configuration to more than 21% for the 3 CC configurations, implying area savings
between 205 and 275 µm2 per cell. For a 128 × 128 cells grid, area savings up to 4.5
mm2 in the 21 mm2 approximate original area, are expected. Note that we have not
taken into account the possible differences in area between considering a one-template
or a two-template configuration. We have neither accounted for the extra LAM to
be implemented for the S&S methodology application, as the original implementation
have just binary memories. Nevertheless, taking into account the room estimated for
two kinds of LAMs in the second section of this chapter (around 150 µm2 for both in
a 0.35µm technology), we expect area savings even after the LAM inclusion (note that
as in this case the images are binary we just require one LAM for the accumulation of
the partial results in the S&S application). Interesting remark is the small area for the
coefficient circuits as we have considered a 1Q-1bit-BW 10 CC implementation.
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Table 4.3 also outlines the operations increment factor (OIF). It is apparent that
the smaller the number of coefficient circuits, the higher the OIF, which is a prove of
the good matching between the cell configurations selected and the involved templates
shape. RPO formulated as Eq. (3.6) accounts for the area-time (HR-OIF) trade-off in
the fifth column. The substitution of the original HR factor for the averaged version
introduces slight modifications in the RPO values that are shown between brackets.
Note the expected comparison difference between 4+1 and 3+1(D) configurations.

After leaving the most efficient configurations of each size we have to look at the
RPO value to select the configuration that offers the best trade-off. As expected, the
best allocation of the coefficient circuits is given by the templates shape. In this case,
the use of 6 CC instead of 10 barely penalizes the time performance, what means
that most of the PLS operations are doable with only 6 coefficient circuits in such a
configuration. And so, there is a big area saving with a very small penalty in time,
therefore RPO is quite high. The high incidence of the operations involving just the
central CCs leads the two-central CC configurations to a better time performance, even
for the 4+1 configuration that does not fully implement the diamond preferred shape.
Moreover, we can see the importance of having the coefficient circuits divided in two
templates (see the case of 3 CC). Also, and although not shown in Table 4.3, the largest
OIF in this case for an individual template emulation is 8. This case corresponds to
configurations with 3 coefficient circuits in two templates when approaching the 3× 3
diffusion operator. It is interesting to say that this factor drops to 2.6 if we choose
a 9 × 9 diffusion template (the reference in this case is the S&S implementation of
the 9 × 9 over the 9+1 CC configuration). The reason is a more efficient use of the
multipliers in the combination with LN techniques. In that case the maximum OIF is
5 and corresponds with AND/OR operations.

Because of the real-time characteristic of the algorithm, and following the goal cri-
terion, we include a time performance evaluation for every configuration. We consider
100 ns for every processing step [Brea et al., 2006], and 0.1 ms for image uploading and
downloading purposes [Brea et al., 2004a]. These times are given in order to estimate
how many processing steps we can have to still meet the time needs of the application
(more than 390 000 for 25 fr/s in this case, which means a maximum OIF larger than
30). In this sense, it should be noted that the acquisition time is variable and depends
on the sensor implementation, the application and the scene. The time for download-
ing of the output image is short, as the final output is a B/W image (the contours).
The numbers presented in the sixth column of Table 4.3 are easily redefined if these
times change. For instance, if the combination of uploading and downloading times is
1 ms instead of 0.1 ms, the number 1.2 ms/fr would become 2.1 ms/fr as it is just
the addition of the up-downloading time and the processing times. At the sight of the
results we conclude that video frame rates are achievable even for the barest config-
urations. This is also true assuming processing steps of µs, as in the architecture in
[Rodŕıguez-Vázquez et al., 2004], up to 4 coefficient circuits. This implies that we could
try to fulfill more exigent area requirements without penalizing the goals achievement.

Finally, it is interesting to note that most of the time is consumed in executing
propagative tasks, hole-filling in this case, what is shown in the last column of Table 4.3
in both, operations per frame and percentage of the total number of operations. This
suggests that applications without propagative operations or propagative operations
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Table 4.3: Area and time analysis of PLS with S&S.

Number of CC Ops/fr HR OIF RPO Time Perf. Propag.

(Config.) 3× 3 HRweight (ms/fr)/(fr/s) Tasks

9× 9 CAreduc (Ops/fr)

10 Coeffs. 0 % 10240

(9+1) 11065 0 % 1 0 % 1.21 / 826 92%

12185 0 µm2 1 0 % 1.32 / 758 84%

6 Coeffs. 40 % 10240

(5+1 (D)) 11309 48 % 1.022 1814 (2182) % 1.23 / 813 90%

13389 205 µm2 1.099 405 (485) % 1.44 / 694 77%

5 Coeffs. 50 % 15360

(5+0 (D)) 16749 50 % 1.513 97 (97) % 1.77 / 565 92%

18829 215 µm2 1.545 92 (92) % 1.98 / 505 82%

5 Coeffs. 50 % 20480

(4+1) 22094 60 % 1.997 50 (60) % 3.21 / 311 92.7%

24459 258 µm2 2.007 50 (60) % 3.45 / 290 83.7%

4 Coeffs. 60 % 20480

(3+1 (D)) 22675 52 % 2.049 57 (50) % 2.37 / 422 90%

24755 224 µm2 2.031 58 (50) % 2.58 / 388 83%

3 Coeffs. 70 % 46080

(3+0) 49720 64 % 4.493 20 (18) % 5.07 / 197 94%

52360 275 µm2 4.297 21 (19) % 5.34 / 187 88%

3 Coeffs. 70 % 40960

(2+1) 44326 64 % 4.006 23 (21) % 4.53 / 221 92%

47006 275 µm2 3.858 24 (22) % 4.80 / 208 87%
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in sparser templates could reach higher frame rates. Moreover, higher frame rates can
be possible with specific hardware like local logic units.

In the CNN literature there are many applications with moderate to low time needs
(tens to hundreds of frames per second) comprising lots of B/W operations of the type
of those found in PLS [Xavier-de Souza et al., 2006, Szlavik et al., 2006, Malki et al.,
2006]. In all these cases, the S&S methodology might lead to area and time efficient
solutions. Applications with time goals in the order of tens of thousands of frames per
second like those addressed in [Zarándy et al., 2005] might also be solved with S&S.
If the acquisition time is around 1µs, there is still a slot of tens of µs to process and
deliver the output image. The implementation of a reduced set of CC combined with
a fast architecture leading to short processing steps (tens of nanoseconds) might be
good enough to keep pace with the requirements of tens of thousands of frames per
second. In the end, the application time needs determines whether or not our approach
is advantageous.

The analysis of the PLS implementation is gathered at ISCAS07 paper (Ap-
pendix A, page 129). Nevertheless, in the data shown in that paper we do no account
for the inter-cell routing and the analog memory room, as it was accounted here. In
addition, accounting for both the CC and area connections led here to the utilization
of the weighted HR and to the inclusion of the 4+1 additional configuration with two
central CCs in the analysis. At DCIS06 paper (Appendix A, page 121) we can find an
schema of the main PLS tasks and the corresponding templates used in [Brea et al.,
2006]. It also shows the S&S steps required for the emulation of the PLS operations
over a 5+1 CC diamond configuration, and illustrates in detail the process for the
application of the LN homogeneous diffusion template considered over the same con-
figuration. It is interesting to note that the emulation process of this template would
be exactly the same as if considering a 4 CC diamond configuration. Note, neverthe-
less, that the numbers given about the area savings also differ from the data given in
this section. The main reason is the consideration of the original HR over the area
occupied by both CCs and inter-cell connections. Additionally, the estimates of the
percentage of occupation were rough and they turned out to be overestimated.

4.5 Summary and Conclusions

In this chapter we have gone through several algorithms and physical implementations
in order to validate the proposed methodology by analyzing the coherence between the
obtained and the expected results.

The main criterion used for the election of the physical implementations has been
the availability of data and characteristics of the implementation. In addition, we look
for covering both G/S and B/W data type. And finally, although the methodology
is general enough to be applicable to any CPA complying with the predictable and
accessible results condition, as we have developed the methodology over the CNN
paradigm we have looked for the physical implementations within the CNN literature.
One extra CPA non-CNN implementation, the SCAMP-3, was also analyzed to provide
an estimation of the S2I memories used in it. Finally we have realized a study of the
performance of the methodology over a CNN implementation on an FPGA platform.

From the analysis of physical implementations we conclude that, as expected, the
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application of the hardware reduction is much more profitable in G/S solutions where
the CC implemented are in general bigger and where the analog local memory is usually
included. Nevertheless, the hardware reduction S&S techniques can be used to com-
pensate for the area occupied by the extra LAM required by a binary implementation
if we choose to provide it with LN functionality through the S&S methodology.

On the other side, we have chosen examples within the state-of-the-art low level
image processing algorithms, and looking for LN communications. In this case we have
not limited us to the CNN algorithms, as it can be seen in the SURF and SIFT election
that had not been previously implemented over CPAs.

The first conclusion drawn from the S&S application to these algorithms is that
they can be implemented over locally connected CPAs despite their needs of large
neighborhood operations. Results are even promising, estimating that the SIFT scale
space generation can take ∼1 ms with around 1000 3 × 3 operations for four scales
in a 5 CC NEWS configuration, and that the whole application of 12 7 × 7 spin
filters are realized with a total of 136 3× 3 operations in a 4CC NEWS configuration.
The case of the SURF is a bit different. The implementation of the integral image
over CPAs leads to the parallelization of its calculation, what has been looked for in
the reference literature. Nevertheless, due to the particularity of the integral image
definition, the parallelization is limited to one line at a time. This leads us to propose
the utilization of LPAs instead of CPAs, because, in addition, their lower number of
PE allows the implementation of larger memories, what is a requirement of the integral
image. In this first part the methodology is almost reduced to shifts and accumulations
with the exception of the initial sub-template application that reduces the number of
operations required. The second part of the SURF scale-space generation involves
the box-filters application, that can be considered as proper LN operations. Together
with the integral image, they are reduced to some additions of values occupying large
distance positions, that can be implemented with the S&S techniques over a CPA. The
box filters application can takes around 3000 3×3 operations for four octaves. In both
cases for a full-dense or a 5 CC NEWS configuration, being another example of the
inefficiency of having implemented a full dense template.

Of course, no biased criteria looking for a sort of better fit to the methodology
was used in the implementations or algorithms test election and we have not discarded
physical implementations or algorithms because of better or worse results. In this sense
we have realized a blind selection as we could not have predicted the particular results
prior to the algorithms analysis out of the general predictions of the methodology.

The whole trade-off analysis was realized over an application oriented implementa-
tion of the PLS algorithm. Both the algorithm and the implementation are well known
for us as they have been developed within our research group. In fact, this imple-
mentation and its adaptation to LN operations was the initial motivation of this work
research. At the sight of the results we observe that with the methodology proposed
we can not only enlarge the functionality of the proposal by allowing LN operations,
but that area improvements can be expected even after the introduction of the re-
quired LAM. Note that, in this case, the main savings come from the removing of local
connections that occupy the 80% of the reducible area.

In the rest of the algorithms analyzed the LN operations have centered almost all
the efforts and the cell configuration effect is less evident. Only in the SIFT space-scale
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generation we have openly preferred the 5 CC diamond configuration in combination
with the H/V separability of the Gaussian kernel because of its almost no penalty
compared to the full dense 9 CC configuration. It is then, in this trade-off analysis
where we can check the correspondence between the cell configuration election with the
expected results of the general S&S analysis. Obviously we have chosen cell configura-
tions respecting the full functionality of the cell and we have also analyzed the shape
of the involved templates, concluding, as in the general study that the NEWS connec-
tivity configurations are the most adequate. We have also seen that in configurations
with few CC and applying the image shifting mode, it is interesting to distribute the
CC in two templates.

In the CNNA08 paper we also gather the shape analysis of the templates involved
in several algorithms sufficiently detailed in the CNN literature, included the PLS re-
viewed here. The statistics from this analysis support the NEWS connectivity election
in 4 of the 5 algorithms reviewed. In the fifth one, a vein feature extractor, the dense
kernels meant around the 60% of the total. Also interesting is the number of occur-
rences of operations just involving the central CC as local logic operations, arithmetic
operation or even threshold operations and from what we can conclude the convenience
of also implementing the feedback CC, at least in one of the two implementable tem-
plates. These operations meant the 20% of the operations in two of the algorithms and
around the 50% in other two, with even slightly more occurrences than the diamond
shape operations in the PLS one.



Conclusions and Future Work

The research work addressed in this manuscript is placed midway between the algo-
rithmic and the circuit design within the field of Cellular Processor Arrays oriented
to image processing. We have developed a methodology as a framework to a whole
series of methods and techniques that allow the simplification of the hardware avoiding
functional limitations.

The first motivation of this work was to enable long distance, i.e. large neighbor-
hood, communications in local connected networks of processing elements for fine grain
low level image processing. Afterwards we observed that the same methodology could
be applied over the local connectivity in order to reduce the number of connections and,
consequently, the area of the processing elements. From the methodology and tech-
niques development and the proposals validation we conclude that the initial objective
can be achieved with minimal modifications in the local connectivity proposal of imple-
mentation, being even directly implementable over certain realized implementations.
The amount of area reduction would depend on the starting point implementation,
but, even for the tiniest implementations, the proposal can carry out the function of
compensating for the extra hardware required in the worst cases for the long distance
communication implementations, a local analog memory.

The manuscript begins with a review of the CPA particularization we have fo-
cused on, the Cellular Non-linear Networks (CNNs), concluding that they represent
a good option in the implementation of visual microprocessors as it provides local-
connectivity, key in achieving massive parallelism for low-level image processing. The
proposed methodology imposes, nevertheless, one restriction in the hardware model
election, to have well-defined and predictable internal states at any moment after each
template/kernel application. In CNNs it is translated in using the discrete time CNN
model or just in applying the methodology to the control template and not to the feed-
back template in continuous-time CNNs. No other restrictions are imposed in relation
to the data type, for example, as the methodology considers two application modes,
one for G/S implementations and another one that is valid for both G/S and B/W.

The goals of preserving the functionality and even enlarging it with long distance
communications with minimum hardware modifications in both B/W and G/S pro-
cessing exclude solutions based on particular devices or architectures (e.g. [Wu and
Chen, 2009], [Ayoub et al., 2004], [Laiho and Lehtonen, 2010]), but also methodologies
restricted to G/S (e.g. [Ślot, 1994]) or B/W (e.g. [ter Brugge et al., 1998c]) imple-
mentations or limited to a particular kind of templates as those obtained by 3 × 3
recursion. We look for making the proposal applicable to any kind of linear template
and adaptable to any hardware particularization with minimum limitations. This is
why we have headed our efforts to system level general solutions. Another two goals in
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the development of our proposal are: 1) the simplicity of conception and application,
and 2) an affordable penalty at processing level. On this basis we have developed a
template partition methodology, the Split and Shift (S&S) based on the associative
property of the addition. We have proposed two modes of application depending on
how we apply the shifts to correctly gather the grouped results, either applying them to
the image to be weighted (image shifting mode) or by applying them to the grouped or
partial results. The consideration of the first option makes the methodology applicable
over completely binary implementations. We have also developed techniques both for
the split and the shift phases and we have analyzed the implications of these techniques
at hardware and processing time level. For the assessment in the reduction of the area
occupation we have defined an FoM to evaluate the benefit (area reduction) - penalty
(processing time increment) trade-off and we have used it to choose the most adequate
techniques.

The main contributions of the methodology development are the simplicity of the
conception and an organized set of guidelines of application to obtain a minimum
penalty at processing time and absolutely no penalty at functional level in the achieve-
ment of the goals.

In the LN emulation we measure the cost of widen the CPA functionality as the
number of operations required for the LN operations application. From the analysis
we mainly conclude that the splitting methods should begin from a template corner
and overlap incomplete sub-templates when necessary to keep the sub-template centers
close to the central cell. About the shifting techniques we observe the convenience of the
shift-sharing option in both image and partial-result shifting modes. A regular process
together with shift-sharing can give benefits in terms of simplicity and automation. We
suggest, as the best option, a concentric decomposition and spiral or zig-zag shifting.
Nevertheless, central shifting offer slightly better results in number of operation at the
cost of irregularity for more demanding implementations.

In the case of hardware reduction we have a trade-off between the benefit obtained
in hardware reduction and the number of operations required to keep the functionality
of the implementation. This trade-off does not depend only on the number of coefficient
circuits (CC) but on the selected cell configuration. We have gone through the cell
configuration election under four criteria.

The first criterion ensures the preservation of the full functionality without restric-
tions at kernel shape or size. This criterion imposes a minimum number of 3 CC and a
distribution of CC that allows all the shifts required to communicate to all neighbors.

The second criterion takes into account the performance of the implementation
by defining a Figure of Merit. This FoM is called RPO and measures the relation
between the percentage of CC reduced and the number of operations increased per
original operation. For a general single-template operation we would select a 6 CC
lateral configuration, with the central column of CCs removed, as the best trade-off
option. However, if we allow the distribution of the CC in two different templates we
obtain a better trade-off value with a 3+1 CC lateral configuration, without CCs on
the central column, for partial result shifting mode as it requires the same number
of operations with less number of CC thanks to the operations overlapping. For a
two-template operation, to re-use the same hardware for the implementation of both
templates, either considering the CC allocated in a single template or distributed in
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two, is the best option.

The third criterion in the cell configuration election appears from a deeper analy-
sis of the RPO definition and the evidence that cell configuration and template shape
matching would provide a best case. We go further in this criterion and we realize a
study of template shape through the most representative CNN template library, the
CSW. From this study we conclude that most of the gathered CNN operations exhibits
a diamond distribution of the template elements and that they are mostly symmetric,
what when combined with result shifting, can be used to reduce the number of op-
erations. Operations with just central CC as logic or arithmetic operations between
others, are also significant. As a consequence, a 5 CC diamond configuration, i.e. the
classical NEWS with the feedback coefficient circuit, represents a good trade-off op-
tion, what in addition justifies the generally assumed efficiency of the NEWS limited
connectivity. The study also analyzes the symmetries and proposes a way of taking
advantage of them.

The final criterion are, obviously, the goals to be reached in the implementation,
that would set the actual limits in processing time and area occupation. According to
this criterion, the application of the S&S methodology does not have strict techniques
to be applied, but guidelines for its application. This means that we can develop
different techniques or ways of application with similar results, which would be better
as they are more adapted to the particular case.

The combination of both, LN emulation and hardware simplification, is completely
assumable. Nonetheless, as the LN emulation demands a significant number of shifts,
the cell configuration and LN emulation shift technique should look to each other. The
usage of possible symmetries (with result shifting) and two-template configurations are
also shown as an advantageous resources.

Until here we have the conclusions obtained from the methodology development
gathering the main techniques and recommendations on the methodology application.
To validate the proposals we have gone through actual CNN implementations and
different low level image processing algorithms.

From the physical implementations analysis we conclude that, as expected, the
application of the hardware reduction is much more profitable in G/S architectures
where the CC implemented are in general bigger and where the analog local memory
is usually included. Nevertheless, the hardware reduction S&S techniques can be used
to compensate for the area occupied by the extra LAM required in general by a binary
implementation if we choose to provide it with LN functionality through the S&S
methodology.

The analysis of the FPGA implementations confirms in general our predictions
of hardware reduction. As the 9 CC implementation does not fit our FPGA area, its
implementation data cannot be taken as strict numerical reference for, for example,
the HR assessment. Nevertheless, we can take the relative area values between the
different actually implemented configurations, i.e. we choose a different starting point.
Moreover, this election fits better the original HR definition as it just takes into account
the number of CC reduced, and not the extra hardware required by the S&S, that is
supposed to be the same independently of the number of CC. In fact, comparing the
occupation data of the different configurations we obtain HR results similar to the
obtained with the simple initial definition. Slightly different values are obtained for
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different CC allocations, but in general the HR is proved to be a good tool for the
assessment of the area reduced for the comparison of cell configurations. Moreover,
we consider proved the no significant contribution of the inter-PE connections in this
case, what reinforces our election of the simplest HR definition. Note that for full-
custom design this cannot be stated in general, but in any case, the difference between
the number of CC and connections removed is, at most, 2, and, as it was shown in
Chapter 3, it does not implies differences in the configuration comparison further than
we expect that configurations with the same number of CC occupies less area if 1 or 2
of them are feedback CC.

Finally, we have also shown the feasibility of realizing actual topographic DTCNN
implementations over FPGA with the help of the S&S methodology. This line was
in fact followed in the B/W and a G/S implementations gathered in Appendix B for
actual applications.

On the other side, we have assessed the application of the methodology to state-
of-the-art low level image processing algorithms including LN communications. In this
case we have not limited us to the CNN algorithms. In fact, SURF and SIFT algorithms
had not been previously implemented over CPAs, and the first conclusion is that S&S
methodology allows their application over these locally connected massively parallel
architectures despite their needs of large neighborhood operations.

Results are even promising, estimating that the four scales SIFT scale space gener-
ation can take ∼1 ms with around 1000 3×3 operations in a 5 CC NEWS configuration,
and that the whole application of 12 7× 7 spin filters are realized with a total of 136
3× 3 operations in a 4CC NEWS configuration.

The case of the scale space generation in the SURF algorithm is a bit different.
The implementation of the integral image over CPAs leads to the parallelization of
its calculation, what has been looked for in the reference literature. Nevertheless,
due to the particularity of the integral image definition, the parallelization is limited
to one line at a time. This leads us to propose the utilization of LPAs instead of
CPAs, because, in addition, their lower number of PE allows the implementation of
larger memories, what is a requirement of the integral image. In this first part the
methodology is almost reduced to shifts and accumulations with the exception of the
initial sub-template application that reduces the number of operations required. The
second part of the SURF scale-space generation involves the box-filters application,
that can be considered as proper LN operations. Together with the integral image,
they are reduced to some additions of values occupying large distance positions, that
can be implemented with the S&S techniques over a CPA. In this case the number of
operation depend on the image size for the integral image calculation resulting N +M
3×3 operations for an N ×M image size. The box filters application can takes around
3000 3× 3 operations for four octaves. In both cases for a full-dense or a 5 CC NEWS
configuration, being another example of the inefficiency of having implemented a full
dense template.

For the whole trade-off analysis we have chosen an application oriented imple-
mentation of the PLS algorithm. At the sight of the results we observe that with the
methodology proposed we can not only enlarge the functionality of the proposal by
allowing LN operations, but that area improvements can be expected even after the
introduction of the required LAM. Note that, in this case, the main savings come from
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the removing of local connections that occupy the 80% of the reducible area.

This trade-off analysis also has allowed us to check the grade of correspondence
between the cell configuration election with the expected results of the general S&S
analysis. Obviously we have chosen cell configurations respecting the full functionality
of the cell. We have also analyzed the shape of the involved templates, concluding, as in
the general study, that the NEWS connectivity configurations are the most adequate.
We have also seen that in configurations with few CC and applying the image shifting
mode, it is interesting to distribute the CC in two templates.

We also gather the shape analysis of the templates involved in several algorithms
sufficiently detailed in the CNN literature, included the PLS reviewed here. The statis-
tics from this analysis support the NEWS connectivity election in 4 of the 5 algorithms
reviewed. Also interesting is the number of occurrences of operations just involving
the central CC as local logic operations, arithmetic or even threshold operations, from
what we can conclude the convenience of also implementing the feedback CC, at least
in one of the two implementable templates.

Future Work

As in the validation, our perspective about future work has two main lines, the algo-
rithmic and the hardware.

Within the algorithmic line we plan the implementation of the scale space genera-
tion of the SIFT algorithm over CPA platforms. The application of the S&S method-
ology over fully digital implementations comprising just one ALU per PE as that in
reference [Lopich and Dudek, 2011a], or a MAC as that in reference [Rodŕıguez-Vázquez
et al., 2008] is also a matter of future work. A further objective is the adaptation of
the methodology to its application over architectures with less fine grain parallelism
where the processing elements deal with several pixels instead of just one.

Within the hardware line we have three main concerns to deal with over a full-
custom implementation, namely, the implications of the methodology over the power
consumption and over accuracy required by the weighting circuits, and the implemen-
tation of the LAMs memories when they do not exist.

About the power consumption we expect a lower instant consumption but perhaps
a higher average consumption due to the higher number of operations and processing
time. Nevertheless, if we consider that weightings by null coefficients also consume
power, the reduction of the number of weighting circuits implemented together with
the high incidence of the sparse templates within the CNN operations would lead to
an improvement in this aspect.

Nevertheless, the accuracy required imposes a minimum in the power consump-
tion of a circuit [Kinget, 2005]. And this, together with the higher area required by
higher accuracy lead us to the second concern on hardware issues. We expect that the
mismatch between nominally identical transistors, the main error source in an analog
circuit, decreases as the number of components working at the same time decreases. In
addition, the liberated area provided by the CC removal can also be used to increase
the weighting circuits accuracy by increasing their transistors area.

Finally, although G/S architectures already offer local analog memories that can
be used for the S&S methodology, it would be beneficial to find a minimum size LAM
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to allow minimum size binary implementation take advantage of the S&S methodology.
Also, the many cycles needed for an actual application might well cause to adopt some
strategies for memory refresh in order to avoid the degradation of values stored in
analog memories.



Appendix A

Published papers gathering the
thesis work

This appendix gathers the published papers that summarize the development of the
research work and the contributions themselves. Papers are referred along the text
indicating the name of the conference where they were presented and the year of pre-
sentation. Papers presented at the same conference are distinguished with letters. On
the page before each paper we introduce the reference and the key name of the paper.
Papers are ordered chronologically.
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ABSTRACT
This paper addresses the extension of applications cov-

ered by binary CNN-based architectures. The work is
focused on diffusion-like tasks on binary images, tradition-
ally tackled by either large neighborhood or propagating
templates on a CNNUM architecture. The solution adopted
here is to split large neighborhood into smaller templates
(� � �) on a binary CNN-based architecture. Trade-offs
and hardware issues arisen from such an approach, as well
as examples of application, are discussed throughout the
paper.

I. INTRODUCTION

The realization of large-neighborhood templates on a
CNN chip results into either solutions with low density
of cells or into slower applications. In a CNNUM chip,
the former would lead to more coefficient circuits per
cell [1], [2]. The latter solution would imply to feedback
�� � templates, (the nearest-neighbor connected pattern),
as many times as needed to have a valid approach to
the large-neighborhood template to be implemented [3].
This might be a limitation to fast-time response applica-
tions. Concerning the range of applications covered by
the CNNUM model, the piece-wise linear output-state
relationship allows to run algorithms with B/W and gray-
scale inputs/outputs [4].

Binary CNN-based architectures are an emerging ap-
proach to CNN on-chip implementation [5], [6]. Their
range of applications is restricted to algorithms with B/W
inputs and outputs. In these architectures, the piece-wise
linear output-state relationship is exchanged for a high gain
non-linear function. The major consequence is to have
very simple coefficient circuits, leading to chips with a
high performance, especially in area and processing speed.
The solution is highly suitable for propagating B/W tasks
like the hole filling, or for processing images with high
resolution (number of pixels) [6]. Nevertheless, by adding
new functionalities would be feasible to tackle a wider

range of applications, especially algorithms with B/W
inputs/outputs comprising partial gray-scale outcomes.

In [7], an extended version of a binary CNN architecture
to perform a low-pass filtering function with ��� templates
on a B/W image was reported. The result is a local
processor comprising a binary CNN cell for executing B/W
tasks and specific circuitry for dealing with the gray-scale
output from the low-pass filtering operation. The present
work is aimed at CNN image processing with B/W inputs
and partial outcomes in gray-scale mode. Diffusion-like
tasks fall into this category, which, as it was mentioned
above, are performed either with large-neighborhood or
with �� � gray-scale propagating templates in a CNNUM
architecture. Here, we propose a solution by splitting
large neighborhood into � � � templates running on a
binary CNN-based architecture. The paper is outlined as
follows. Section 2, from a � � � template, addresses the
decomposition of large-neighborhood into ��� templates.
Section 3 goes through the extension to greater orders of
neighborhood, discussing the major trade-offs and hard-
ware issues. Finally, conclusions and a brief outlook are
given.

II. 5X5 TEMPLATE EMULATION

In order to illustrate how to emulate large-neighborhood
templates with standard � � � templates on binary CNN-
based architectures we describe in detail the operations
needed in a generic � � � template. The first step is to
split the ��� neighborhood into ��� subwindows. There
are multiple window-split methods. Fig. 1 illustrates two of
them. The number of subwindows is directly related with
the number of resultant ��� templates. Clearly, in a ���
neighborhood the minimum number of �� � subwindows
is four. The �� � template response is approached by the
combination of CNN-operations based on two kind of ���
linear templates:

� Decomposition templates, dependent on the particular
set of coefficients in the original �� � template.



� Shift templates, needed to drive the contribution of far
neighbors into the sphere of influence of the cell under
consideration (the central cell in the �� � window).

Concerning the decomposition templates, it is well
known that sparse templates tend to be more efficient in
terms of robustness [8]. Therefore the overlap of subwin-
dows (Fig. 1) should be done with as many null template
coefficients as possible.

Fig. 1. Window-split methods of a ��� neighborhood into
�� � subwindows.

The minimum number of shift operations (i.e., the
number of shift templates) and the coefficients in the de-
composition templates relies on the window-split method.
Nevertheless in a �� � neighborhood with N subwindows
is clear that the required number of shift operations will be
either N or N-1. The latter occurs when the central �� �
window of the original �� � template coincides with one
of the �� � subwindows, as is the case of Fig. 1a.

The decomposition and the shift templates are combined
in a multistep CNN algorithm. The outcome should be
the same as that of an operation with the original � � �
template. Two different multistep CNN algorithms could
be followed:

� Fixed image algorithm, where each decomposition
template is applied on the image under processing and
the result is shifted by the associated shift template
to the central cell in the �� � neighborhood.

� Shifted image algorithm, where the image under pro-
cessing is previously shifted by a shift template in
order to compute the corresponding decomposition
template directly in the cell under consideration (the
central cell in the �� � neighborhood).

Since we are constrained to CNN architectures comput-
ing binary inputs, the shifted image algorithm is clearly

advantageous. In this algorithm, real-valued outputs are
never fedback, but they are accumulated and stored in the
central cell of the �� � neighborhood. As a consequence,
the high gain non-linear activation function can be used,
resulting into an efficient on-chip implementation [6]. The
features added to a binary CNN architecture are so few.
Fig. 2 displays a simplified view of the binary CNN-based
architecture for the shifted image algorithm. The original
image (binary data) stored in a local logic memory (LLM)
is the input to the CNN module in order to compute a
shift operation. The output (binary) is fedback to the CNN
module to run a decomposition template. The resulting
internal state (real data) is added to the data stored in a
local analog memory (LAM) and subsequently the result
is saved in the same LAM. Therefore, after computing all
the operations the data stored in the LAM will be the sum
of the partial outcomes of all the decomposition templates,
being the same output as that of the original ��� template.

SHIFT

+

LLM

LAM

Binary image

(bin) (bin)

(cont)

Real array

DECOM

Fig. 2. Binary CNN-based architecture for the shifted
image algorithm in a generic large-neighborhood template
split into �� � templates.

Fig. 3 illustrates the sequence of shift and decomposition
templates for the shifted image algorithm applied to the
window-split method shown in Fig. 1b (four ��� subwin-
dows). In order to illustrate the validity of the proposal,
we have computed the diffusion operation with the �� �
template of Eq.(1). This is the result of running twice on
the CNNUM the � � � diffusion template listed in [9].
Its accuracy (robustness) should be modified according to
that of the specific binary CNN-based architecture, i.e.
as low as possible, in order to have as a dense on-chip
implementation as possible [8].
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Fig. 4 shows the emulation of the � � � template of
Eq.(1) with � � � templates complying with the shifted
image algorithm for the window-split method of Fig. 1b.



Fig. 3. ��� templates in the shifted image algorithm for the
window-split method of Fig. 1b in a �� � neighborhood.

Every one of the eight partial outcomes is the result of
every template (shift or decomposition and accumulation)
depicted in Fig 3. These operations are performed in the
binary CNN-based architecture displayed on Fig. 2. The
final output is exactly the same as that of the original ���
template.

Fig. 4. Diffusion operation performed with ��� templates
according to the architecture of Fig. 2 for the emulation of
a �� � template.

III. LARGE-NEIGHBORHOOD TEMPLATES
EMULATION

Following the strategy discussed in the previous sec-
tion is possible to approach the computing of larger-
neighborhood templates based on � � � linear templates
running on a binary CNN chip-set architecture. Neverthe-
less, in order to adapt the described methodology there are
some new alternatives to be taken into account affecting
both the window-split (number of subwindows) and the
shift methodology.

Concerning the window-split method, apart from split-
ting the neighborhood directly into � � � subwindows,

it can be considered a modular (recursive) methodology
where the original template is subdivided in subwindows
��� � �	 � ��� � �	 with � � �. Every subwindow
will also be split in order to compute with the nearest-
neighbor connected pattern (�� �). Each subwindow can
be computed as an independent template and the result
shifted to the central cell. Unfortunately, this methodology
has the same drawbacks as the fixed image algorithm for
combining the shift and decomposition template outcomes
(Section 2). It is required to operate with real data within
the CNN module (feedback), discarding the use of binary
CNN architectures, and thus its hardware benefits [6].
Therefore, the direct split of the template into � � �
subwindows seems to be the better choice. In this case,
the number of decomposition operations (templates) is:

����	 
 �
��� �

�
�	� (2)

As a difference from the emulation of �� � templates,
in larger-neighborhood templates the shift operations out-
number the decomposition operations, as there are more
than one shift for decomposition template. The reason is
that the distance from the central element of a � � �
subwindow (template) to the cell under study (center of the
�����	� �����	 window) can be more than one pixel,
and we are constrained to � � � templates. Nevertheless
some shift operations can be shared, allowing to reduce the
computational effort. Fig. 5 collects different techniques to
approach the shift operations:

� An independent shift approach. This is a direct exten-
sion of the approach for the �� � templates. In this
case, the shift operations are not shared.

� A dependent shift approach where the �� � subwin-
dows are shifted in a zig-zag way.

� A dependent shift approach where the �� � subwin-
dows are shifted in a concentric way.

In Fig. 6 a comparison of number of shift and decompo-
sition operations for the three approaches shown in Fig. 5
with respect to the neighborhood order of the template is
showed. As it can be seen, the three approaches described
above have approximately the same number of operations
when the order of neighborhood (n) is less than 6-7. From
that number onwards, dependent shift approach methods
are clearly advantageous. These operations are performed
on a binary CNN-based architecture. In such architectures,
the computation time for every � � � template can be
programmed to be in tens of nanoseconds [6]. If a hundred
of microseconds is set as the upper threshold to have
video rate processing, it can be seen that templates with an
order of neighborhood of n=30 (��� �� templates) could
be fit in such a time slot. It is also apparent that large
neighborhood templates would lead to stringent memory
requirements. Also, template uploading times must be ac-



counted in order to estimate whether or not the application
meets the video rate processing. Nevertheless, orders of
neighborhood inferior to n=5 are sufficient for the great
majority of applications.

Fig. 5. Shift techniques in a large-neighborhood. a) Inde-
pendent shifts, b,c) Dependent shifts.

Fig. 6. Total operations (number of shift and decomposition
templates) versus order of neighborhood with different
shift strategies.

IV. CONCLUSION

Binary CNN-based architectures seem to be suitable to
reach a good performance in area and power consumption.
This is mandatory to achieve higher cell density and thus
to approach new real-life applications. Unfortunately it is
usually done at the expense of a considerable reduction
of the application domain. This paper proposes a strategy
to approach CNN-operations with large-neighborhood tem-
plates by means of binary CNN-based architectures. The

final goal is to increase the application domain of this kind
of architectures.

The emulation of a � � � template response has been
deeply discussed to illustrate the proposal. Furthermore,
the extrapolation to larger neighborhood templates has
been addressed, including some remarks on the efficiency
based on the order of the template to be emulated. The
evaluation based on the hardware requirements and com-
puting time hint that the proposed strategy can be suitable
for emulating templates of moderate size.
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Abstract— This paper aims at extending the range of applica-
tions tackled with binary-based Cellular Neural Networks. Such
an extension is focused on diffusion-like tasks on binary images.
This is traditionally done with large-neighborhood templates. The
solution adopted here is to split large neighborhood into templates
with the nearest-neighbor connected pattern (3× 3). Simulation
results in an active contour technique illustrate the validity of
the approach. Trade-offs and hardware issues are also discussed
throughout the paper.

I. I NTRODUCTION

Cellular Neural Networks (CNN) make a comput-
ing/architecture paradigm especially suitable for image
processing in an SIMD fashion with a pixel-to-cell correspon-
dence at hardware level [1]. At image level, CNN architectures
are usually meant for either gray-scale or B/W processing.
ACE16k is the epitome of CNN on-chip solutions for gray-
scale processing, having the B/W as a particular case [2]. B/W,
also called binary, architectures are mainly focused on very
demanding B/W image tasks. In the last case, the relatively
simplicity of the problem permits to come up with binary
CNN models meeting stringent hardware demands, mainly
of reconfigurability/programmability, power dissipation, area
consumption and processing speed [3]. It is plain, however,
that their main drawback is the lack of gray-scale processing.
Binary-based CNN architectures with extensions to gray-scale
processing emerge as a good alternative [4]. The additional
circuitry from gray-scale processing is small enough as to have
very competing solutions [5].

Another issue is how to solve image tasks with large-
neighborhood templates without a significant penalty at hard-
ware level. Such templates,5 × 5 and beyond, might be
common in diffusion-like tasks [1]. This kind of tasks are
performed either with large-neighborhood, i.e. with more co-
efficient circuits per cell, or with3×3 gray-scale propagating
templates, as is the case of an ACE16k-like architecture. The
latter solution implies the feedback of the gray-scale output to
apply the3×3 templates needed to have a valid approach to
the large-neighborhood template to be implemented [6].

The methodology used here is aimed to implement large-
neighborhood templates into binary CNN architectures. This is
a simple technique, previously introduced in [7], that is based
on the associative property of the addition and that results
in an exact emulation of the original template. The example
exposed here is based on a binary-based CNN architecture
with extensions to gray-scale processing, needed to deal with
gray-scale outputs. The goal is to solve diffusion-like tasks
on binary images by splitting large-neighborhood into3 × 3
templates, and with as small a CNN cell as possible. Here, it
is applied to an active contour-technique, the so-called Pixel-
Level Snakes (PLS) [8].

This paper is outlined as follows. Next section recalls
some of the splitting-methods discussed in [7]. Section III
addresses the PLS technique, highlighting those features where
the splitting methods do their best. Section IV illustrates the
validity of the approach with the PLS technique. Hardware
issues are also discussed throughout this section. Finally, the
main conclusions along with a brief outlook are given.

II. L ARGE-NEIGHBORHOODSPLITTING METHODS

The first step is to split the large-neighborhood window
into 3 × 3 subwindows (nearest-neighbor connected pattern).
Accordingly, the(2n+1)×(2n+1) template, withn being the
neighborhood order, i.e. an integer number greater than one,
has to be broken into3 × 3 templates. The partial outcome
from every 3 × 3 template has to be collected/updated in
the cell under study, central cell in the(2n + 1) × (2n + 1)
window, in order to have the same result as that with the
original (2n + 1)× (2n + 1) template. In so doing, there are
two kind of templates. Decomposition and shift templates. The
former templates result from the original large-neighborhood
template. The only concern in their design is to have as many
null coefficients as possible, since the robustness increases
with the number of zeros [9]. The shift templates come out
straightfowardly [7].

Decompositon and shift templates are subsequently com-
bined in a multistep algorithm run on a cell like that depicted
in Fig. 1. The original image (binary data) stored in a local
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Fig. 1. Binary-based CNN architecture for a generic large-neighborhood
template split into3× 3 templates.

logic memory (LLM) is the input to the CNN module in order
to compute a shift operation. The output (binary) is fedback
to the CNN module to run a decomposition template. The
resulting internal state (real data) is added to the data stored
in a local analog memory (LAM) and subsequently the result
is saved in the same LAM. Therefore, after computing all the
operations the data stored in the LAM will be the sum of
the partial outcomes of all the decomposition templates, being
the same output as that of the original(2n + 1) × (2n + 1)
template. It is worth pointing out that the addition is supposed
to be performed by KCL (current summation) in a single node
with a voltage outcome. As a consequence, the coefficient
circuits should be transconductance elements. This is in line
with most of the CNN on-chip implementations [10]. It should
also be apparent that LAM is the only additional device in
analog mode with regards to an entirely binary realization. Its
hardware realization does not lead to a significant extra cost. A
simple SI or S2I should be good enough [11]. LLM and LAM
are features of the so-called Universal Machine (UM) [1].

The aforementioned multistep algorithm combining decom-
position and shift templates is fundamental to determine the
number of operations (performance) of the large neighborhood
splitting method. In [7] was shown that when the original
binary image is shifted, in order to have the outcome of every
3 × 3 subwindow (template) in the central cell, in either a
concentric or a zig-zag way, the number of operations heavily
decreases. Fig. 2 displays how the multistep algorithm works
with the shift templates proceeding in a concentric way. The
key is to shift the image resultant from the previous shift move,
instead of the original image (initial snapshot). This way, it
is possible to share shift moves. The arrows in Fig. 2 mean
how to carry out the shift moves. The first arrow points to
the central pixel/cell in the(2n + 1)× (2n + 1) window. The
second move would go from right to left along the row where
the central cell is located. This is possible because the move
is made with respect to the previous shift, but not with respect
to the original image. Every shift is dependent on the former
one. Similarly, the third move would go upward along the
column where the central pixel is, and so on. This is the way to
tackle large-neighborhood templates in our binary-based CNN

Fig. 2. Concentric shift technique in a large-neighborhood window.

architecture (Fig. 1). Next section tells the application where
these ideas are used.

Fig. 3 displays the number of CNN operations versus order
of neighborhood for the most advantageous method of those
exposed in [7](concentric shift way). Note that it can be
obtained better results in particular cases, e.g. sparse templates,
with ad-hoc decomposition and coherent shift way. In a binary-
based CNN architecture, every operation (template execution)
can be done within tens of nanoseconds [5]. General-purpose
SIMD solutions like ACE16K and SCAMP needµs to run
a template-like operation [2], [12]. In terms of speed, Fig. 4
shows that the large-template implementation technique used
here is clearly better than that of a feedback approach. This
holds up to an order of neighborhood of 10. It is not having
into account template uploading times (re-programmability
rate). Nevertheless, orders of neighborhood smaller than n=5
are sufficient for great majority of applications and this addi-
tional time is low enough as to keep the binary-based CNN
approach as a competitive solution. As a reference, there would
be needed a rate of processing of400µs per operation in
order to achieve video rate processing (25frames/s) in an
application that requires100 operations per frame.

III. P IXEL -LEVEL SNAKES

Originally introduced in [8], Pixel-Level Snakes (PLS) make
up an active contour-based technique quite suitable for contour
tracking and segmentation, either with still or with moving
objects. In their latest version [13], PLS are placed midway
between energy and level-set based models [14], [15], [16].
This makes this technique very efficient when dealing with
complex applications like medical image processing with a
low S/N content, or applications with several contours on the
scene [4], [8].

The PLS technique comprises gray-scale and B/W opera-
tions [13]. The gray-scale processing is meant to extract the
guiding information. The B/W processing entails the move of
the contours. These are represented as sets of eight-connected
pixels on a binary image.

Fig. 5 displays the major operations performed in the
latest version of the PLS technique. The PLS algorithm is
fed with two images: the external potential and the active
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contour image. The external potential is a gray-scale image
extracted from the image to be processed. It contains the
most relevant information from the scene [14]. In the current
implementation, the external potential is calculated outside,
and taken as a static image for the PLS execution. The
output of the Guiding Force Extraction (GFE) block is a B/W
image, marking in black the locations toward the contours
can go. The GFE output is a combination of the external
potential with the so-called internal and balloon potentials.
The two latter are extracted from the active contour image
itself [17]. The Active Contour Evolution (ACE) block moves
the contours according to the GFE outcome. This is carried

out in the Directional Contour Expansion (DCE) and the
Directional Contour Thinning (DCT) blocks. The Topologic
Transformations (TPT) block deals with several contours when
needed (topologic transformations). The latter encompasses
morphological operations of erosion and dilation, as well as
a propagating task, hole filling, and the binary edge detec-
tion [1]. Collision Point Detection (CPD) is an additional
block used to spot those pixels (region in the image) where a
collision is about to happen. This block can be used to make a
decision on whether or not to have a topologic transformation.
In order to get a better understanding of the PLS technique
implemented here, the reader is addressed to [17], where an
extensive set of examples with active contour applications like
contour tracking or image segmentation can be found.

GFE DCE DCT

ACE

Hole
Filling Erosion Dilation

Binary
Edge

Detection

TPT

Active
Contour
Image

CPD

External Potential

Fig. 5. Operations performed in the PLS technique.

IV. SIMULATION RESULTS IN THEPLS TECHNIQUE

As in classical active contours, in the PLS technique the
contours are guided by means of three potentials: external,
internal and balloon potentials [17]. As it was mentioned
before, the external potential is a gray-scale image provided
with the most relevant features from the scene. This is an
image fed to the algorithm from outside (Fig. 5). The internal
potential, however, is extracted from the active contours. Its
aim is to keep the contours smooth, avoiding rough shapes (big
concavities) along the contours. Likewise, the balloon poten-
tials are updated from the contours themselves. They assist in
moving them, especially in those homogeneous regions of the
image to be processed, and in counteracting their tendency to
shrink due to the internal potentials.

The approach of large-neighborhood templates with nearest-
neighbor connected patterns is applied to the internal potential.
Here, as a rule of thumb, the larger the curvature, the larger
the neighborhood needed in the internal potential templates to
achieve smooth contours. More concisely, the local curvature
is estimated with the Derivative of the Gaussian (DoG) on
the binary contour image. The higher the radio of curvature,
the lower the outcome of such an estimate. This information
is combined with the rest of terms involved in guiding the
contours (external and balloon potentials). The goal is to lead
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Fig. 6. Contour evolution in a closed contour guided exclusively by internal potential.

the contours to the regions of interest while keeping their
shapes smooth [17].

Fig. 6 displays the evolution of a closed contour guided
exclusively by internal potential. The expected outcome is a
smoother shape in the contours. The contour evolution in Fig. 6
is accomplished with different orders of neighborhood, with
the size of the template labeled in the leftmost column. The
initial internal potential (first iteration) is also depicted in the
second leftmost column. Concerning the evolution, it can be
seen that a3×3 size for the internal potential slightly smoothes
the contour. In this case, a7× 7 template is sufficiently large
as to collapse the initial contour into a single point (pixel).
The 5× 5 size gives an intermediate result.

Eq.( 1) poses the3×3 template used for the internal poten-
tial. The5×5 and7×7 templates run in Fig. 6 are obtained as
the convolution of the3×3 template listed in Eq.( 1). This is a
standard template widely discussed in the CNN literature [1].
It performs a low-pass filtering operation. Nevertheless, with
a view to a custom on-chip realization in a binary-based CNN
architecture, the template of Eq.( 2) is far more adequate. Such
a template allows to employ a positive range high gain non-
linear model with 1-bit of programmability, leading to very
efficient on-chip implementations [3]. At image processing
level, however, its performance might differ.0@ 0.1 0.15 0.1

0.15 0 0.15
0.1 0.15 0.1

1A (1)

1

9
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Fig. 7 contains another contour evolution entirely guided by

internal potential, on this occasion with an open contour. The
target, only reached with a large enough template, is a straight
line. The evolution displayed in Fig. 7 shows that, again, the
larger the order of neighborhood, the smoother the shapes in
the contour. Eventually, the straight line is attained.It should
also be noted that the horizontal straight line would only be
achieved with the border pixels anchored. If such pixels are
not fixed, as is the case in Fig. 7, the final straight line is not
horizontal. This can be clearly seen in the case of the7 × 7
template.

Finally, we show an application where larger orders of
neighborhood in the internal potential lead to better outcomes.
This is the search of optimal routes. The field of application
can be that of robot navigation. Fig. 8 illustrates how the
PLS algorithm tackles the problem. These simulations were
run on ACE4k [17]. The sequence reads left to right. The
first frame shows the start and finish points encircled in white
and black respectively. The second frame is the exploration
step, where active waves (contours) are sent to the final point.
This is performed with an inflating potential. Following, third
frame in Fig. 8, deflating potentials are used. Finally, the
route optimization step is done. It is plain that the internal
potential would be fundamental in achieving more optimal
paths. The larger the neighborhood in the internal potential,
the straighter (shorter) the final routes (lines) would be.
Simulations with different orders of neighborhood integrated
in the PLS algorithm will be shown in the conference.

V. CONCLUSION

This paper has shown how to tackle large-neighborhood
templates with nearest-neighbor connected patterns. The work
is focused on diffusion-like tasks on binary images. The
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Fig. 8. Optimal route finding problem tackled by PLS.

approach is performed with a binary-based CNN model (cell).
Extensions to gray-scale processing are kept as simple as
possible, resulting into a hypothetical efficient CNN on-chip
implementation. Such a model is tested on a relatively complex
active contour-based technique, PLS. Simulation results show
that the performance of the internal potential (and as a conse-
quence that of the entire algorithm) improves significantly with
larger orders of neighborhood. The binary-based CNN model
guarantees the simplicity of the hardware implementation.
Hardware implementations confirming system-level conclu-
sions, however, are still to be explored in the near-term future.
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Abstract— This paper introduces a methodology to reduce the
number of coefficient circuits in a DTCNN cell without penalty
at application level. Trade-offs like area-processing time, and
some other figures of merit like accuracy and power dissipation
are considered. It is shown that it is possible to obtain efficient
implementations with a reduced number of coefficient circuits.
Some examples illustrate the proposal.

Index Terms— Hardware reduction, SIMD, CNN, PLS, trade-
off area-time

I. I NTRODUCTION

M ASSIVE parallelism is one of the fundamental con-
tributions of SIMD architecture in image processing

tasks. However, at the same time, SIMD on-chip implementa-
tion is also a challenge. It is even more restrictive for classical
CNN circuits comprising 18 coefficient circuits and 16 inter-
cell connections. Many efforts have been made to reduce
area consumption in such implementations. Some authors
have come up with several approaches focused on coefficient
circuits as an important part of the area in a CNN cell.
In so doing there are two main lines: simplifying hardware
implementation of coefficient circuits and reducing its number.
For the sake of clarity, these two lines are analyzed separately,
nevertheless better results are achieved from the combination
of both. Leaving aside pure circuit improvements, the most
important approach within the first option is the transitionfrom
4Q systems to 2Q or even to 1Q [1], [2]. The limitation to
binary image processing and 1-bit programmability are also
important solutions for hardware simplification in a CNN cell
[3]. The use of 10 coefficient circuits [4], only one template
physically implemented [5] or only one coefficient circuit with
time-multiplexing [6] are the main ideas in the literature to
have a reduced number of coefficient circuits in a CNN cell.
Supporting this, the work in [7] discusses the inefficiency of
having 9 implemented coefficients per template and it suggests
that a drop in the number of coefficient circuits might lead to
a better performance, i.e. to a cell with better figures of merit.

In line with the above approaches, our proposal is a new
methodology that attempts to shrink area by reducing the
number of coefficients, without drawbacks at application level
and without big penalties in processing time. The basis of
our work was exposed in [8], the so called “Split & Shift”

methodology to emulate large-neighborhood templates with
only 3 × 3 coefficient circuits implemented. This means that
the N × N coefficient circuits (withN > 3) required by
the original template are turn down to 9. Now, the target
of this work is to adapt those techniques to emulate3 × 3
templates with a reduced number of coefficient circuits. The
study presented here is general and considers full-dense3× 3
templates, so that any particular case will lead to equal or
better results than the ones shown here. As in the large-
neighborhood cases, it must be noted that our proposal is only
valid for DTCNNs, or CTCNN operations with B templates
only. The methodology presented here is also accompanied
with a quantitative study of its efficiency.

This paper is organized as follows. In Section II the main
steps of the methodology are presented for the case of an
isolated template. Section III extends the study to CNN
operations with two templates. In Section IV we introduce
the modifications that must be taken into account when going
through complex tasks or algorithms. We illustrate the process
with an example. The special situation of large-neighborhood
applications is also mentioned in this section. Hardware trade-
offs are considered in Section V and, finally, conclusions and
future work are gathered in Section VI.

II. REDUCTION OF THE NUMBER OF COEFFICIENT

CIRCUITS WITH “ SPLIT & SHIFT” TECHNIQUES

As it was mentioned before, our proposal is only valid for
DTCNNs or CTCNNs operations with B templates only. This
is because our methodology is based on the addition of partial
results, what implies to have predictable and well-defined real-
valued outputs. So, in CNNs with a piece-wise linear output-
state relationship the partial outputs have to fall into thelinear
region, and in CNNs with a high gain output-state relationship
it should be possible to get access to the state before the
application of the output function. The number of coefficient
circuits along with their arrangement set up the coefficient
circuits configuration. General3× 3 template functionality is
shown in Fig. 1, where differently from Fig. 2, the informa-
tion flows inwardly instead of outwardly. Fig. 1 depicts the
convention adopted at system level when listed a template.
All contributions flow inwardly to the cell. Fig. 2 outlines the
most frequent convention used at hardware level, when laying



down the cell. All the contributions flow outwardly from the
cell under study. From now on, unless otherwise stated, the
hardware level convention is assumed. The cell configuration
marks which of the nine template coefficients are executed,
as well as which of the neighbors are connected to the cell
under study. For instance we can consider a cell with three
coefficient circuits like the one in Fig. 3. In this case the
information flows to the right neighbors only. Having reduced
the number of coefficient circuits implemented the template
functionality is also limited. The functionality of a template
with the configuration given in Fig. 3 is shown in Fig. 4. Both
the hardware and the application (system) points of view are
displayed. The methodology presented here keeps the original
functionality with a reduced number of coefficient circuits.
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Fig. 1. System-level convention: weighting and collectingneighbor contri-
butions.
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Fig. 2. Hardware-level convention: sending out weighted information to its
neighboring cells.

Fig. 3. CNN with only three coefficient circuits per cell. Information flow
allowed to the NE, E and SE neighbors of a cell.

For a given configuration (number and allocation of the
reduced number of coefficient circuits) we must rearrange the
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-

Fig. 4. Corresponding template functionality for the configuration shown in
Fig. 3. Hardware point of view with solid arrows. System point of view with
dashed arrows.

coefficients of the original template into several sub-templates
with the selected configuration. We have to avoid repeating
the same original template coefficient in two different sub-
templates. Also, we must preserve the original relative posi-
tions among coefficients gathered in the same sub-template.
This is the “split” phase of the methodology. The following
phase consists of applying the sub-templates over the image
and gather all neighbors contributions within the cell under
study, emulating the functionality of the original template. To
achieve this objective we have two options. The first one is
to shift the image for each sub-template to be applied over
the adequate neighboring pixels (see Fig. 5). In so doing, all
neighbors contributions are directly collected in the cellunder
study. Another possibility is to apply all sub-templates over the
original image and shift the partial outputs to the cell thatmust
collect the corresponding weighted contributions (see Fig. 6).
This is the “shift” phase of the methodology.

For the shift phase of the methodology, there are, some-
times, shifts that are redundant, i.e. shifts related to different
sub-templates that are overlapped, and so that they can be
shared. This leads to a lesser number of operations and thus,
to a better processing time. Nevertheless, this option implies
that either a previously shifted image or the accumulation of
the previous partial outputs must be saved. It is translated,
on some occasions, into a greater memory usage. In any case
two memories are always needed, one to keep the original
(or shifted) image and an analog one to accumulate and
save partial results. In general it is beneficial to share shifts
whenever it is possible.

Fig. 5 and Fig. 6 show, respectively both options image and
partial result shifting, each with the two possible methods, to
share or not to share shift processes. The grid in the upper part
of the figures represents a reduction from 9 to 3 coefficient
circuits and from 8 to 3 inter-cell connections. With only 3
coefficients permitted we have to split the original template
into three sub-templates to have the 9 original coefficients
placed over allowed positions. Note that template positions are
the mirror image of coefficient circuit positions (see Fig. 3
and Fig. 4). Shifts that are required to gather all neighbors
contributions in the adequate cell are identified with numbers
1 and 2. They are represented over the grids with convex
arrows for partial result shifting and with straight ones for



image shifting (Fig. 5 and Fig. 6). Operation sequences for
both image and output shifting are also outlined. Between
brackets it is shown that if we share shifts we only need shifts
of type 1, what implies one less operation in the application
of the technique.
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Fig. 5. Sequence of operations to approach the functionality of a full-dense
3× 3 template with only three coefficient circuits with a given configuration
employing image shifting. Cell under study marked with a thick square.
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Fig. 6. Sequence of operations to approach the functionality of a full-dense
3× 3 template with only three coefficient circuits with a given configuration
employing partial outputs shifting. Cell under study marked with a thick
square.

It must be noted that there are not limitations to the coef-
ficient circuits configuration imposed by the original template
split. Nevertheless, the shifting process forces to have not only
a minimum number of coefficient circuits, but also a certain

4 Coef. Circ. 3 Coef. Circ.6 Coef. Circ.

Number of Operations
(Sub-templates + Shifts)

Number of Coefficient
Circuits

9
8
7
6
5
4
3
2
1

1
2+1
2+1
2+1
3+2
3+2
5+5

Fig. 7. Number of operations for the most efficient configuration of each
number of coefficients circuits. Among equal number of operations we choose
those with less coefficient circuits. These configurations are displayed in a
circle. We also depict some realizable configurations with 3, 4 and 6 coefficient
circuits.

arrangement within the3 × 3 neighborhood of the cell under
study. This is why the configuration seen in Fig. 3 is not real-
izable. It is not possible to shift to the left by means of a CNN
operation with such a coefficient circuits arrangement. Either
extra coefficient circuits or another allocation for the three
coefficient circuits would be required. As another option, we
can also implement shift operations through specific hardware
like direct switched-connections. This means that we could
avoid coefficient circuits that are only used for shifting. On this
basis, the configuration depicted in Fig. 3 would be feasible.
However, to simplify hardware considerations, from now on
we choose to make shifts with CNN operations.

Both the number of operations (processing time) and the
number of coefficient circuits (area) are key factors in as-
sessing the performance of our methodology. In Fig. 7 we
show the minimum number of operations for the most ef-
fective configurations (configurations that imply the lowest
number of operations to emulate a full dense3× 3 template)
of a given number of coefficient circuits. Among different
configurations and coefficient cicuits we always choose those
with the lowest number of operations. Configurations with the
highest efficiency within each selected number of coefficients,
except 9, are depicted. Configurations with 1 and 2 coefficient
circuits cannot be implemented because the shifting is not
doable. Note that a conventional SIMD architecture employs
only one ALU. The difference with a CNN, however, is that
classical SIMD implementations count on multiplexes to set
up communications with the neighbors along the four cardinal
directions, while CNN communications are performed with the
coefficient circuits themselves, and here almost all of themare
removed.

To compare the selected configurations we define an effi-
ciency factor, theRPO (percentage of hardware Reduction Per
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Fig. 8. Percentage of hardware reduction per CNN operation increased per
original CNN operation (RPO) in3 × 3 template approaches with different
configurations.

CNN Operation increased for each original CNN operation).
This parameter establishes the relationship between the benefit
obtained in area and the harm in time-consumption. It can be
a good way to compare different configurations, but design
requirements mark the actual goals to be achieved. Eq. (1)
gives theRPO definition. HR is the Hardware Reduction
factor, OIF is the Operation Increment Factor andnc is the
number of coefficients circuits (we assume that one of the
best configurations for a given number of coefficient circuits
is always selected).

RPO(nc) =
HR(nc) · 100
OIF (nc)− 1

(1)

Values of HR, OIF and RPO for the configurations
selected in Fig. 7 are shown in Fig. 8. In general, we can
see that the 3-coefficient configuration is much less efficient
than the ones with 4 and 6 coefficient circuits. This is due to
the difficulty of making shifts.

III. A PPLICATION TO A TYPICAL COMPLETECNN
OPERATION COMPRISING TWO TEMPLATES

After having introduced our methodology for an isolated
template, we look now at classical two-template CNN opera-
tions. Note that the bias term is not considered here because
it does not need to be split and can be added in one or several
steps while the new sub-templates.

The most straightforward solution is to reduce the number
of coefficient circuits of each template as if they were isolated
templates. In this case we can apply simultaneously the sub-
templates from both original templates (A and B). Shifts can
only be run simultaneously if eitherY = U (the same shifted
image is valid for both templates) or if we make partial
outputs shifting. In these cases we have the same performance
as with isolated templates. In any other case shifts have to
be performed in different CNN operations and their outputs
(shifted images) must be saved separately. The efficiency
drops with respect to the cases of shift-sharing and isolated
templates. This is summarized in Fig. 9, where all the numbers
were extracted under the consideration of equal configuration
for both templates.

Hardware sharing between both templates in order to reduce
area consumption was already proposed in [5]. Combining this

with our proposal to reduce the number of coefficient circuits,
we obtain better efficiency values than in the non hardware-
sharing option for configurations with 6 coefficient circuits
and no much worse for the ones with 3 and 4 (Fig. 9). Again
we can consider shift-sharing in the cases withY = U or
partial outputs shifting. With this improvement we achieve
better results in all cases (see Fig. 9).

As mentioned before, another approach would be to special-
ize hardware, having specific circuits for shifting, differently
from the conventional coefficient circuits used for sub-template
application. Similarly to classical synchronous SIMD architec-
tures, the shifting would be made by means of switches. Such
a specialization would allow configurations with only one or
two coefficient circuits.
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Fig. 9. RPO values under the consideration of two templates with specific
hardware for each one (2nd column), hardware sharing (3rd column) and
hardware and shift sharing (4th column).

IV. A PPLICATION TO COMPLEX TASKS

In particular cases, the performance can be improved,
even toRPO → ∞. This means that there is a complete
matching between the original template non null coefficients
distribution and the simplified coefficient circuit configuration.
We achieve hardware improvement without increasing the
number of operations. Apart from that, for only one CNN
original operation, the maximumRPO value is given by the
percentage of hardware reduction. This happens when the
number of operations is only increased in one, i.e.OIF = 2.
Nevertheless, when we consider complex tasks comprising
several CNN operations, it is possible to reachRPO values
larger than 100%. This means thatHR outweightsOIF (see
Eq. (1)). Next, these and other features of our methodology
are illustrated in a complex task with several CNN operations.

A. A typical complex task

We illustrate our methodology with the design of a module
of a complex active contour algorithm, the Pixel Level Snakes
(PLS) [9]. We focus on the Topologic Transformation (TP)
module because this is the most exhaustive time-consuming
module in the PLS due to the hole-filling task. Apart from the
hole-filling, TP comprises an opening (erosion & dilation) and
a binary edge detection.

The starting point in this example is the synchronous binary
architecture with 1-bit of programmability introduced in [10].
This imposes a fundamental constrain: the use of image shift-
ing. In this implementation there are two types of processing



steps, some with one and some with two templates. The former
case is a template with 9 possible non-zero coefficients. The
latter case is executed with two templates, both of them having
only one non-zero template coefficient, the central one. In fact,
the number of coefficient circuits implemented in [10] is ten.
This is our starting point. Hence we start with 10 coefficient
circuits.

Fig. 10 displays the operations implemented in the B/W ar-
chitecture presented in [10]. A simple visual inspection reveals
that it is enough to have a four-neighborhood configuration in
one of the templates and only the central term in the other
one. This would lead to 6 coefficients (5+1 configuration).
This area improvement comes without penalty at processing
time, which means anRPO →∞. Obviously, a more realistic
approach demands to study the rest of operations involved in
the PLS algorithm. This will result into a global finiteRPO.
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Fig. 10. Operations and templates in the topologic transformations (TP)
module of the Pixel Level Snakes (PLS) algorithm reported in[9] with the
implementation presented in [10].

A further analysis shows that when run at the same time
the two templates are just used to perform Boolean oper-
ations. It is possible, then, to choose a 4+1 configuration
and execute the logical functions in two steps. In this case,
RPO drops to almost 100%. Furthermore, seeking bigger area
improvements, we can select an option with two templates
in a 3+1 configuration. This is the situation illustrated in
Fig. 11. Cell configuration is represented with dots for the
A coefficient circuits and with crosses for the B ones. Sub-
templates and processing steps to emulate the original CNN
operations functionality are also shown. This configuration
would lead to anRPO around 60%.

B. Large neighborhood operations as special complex tasks

Large neighborhood templates implementation is a special
case within complex tasks. As it is introduced in [8], this
kind of tasks can be implemented with minimum size (3 ×
3) templates. The “Split & Shift” techniques used there are
the basis for the hardware reduction proposed here. Hence,
a further step would go through the implementation of large
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Fig. 11. CNN operations in the TP module implemented with a 4 (3+1)
coefficient circuits configuration. Templates enclosed by acircle make shifts.
Templates enclosed by a square are the sub-templates executed.

neighborhood templates with a reduced number of coefficient
circuits.

The most straightforward solution is to implement each sub-
template involved in the large neighborhood emulation with
the reduced configuration as isolated templates. This option
will increase significantly the number of processing steps:we
need several processing steps to perform each processing step
from large neighborhood emulation. Nonetheless it will be
a better solution to re-split the original large neighborhood
template taking into account the new configurations. In so
doing we can overpass the limits imposed by the original
split, i.e. we can gather into the same sub-template coefficients
that were originally placed in different sub-templates. The
possibility of doing this will depend on the configuration
selected. On the other hand, shifts from both techniques could
be shared and the use of two templates would allow to perform
shifting and sub-template application at the same time. This
might yield acceptable figures of merit in both area and
processing time.

V. HARDWARE IMPLICATIONS

Area, speed, accuracy and power dissipation are among
the main parameters shown up when designing a circuit.
As reported in [11], none of the these parameters can be
optimized independently. Many trade-offs come out. In this
section we see how our proposal affects these parameters and
trade-offs. This means to be a preliminary study. An on-chip
implementation would be more conclusive.

A. Area vs. processing time

Our proposal can be placed midway between a DTCNN
and a classical synchronous SIMD architecture. The number



of coefficient circuits is smaller than that of a CNN but greater
than that of an SIMD implementation, which usually has only
one ALU. Concerning processing time, our proposal needs
more processing steps than a classical CNN with 18 coefficient
circuits. Nevertheless, and although they were not compared,
it is likely that our solution would lead to less processing steps
than classical synchronous SIMD circuits.

Keeping our analysis within the CNN field, it is apparent
that there is a trade-off between area and processing time.
Throughout the paper the reduction of the number of coeffi-
cient circuits was taken as the measure of area improvement.
Nevertheless, this is a little bit over-simplified. Coefficient
circuit area consumption could represent, for instance, a 50%
of the total of the area of the cell. With this the real hard-
ware reduction will beRH × 0.5. Moreover, for every less
coefficient circuit, except for the central one, there is also one
less connection to the neighbors, what implies smaller area
for routing. The memory usage, however, grows and it can be
necessary to implement more memories. Furthermore, when
applied to binary architectures (B/W image processing) our
methodology obliges to include an analog memory to collect
all partial results.

On the other hand, an excessive number of processing steps
(very few coefficient circuits and/or complicated configura-
tions) might make an application too slow, especially for those
implementations with a large resolution (e.g.128×128 cells).
It is worth noting here that this might even happen to binary
architectures like the one reported in [12], where processing
steps of tens of nanoseconds were measured on a chip of4×4
cells. The reason for this is that now we need many more
accesses to the global memory where the templates are, and the
fan-out of the memory buffers grows with the size of the image
(i.e. CNN resolution). Finally, theRPO is just an indicator of
how much the trade-off between area and processing time can
be improved for each single CNN operation, task or even an
algorithm. However, the basic constraint is to meet the design
goals, so the best solution can imply not to get the bestRPO.

B. Mismatch, accuracy and power consumption

Hardware reduction makes it possible to enlarge devices
preserving the same area in the cell. This leads to mismatch
minimization too. The resultant circuits turn to be more
accurate. As the accuracy requirements pose a minimum
power dissipation [11], it is likely that a circuit realization
of the methodology addressed here consumes less power than
conventional CNNs. Furthermore, less number of coefficients
being executed at the same time will reduce power consump-
tion per clock cycle. This is something, however that cannot
be proved for the time being, but with a circuit design.

VI. CONCLUSION

A methodology to reduce the number of coefficient circuits
in a DTCNN cell without penalty at application level has

been addressed. Studies about the performance of such a
methodology has also been included. These studies show that
as long as the processing time does not grow excessively, our
methodology would result into an on-chip realization with very
competitive figures of merit. This is true for area and accuracy,
and possibly for power dissipation too. Nevertheless, thisstill
has to be proven with a circuit implementation.
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Abstract— This work aims to shrink area in Cellular Non-
linear Networks (CNN). Its basis is the reduction in the number of
weighting multipliers and connections in a CNN cell, classically 18
and 16 respectively. The methodology presented here comprises
two phases. The first phase splits the templates into smaller sub-
templates. The second phase shifts and collects the contributions
of every sub-template in the cell under study. Hardware implica-
tions of such a methodology are also discussed. All these features
are addressed for the case of a complex active contour algorithm,
Pixel-Level Snakes (PLS).

Index Terms— Hardware reduction, SIMD, CNN, PLS, trade-
off area-processing time

I. I NTRODUCTION

CELLULAR Non-linear Networks (CNN) have tradition-
ally been posed as an example of a practical solution

to the on-chip realization of SIMD architectures for image
computation with direct pixel to cell assignment [1]. The
local connectivity is one of the key factors in having CNN
on-chip implementations with high resolution (number of
pixels/cells). Nevertheless, low area consumption per cell
continues being a design challenge. Focusing the effort on
multipliers as an important part of the CNN cell area, two
main lines were followed for some authors to achieve smaller
area consumptions: simpliflying hardware implementation of
the multipliers and reducing its number. Work about transition
from 4Q to 2Q or 1Q systems [2], [3] and limitation to binary
image processing and 1-bit programmability [4] are the most
important approaches within the former option. The use of 10
multipliers [5], only one template physically implemented[6]
or only one multiplier with time multiplexing [7] are the main
ideas within the latter. A basis for this approach can be found
in [8]. Nevertheless, it is worth noting that both lines can be
combined with much better results.

On the other hand, a methodology to deal with large-
neighborhood tasks efficiently and without penalty at hardware
level in such implementations was introduced in [9]. In that
work, large-neighborhood templates (5 × 5 or more) were
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executed with 9 weighting multipliers and 8 interconnections
to the surrounding cells, i.e. by means of3 × 3 templates.
The methodology basically consisted of two phases. Firstlythe
large templates were split into3× 3 sub-templates. Secondly
the contributions from every sub-template were collected in
the current cell. The second phase could be done in two
different ways, either by shifting the image before applying
the sub-templates or by shifting the partial outputs of every
sub-template. The difference is that when shifting the image
outputs are obtained in the correct cell and we do not need
to shift the outcome of every sub-template. When shifting the
partial outputs, every sub-template is applied over the original
(not shifted) image. Thus, we have to shift the partial outcomes
of every 3 × 3 sub-template to collect all of them in the
adequate cell.

The current paper applies the above methodology to run
3 × 3 templates with a reduced set of weighting multipliers
physically implemented. The main goal is to improve the
figures of merit (especially area) at hardware level without
penalizing excessively the execution time. This comes out as
an area-processing time trade-off. These and other features
of our methodology are illustrated with a complex algorithm,
an active contour based algorithm, namely Pixel-Level Snakes
(PLS) [10].

This paper is outlined as follows. Section II introduces the
methodology to reduce the number of weighting multipliers
in a CNN cell. In Section III, the algorithm to be imple-
mented and the current hardware realization system level are
presented. In this section the hardware modifications needed
to apply the methodology are analyzed too. Section IV goes
through the selection of the best number and allocation of the
multipliers. Finally some conclusions and proposals of future
work are extracted in Section V.

II. “S PLIT & SHIFT” TECHNIQUES TO PRESERVE

FUNCTIONALITY IN HARDWARE SIMPLIFIED

As in large-neighborhood template emulation techniques,
the methodology proposed here is valid for both DTCNNs
and CTCNNs operations with B templates only. The reason
is that our methodology is based on the addition of partial
results, what implies to have predictable and well-defined real-
valued outputs. So, in CNNs with piece-wise linear function
the partial outputs must fall into the linear region. In CNNs
with high gain output-state relationship it must be possible
to get access to the state before the application of the output
function.
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The configuration (number of multipliers and distribution)
marks which of the nine coefficients are executed and which
of the neighbors are connected to the cell under study. As a
consequence, it determines how the split and shift steps must
be applied and the hardware simplification performance. Fig. 1
shows the minimum number of steps that can be achieved for
every possible number of considered multipliers. One and two
multipliers are not possible options because they do not allow
the required shift steps due to its limited connectivity. We
can take as an example of configuration the one with four
weighting multipliers shown in Fig. 2, where the weighting
multipliers are plot as dots. There the information flows to
the right and to the central-left neighbors. Note here that
at system-level templates are matrices formulated with the
information flowing from the neighboring cells toward the
central cell. Thus, the weighting multipliers of the neighboring
cells send their contributions into the cell under study. In
a hardware implementation, the weighting multipliers are
usually laid out with the information flowing out of the cell.
The latter is sketched with the straight arrows in the grid of
Fig. 2.

Number of Emulation Steps
(Sub-templates + Shifts)

Number of Weigthing
Multipliers

9
8
7
6
5
4
3

1
2+1
2+1
2+1
3+2
3+2
5+5

Fig. 1. Minimum number of steps for every number of weighting multipliers.

The first phase in our methodology is to split the original
3 × 3 template. The configuration depicted in Fig. 2 leads to
three sub-templates. In the new sub-templates the coefficients
have to be arranged in allowed sites (mirror possitions of the
configuration marked with dots in Fig. 2), and in such a way
that the original relative positions among template coefficients
are preserved and each coefficient is only used once.

The second phase in the methodology is to shift and collect
the contributions of every sub-template in the current cell.
As it was said before, there are two ways, either image or
partial results shifting. Furthermore, we have the option of
sharing or not overlapped shifts. The latter saves processing
time. Fig. 2 displays both options, image and partial result
shifting, with the two possible methods, to share or not to
share shifts. The grid in the upper part of the figure represents
a reduction from 9 to 4 coefficient circuits and from 8 to
4 inter-cell connections. Shifts that are required to gather
all neighbors contributions in the adequate cell are identified
with numbers 1 and 2. They are represented over the grid
with convex arrows. Operation sequences for both image and
output shifting are also outlined. Between brackets is shown
that if we share shifts we only need shifts of type 1, what
implies one less operation in the application of the technique.

It is also worth pointing out that apparently the left-central
weighing multiplier is not used as its value is always set to
zero in the sub-templates (see bottom of Fig. 2). Nevertheless,
it should be noted that this weighting multiplier is used
for shifting, not for sub-template application. In this case,
possibly a simpler and straightforward solution would be to
use specialized hardware (e.g. and additional data bus for inter-
cell connectivity). This might simplify the shifting procedure.
Nevertheless our analysis is restricted to architectures where
every task is tackled with CNN operations, that is, every op-
eration is done through the weighting multipliers. For further
information about the hardware reduction methodology and its
hardware-time processing implications the reader is addresed
to [11].
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III. P IXEL LEVEL SNAKES TECHNIQUES. 1Q-1BIT BINARY

IMPLEMENTATION

Pixel Level Snakes (PLS) is an active contour-based tech-
nique mainly oriented to contour tracking and segmentation.
Its development at pixel level makes it very suitable for a
CNN realization. The PLS version tackled here was introduced
in [10]. PLS techniques comprise both gray-scale and B/W
processing. The former is meant to extract the guiding infor-
mation. The latter moves and deforms the contours according
to the guiding information.

All these B/W operations are approached with a 1-bit
programmable DTCNN architecture [12]. Fig. 3 outlines the
flow diagram of the PLS version addressed in [12]. All the
operations are run iteratively along the four cardinal directions
within each algorithm iteration. B/W operations are enclosed
in squares with solid lines. These operations make the move
and deformation of the active contours. The active contoursare
one-width walls of black pixels on a white background. Gray-
scale operations are meant to extract the guiding information
image. This is done by the Guiding Force Extraction (GFE)
module indicated in a square with dashed lines in Fig. 3.
This block is implemented with specific hardware and not
with CNN operations in the work presented in [12]. As the
objective of the current paper is to simplify CNN hardware,
the methodology presented here is only applied to B/W in the
PLS algorithm.

Concerning B/W processing, the PLS algorithm sketched in
Fig. 3 contains several modules. These modules have different
functions in the algorithm. In Directional Contours Expansion
(DCE) the contours are expanded along the current processing
direction as long as the guiding information permits such
a move. The contours get back to the one-wide wall shape
in Directional Contours Thinning (DCT). The contours are

split and/or merge in Topologic Transformations (TP). Inter-
nal Potential (IP) keeps the contours shape smooth. Finally,
Balloon Potential (BP) assists the external potential in guiding
the contours. For further information about PLS the reader is
addressed to [10].

In Fig. 3 every module comprises several DTCNN process-
ing steps, each indicated withTi, AND andOR. Some of these
processing steps require two templates. Others need only one
template. Processing steps with two templates are marked with
A andB. Sometimes the variables have to be inverted. This is
shown with the inverter symbol. Fig. 4 depicts all the templates
used for B/W processing in Fig. 3. Note that the bias term is
never listed. The reason is that the bias term can be added at
any time while the sub-templates are being applied.

Concerning the hardware implementation, it is important to
mention that we have chosen a binary 1Q-1bit architecture
[12]. This means that we can only process binary images
and that templates can only have two values, 0 and 1. This
implementation comprises ten coefficient circuits and six log-
ical memories. This number of memories is enough for the
application of our methodology. Nevertheless, we would have
to implement at least one analog memory to accumulate the
partial outcomes. It can be a current mode memory (SI, S2I)
which allows to realize the sum of the outcomes directly. The
access to the cell state is easy to be implemented.

IV. H ARDWARE REDUCTION IN THEPLS B/W 1BIT

BINARY IMPLEMENTATION

Given that PLS aims at real-time applications, we must take
care with the numbers of operations incremented, as we have
to comply with the speed of 25 frames/s. Special attention
should be paid to the iterative Hole-Filling (HF) task in BP
and TP. This might be especially troublesome for large images.
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Fig. 4. Templates used in the PLS realization in [12]. Correspondence with
Fig.3.

For instance, in the case of a128× 128 resolution, HF could
take up to 64 CNN processing steps. In order to state how
aggressive our hardware reduction can be, next we account
for all the operations along the data path on an image on a
hypothetical PLS on-chip implementation. We make rough and
conservative estimates on how long it takes to run PLS on an
image, and with this we can finally estimate how many more
processing steps are possible in order to still have video rate
processing.

Assuming a chip with photosensors, all the pixels are
uploaded in parallel. This is the integration time. Ideally
this time is controllable (programmable), yielding an adaptive
sensory system. This way images with different contrast levels
can be acquired. The integration time rangesµs to ms. For our
analysis we can take 50µs as the integration time [13].

The next stage on the data path of an image is the processing
phase itself. This phase comprises global and local processing.
On the one hand, processing an image goes through the
reading and delivering of the template matrices and possibly
any other signals from a global memory to the CNN array.
On the other hand, the template matrices and accompanying
signals are subsequently run in the3× 3 neighborhood of the
cell. In current sub-0.18 CMOS technologies 100 ns (global
and local processing combined) for every processing step
(CNN operation execution) is not a big challenge for a B/W
1Q 1-bit implementation [12], [14].

The final stage on the data path is to download the image.
As the number of pins is upper bounded, this has to be
done serially in a row-wise scheme. In the case of the PLS
algorithm, the images read out of the chip are always the
contours, hence B/W images (binary signals). Assuming 32
pins for downloading, this amounts to less than 1 ms for

reading out an image with128× 128 pixels [14].
More concerned with the PLS processing itself, as the initial

contours are usually closed to their final location, ten iterations
are more than enough. Observe for example the case of a
video sequence. The final contours of a snapshot are the initial
contours of the next frame. If the integration time is small
enough compared to the speed of moving objects, the contours
will be quite close to their final location. Now, assuming video
rate processing (25 f/s), there is a 40 ms time slot for the
complete data path of an image. Taking 1 ms for downloading
and uploading purposes, we would still have more than 30 ms
for doing image processing on the acquired scene. This time
is rather long to achieve important area savings with the
hardware reduction methodology applied here.

Thus, we take 100 ns per CNN operation, 1 ms to upload
and download the image and we suppose the worst HF case
within a 128×128 image. With this we have that it is possible
to execute up to390 000 CNN operations per frame within
the real time processing rate. Note that the gray-scale module
(GFE) is considered as an only operation of 100 ns [12]
and that every iteration comprises the four cardinal directions.
Assuming the worst case for the HF in a128 × 128 image,
11 120 CNN operations are required per frame to realize
ten PLS complete iterations. With this we have that we can
use up to 35 new CNN operations per every original CNN
3 × 3 template without penalty in the real time processing
rate goal. Nevertheless, as it can be seen in Fig. 1, 10 is the
maximum number of CNN operations required by the barest
configuration (3 multipliers).

Concerning our methodology, to choose the most adequate
configuration, we must analyze the shape of all the templates
in the algorithm (see Fig.4). With this and taking into account
that we must avoid to penalize the Hole-Filling, we propose
a 5+1 diamondconfiguration, i.e. a reduction to five multi-
pliers in templateA and a reduction to one in templateB.
Furthermore, due to the binary implementation we start from,
we have to use image shifting emulation. Fig. 5 shows this
cell configuration, depicting theA weighting multipliers as
dots and theB one as a cross. As can be seen in Fig. 4,
with this choice we can perform directly six of the nine
original one-template CNN operations and, thanks to the one-
coefficientB template, both two-template CNN operations (T1
andAND/OR). Only three templates must be emulated with a
reduced set of weighting multipliers. The sequences of CNN
operations needed to perform them are shown in Fig. 5. In
this figure shifts are signed with circles and sub-template
applications with squares. In so doing we obtain a 40%
reduction in the area occupied by multipliers and connections
(from 10 to 6 multipliers and from 9 to 5 connections).
Considering that in the implementation we started from ( [12])
the area occupied by the B/W CNN arquitecture represents the
65% of the cell area and that the area occupied by multipliers
and conections is the 70% of that we have that multipliers
reduction implies a 18,2% reduction of the total cell area.
This means that we pass from a cell of32 × 44µm2 to a
cell of 32 × 36µm2 and that in an array of128 × 128 cells
of 23 mm2 the reduction is of 4,2 mm2. The penalty at time
processing level is about 2.2%, i.e. we have 1.022 operations
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per original operation, what is far away from 35, where the
video rate processing would be still preserved.
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Fig. 5. System level implementation of the three original operations that
cannot be implemented directly:T4, T6 e T10 (see Fig. 4). Cell configuration
for a hardware reduction from 10 to 6 multipliers.A weighting multipliers
are represented by dots, theB multiplier by a cross. Templates required to
emulate these operations are shown too.

Nevertheless this is a very conservative hardware simplifi-
cation. As it is was said before, a barer configuration with only
3 multipliers would imply, in the worst case, 10 operations.
They will be 20 if we consider the worst case of a two template
CNN operation. In the case of the two template operations
considered here there would be needed at most four operations
for their emulation. The benefits would be a 70% multiplier
and connection hardware reduction which means a 31,85% of
the total area of the cell and 7,35 mm2 in a 128× 128 array.

A. Large-neighborhood implementation with hardware simpli-
fied

Recovering the original orientation of the basic methodol-
ogy we propose now to combine both, the original and the
new proposal to perform large-neighborhood operations with
nearest neighbor connectivity and hardware simplified. This
is very convenient for the application of the PLS algorithm.
The Internal Potential module is aimed to smoothen the
contour shape and was originally proposed as a diffusion
task [10]. This proposal was changed to be adapted to the
implementation we started our hardware simplification with.
In this adaptation, Internal Potential is extracted as a digital
word through four CNN operations. We return to the original
diffusive proposal and we make it possible to smoothen bigger
irregularities (rough concavities) along the contours with a
large neighborhood diffusion operation.

Cell
configuration
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Fig. 6. Original binary large-neighborhood (9 × 9) template. Central
coefficient and cell under study marked with a thick line square. Cell
configuration for a 5+1 reduction:A coefficients represented by dots,B
coefficient represented by a cross. Sub-templates centers shaded. Shifting
directions illustrated with arrows.

The most straightforward solution is to use the methodology
proposed in this paper to perform all the sub-templates as if
they were isolated templates of a given algorithm. Nevertheless
the number of operations obtained this way can be dramati-
cally shrunk if we take into account that it is possible to re-
split the original large neighborhood template with the new
restrictions. In so doing, we can skip the initial sub-templates
limits and gather in the same operation coefficients from
two different initial sub-templates. Furthermore we notice that
shifts required for hardware simplification can overlap the
shifts required for large neighborhood realization if we choose
adequately the way of applying the obtained sub-templates.

Zigzag shifting in Large-Neighborhood methodology [15]
is the one that requires less number of shift directions (zigzag
technique needs four cardinal directions to be applied). It
means that it is easier to have most of the directions directly
implemented, i.e. it would need less number of shifts to be
realized indirectly by means of the combination of other shifts,
what is translated into less number of operations. Concerning
hardware configuration, for consistence, we choose the one
exposed before (5+1 configuration). Nevertheless, we can
choose more effective configurations to implement a large
neighborhood template with six multipliers. Note that herewe
only use the fiveA template multipliers, we do not need the
one of theB template.

Fig. 6 shows the original binary diffusion template and the
cell configuration chosen for the emulation. Over the original
template, sub-templates centers are emphasized by shadowing.
Directions to be followed in the image shifting are shown.
The first sub-template to be applied is the central one. Given
that we have at our disposal several digital memories [12],
we determine to realize the sub-templates application in two
phases. Each phase starts from the original image. The first
phase applies the template placed in the center of the original
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Fig. 7. System level implementation of a9× 9 diffusion operation. Cell configuration for a 5+1 reduction: A coefficients represented by dots,B coefficient
represented by a cross. Templates required to emulate the original large neighborhood operation (see Fig. 6) are shown too.

template and continues to the up-left corner one. The second
phase begins with the sub-template placed next to the central
one, on its left, and continues along the arrows to the down-
right corner. Fig. 7 shows all these operations at system level.
Shifts are indicated by circles and sub-template application by
squares.

V. CONCLUSION

A methodology to reduce the number of weighting multi-
pliers in a DTCNN cell without penalty at application level
has been addressed. Such a methodology was illustrated with
the application of an active contour based technique, the
PLS algorithm, onto a 1-bit binary programmable DTCNN
architecture. The area processing-time trade-off sprung up with
our methodology is the main concern at hardware level. The
results given show that a significant hardware simplification
(area improvement) comes with an affordable price at pro-
cessing time in current sub-0.18 CMOS technologies for video
processing with PLS. This proves the validity of the approach
discussed here. Nevertheless, this still has to be confirmedwith
an on-chip implementation.
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Abstract— The use of a reduced set of multipliers or coefficient
circuits on cellular processor arrays leads to time and area
efficient solutions. The reduced set of multipliers is achievable
with the so-called Split&Shift (S&S) methodology. Data resultant
from applying such a methodology to implementations with Cel-
lular Non-linear Networks (CNN) reported in the literature are
presented. Also, Pixel-Level Snakes (PLS) are used as benchmark
for a more in-depth analysis of our methodology.

I. INTRODUCTION

Area consumption is one of the main design goals in
hardware design. This is even more important for massive par-
allel architectures with a large number of on-chip processing
elements (cells) like SIMD approaches. CNN architectures are
a particular case of the latter. They usually need two templates
and a bias term to implement an operation, which leads to 19
multipliers (coefficient circuits) per processing element, and
thus big area consumption.

There are two main lines to minimize area in CNN archi-
tectures through the coefficient circuits. The first line shrinks
the area in the multipliers through circuit design techniques.
The second one reduces the number of multipliers. In the first
line it is remarkable the 1Q-1bit-B/W proposal, where the
multipliers operate only within one quadrant, with only 1 bit
of programmability in the templates and over binary images
[1]. Another example of contribution within this line is the
implementation of multipliers with only one transistor [2] used
in ACE16k [3]. Note that the implementations reported in [1]
and [3] also use a reduced number of multipliers.

Within the second line we have proposals of time multi-
plexing as [4] and [5] and proposals of modification of the
funcionality as [6]. In the same way, we have introduced in
[7] a methodology that leads to less connections and coeffi-
cient circuits per processing element in Discrete Time CNN
(DTCNN) architectures without penalty at functional level.
This methodology, namely Split&Shift (S&S) methodology,
firstly splits the initial templates into new sub-templates, and
secondly gathers the partial outcomes from the sub-templates
in the appropriate cell by means of outcome or input image
shifting. Our technique can be easily applied to every DTCNN
or synchronous SIMD architecture, whether constrained to
B/W images or not, and regardless the number of quadrants
in the multipliers. The only constraints are synchronous pro-
cessing and access to the cell state variable. However, this

methodology might imply a significant increase in the number
of operations and so in the processing time. Thus it might be
troublesome for applications with hard time constraints.

Nevertheless, it is feasible to compensate for such an
increase of operations by means of circuit design techniques
combined with today sub-micron CMOS technologies. As an
example, in video-rate processing applications there is a time
slot of 40ms/fr. If the acquisition and delivery times of the
input and output images lie in the range of few ms, there are
still tens of ms available for computing the image. This allows
to fit tens of thousands of processing cycles assuming few µs
per CNN operation or processing cycle, as is the case of the
solutions reported in [3] and [8]. If it is possible to use faster
architectures like those addressed in [1] and [9], with tens of
nanoseconds per processing cycle, hundreds of thousands of
image tasks per frame would be reachable. It is apparent that
in many applications there would be many processing cycles
unused. In such cases, as long as the time needs are met, the
S&S methodology can be applied, leading to time and area
efficient solutions. Furthermore, applications with hard time
requirements with tens of thousands of frames per second,
like those outlined in [10], might be feasible with S&S on
either fast architectures or not, depending on the number of
operations and the shape of the templates.

This paper contains two main contributions. On the one
hand, the data collecting on existing CNN architectures re-
ported in the literature ([1], [11]) show that the S&S method-
ology would give significant area gains. On the other hand, we
use Pixel-Level Snakes (PLS), a well-known active contour-
based technique in cellular processors [12], to show that our
methodology is efficient in both time and area consumption for
real-time applications with video-rate processing. The paper
addresses both contributions in sections II and III. Finally,
conclusions are gathered in section IV.

II. ISSUES IN APPLYING THE S&S METHODOLOGY

In order to apply the S&S methodology different issues
have to be taken into account. We emphasize here that the
S&S methodology can only be used with either synchronous
architectures or CNNs with B-type templates only.

It is apparent that the starting architecture determines the
data type that can be dealt with. In this sense, architectures
that strictly realize the binary 1-bit 1Q CNN model like the one
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introduced in [1] would need an analog memory to accumulate
partial outcomes from sub-templates [7]. Furthermore, even
with an extra analog memory, these architectures are restricted
to have image shifting, but not data-shifting, as the coefficient
circuits are designed to work on binary variables and not on
real-valued ones. On the other hand, synchronous architectures
with cells of the type introduced in [3] can easily adopt the
S&S methodology, as they count on analog memories to store
sub-template outputs and can deal with any data type.

Another concern is the extra time caused by the extra
number of operations from the new sub-templates. Based on
rough and conservative estimates from previous work [7], one
can conclude that the highest number of processing steps
resultant from applying the S&S methodology to 2 full dense
3 × 3 templates with the barest of the configurations (3
coefficient circuits only) is less than 20. The use of output-
shifting in S&S could lead to better figures of merit than
image-shifting in some cases because of the possibility of
overlapping sub-template application and partial output shift-
ing in a 2-template configuration. The time for a processing
step depends on the hardware solution. In solutions like [3]
and [8], running B-type templates lasts few µs. This time is
easy to cut down with today digital CMOS technologies. In
fact, in current sub-micron technologies processing steps of
less than 100ns are easily achievable with 1-bit programmable
architectures [1] [9]. These times include the uploading of the
templates or instructions from a global memory to the cell
array. Keeping all these numbers in mind, and accounting for
the image acquisition and the output data downloading times,
the designer can judge whether or not the S&S methodology
still complies with the time requirements of the application.

Another issue when applying the S&S methodology is how
much area is saved. This also depends on the particular
hardware solution. In order to give some numbers we go
through two different architectures. The first one is the 1-
bit programmable approach addressed in [1]. In this case, the
cell contains 9 coefficient circuits, occupying an approximate
area of 32µm2 within the 155µm2 of the total cell area.
The S&S methodology would lead to 3 multipliers. In area,
this means to save 21µm2, which is around 14% of the
total cell area. In a 128 × 128 array this would be around
0.35mm2. The second architecture is discussed in [11]. Every
cell counts on 8 multipliers for neighborhood connectivity,
plus the feedback term and three additional multipliers. Due
to their much higher accuracy, the latter four multipliers are
much larger than the ones used for connectivity purposes. We
apply the S&S methodology to the set of 8 multipliers for
connectivity, diminishing this number down to 3. This leads
to area savings of 6.3% per cell, which is around 351µm2.
In a 128 × 128 array this amounts to 5.8mm2. It should
be noted that in the first architecture, the gains in area are
from moderate to marginal. In the second architecture, the
area savings are significant. In both cases we assume that the
inter-cell routing is included. As it was mentioned above, the
first architecture would need an analog memory to run S&S.
The second architecture would not need anything else. Also, in

the second case we have applied our methodology to a reduced
number of multipliers, not to the whole set. In this sense, the
area calculations are conservative. Much better optimizations
in area would be expected if the cell presented in [3] and the
S&S methodology were combined in a more exhaustive way.

As a final remark, area and processing time come up as a
trade-off. The lesser the number of multipliers the smaller the
area, and as a consequence more processing steps. Clearly,
the feasibility of this approach would be determined by the
time needs of the application. It should also be noted that
the area occupied by the multipliers is strongly determined by
accuracy requirements. The accuracy also influences the power
dissipation. As the new subtemplates contain less coefficient
terms, it is also expected to loose the accuracy requirements
on the coefficient circuits [13]. Furthermore, this means less
power dissipation [14]. The last two items will be studied in
the short-term future.

III. BENCHMARKING: REAL TIME AND HIGH SPEED

APPLICATIONS

To study the area and time efficiency of the S&S we use the
PLS algorithm addressed in [ [12] under its implementation in
[9] as benchmark. Nevertheless, as a difference from [12], we
also include the external potential extraction in our estimates.
This is obtained as a set of B/W operations.

PLS is an active contour algorithm that deals with contours
at pixel level. It has been introduced as a very useful technique
for image segmentation in real-time applications thanks to its
suitability for CNN implementation. According to the process-
ing data, PLS contains a module for gray-scale and another
one for B/W tasks. The gray-scale processing extracts the
guiding information for the contours from the original input
image. These operations are realized over a specific hardware.
Processing the contours only involves B/W CNN operations.
This comprises morphological operations like erosion and dila-
tion, logical functions (AND, OR), propagative templates like
hole filling, large neighborhood operators like diffusion, and
some other specific hit-and-miss operations. B/W operations
are realized over a 1Q-1bit-B/W CNN architecture with two
templates, one of them with 9 possible non-null coefficients,
and the other one with the central coefficient as the only non-
zero entry. Thus, the initial number of multipliers is 10.

In this section we analyze the area-processing time trade-
off when applying the S&S methodology to the B/W module
of the PLS. The great variety of operations along with their
long time-consuming (propagative and large-neighborhood
templates included) nature make PLS an appropriate real-time
benchmark for our methodology.

Table I collects the analysis of PLS for 6 different configu-
rations of coefficient circuits. We have chosen the most time
efficient configurations among those with the same number
of coefficient circuits (c.c.). Templates with one and two
coefficients cannot approach a general 3 × 3 template. For
three c.c. we present two different configurations, one with one
template and another with two. With this we try to illustrate
the convenience of using two templates. The reason is that two

2683



TABLE I

AREA AND TIME ANALYSIS OF PLS WITH S&S

Number of C.C. Ops/fr HR -%- OIF RPO -%- ms/fr (fr/s) Propag.

(Config.) 3× 3 (µm2) Tasks

9× 9 Ops/fr - %

10 Coeffs. 0 10240

11065 (0) 1 0 1.21 (826) 92%

12185 1 0 1.32 (758) 84%

6 Coeffs. 40 10240

11309 (35.6) 1.022 1813.9 1.23 (813) 90%

13389 1.099 404.8 1.44 (694) 77%

5 Coeffs. 50 15360

16749 (45.5) 1.513 97.3 1.77 (565) 92%

18829 1.545 91.7 1.98 (505) 82%

4 Coeffs. 60 20480

22675 (53.3) 2.049 57.2 2.37 (422) 90%

24755 2.031 58.2 2.58 (388) 83%

3 Coeffs. 70 46080

49720 (62.2) 4.493 20.0 5.07 (197) 94%

52360 4.297 21.2 5.34 (187) 88%

3 Coeffs. 70 40960

44326 (62.2) 4.006 23.3 4.53 (221) 92%

47006 3.858 24.5 4.80 (208) 87%

templates are advantageous to execute pixel-to-pixel logical
functions on two different images.

The second column in Table I lists the number of operations
needed to implement PLS with each configuration of coeffi-
cient circuits. In the following evaluation we account for both
all the B/W tasks and the initial gray-scale operations. The
latter is accounted in equivalent B/W CNN operations. Ten
iterations with four cardinal directions each were assumed for
PLS execution. This number is high enough for applications
like surveillance [9]. The total number of operations for B/W
processing is calculated under the consideration of worst case
for the hole-filling in a 128× 128 image. This task is carried
out twice in PLS [12]. The number of operations (processing
steps) per frame also varies with the size of the diffusion
operator. Table I gives numbers for two different orders of
neighborhood, namely 3× 3 and 9× 9. The number of opera-
tions grows slowly with the order of neighborhood. Also, and
in line with what it was commented above, the configuration
with 3 coefficient circuits in two templates performs better
than the one with all the multipliers in only one template.

Hardware reduction (HR) is given in both percentage of
multipliers and absolute area saved per cell. The latter is

obtained from [9]. Area savings up to 1.02mm2 in a 128×128
image are achievable. Inter-cell routing and room for the
analog memory are not accounted in this estimate.

Table I also outlines the operations increment factor (OIF).
It is apparent that the smaller the number of coefficient
circuits, the higher the OIF. RPO or ”percentage of hardware
Reduction Per CNN Operation increased for each original
CNN operation” formulated as Eq. (1) accounts for the area-
time (HR-OIF) trade-off.

RPO(%) =
HR(%)
OIF − 1

(1)

In the evaluation of time performance, we extract the time
per frame for every configuration of coefficient circuits. For
this, we consider 100ns for every processing step, and 0.1ms
for downloading and uploading purposes. Note that these times
are given in order to estimate how many processing steps
we can have to still meet the time needs of the application
(more than 390 000 for 25 fr/s in this case, which means a
maximun OIF greater than 30). In this sense, it should be said
that the acquisition time is variable and depends on the sensor
implementation, the application and the scene. The time for
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downloading of the output image is short, as the final output
is a B/W image (the contours). The numbers presented in
Table I are easily redefined. For instance, if the combination
of uploading and downloading times is 1 ms instead of 0.1
ms, the number 1.2 ms/fr would become 2.1 ms/fr.

From Table I we can conclude that video frame rates are
achievable even for the barest configurations. This is also true
assuming processing steps of µs, as architecture in [3], up to
4 coefficient circuits. Note that most of the time is consumed
in executing propagative tasks, in this case hole-filling. This
suggests that applications without propagative operations or
with sparser templates on them could reach higher frame rates.
Nevertheless, solutions like the one proposed in [15] or the
use of a kind of cache memory to avoid repetitive template
memory accesses might be very convenient approaches in
applications with propagative tasks and hard-time constraints.
Finally, higher frame rates can be possible with specific
hardware like local logic units, or circuits for shifting.

Also, we want to remark that the most adequate allocation of
the coefficient circuits will be given by the templates shape. In
this case we have chosen the most symmetrical configurations
because we have a significant number of isotropic templates.
Note that in this case the use of 6 coefficient circuits instead
of 10 barely penalizes the time performance. This means that
most of the PLS operations are doable with only 6 coefficient
circuits in such a configuration. And so, there is a big area
saving with a very small penalty in time, therefore RPO is
quite high. Moreover, we can see the importance of having
the coefficient circuits split in two templates (see the case of
3 coefficient circuits). Also, and although not shown in Table I,
the largest OIF was 8. This case corresponds to configurations
with 3 coefficient circuits in two templates when approaching
the 3 × 3 diffusion operator. It is interesting to say that this
factor drops to 2.6 if we choose a 9×9 diffusion template. The
reason is a more efficient use of the multipliers combined with
large neighborhood techniques [16]. In this case the maximun
OIF is 5 and corresponds with AND/OR operations.

In the CNN literature there are many applications with
moderate to low time needs (tens to hundreds of frames per
second) comprising lots of B/W operations of the type of
those found in PLS [17]–[19]. In all these cases, the S&S
methodology might lead to area and time efficient solutions.
In the end, the application determines whether or not our
approach is advantageous. On the other hand, applications with
time goals in the order of tens of thousands of frames per
second like those addressed in [10] might also be solved with
S&S. If the acquisition time is around 1µs, there is still a slot
of tens of µs to process and deliver the output image. The
implementation of a reduced set of multipliers combined with
a fast architecture leading to short processing steps (tens of
nanoseconds) might be good enough to keep pace with the
requirements of tens of thousands of frames per second.

IV. CONCLUSION

This paper has shown that the use of a reduced number of
coefficient circuits in DTCNNs is a time and area efficient

solution. This conclusion is mainly drawn from data on
CNN hardware implementations reported in the literature. The
reduced set of multipliers is realizable with the so-called S&S
methodology. In this paper we have also tested S&S in the
PLS algorithm, which is an adequate benchmark because of
its great variety of B/W operations. The main conclusion
in the PLS evaluation is that even with only 3 coefficient
circuits, the barest configurations for our methodogy, the PLS
execution would be fast enough to reach hundreds of frames
per second. Such an analysis is easy to extend to other type
of algorithms and implementations by simply considering the
appropriate characteristic data and time restrictions. Moreover,
in applications with hard time requirements, with tens of
thousands of frames per second, the S&S methodology might
also be applicable.
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Abstract— The so-called Split&Shift (S&S) methodology has
previously been introduced as an effective area saving technique
for hardware implementation of Cellular Non-linear Networks.
This work provides the first experimental proof of such a
methodology through a circuit implementation over an FPGA
platform. Results of area, processing time and functionality of
different instances of the S&S methodology are given.

I. INTRODUCTION

Cellular Non-linear Networks (CNNs) have traditionally
been posed as an example of practical solution to the on-chip
realization of SIMD architectures for image computation with
direct pixel to cell assignment [1]. The local connectivity is
one of the key factors in having CNN on-chip implementations
with high resolution. Nevertheless, low area consumption per
cell continues being a design goal to achieve either more cells
per chip or more functionality. In line with this, in [2] we have
introduced the Split&Shift (S&S) methodology. This leads
to less connections and coefficient circuits per cell in syn-
chronous CNN architectures, thereby less area consumption
without penalty at functional level. The work in [3] reports
estimates of area savings and processing speed of on-chip
CNN implementations found in the literature. The conclusion
drawn from that analysis was that the S&S methodology yields
benefits in area while keeping a fast enough processing speed
for video rate processing applications and beyond.

This work provides the first circuit verification of the S&S
methodology. The circuits have been designed with VHDL
and synthesized on an FPGA platform. Although this approach
has some limitations with regards to the analog CNN on-chip
solution [4], as photosensors and processing array on different
chips, the design cycle is much shorter, providing a fast way
of analyzing the S&S methodology at hardware level.

II. S&S TECHNIQUES

As mentioned above, the S&S methodology permits to drop
the number of coefficient circuits (cc) in a cell, and still to
approach dense 3× 3 or even larger-neighborhood templates.
The methodology works in two steps. The first step splits
the original template into templates with a reduced set of
coefficients (sub-templates). In the second step, the outcomes
of every sub-template are properly combined in order to
preserve the original template output [2].

Fig. 1 shows how the S&S technique works for a case
with four coefficient circuits. The original template is split into
three sub-templates, namely, A1, A2 and A3. There is also an
extra template (A4) required to do shifting. The sequence of
operations is displayed at the bottom of Fig. 1. In case of
two templates, A and A′, they are run sequentially in time.
First, template A1 (A1′) is applied. Next, the original image
is shifted one pixel to the left (A4), and over that image, the
template A2 (A2′) is run. A similar process is done with A3
(A3′). The final step adds the bias term to the contribution of
both templates and provides the output function Y .

This example shows the case of a generic CNN operation
with dense 3×3 templates. Nevertheless, usually the templates
comprise some null coefficients. Furthermore, in application
oriented implementations, the coefficient circuit configuration
can be suited to the most repetitive template pattern, yielding
better figures of merit in area and time [3].
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Fig. 1. Configuration of 4 coefficient circuits. Emulation of a generic CNN
operation with dense templates over this configuration.

III. FPGA IMPLEMENTATION

A. Design Issues

S&S techniques are applicable to synchronous CNN,
whether constrained to B/W images or not, and regardless the
number of quadrants used in the coeffient circuits [2]. The
only constraints are synchronous processing and access to the
cell state variable. In this work we have chosen binary image
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processing and we use the so-called positive range high-gain
non-linear CNN model with 1-bit of programmability [5]. In
this way, the array size on the FPGA can be large enough
as to clearly study the effects of the methodology. Also, as
many algorithms and applications make an intensive use of
B/W images the focus on this type of algorithms takes certain
relevance. In fact, there are even several proposals to optimize
B/W processing separately from the gray-level one as [6] or
[7]. Furthermore, this case is the least favorable in terms of
area savings with the application of the techniques because of
the reduced size of the coefficient circuits. It is expected to
have larger area savings with gray-scale cells [3].

The implementation shown here comprises the minimum
possible hardware to run our methodology. The emphasis is put
on the performance of the S&S techniques. The discussion on
the cell particular realization is beyond the scope of this paper.
Having these and the above considerations into account, our
cells consist of five primary blocks that can be seen in Fig. 2.
The register (D-Flip Flop) acts as local logic memory (LLM).
Coefficient circuits are simplified to logic AND gates because
of the binary nature of the processing. An encoder plays the
role of the adder in classical on-chip CNN implementations
transfering the contributions from direct connected neighbors
into a binary word that represents the number of contributions
equal to ’1’ and that makes a partial outcome. In order to
apply the methodology we need an accumulator that gathers
the partial outcomes obtained with the application of the
different sub-templates and the bias term. For the bias term,
the convention used in [7] for the positive-range high-gain
non-linear CNN model with 1-bit of programmability, where
the template coefficients are set to 1 and the bias is set to
X.5, being X an integer number between 0 and 3, is now
suited to the digital nature of the FPGA. In our implementation
the bias term is a 2-bit positive integer number with the
correspondences shown in Table I. This means to shift the
threshold for the output-state relationship from 0 to 3, being
the new output function as indicated in Eq. (1). As a result, the
threshold function can be implemented with an OR gate that
takes as inputs the bits in the output of the accumulator after
the bias is added, discarding the two least significant ones, as
they make 3, that is the threshold value.

y = f(x) =
{

0 x ≤ 3
1 x > 3 (1)

It is worth noting that the dummy cells value is updated with
the shiftings to allow the correct operation of the methodology.
As a consequence, they are not simple memories but are
implemented with a properly sized encoder and a number of
registers and ANDs that depend on the configuration selected.

TABLE I

CORRESPONDENCE BETWEEN BIAS VALUE IN [7] AND OUR

IMPLEMENTATION.

2-bit Bias [7] −0.5 −1.5 −2.5 −3.5
New Bias Values 3 2 1 0

f(x)

OR

Coeff.
Circ.

ENCOD.

ACCUM.

ANDs

LLM

D-FF

Fig. 2. Generic blocks of the CNN cell on the FPGA.

In order to check the functionality of our approach we just
show an effective grid of 9 × 9 cells/pixels, 11 × 11 with
dummy cells, under the four coefficient circuits configuration
depicted in Fig. 1. We have chosen to run recursive dilations
on this grid. The evolution of three iterations is displayed with
numbers on Fig. 3. The initial image is the central gray figure
with ’0’ number on it. Numbers ’1’, ’2’ and ’3’ indicates
the pixels turned black after the correponding iteration. The
dilation template used was Eq. (2) and it was applied three
times through 9 sub-templates and 6 shifts.

A =

 0 1 0
1 1 1
0 1 0

 I = 3 (2)

With this simple example we show that the implementation
works correctly by applying the S&S techniques at each
template as well as several templates can be run sequen-
tially. In spite of having used the same template in all the
iterations, different templates can be applied. To apply a
general algorithm we would need some more memories to
keep intermediate results that have to be used after and larger
neighborhood templates could be applied only with a large
enough accumulator.
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Fig. 3. Result of applying the dilation template over our implementation
with the scheme of Fig. 1. Three iterations displayed in a gray-level code.

B. Experimental instances

In order to analyze the results for different number of
coefficient circuits (cc) we have implemented 32 × 32 grids
(30× 30 effective cells) with 9, 6, 5, 4 and 3 cc per cell. The
configurations selected are listed in Table II. We have selected
the most adequate configurations for a generic and full-dense
3× 3 template [2], although large neighborhood templates or
sparse ones could be applied with the only restriction of the
size of accumulator. Even so, we have considered two different
4-cc configurations (4 C.C. (a) and 4 C.C.(b) in Table II) to
evaluate how the symmetry in the allocation of coefficient
circuits affects performance. Also, we have included two im-
plementations with central coefficients (6 C.C. (b) and 5 C.C.
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TABLE II

OCCUPATION AND PROCESSING DATA FOR DIFFERENT NUMBER OF COEFFICIENT CIRCUITS IN A 32 × 32 GRID

32× 32 9 C.C. 6 C.C.(a) 6 C.C.(b) 5 C.C. 4 C.C.(a) 4 C.C.(b) 3 C.C.

(30 × 30)

Total Area 26954* 25293 25297 22512 17941 18033 14189

LEs - (%) (103%)* (99%) (99%) (87%) (70%) (70%) (55%)

Area Per Cell - LEs 27* 25 25 22 17 17 13

Control Area - LEs 109* 144 144 144 144 144 144

(Mem+Grid+Cells) (92+17+0)* (110+17+17) (110+17+17) (110+17+17) (110+17+17) (110+17+17) (110+17+17)

Dummy Cells Area - LEs 124* 673 677 647 521 613 369

Frequency - MHz - 47.01 47.82 47.46 48.75 47.00 46.59

CNN Steps Per Template 1 3 3 5 5 5 10

(Clock Cycles) (2) (9) (9) (15) (15) (15) (30)

* Data given by the synthesizer might be under-estimated because 32× 32 grid with 9 cc per cell could not be implemented properly.

in Table II). This would favor pixel-wise Boolean functions on
two images. Finally, we have implemented grids of different
sizes with 9 and 4 cc, the last one in its configuration (a), to
study the behavior of the implementation with the number of
cells implemented and to check if the conclusions are valid
for any grid size (Table III).

The classical implementation of a DTCNN architecture with
only one template (A or B) comprises 9 cc. In this case the
template is applied in one step and as the S&S methodology
is not used, the accumulator (Fig. 2) is not necessary, the bias
is added through an adder and the dummy cells come down to
memories. Nevertheless, the lack of accumulator shrinks the
functionality of the 9 cc configuration, as it is not possible
to approach neither larger neighborhood templates, nor CNN
operations with two templates. This, however, is possible
with the configurations of less coefficient circuits outlined in
Table II, as these comprise the accumulator required for the
S&S techniques. In this sense, having the same functionality
would widen the area gap between the 9 cc configuration and
others with less coefficient circuits.

C. Experimental data and discussion

Our implementation has been realized with the Active-HDL
7.1 software by Aldec and synthesized with the Quartus II 6.0
by Altera over the Altera Stratix-EP1S25 FPGA. This FPGA
provides a total of 25660 logic elements.

Table II shows the results from a grid with 30×30 effective
cells for different number of cc. We can clearly see that a
reduced number of cc would lead to more cells on the FPGA.
In fact, we cannot implement a 30×30 effective grid with 9 cc
per cell on the selected FPGA (103% occupation), but we have
almost half of the FPGA empty for the 3 cc configuration listed
in Table II. The reason, apart from less coefficient circuits,
is the smaller size of the encoder that is optimized for each
number of cc and the number of registers that collect the direct
neighbor contributions.

As we can see in Table II, the control circuitry for S&S
techniques (Cells Control) consumes 17 logic elements when
such techniques are applied. The control circuitry for the grid
remains the same regardless the number of coefficient circuits.

The control circuitry for the uploading of the image from
outside to the inner RAM on the FPGA barely changes with
the configuration used. The area consumed by the dummy cells
depends on their connectivity with both the inner cells and
other surrounding dummy cells, i.e., on the number of coeffi-
cient circuits and their allocation. For the 9-cc configuration,
every dummy cell amounts to only one LE. Aside from this
hardware, and for all the configurations listed in Table II, the
synthesizer books 1976 LEs for communications from outside
to the inner RAM memories and from there to the grid. This
number only changes with the array size.

Concerning to have or not to have the central coefficient
circuit, we sort out two cases (Table II): the same number
of cc but different configuration (6 C.C. (a) and 6 C.C. (b)),
and different number of cc but only because of the central
coefficient (5 C.C. and 4 C.C.(b)). It is worth pointing out
that the benefit of having a central coefficient is the reduction
in the number of steps for implementing pixel-wise Boolean
functions on two images. In the first case, leaving aside the
area consumed by the dummy cells, the coefficient circuit
allocation barely affects the data shown in Table II. From
this, we conclude that in this implementation the influence
of the intercell connections is much less significant than the
size of the encoder and the number of registers in the cell.
We can reach the same conclusion for 5 C.C. and 4 C.C.(b).
In this case the intercell connectivity is the same and the
only difference is the central auto-feedback coefficient and
the difference in the area occupation is still notable. Finally,
regarding symmetry, we only find differences in the area
occupied by the dummy cells with better results in the less
symmetric configuration (4 C.C. (a) vs. 4 C.C. (b)). This
difference is due to the reduced number of connections on one
of the sides of the cell and not to the absence of symmetry.

In reference to processing time, the working frequency is
almost the same for all cases and so, the difference will
come from the different number of cycles needed per CNN
template application. Leaving aside uploading and down-
loading times for the image, we estimate processing speeds
assuming 50 MHz as working frequency. As the current
study is conceived for binary image processing, uploading
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TABLE III

OCCUPATION AND CLOCK DATA FOR DIFFERENT GRID SIZES WITH 9 AND 4 C.C.

9 Coefficient Circuits 4 Coefficient Circuits

Area Speed Area Speed

Total Per cell Control Dummy Max. Total Per cell Control Dummy Max.

Grid Size (LEs) (LEs) (Mem+Grid+Cells) Cells Freq. (LEs) (LEs) (Mem+Grid+Cells) Cells Freq.

(%) (LEs) (LEs) (MHz) (%) (LEs) (LEs) (MHz)

3× 3 197 27 109 8 67.28 235 26 127 29 67.99

(1 effect. cell) (< 1%) (92 + 17 + 0) (< 1%) (92 + 17 + 18)

4× 4 296 27 110 12 81.30 314 18.50 128 46 70.21

(2× 2 effect.) (1%) (93 + 17 + 0) (1%) (93 + 17 + 18)

5× 5 466 27 112 16 68.04 446 17 129 63 65.52

(3× 3 effect.) (2%) (95 + 17 + 0) (2%) (95 + 17 + 17)

11× 11 2649 27 117 40 58.88 1988 17 134 165 58.24

(9× 9 effect.) (10%) (100 + 17 + 0) (8%) (100 + 17 + 17)

32× 32 26954* 27* 109* 124* - 17941 17 144 521 48.75

(30× 30 effect.) (103%)* (92 + 17 + 0)* (70%) (110 + 17 + 17)

* Data given by the synthesizer might be under-estimated because 32× 32 grid with 9 cc per cell could not be implemented properly.

and downloading times are expected to be short, especially
if pipelining strategies and FPGAs with a large pint count
and fast buses are combined. For the time being, and since
the emphasis has been put on the methodology, and not on
a particular application, these times have not been evaluated
yet. Bearing this in mind, for a working frequency of 50 MHz,
i.e. a clock cycle of 20 ns, we could have 5 · 105 complete
CNN one-template-operations per frame (ops/fr ) with 25 fr/s
for 9 cc, but still 62500 ops/fr for 3 cc. This includes bias
addition and local memory storage, being two more clock
cycles. In other words, considering an algorithm of 100 ops/fr
we could reach 125 · 103 fr/s with 9 cc and still 15625 fr/s
with 3 cc. And finally, considering a complex algorithm with
12000 ops/fr we can have 1041 fr/s for 9 cc and 130 fr/s
for 3 cc. With these figures and a fast camera, to achieve
video frame rate should not be a challenge, even accounting
for the uploading and downloading times of the image. Note
that although these numbers refers to one-3×3 template-CNN
operations, we could use two-template-CNN or even large-
neighbourhood templates by only adjusting properly the size
of the accumulator.

We have also studied implementations with different grid
sizes. The results are conveyed in Table III. By analyzing the
total FPGA occupation we can see that the benefits of the
reduced set of coefficient circuits appear for grids of 5×5 cells
or bigger. The reason is that when using the S&S methodology
we need more control hardware and dummy-cells are more
complicated and this extra hardware is not compensated with
the reduced cells size (on average at Table III) for such small
grids. Finally, and concerning memory control and frequency,
as expected, we have worse results as the grid size grows. In
the case of the frequency, this is because of the larger fan-
out on the global lines that must deliver the template values
and control signals to the array. In the case of control, this is
because its complexity grows with the size of the image that
must be uploaded from outside to the inner RAM memory and

from there to the grid.

IV. CONCLUSIONS

This paper presents a circuit verification of the so-called
S&S methodology, previously introduced in the CNN litera-
ture. Such a verification is limited to binary image processing
and validated with the implementation of a positive range
high-gain non-linear CNN model on an FPGA architecture,
in particular on the Stratix-EP1S25 FPGA by Altera. The
use of the S&S methodology leads to area savings intended
for bigger CNN arrays and/or cells with more functionality.
This conclusion is not only restricted to reconfigurable VLSI
architectures like FPGAs, but it is also extended to other
solutions like full-custom designs. As a general conclusion,
we can state that under certain constraints, and possibly for
particular applications that require images of moderate to low
resolution, topographic CNN architectures on FPGAs might
well benefit from our methodology, especially with the advent
of FPGAs that increase the number of elements.
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Abstract— This work aims at finding efficient configurations
of coefficient circuits in a CNN hardware cell implementation
based on the shape of the templates listed in the Cellular Wave
Computing Library (CSW) and some applications/algorithms
addressed in the CNN literature. The paper also touches briefly
on possible hardware approaches to take advantage of the shape
and symmetries of the templates.

I. INTRODUCTION

Large integration density on massively parallel ICs for early
vision continues being a necessity, either to tackle images of
large resolution or to include more functionality, or simply
to have particular blocks able to carry out specific functions.
Despite the today’s impressive advancements of semiconductor
technology [1], such a need of more integration density leads
engineers to come up with ingenious solutions to shrink area
in their processing elements.

An efficient approach to save area is to look simultaneously
at both hardware and applications, applying co-design. In this
line, obviously the most straightforward way to save area in
the processing elements of cellular processor arrays, either
CNN or SIMD, is to design application-oriented hardware.
This is the case of the solutions addressed in [2], [3], [4],
where digital function blocks have been designed for specific
applications. In the CNN realm we find examples of imple-
mentations that use efficient area-saving models capable of
carrying out general-purpose processing. This is the case of the
implementation discussed in [5]. The CNN model employed
therein looks at hardware and image processing tasks with
the inclusion of 1-bit programmable templates [6] and the
change from two templates with 9 coefficients each to only
10 coefficients distributed into one template of 9 coefficients
and other one of only one coefficient. This leads to great
improvements in area occupation and processing speed.

One step further in the search for low area CNN cells is to
approach a general template with a reduced number of coeffi-
cient circuits by splitting one operation into several ones. This
can be done by the so-called Split&Shift techniques [7]. The
Split&Shift methodology can be easily applied to synchronous
cellular processor arrays and to either BW or gray-scale image
processing without penalty at functional level. With these

techniques we achieve significant area savings with affordable
increments in processing time. Nevertheless, we have seen
that in some cases the focus on the algorithm/application
makes it possible to use a reduced number of coefficient
circuits with almost no penalty, simply because the number and
allocation of the coefficient circuits chosen, what we call S&S
configuration, suits the shape of the templates in the algorithm
[9]. These results reinforce the observation made in [10]
that states that in a CNN implementation with 18 coefficient
circuits many multipliers are idle during a significant part of
the computation, so that we should use a reduced number
of coefficient circuits in a CNN cell. Our target now is to
examine the generality of this statement. In so doing, we
review the templates found in the Cellular Wave Computing
Library (CSW) [11] and some applications/algorithms reported
in the CNN literature.

The first goal of this paper is to find out whether or not
there are predominant shapes and symmetries in the templates.
The second goal of the paper is to come up with the best
configuration of coefficient circuits capable of approaching
general templates and algorithms with the least possible av-
erage time penalty combining Split&Shift techniques and a
smart use of the symmetries found in the templates. The paper
is organized as follows. Section II reports the statistics from
the CSW. Section III outlines statistics from CNN applications
and algorithms. Finally Section IV draws the main conclusions
from the paper.

II. STATISTICS FROM THE CNN TEMPLATE LIBRARY

The main goal of this section is to analize the shapes and
symmetries in the CSW in order to find possible trends in the
templates. In view of the results found we will try to determine
which S&S configuration is the most suitable one for a general
purpose implementation. We analyze only 3× 3 templates, as
larger neighborhood templates demand additional techniques
to be realized over locally connected implementations. In
particular, the realization of large neighborhood templates with
S&S techniques is less sensitive to the chosen configuration
than the 3 × 3 one [8]. In the following analyses, we use
either image or partial output shifting [7] when it is necessary
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Fig. 1. Template coefficient distributions found in the CSW.

to achieve the lowest possible number of processing steps with
the S&S techniques. It should also be noted that S&S tech-
niques can only be executed in synchronous implementations.

Firstly we analize the allocation of the coefficients in the
templates from the CSW within the sections ”Basic Image
Processing” and ”Spatial Logic”. For anisotropic templates, we
have included all the possible directions (N, E, W, S, NE, NO,
SE, SO) since that in general they have a different allocation
of the coefficients. In a second step we have extracted the
statistics for BW tasks due to its relevance in image process-
ing. We also classify the templates as propagating and non-
propagating ones. This is important because the application
of S&S techniques requires synchronous processing, and a
propagating template yields an iterative execution of B-type
templates in a DTCNN. This might lead to many occurences
of the same template, outnumbering the occurrences of the
remaining templates in the algorithm under study. In such
cases, the use of a configuration with a reduced number of
coefficient circuits that suits the shape of the propagating
templates would reduce the penalty in processing time.

A. General Analysis

Fig. 1 shows all the template coefficient distributions we
have found in the CSW. We label different coefficient values as
different letters. We also show explicitly the coefficients with
the same value and opposite sign in order to allow the study
of symmetries. Fig. 2 displays the number of occurrences for
every template coefficient distribution. In this graph we can
observe that distribution 2 (dense and radialy homogeneous)

is the most abundant with 16 occurrences, followed by dis-
tribution 7 (diamond and radialy homogeneous as well) with
7 appearances. Nevertheless these distributions make up only
13% and 5% respectively of the 123 templates analyzed.
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Fig. 2. Occurrences of the different template coefficient distributions (CSW).

In view of the high number of template coefficient dis-
tributions and the dispersion of occurrences, we make a
new classification based on the communications of the cell
under study with its neighbors. This new classification yields
only four groups. In the Dense group, the cell exchanges
information with all or almost all of the 8 nearest neighbors.
In the Diamond group, the cell needs communications with at
least one neighbor along the main cardinal directions. In the
Diagonal group, the cell interacts with at least one neighbor
along the NE, SE, NW and SW directions. We add a fourth
category for the templates that do not fit any of the former
groups. The result is shown in Fig. 3.

This graph shows that the Diamond group is the most fre-
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Fig. 3. The four main communication groups found in the CSW.

quent one, with up to one third of occurrences. Nevertheless,
Dense and Diagonal groups have similar levels of appearances.
From this graph and the analysis of the template coefficient
groups from Fig. 1 we have to emphasize some issues before
drawing conclusions. First of all, the percentage of templates
with five or less non-null coefficients amounts to more than
70%. Such templates are those into the Diamond and Diagonal
groups and some within the Other group. Furthermore, it is
also interesting to note that most of the templates marked
as Diamond and Diagonal have only two or three non-null
coefficients, being the central coefficient one of them. This
kind of sparse templates represents more than 50% of the total
of the templates analyzed as it can be seen in Fig. 4. With
regards to the symmetries, within the Dense group, only one
(distribution 6 in Fig. 1, with a representation of less than 1%
of all the templates analyzed) does not have axial symmetry.
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Fig. 4. Templates with less than five non-null coefficients (CSW).

From the data examined above we try to extract the most
convenient S&S configuration to approach a general template.
The first observation, according to the percentage of occur-
rences, is that a dense configuration is highly inefficient. On
the other side of the spectrum, the barest of the S&S config-
urations, that is, three coefficient circuits (first configuration
in Table I), is the best option to achieve the smallest area
occupation [7]. Nevertheless, such an S&S configuration does
not match any template coefficient distribution. This forces
to have at least two shifts and one template application for
the closest distributions. This is the case of some of the
distributions with only two template coefficients (see Fig. 1).

If we add the central term to the three-coefficient-circuit
(3cc) S&S configuration, which means four coefficient circuits,
some of the distributions with only two template coefficients
(2-c) can be done in only one step and many others in 3
steps. Also, a 4cc S&S configuration as the second in Table I
permits to approach some of the 2-c templates of the Diamond
group in two steps, but they mostly require three or more steps.
It is also possible to improve in one step the realization of

particular distributions (28-30, 47 and denses 1-5) making a
smart use of symmetries by using the results that have been
obtained in a different cell in a previous step1. Considering
the central coefficient circuit with this configuration, which
means five coefficient circuits, half of 2-c and 3-c distributions
in Diamond, half of 2-c in Diagonal and some within Other
can be done in one step. Also, the rest of 2-c and 3-c within
Diamond are done in 2 steps. Again, the use of the symmetries
allows for some reductions in the number of operations.

We can also consider a 4cc configuration with a diamond
shape (third in Table I). This configuration has a higher
matching with the distributions what leads to an improvement
in the number of steps required, that is even bigger if we
make use of symmetries. Furthermore, from Fig. 3, we see that
the diamond configuration with the central coefficient realizes
more than 30% of the templates in only one step, the Diagonal
templates with 2 coefficients (13%) in two steps and the rest
of diagonals in four steps (three for 28-30 distributions if we
use symmetries). The dense distributions are realized with five
steps in general, but almost all can be done in 3 steps if we
take advantage of the symmetries that they show. Finally, all
the distributions within the Other group can be approached in
five or less steps, and some of them even in two steps if we
take advantage of the symmetries they show.

In order to make clear how to make a smart use of
symmetries and without loss of generality, in the following
we show the case of the five coefficient circuits configuration
considered (third in Table I). We can see that at the same
time that the contributions of the neighbors N, S and central
are collected in the cell under study the contributions of the
neighbors NW, W and SW are collected in the W neighboring
cell as its own N, S and central neighbors contribution. This
is the same with NE, E and SE neighbors contributions in
the E cell. Taking the distribution 47 (Fig. 1) as example we
can apply the (-b -a -b) weights in the central neighbors and
simply collect the contributions of the right and left neigbours
by gathering the results obtained in the W and E neighbors.
This is done with a template that has a 1 as weight for the
W neighbor and a -1 for the E neighbor. The result that was
originally obtained in 5 steps is now obtained in only two
steps.

The S&S configuration of six coefficient circuits shown
as fourth in Table I is the smallest configuration that can
approach the Diagonal group distributions in one step keeping
the generality of the approach. This configuration can approach
31% of the templates in only one step, but in general we
need at least four steps to implement the Diamond and Dense
groups distributions. In this case (6 coefficient circuits) we
can see that is more beneficial in general to have a parallel
configuration (fifth in Table I) than the one with the central
coefficient (fourth in Table I). The trade-off between area and
speed of S&S configurations of seven and eight coefficient
circuits is not worhty. Finally, dense configurations allow to

1For the sake of clarity we will give the explanation of how to use the
symmetries with an example using the third configuration in Table I.
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TABLE I

PERCENTAGE OF TEMPLATES REQUIRING A PARTICULAR NUMBER OF STEPS TO BE DONE WITH S&S FOR EACH IMPLEMENTATION, USING OR NOT USING

SYMMETRIES. AVERAGE NUMBER OF STEPS AND RPO [7] TRADE-OFF VALUE FOR EACH CASE ANALYSIS FROM THE CSW TEMPLATE LIBRARY

S&S 1 Step 2 Steps 3 Steps 4 Steps 5 Steps More Average RPO

Config. %-S&S %-S&S %-S&S %-S&S %-S&S %-S&S Number (%)

%-S&S (Sym) %-S&S (Sym) %-S&S (Sym) %-S&S (Sym) %-S&S (Sym) %-S&S (Sym) of Steps

3cc/+cent.

- / 10% - / - 6% / 46% 20% / 4% 36% / 3% 38% / 37% 5.44 / 4.41 15.02 / 16.31

- / 10% - / - 16% / 46% 10% / 4% 36% / 3% 38% / 37% 5.34 / 4.41 15.36 / 16.31

4cc/+cent.

- / 21% 13% / 13% 30% / 9% 10% / 30% 47% / 27% - / - 3.91 / 3.28 19.09 / 19.45

- / 21% 16% / 13% 28% / 11% 23% / 53% 33% / 2% - / - 3.72 / 3.02 20.46 / 21.95

4cc/+cent.

- / 33% 13% / 17% 44% / 7% 14% / 14% 29% / 29% - / - 3.59 / 2.89 21.42 / 23.46

- / 34% 20% / 17% 45% / 34% 11% / 11% 24% / 4% - / - 3.39 / 2.36 23.24 / 32.73

5+1cc

31% 7% 13% 17% 32% - 3.14 15.59

31% 7% 14% 16% 32% - 3.13 15.65

6cc

1% 13% 86% - - - 2.85 17.98

1% 23% 76% - - - 2.76 18.98

apply all templates in one step. Clearly, this is the choice for
applications with very tight speed requirements.

B. BW Processing and Propagative Operations

The relevance of BW processing in CNN algorithms and
applications leads us to analyze this kind of templates in
the CSW. We have found that in terms of percentage of
occurrences they follow the same pattern as the general case
(Fig. 3) but with a slight increase in Diamond and Diagonal
groups at the expense of a decrease in the Dense group. On
the other hand, as the templates from the CSW are designed
for CTCNN, Table II provides a table of equivalences between
CT and DTCNN operations, because S&S can only be applied
in synchronous architectures. Fig. 5 shows the percentages
of their occurrences in the CSW. From the equivalences to
DTCNNs we see that the great majority of operations employs
only one template (Classes A, D and E) or two but one with the
central coefficient only (B or F). We have studied the templates
involved in iterative DTCNN operations (Classes B,C and E)
and we have concluded that they follow the same tendency of
the general study presented above (Fig. 3 and Fig. 4).

C. Conclusions from the statistical study

From the statistical study of the templates from the CSW
analyzed we draw several conclusions. The first one is that
the S&S configuration of five coefficient circuits in diamond
shape represents a good trade-off between hardware reduction

TABLE II

EQUIVALENCE BETWEEN CT AND DTCNN OPERATIONS.

CTCNN DTCNN equivalence
Class A A = Central B = Non-null Template B only

term only template terms
Class B A = Non-null B = Central Template B and

template terms term only Boolean functions
with logic circuitry
or two B central-

-term-only templates.
Iteratively

Class C A = Non-null B = Non-null Two B templates
template terms template terms iteratively

Class D A = Null B = Non-null Template B only
template terms

Class E A = Non-null B = Null Template B iteratively
template terms

Class F A = Central B = Central Boolean functions
term only term only with logic circuitry

or two B central-
-term-only templates

Class G A = Central B = Null NA
term only

and processing time for a general case. This is easily deduced
from the average number of steps and the RPO value.Both
are shown in the last columns of Table I. The RPO (area
Reduction - in % - Per Operation added per initial operation) is
a meassurement of the area-processing time trade-off that has
been previously defined in [7]. In this case the RPO values
were calulated with the average number of steps and with
reference to a 9cc configuration. It is also remarkable the
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Fig. 5. Percentages of the DTCNN classes of Table II.

high percentage of templates with only two or three non-null
coefficients (Fig. 4). This can suggest an S&S configuration
with only one, two or three coefficient circuits that can
be used alternatively (time-multiplexed) to weigh neighbors
values in a diamond shape [12], [13]. This means one, two
or three coefficient circuits instead of five, but four intercell
connections.We also have seen the importance of the central
coefficient circuit in all the cases. Moreover, it could even
be interesting to have an extra central coefficient circuit in
a second template, especially for those operations in class B
(Table II) that are iterative. These are the conclusions drawn
from the CSW. Nevertheless, we also have to review CNN
algorithms and applications to see whether or not real-life
applications follow the same tendency. Next section deals with
this issue.

III. STATISTICS FROM CNN APPLICATIONS

This Section outlines the analysis of 5 applications found
in the CNN literature, three of them selected from the former
CNNA [14]. We provide a brief description of every applica-
tion along with their template statistics. To probe further on
every application, the reader is addressed to the corresponding
references. Even though it is hard to draw a general conclusion
from such a short list of applications, it is still possible to find
out certain trends in the shape of the templates used.

The first application is that of visual inspection of metal
objects [15]. The algorithm proposed therein is quite simple. A
diffusion is applied over the input image (gray-scale), followed
by an image subtraction, a threshold, an AND, a variable
number of erosions (1 to 9 depending on the metal object under
study), and a final recall. Image subtraction and threshold
would be easy to implement with non-zero central elements in
the templates. Diffusion and recall are dense templates. The
erosion template can be either 4-connectivity or 8-connectivity.
In this analysis we have supposed 4-connectivity erosion
templates, and we have set the number of erosions to 5. Fig. 6
displays a summary of template statistics for this application.

The second application is about vein feature extraction
through DTCNNs [16]. The algorithm is too complex to be
wholly addressed here. After a binarization, the image is
subject to skeletonization, isolated pixel removal, ending de-
tection, bifurcation detection, Boolean operators, false feature
elimination and figure reconstruction. Each one of the former
stages comprises several templates, most of them dense. Figure
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Fig. 6. Template statistics for the application of visual inspection [15].

7 shows a summary of template statistics for this application.
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Fig. 7. Template statistics for the application of vein feature extraction [16].

The third application is wheelchair driving [17]. The al-
gorithm contains Boolean operators, shifts, and the templates
recall and shadow. The template statistics for this application
can be seen in Fig. 8.
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Fig. 8. Template statistics for the application of wheelchair driving [17].

The fourth application is that of Pixel-Level Snakes (PLS).
We analyse the version discussed in [5]. Such a version con-
tains Boolean operators, as well as hit-and-miss, and erosion
and dilation templates. Also, a propagating template, the hole
filling is included. The hole filling is performed by running
a B-type template iteratively. We set an upper bound of N/2
for the number of iterations, being N × N the image size.
Also, every template is formulated as a binary template, i.e.
every coefficient can be either 0 or 1. The results from template
statistics are depicted in Fig. 9. These data have been extracted
from a 64 × 64 image. The percentages of Fig. 9, however,
barely change with the image size.

The final case analyzed here is an application of robot
guiding [18]. Here we have reformulated the original templates
into binary templates. The proposed algorithm comprises hole
filling, CCD, shadow, hit-and-miss, binary edge detection,
small killer and Boolean operators. The application encom-
passes many propagating templates. As in the case of the PLS,
we have made the analysis for 64×64 images, and in this case
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we have set an upper bound of 64 iterations for propagating
templates. Again, the percentages remain the same regardless
the image size. The template statistics are shown in Fig. 10.
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Fig. 10. Template statistics for robot guiding [18].

Although the study reported here cannot be posed as con-
clusive, we can draw several conclusions. The first one is that
Diamond, Dense and Central are the shapes with the highest
number of occurrences. Irregular or Diagonal templates are
rare. Templates with only non-zero central coefficients in the
applications studied are employed for Boolean operations.
Diamond templates would be implemented with a reduced
number (five) of coefficient circuits. Finally, if dense templates
have symmetries, these can be easily approached started from
a diamond template applying a split and shift methodology
[7]. This is the case of the most of the templates of the five
applications discussed here.

IV. CONCLUSION

This paper has reviewed the CSW and some CNN algo-
rithms/applications found in the literature in order to con-
firm the general statement of whether a reduced number of
multipliers/coefficient circuits yields area and time efficient
Cellular Non-linear Networks. The study has shown that in
the great majority of the cases analyzed, having 18 or even
9 coefficient circuits is not the best option, unless speed
requirements are too tight. In a synchronous architecture, a
reduced number of coefficient circuits combined with the S&S
methodology is a better option. This study shows that the
S&S configuration of five coefficient circuits allocated in a
diamond shape is the best option. Such a solution covers
a large percentage of the templates of the CSW and CNN
algorithms/applications almost without extra processing time.
Furthermore, with a smart use of symmetries, there are barely
templates not implementable with only two or three steps by
means of S&S techniques. In fact, they represent only around a
15% of the templates analyzed, and they are approached with

only 4 or 5 steps. An extra template of only one non-zero
central coefficient can be useful as well for logic operations
implemented with CNN templates.

As future work, a more in-depth analysis of algo-
rithms/applications will be presented. Also, hardware ap-
proaches that take advantage of symmetries will be dicussed
more throughly.
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Abstract— This paper assesses the implementation of scale-
and rotation-invariant feature detectors on Cellular Processor
Arrays (CPA). Scale- and rotation-invariant feature detectors are
complex image processing algorithms with a high computational
burden in the low-level image processing stage due to large-
neighborhood convolution-type operations. Such operations are
used to generate the so-called scale-space. This paper outlines
different options to provide the scale space in the Scale Invariant
Feature Transform (SIFT) and the Speeded-Up Robust Features
(SURF) algorithms on CPAs with pixel-per-processor assignment.
The paper shows that it is feasible to do this even with a reduced
set of inter-processor communications within acceptable time
limits on existing CPAs.

I. INTRODUCTION

Scale- and rotation- invariant feature detectors are used
for different image processing tasks as object detection and
classification, image retrieval, image registration or tracking
[1]. Their invariant nature yields repeatability, which permits
to deal with occlusion, or with scenes taken under different
conditions such as illumination, or a different view angle.

Scale Invariant Feature Transform (SIFT) [2] and Speeded-
Up Robust Features (SURF) [3] are the most widely known
scale- and rotation-invariant feature detectors. In SIFT, part
of the low-level image processing relies on convolution-type
operations in large neighborhood regions. In SURF, large
neighborhood filters are also run, but on the so-called integral
image, which is the result of adding the pixel values of
all the pixels located up and to the left of the pixel of
interest. In both, large neighborhood convolutions and integral
image calculation, to have data parallelism at pixel level is
a challenge. Indeed, only the work reported in [4] presents a
pixel-per-processor assignment for low-level image processing
for SIFT in a reduced window, reaching 1 frame/s in VGA.

Cellular Processor Arrays (CPA) are matrices of simple
Processing Elements (PEs) locally interconnected. This ar-
chitecture responds to the Single Instruction Multiple Data
(SIMD) paradigm. With the approppriate adaptations we can
take advantage of the degree of parallelism on a CPA with a
pixel-per-processor assignment in tackling both convolution-
type operations with large neighborhood kernels and the
integral image calculation. In the former case, either we count
on inter-PE routing and circuits to connect pixels lying at long
distances from one another, or we opt for specific techniques
for local connections to cope with large neighborhood. The

latter is the best option as it gives the highest integration
density. The price is longer processing times. In the second
case, integral image additions can be group to achieve enough
parallelism to take adavange of CPAs. This paper addresses
different techniques to approach large neighborhood kernels
and the integral image with CPAs with local connectivity while
keeping the low-level image processing stages of SIFT and
SURF within acceptable time limits. The results are given
in terms of number of clock cycles or steps. We prove that
existing CPA implementations can give reasonable times.

II. SPLIT AND SHIFT TECHNIQUES

Split and Shift (S&S) is a methodology aimed at executing
convolution-type operations on a CPA with a set of inter-PE
connections and weighing circuits overpassed by the kernel
requirements [5,6]. This can imply both implement large
neighborhood kernels over local connected hardware, or apply
large neighborhood or minimun-sized kernels over a reduced
set of inter-PE connections and weighing circuits. For instance,
a 3 × 3 or larger kernel can be run with only 3, 4 or 5
weighing circuits per PE, and their corresponding inter-PE
circuits, instead of 9 weighing circuits per PE.
S&S techniques are feasible in convolution-type operations,

where the associative property holds. These techniques are
valid on CPAs where the signals are predictable and accessible
at every clock cycle like synchronous ones. The S&S method-
ology is run in two phases: 1) we group the kernel coefficients
into different sub-kernels, this is the split phase, and 2) we
collect the results of applying the sub-kernels at the PE under
study by shifting the sub-kernel outcomes, or by shifting the
inital image prior to the sub-kernels, this is the shift phase.
It should be noted that shifts are executed as specific kernels
on CPAs. Different time performances come out with different
split and shift methods. More details of these techniques can
be found in [5, 6]. This paper presents the most suitable S&S
techniques for scale-space generation in SIFT and SURF. It
should be noted thet shifts are executed as specific kernels on
CPAs.

III. FEATURE DETECTORS ASSESSMENT ON CPA

A. SIFT

The first stage in SIFT, scale-space extrema detection,
implies several Gaussian filters of increasing σ values to



generate a group of images, known as scales or σ levels,
called octave. Three to four octaves with six images each are
usually needed. Every new octave is generated from a half
resolution image obtained by downscaling with a 1/4 factor
an image from the former octave, i.e. going from an M ×N
to M/2×N/2 pixels.

If we assume 4σ as the order of neighborhood for the
Gaussian filters truncation in their approach from the con-
tinuous space to discrete kernels, the kernels will be of size
(8σ+1)× (8σ+1). Considering an initial σ value of 1.6, and
a factor between sigmas of 21/3, the scale space generation
will require six kernels per octave of sizes 13× 13, 17× 17,
21×21, 27×27, 33×33 and 41×41. It should be emphasized
that the Gaussian kernels do not change across octaves. The
only change lies in the image resolution.

By using the S&S methodology to implement the required
large neighborhood templates over a CPA we will need 1796
operations (sub-kernels application and shifts) per octave with
9 inter-PE circuits in a neighborhood radio r = 1 (8 neighbors
plus the feedback term). Given that 2D Gaussian filters are
separable in horizontal and vertical 1D Gaussian filters, we
can consider N ×1 and 1×N kernels. This drops the number
of S&S operations per octave to 372 on a CPA with 9
inter-PE circuits. A classical NEWS (North-East-West-South)
configuration with 4 inter-PE connections along with a central
circuit to weigh the value at the PE under study yields the
same number of operations.

Until here we have considered that all the σ levels or scales
are provided by applying the Gaussian filters on the original
image. Nevertheless, if the Gaussian filters are run on the
previous filtered image or scale, each octave would need six
kernels of sizes: 13 × 13, 5 × 5, 5 × 5, 7 × 7, 7 × 7, and
9× 9. With the S&S methodology and the 1D separation this
would result in 92 steps per octave on a CPA with 9 inter-PE
circuits. Nevertheless, the most efficient way of emulating a
large neighborhood kernel is to run a 3×3 kernel recursively.
This holds as long as the 3×3 seed is known, as is the Gaussian
filtering case. This would lead to 67 3×3 Gaussian operations
per octave when obtaining each image from the original one,
and 19 when using the previous filtered image. In a CPA with 5
inter-PE circuits (NEWS plus feedback circuit) these numbers
would be multiplied by 3 when applying the S&S techniques
to the Gaussian particular case.

However, from the second octave on every pixel does not
interact with its nearest neighbors, but with pixels at more
distant locations due to the downscaling process. For instance,
in the second octave the pixel at i, j interacts along E and
S directions with the pixels located at i, j + 2 and i + 2, j.
The pixels in between are not used anymore. The distance
is increased up to i, j + 4 and i + 4, j for the third octave
and to i, j + 8 and i + 8, j for the fourth one due to the
successive downscalings. In a CPA with a pixel-per-processor-
approach we can deal with this situation by expanding the 3×3
Gaussian seed used in the first octave and applying the S&S
methodology to implement the resultant large neighborhood
kernels. Eq. (2) shows the result of the expansion of a generic

3 × 3 kernel in a 5 × 5 one caused by a half resolution
downscaling (i.e. second octave). The order of neighborhood
doubles in each downscaling and thus seeds of 9 × 9 and
17× 17 pixels appear for the third and fourth octaves. a b c
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The S&S techniques take advantage of the sparse character
of the new large neighborhood seed kernels for every octave.
In addition, the decomposition of the Gaussian filter in its
horizontal and vertical components is advantageous, as we
reduce the number of long-distant pixels. The sparse 5 × 5
seed template of Eq. (2) requires 8 S&S operations regardless
2D Gaussian filtering or the 1D approach along horizontal and
vertical directions (H/V). In the case of the 9 × 9 kernel we
need 33 operations in the 2D Gaussian case, and 18 for H/V,
becoming 65 and 34 steps respectively for the 17× 17 kernel.
With these numbers we see that the first octave is realized with
19 operations (38 with H/V), a second octave would require
152 S&S steps for both options, a third octave would need 627
for the 2D Gaussian filter, and 342 for H/V, and a fourth octave
would require 1235 steps in the first case and 646 steps in the
H/V one. This makes a total of 1159 steps for a SIFT process
with 3 octaves and 1805 for 4 octaves with 9 inter-PE circuits
in both cases and H/V consideration. A NEWS configuration
with an additional feedback weighing circuit leads to just 19
additional operations for the first octave with the H/V option
(for the rest of the octaves the same numbers remain) with a
significant reduction in area per PE .

Although these numbers might be affordable for SIFT-based
video rate applications, given for example 1 µs per operation,
they can be slightly improved if we combine the application
of the S&S techniques with Berni’s proposal in [7]. Therein
it is said that with an appropriate set of operations we can
implement 3 × 3 kernels with certain symmetries (Eq. (3),
which correspond to the symmetries shown by the discretized
2D Gaussian filter) with ”2 × 2” kernels (Eq. (4)). This
is especially advantageous in the SIFT for the seed kernel
expansion caused by the image downscaling through octaves.
With this method the second octave can be generated through
a new 3 × 3 seed kernel, the third one with a 5 × 5 kernel,
and a fourth one would need just a 9× 9 seed kernel. Eq. (5)
and Eq. (6) list the kernels for the second and third octaves
respectively. The kernel for the fourth octave will be similar,
but with a 9× 9 neighborhood.
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Berni’s proposal makes use of a resistive network (RC grid).
Its method starts with two consecutive averaging processes
within groups of 2 × 2 pixels. Berni states that if we take
the half resolution image from the second averaging instead
from the first one the application of 3× 3 kernels like the one
shown in Eq. (3) can be realized through the application of the
”2× 2” kernel in Eq. (4) [7]. We implement Berni’s proposal
on synchronous CPAs just with the averaging given by the
kernel of Eq. (7). Hence, in our case the result of applying
the template in Eq. (3) over the original image is the same as
the one in Eq. (4) over the ”averaged” image obtained with
Eq. (7). Both, averaging (Eq. (7)) and ”2×2” equivalent (Eq.
(4)) kernels, are expanded through octaves.

1
4

 1 1 0
1 1 0
0 0 0

 (7)

All in all, the combination of S&S techniques with Berni’s
proposal [7] on a pixel-per-PE CPA with 9 inter-PE circuits
yields 988 S&S operations for four octaves (380 for three oc-
taves). This number increases up to 1064 steps for four octaves
(456 for three octaves) if we consider a NEWS configuration.
Slightly better results are met if we combine the H/V option
for the first octave and Berni’s proposal for the rest of octaves,
producing 969 (361) and 1026 (418) steps respectively. These
results do not depend on the image resolution. This means
that we could implement the SIFT scale-space generation over
CPAs with very acceptable processing times by means of S&S
techniques. For instance, if the clock cycle was only 1 MHz, as
is the case of the implementations reported in [8, 9], and each
S&S operation takes one cycle, the scale-space generation
would be ready in ∼1 ms, leaving a relatively long time for
the rest of operations, which might be enough for video rate
processing.

B. SURF

The SURF (Speeded-Up Robust Features) [3] consists of
three main steps: the interest point detection, description and
matching. We focus on the detection phase. As in SIFT, the
interest points in SURF need to be found at different scales
(Gaussian σ values). The scale space is again divided into
octaves composed by a series of images produced by convolv-
ing the original image with increasing size filters (increasing σ

values). Such filters are 2-D Gaussian second order derivatives
along horizontal (xx), vertical (yy) and diagonal (xy = yx)
directions that conform the Hessian matrix. The 9× 9 filter is
considered the initial scale, and its size is increased in 6 pixels
on each dimension in the first octave until having the four
filtered images per octave required by the algorithm. For the
first octave we have, then, filters of sizes 9×9, 15×15, 21×21
and 27×27 pixels. Each new octave begins at the second filter
of the previous octave, and the neighborhood order difference
between successive filters doubles with respect to the previous
octave (e.g. filters in the second octave will be of sizes 15×15,
27× 27, 39× 39, etc.) [3]. According to the image size three
or four octaves can be needed, yielding filters up to 195×195
pixels (four octaves). This filter application implies a high
computational burden on a serial processor. The same happens
with an S&S approach over CPAs.

Nonetheless, the combination of the so-called box filters
with the well-known ”integral image” eases the computational
burden [10]. Box filters are kernels divided in rectangular
areas with a common weighting value within each region.
The integral image (II) is an intermediate image representation
which gives each pixel the value of the summation of all the
pixels from itself to the left and above in the original image.
The integral image reduces the box filters application to around
10-15 additions each (3 per rectangular area plus 2 or 3 for
the areas combination) regardless the filter size. The difficulty
now roots in the computational burden of the integral image.
Ref. [10] introduces recurrences to avoid redundant operations.
With this the number of additions is reduced to 2NM for an
N ×M image.

CPAs can parallelize the II computation reaching N + M
steps in an image of resolution N ×M pixels (1120 steps in
a VGA image, for example). Fig. (1) illustrates the CPA II
calculation through an ad-hoc optimized S&S technique. In
this case we reduce the number of sub-kernels to one that
adds the N, W and NW pixels to the central one (A1 in
Fig. (1)). Afterwards, the partial outputs are, first, horizontally
gathered in the corresponding pixels by shifting the obtained
image two shifts to the right (B1 kernel) repetitively, and by
accumulating the successive shifted versions of the image.
When the horizontal accumulation has finished we have two
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Fig. 1. Integral Image (II) calculation with S&S techniques on a CPA.



TABLE I
NUMBER OF S&S OPERATIONS FOR SCALE SPACE GENERATION IN SIFT AND SURF

SIFT (Seed recursion with previous scale) SURF (II + Box filters)
Num. Oct. 9wc 9wc + HV 5wc (HV) 9wc + Berni 5wc + Berni 9wc HV/Berni 5wc HV/Berni (9cc or NEWS)

3 798 532 532 380 456 361 418 N+M+1584
4 2033 1178 1178 988 1064 969 1026 N+M+3185

Note: ”wc” refers to the number of weighting circuits per PE.

rows of the II calculated. The rest of the rows are achieved by
repeating the same process in the vertical-down direction (B2
template) but now the shifted image is the one obtained from
the horizontal accumulation. We can use a reduced version
of the NEWS configuration by just implementing the A1
operation in three steps as is shown in the lower part of Fig.
(1). Ia identifies the image obtained through both ways which
is the starting point for the horizontal shifting.

It is interesting to note that this is just one of the possibilities
of implementing the II with CPAs. We have analyzed several
different possible ways with similar results in number of CPA
operations. We can, as well, directly translate the proposal
in [10] by accumulating the pixel values in each row in a
column fashion way and, once this row cumulative image is
calculated (S in [10]), calculating the II in a row fashion way
by accumulating the values of the pixels in the columns. It
requires, again, N + M CPA operations. This computation
makes most of the hardware idle during the whole process
(just one row/column working at a time), which makes us
think of an SIMD with lesser degree of parallelism than a
pixel-per-processor CPA. This might be even necessary as the
integral image yields very wide words, leading to PEs with
a larger area. The approach reported in [11] reduces to 19
bits the word lenght needed by SURF. Proposals as Linear
Processor Arrays (LPA) in [12] are promising. If 16-bit words
sufficed for SURF, their 320 16-bit PEs working at 125MHz
would lead to 560 steps for the integral image calculation in
less than 5µs for a QVGA image.

Once we have the integral image we can apply the box filters
to generate the scale-space of the SURF algorithm. Although
box filters require the same number of operations on a serial
processor independently of the kernel size, this does not hold
for a CPA, where the four pixels summation is implemented
through sparse large neighborhood kernels. For instance in
a box filter of size Q × Q, we would require 5Q/4 S&S
operations for the xx or yy Hessian matrix elements, and 4Q/3
for xy/yx ones. Again, it would be enough with a NEWS
configuration. Given PEs with wide enough words (at least 19
bits) the whole scale space generation for an N ×M image
would take N + M + 3184 CPA operations for four octaves
and N +M + 1584 for three octaves, less than 30µs for four
octaves (less than 20µs for three) for a QVGA image on a
processor as Xetal [12].

IV. SUMMARY AND CONCLUSIONS

This paper has assessed the feasibility of the scale-space
generation for two modern scale- and rotation-invariant feature
detectors, SIFT and SURF, on CPAs with pixel-per-processor
assignment. The time burden of the scale-space generation

in SIFT arises from convolution-type operations with large
neighborhood kernels on many images of different resolutions.
The challenge with SURF is to calculate the integral image
and to apply the large neighborhood box filters with a CPA.
The paper shows that with the so-called S&S techniques is
possible to execute the scale-space of both feature detectors
with a low enough number of steps or clock cycles as to
have very low times with implementations in current CMOS
technologies. The scale-space generation of SIFT could be
available in ∼1ms for a pixel-per-processor approach at 1MHz.
The SURF scale-space would be ready in less than 30µs with a
linear processor array like the one reported in [12] for a QVGA
image. Table I summarizes data on number of operations,
which can be taken as clock cycles, for the different options
employed in the scale-space generation of SIFT and SURF
throughout this paper.
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Appendix B

FPGA implementations using S&S
methodology

Along this work we have collaborated with the Departament d’Electrónica, Enginyeria i
Arquitectura La Salle (Universitat Ramon Llull, Barcelona, Spain) in the development
of B/W and G/S FPGA implementations with CNN Universal Machine functionality
by applying the Split and Shift methodology.

The methodology was successfully applied to obtain a 25×25 B/W implementation
on an Altera Stratix-EP1S25 FPGA. The first version of this implementation is shown
in the DCIS08-1 paper. This implementation was compared to an SIMD fine grained
implementation in the DCIS08-2 paper. The SIMD implementation was developed
within our research group. It is based on the translation to logic operations of the
binary templates, and it also uses the shifting of images to achieve pixels not-directly
connected to the cell. Paper ECCTD07-2 relates the SIMD paradigm, the threshold-
logic, and the DTCNNs with S&S, identifying the characteristics that could formulate
them under a common model.

The G/S FPGA realization implementing the S&S techniques is gathered in the
ECCTD09-1 paper. This implementation functionality was proved in [Albó and Canals
et al., 2010] and [Albó-Canals et al., 2010]in the implementation of a robot guiding
system. [Consul-Pacareu et al., 2011] evolves the last referred work to a low-cost, low-
power consumption and full functionality intelligent camera device for robot vision,
and it assesses the power consumption having as a result that between equal imple-
mentations realized with different number of CC, the instant power consumption is
smaller in the one with less CC, but the total power consumption is bigger due to the
more number of steps, as it was expected. Nevertheless the lower cell area occupation
leads to a bigger grid that reduces the windowing process and can then compensate
for the increment in the power consumption.
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Abstract— This paper introduces a parallel Cellular Non-linear
Network implementation on an FPGA. Such an approach is
intended for speeding-up early-vision applications, mainly in
images with low resolution (≤ 50 × 50). Bigger images can
be processed with an efficient computation time by means of
windowing. Our implementation has been realized over an Altera
Stratix-EP1S25F672 FPGA achieving a parallel implementation
of a 25× 25 effective grid.

I. INTRODUCTION

Massive parallel architectures have made it possible to
tackle problems with high computational burden in accept-
able time slots. Cellular Non-linear Networks (CNNs) have
traditionally been posed as an example of practical solution
to the on-chip realization of Single Instruction Multiple Data
(SIMD) architectures for image computation with direct pixel
to cell assignment [1]. A CNN consists of a grid of identical
processing elements (PEs) or cells that are locally connected.
The inherent parallelism of the processing and the local inter-
connection among PEs are the two main assets of the CNNs.
The former makes them suitable for processing images. The
latter makes it possible to implement them at hardware level.
In its discrete time (DTCNN) version the general dynamic is
described by the system of coupled equations and the output-
state relationship listed in Eq. 1 and Eq. 2 [2]. Here, xij

represents the state of the processing element ij, ykl and ukl

are the outputs and inputs of the PE kl, n marks the temporal
step and Nr(i, j) comprises the neighbors of the PE ij within
a radio r. Typically, on chip implementations have a 3 × 3
neighborhood (r = 1) but there are applications that need
larger neighborhoods. In such applications, either larger area
for routing or special techniques are used. Finally, A, A′ are
the templates that weight the input images (U and Y) and I
is the bias term. They determine the operation to be realized.

xij(n+1) =
∑

k,l∈Nr(i,j)

Aijklykl(n)+
∑

k,l∈Nr(i,j)

A′
ijklukl +Iij

(1)

yij = f(xij) =
{ −1 xij < 0

1 xij > 0 (2)

Several analogic (analog and logic processing in the array of
PEs) solutions have demonstrated CNN architecture benefits,
specially in realizing applications with video frame or even
higher rates [3]. On the other hand, FPGAs have appeared
as affordable and reconfigurable platforms with a very short
design cycle, and thus quite adequate for fast prototyping and
even mass production, as well for image processing tasks
where they allow to exploit paralelism in vision problems,
as it is addressed in [4]. Our proposal is to combine both ap-
proaches, FPGA and CNN, in a topographic implementation,
that is, with a pixel per PE assignment. The result would be
a very versatile and robust solution running low level image
applications faster than usual software implementations, with
the additional benefit of a very short design time and low prize
compared to its full-custom counterpart.

In the literature we have found several examples of CNN
implementations over FPGAs. There are some cases, as those
in [5] and [8], in which the FPGA contains one or only
a few PEs. They are general purpose CNN emulations but
they hardly take advantage of the inherent CNN parallelism.
Thus, with a limited speed, yet faster than usual software
implementations over general purpose CPUs. There are some
other approaches intended for specific tasks or applications,
as those in [9] and [10], achieving more parallelism at the
cost of a restricted programmability. In stand-alone systems,
typically the images are acquired by a companion camera and
stored in a RAM memory, either in or outside the FPGA chip.
For processing, more or less exhaustive windowing algorithms,
depending on the parallelism implemented, must be used. The
pixel value under study and its neighbors are transferred from
the RAM to the PEs. The result is read out of the FPGA. In
implementations with only one PE, for example, these three
steps have to be done as many times as pixels in the image,
i.e. in a serial way.

The goal of our approach is to increase the parallelism
in general-purpose FPGA implementations. In so doing we
improve the processing time as we make windowing less
exhaustive or even not necessary in early-vision processing
with images of low resolution (≤ 50 × 50). An example of
the later is the application addressed in [11]. The key of our
proposal to achieve the parallel CNN FPGA implementation
is introducing efficient design techniques and methodologies
aimed at reducing PEs area consumption, yet meeting time



and functionality requirements. In particular we make use
of the S&S techniques addressed in [12] that have appear
as very efficient in CNN hardware reduction over FPGA
implementations [18], as well as weight, state and output range
reduction.

The usage of the S&S techniques and other important
decisions made in the conception of the PE are analyzed in
Section 2. Then, Section 3 addresses the FPGA implementa-
tion and Section 4 shows experimental results in functionality,
area consumption and processing time. Finally, Section 5 will
gather the main conclusions drawn from the paper.

II. PROCESSING ELEMENT DESIGN DECISIONS

Two main requirements have guided the decisions in the
design of the PEs: to have full CNN functionality and to have a
reduced area occupation. Preserving the full CNN functionality
implies that any CNN algorithm could be implemented on it.
In order to do that, the implementation has to provide enough
local memories to keep intermediate results apart from the
hardware necessary to realize any CNN and logic operation.
Looking at typical CNN algorithms as can be this in [7], we
consider that 4 local memories will be enough at this point. To
improve the versatility of the hardware and to achieve better
processing times we have considered as well a Fixed-State
Map (FSM), that allows to stop the running of selected cells.

Looking for a reduced area we have combined two different
lines that trade between area and number of operation. The
first line is about shrinking the range of values in Eq. 1 and
Eq. 2. The second one is based in using a lower number
of multipliers in the PE. Within the former, the first range
limitation is to restrict the implementation to binary image
processing. In principle, this can be regarded as a serious
functionality limitation. Nevertheless, this is not the case
as many applications in the realm of early vision make an
intensive use of binary tasks after a preliminary processing on
the real scene (usually gray-scale processing). Going further, in
our PE modeling we use one-quadrant multipliers working on
positive values [13]. In this way, the PEs outputs are restricted
to either 0 or 1. Besides, the templates are limited to a 1-
bit programmability [14], i.e. the coefficients are restricted as
well to 0 or 1 value. In our approach, as in those realized in
[13] and [15], the bias is chosen 2-bit programmable. The
resultant model, the so-called 1Q-1bit-B/W, has proved to
yield very dense and fast CMOS chips [15] and it is expected
to have good results as well in its FPGA implementation.
The counterpart of this choice is that the original templates
must be redesign and we have a bigger number of CNN and
logic operations. Nevertheless, it is possible to take a good
advantage of the FSM in this transformation.

The second step in reducing PE area is based on the
number of multipliers that are used in a PE. In a typical
CNN there are needed 18 coefficients to implement Eq. 1
for r = 1. This means that for every PE we will require
18 multipliers and 16 connections to the surrounding PEs.
In order to reduce the area occupied by the PE, the number
of multipliers and, with that, the number of connections to

neighboring PEs are dropped by means of the Split & Shift
techniques that were proposed in [12]. The main idea behind
these techniques is to reuse the hardware, executing every
CNN operation in several steps as it is shown in Fig. 1.
This leads to an increase in processing time. Nevertheless, the
actual parallelism introduced by the higher number of cells
compensates for this extra time. This is specially true when
A and A’ are sparse templates through an appropriate S&S
configuration (number and allocation of multipliers in a PE).
Another important feature is that, as the original templates are
executed by the addition of partial results from several sub-
templates applied once, this methodology can only be adopted
in synchronous CNN architectures.
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Fig. 1. Application of the S&S techniques to the realization of a CNN
operation with two templates (A and A’) in the general template shape,
over a cell with only 4 multipliers allocated as is shown in the Cell Conf.
Squares indicate the application of the subtemplates (A1, A2 and A3) in
what the original template is divided. Circles mark the application of shifts
implemented by the A4 template.

Among the many different S&S configurations in our topo-
graphic CNN realization on an FPGA we have selected the
configuration with four multipliers in diamond shape (Fig. 2).
Note that, as in a synchronous design there is no difference
between variables U and Y, A and A’ are interchangeable
templates. This allows to gather sequentially the effect of
both by re-using the same hardware (multipliers). Configu-
rations with 4 multipliers offer good trade-offs between the
hardware reduction (less multipliers) and the higher number
of operations (longer processing time) that must be done
to emulate a generic template, favoring hardware reduction
[12]. Furthermore, the diamond configuration fits the shape of
several typical sparse templates, allowing to realize them in 1
or 3 steps instead of 5 [12]. With this configuration the shifts
are always done from the original image for a 3× 3 template,
and from either the original or the shifted image for large
neighborhood templates [12], [16]. It is worth noting that this
shape reminds of the typical North-East-Weast-South (NEWS)
SIMD architecture, revealing the proximity between CNN and
SIMD computation [17].

Besides that, we have realized the design in a parametric
way allowing the user to decide the maximum size in the
templates to be used and the number of multipliers and its



Fig. 2. Configuration with 4 multipliers in diamond shape.

configuration. This is a kind of adjustable trade-off between
functionality, processing time and area consumption. Further
information about the particular implementation of the hard-
ware, gathering the functionality and area reduction decisions,
is shown in next section.

III. FPGA IMPLEMENTATION

The complete system is made up of several elements, which
are shown in Fig. 3, that we can group in three major blocks.
The first block comprises the grid of processing elements
(PEs) that apply the operations over the image. The second
one contains the RAM memories and the hardware needed
for the communication with the external camera or PC and
the computing grid. Finally, the control block supervises the
correct application of the templates through its subtemplates
and the communications between memories and grid.

Fig. 3. Schematic showing the three major blocks of the implementation:
grid of processing elements, RAM memory and communication hardware,
control hardware.

The processing block comprises the PE grid with a pixel
per processor correspondence. Furthermore, a ring of dummy
cells is employed to deal with border effects. All the PEs
are interconnected in a NEWS way according to the cell
configuration selected (4 multipliers diamond). Regarding the
functionality, the processing block executes Eq. 1 and Eq. 2.
A PE comprises the weighting elements, the hardware to
accumulate the neighbors contributions and the partial outputs,
a comparator to implement the output-state relationship and a
group of memories to allow the application of any algorithm.
The schematic view of the PEs is shown in Fig. 4.

Fig. 4. Processing element schematic showing the DTCNN implementation
hardware, FSM, LLU, and the local memory (LLM) and communication
elements.

Due to the binary nature of the images to be weighted and
the weighting coefficients, our multipliers or weighting ele-
ments are implemented in the simplest way, i.e. as AND gates
as it is shown in the figure. In the following phase, to add the
contributions of the neighbors that have been weighted, again
binary, an encoder comes up as an efficient solution in terms
of area. Note here that the size (in bits and area occupation) of
the encoder depends on the number of multipliers implemented
[18]. In applying the S&S techniques we need an accumulator
to gather all partial results and the bias term. The size of the
accumulator depends on the maximum number and size of
the templates we allow in our implementation. In this case
we choose 8 bits. With this size we can approach up to two
(A and A’) 11 × 11 full dense templates with a two-bit bias.
This is more than enough if we take into consideration that the
actual large neighborhood templates are typically sparse and
that they are normally combined with smaller size templates
[11], [6]. It is worthy to note that to avoid negative and non
integer values, the bias term has been changed according to
Table I. As a consequence the threshold value changes from
1 to 3 and the output-state relationship is realized with an OR
gate gathering the six most significant bits of the output of
the accumulator. The dummy cells are made up of a simple
memory plus needed connections to their neighbors.

TABLE I
CORRESPONDENCE BETWEEN BIAS VALUE IN [7] AND OUR

IMPLEMENTATION.

2-bit Bias [7] −0.5 −1.5 −2.5 −3.5
New Bias Values 3 2 1 0

In order not to penalize pixel-to-pixel Boolean functions
like AND and OR on two images it will be useful to have
the central coefficients of both A and A’ templates, i.e. two



more multipliers. Nevertheless, we have chosen to include a
Local Logic Unit (LLU) [19] while keeping the 4 multipli-
ers configuration of Fig. 2. The functionality of the cell is
completed with the so-called Fixed-State Map (FSM) [13]
and, within the LLU, a NOT gate. The FSM can be applied
with any template or logic operation and the image used as
fixed map is determined by the programmer. In addition, six
Local Logic Memories (LLMs) [19] are needed to store inputs,
intermediate and final results of any algorithm and to apply
the S&S methodology. These memories are implemented with
D-Flip-Flops. Finally, two fixed values (0 and 1) are accessible
to compute with them as they were memory values.

To design the memory and communication block we have
taken into account a possible robot guiding future application,
previously introduced in [11], and the hardware resources we
have at our disposal. In this sense we have considered a serial
data providing camera M3188A. The emulation of the camera
is done through the serial RS232 port. The camera is used
in its B/W mode. From the serial feeding restriction we need
a Serial Input Parallel Output (SIPO) register to upload the
image into a RAM memory. We consider two input memories
that upload the input image alternatively to allow the pipeline
of the process. We use the image row size as width of the RAM
words. For the sake of similarity the output image is saved in
an output RAM memory and we use a SIPO register to offer
the output image in a serial way. Of course, as we have enough
pins we could think in a row/column image download to
improve both, the area occupation and the time consumption.
These three RAM memories with the same size as the image
have been implemented in the Stratix Memory Blocks. In order
to simplify the control we have decided to upload the image
from the RAM memory to the grid in one step. This implies
waiting till having all the image loaded in one of the input
RAM memories and upload the image to a bus of the image
size to be transferred to the grid. This decision introduces less
penalizations in area and time than the row/column scheme
but we still need global routing from the memory to each cell
in the grid. This can be avoided, penalizing the control, if we
upload the image in rows/columns by shifting the data from
line to line. The system has been pipelined in order to allow
the concurrence of uploading, processing and downloading.

We have divided the control block in four different finite
state machines. The first one controls the reception of the
image information from the camera and the writing into the
input RAM memories. The second state machine controls the
writing into the output memory. The third one controls the
execution of the image processing within the PEs once the
image is inside the grid. Finally, the fourth finite state machine
controls the fetch and the identification of the different instruc-
tions and supervises the work of the other state machines. The
instructions used are 22 bits wide and coding is not worthy.
Table II shows the distribution of these 22 bits in the different
control signals. The first bit indicates if it is a load instruction,
what means upload the image from a RAM memory to the
grid. The second group, two bits, says the type of operation (00
for template execution, 01 for logic NOT, 10 for logic AND

and 11 for logic OR). The next bit indicates if we have to
use the transient mask or fixed state map. The four following
bits are the values of the coefficients of the template to be
applied and the following two are the value of the bias. The
next 3 groups of 3 bits indicate the two local memories to be
read and the one to write the output respectively. The second
memory takes the fixed state map for template operations and
the third one is the fixed state map for logic operations when
the fourth bit is 1. The next bit indicates if the template to be
applied is a shift template or a sub-template application within
the S&S techniques. The last two bits mark the last template
of the S&S application and the algorithm respectively.

The entire implementation consists of a grid of 25 × 25
effective cells over the Altera Stratix-EP1S25F672 FPGA.
This image size is enough for some applications as that in
[11]. The design has been realized with the Active-HDL 7.1
software by Aldec and synthesized with the Quartus II 6.0
by Altera. We can process larger images by using windowing
techniques. The main idea here is to split a large image in
windows of the grid size including dummy cells (27 × 27 in
our case). This division has to take into account an overlap
among windows equal to the biggest template neighborhood
in the algorithm. Also, to avoid errors from border effects,
a CNN operation has to be applied over the whole image
under processing, i.e. over all the windows, before applying
the next one in the algorithm. Clearly, the windowing would
slow down the processing, as we have to account for up and
download times of each window in the application of every
CNN operation. In this case the penalty on the processing time
should be analyzed. The S&S methodology, however, would
not yield time increases, as all the sub-templates needed to do a
complete CNN operation can be run sequentially in a window
without any up/downloading. Besides, it should be apparent
that a sequential up/downloading based on shifting would be
more penalizing and it would appear a new trade-off between
the area saved due to the avoided routing and the processing
time increment. Apart from that we have to take into account
that in this case the intermediate outputs of the algorithm that
have to be stored have to be kept in the RAM memories and
not in the LLM as it is done in the processing of 25 × 25
images. This makes it necessary to provide at least 3 RAM
memories to hold the different intermediate images. In adition,
we have to have as many different banks as the number of rows
in the grid in each memory if we want to allow a one step
up/download. The LLMs of the cells would be used to apply
the S&S techniques. Pipeline techniques would be useful in
this part to improve the processing time.

IV. RESULTS AND DISCUSSION

Our design has been implemented over the EP1S25F672C
Stratix FPGA by Altera. We have implemented a 27 × 27
(25 × 25 effective) CNN grid taking up to 19255 of the
25660 logic elements, what represents a 75%. The restriction
in the size of the grid is given mainly by the number of
logic-arithmetic-blocks (LABs) contained in the FPGA thus
we use 2534 of the 2566 (LABs). We have to take into



TABLE II
INSTRUCTIONS AND CONTROL SIGNALS.

Load Op Trans. Mask Template Bias WMR1 WMR2 WMW Temp. Type S&S End Alg. End
1 bit 2 bit 1 bit 4 bit 2 bit 3 bit 3 bit 3 bit 1 bit 1 bit 1 bit

account, as well, that we have implemented the communication
with the computer in order to emulate a serial camera, which
implies certain processing time limitations and extra hardware
consumption. The memory occupation in the processing of
25 × 25 images (two input and one output memories) is of
less than 1% (2187 bits). There is not usage of DSP blocks,
embedded multipliers or PLLs. We can see that there are
enough pins to allow parallel image upload up to a size of
25 × 25 or row/column upload for bigger images. At the
moment the control instructions are kept within the internal
memory of the FPGA. Nevertheless, given the number of
available pins they could be fed from the outside. It is worthy
to note that the use of a reduced number of multipliers (4)
would allow to use less pins for the template coefficient upload
than having all the multipliers.

The maximum working frequency of this implementation
is 55.70 MHz. However, in order to give a more general
measure we will give the processing time in both clock cycles
and seconds, the latter depending on the frequency of the
systhesized implementation. The execution of the instructions
takes from six to nine clock cycles including the three clock
cycles needed for the instruction fetch. Table III shows the
number of cycles for the execution of the basic operations
that can be realized in the PEs: logic operations (AND,
OR, NOT), templates that require only one S&S step to be
realized (i.e. those that have at most 4 multipliers in diamond
shape) and dense templates that require the maximum number
of S&S steps, i.e. three sub-templates applications and two
shifts ([16]). The template execution time includes the bias
summation and the output function application. A complete
CNN operation with two full dense templates would take
simply double than the latter. Shifting operations are specially
implemented for the S&S techniques and requires the same
number of cycles than a logic operation. From these data our
system is able to process more than 1400 images/s, applying
1000 full 3× 3-template CNN operations to each image. This
data could be improved just by pipelining and overlaping the
fetch. In this calculation we have not accounted for the time
needed to upload the image from the outside as this can be
improved just by using fast CMOS cameras as shown in [20].
In this implementation the time required for transferring the
image from the RAM memory to the array is 2, 7µs.

TABLE III
TIME CONSUMPTION OF BASIC OPERATIONS.

AND/OR/NOT/Shift 6cycles 108ns
Template (1 step) 9cycles 162ns

Template (S&S max) 39cycles 700ns

We can compare these results with the times provided by
other implementations. The ACE16K ([21]), that is a common
referent in a CNN full-custom implementation, takes 8µs for
binary or gray scale convolutions ([22]). The SCAMP system
([23]) is an SIMD implementation for image processing. This
system provides a processing time of 0.8µs per operation
1. The digital implementation in [24] takes 0.44µs for a
binary 3 × 3 kernel application. Also, the FALCON system
([22]) is an implementation over a newer FPGA from Xilinx
that requires 0.6µs per gray-scale convolution. This values
are given for a processing of a 128 × 128 image in gray-
scale. The values in Table III are given for our 25 × 25
implementation and it does not include the 2.7µs to send the
image from the RAM memory to the grid. If we consider
applications that require larger images we would have to apply
windowing. If we consider no modification in the RAM-
grid upload we have to include the 2.7µs communication
time twice per window, 135µs for a 128 × 128 image. If
we compare our FPGA implementation with the 1Q1bitBW
full custom implementation in [25] we can see that the A’-
template convolution is more than one order of magnitude
worse but the logic operations take only double time. Finally,
in a fairer comparison, we consider the FPGA implementation
in [5] as it has been implemented over the same hardware we
use. In the optimized implementation we have that a 25× 25
image can take around 19.23µs1 per convolution of two 5×5
templates within a CNN operation. If we consider this type of
convolution in our system it takes 300 cycles, what is around
5.4µs. Nevertheless, we have to take into account that the
great mayority of the CNN operations involved in an image
processing algorithm have just 3 × 3 templates and mainly
consider 1 template per CNN operation and they mostly fit in
the diamond configuration [?].

To complete the test of the implementation we have imple-
mented six algorithms or complex operations. The first five of
them have been applied over the 25×25 image of Fig. 5. The
first one is the Hole-Filling. In this case we need only a four
coefficient template that is applied with a transient mask 13
times for this image size. This amounts to 3.1µs for the image
of Fig. 5. The second propagative operation is the Horizontal
CCD. For this we need 8 CNN and 8 logic operations that have
to be applied 25 times. This leads to 28.54µs of processing
time. For the Shadow we have applied two operations 25 times,
taking 2.16µs. The Hit& Miss looks for the shape in Fig.6 and
requires 10 operations (1.68µs). The Binary Edge Detection
(BED) with 4-connectivity requires only 3 operations, this is
540 ns. Finally we have implemented a Shortest Path Problem
algorithm based in proposed in [26] over the labyrinth shown

1This value is estimated from the cited paper data.



in Fig. 7. The results suggest that this implementation could
be useful as an image processing accelerator, especially if we
use a newer technology to implement it.

TABLE IV
PROCESS TIME OF ALGORITHMS TESTED

Hole Filling 155cycles 2, 8µs
Horizontal CCD 1427cycles 25, 62µs

SW Shadow 108cycles 1, 94µs
Hit&Miss 84cycles 1, 51µs

BED 27cycles 485ns
Shortest path 2712cycles 48, 69µs

Fig. 5. Test image for the tasks
listed on the top five rows of Table
IV.

Fig. 6. Hit& Miss structural
element.

Fig. 7. 1-pixel labyrinth to solve the Shortest Path Problem.

As a final remark, we could improve the computational time
if we increase the number of coefficients, as we can improve
the area time using 3 coefficients configurations instead of 4.

V. CONCLUSION

We have implemented a 25×25 DTCNN effective grid that
demonstrates the viability of fine-grain parallelism with a pixel
per processor assignment in images of low resolution (less
than 50× 50) for real time image processing implementation
on an FPGA architecture, in this case on the Stratix-EP1S25
FPGA by Altera. The implementation is limited to binary
image processing, which is enough for most of the low level
applications and in particular for the robot guide algorithm
in [11], one of our pursuits in future work. Also, we have
developed a reconfigurable VLSI design that permits test any
type of DTCNN multipliers configuration. The migration to
other FPGAs family is very easy as we only need to change
the stratix memory block. The rest of elements are rescaled
only changing size of the grid and size of templates. Further
improvements would be achieve if we choose to optimize a
parameter in particular, giving priority to either time or area
and depending on the application.
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Abstract—This paper examines the feasibility of fine-grained
parallelism on FPGAs for early vision. The paper compares the
performance and functionality of Cellular Non-linear Networks
and Single Instruction Multiple Data architectures on FPGAs.
Area and speed data along with different examples of low-level
image processing tasks are discussed throughout the paper.

I. I NTRODUCTION

The ever larger availability of resources on FPGAs as well
as their rapid prototyping and high degree of reconfigurability
make designers of hardware for early vision turn an eye to
FPGA-based systems [1]. Still, FPGA implementations fail to
deliver fine-grained parallelism in low-level image processing,
lagging far behind their IC custom counterpart. State-of-the-
art vision chips like Eye-Iris follow a pixel-per-processor
assignment, achieving a higher degree of parallelism [2]. The
work in this paper explores the feasibility of fine-grained
parallelism with pixel-per-processor assignment on existing
FPGAs.

The paper goes through two well-known architectures,
namely Cellular Non-linear Networks (CNN) [3] and Single
Instruction Multiple Data (SIMD) [4]. CNNs are a parallel
computing paradigm similar to neural networks, with the dif-
ference that communication is allowed between neighbouring
units only. The dynamical behavior of CNN processors can be
expressed mathematically as a series of ordinary differential
equations, where each equation represents the state of an
individual processing unit. SIMD is a conception that is able
to run mathematical operations on multiple data elements
simultaneously, as in a vector processor. This is in contrast to
a scalar processor which handles one element at a time. The
former have found their main niche of applications in com-
puter vision. The latter has been around in high-performance
computing for many years. Today it continues being a field
of interest in vision chips [5]. Concerning details of both
implementations, it is worth pointing out that the connectivity
of every cell/processing element in a CNN suits very well
the convolution pattern of image processing. In a classical
CNN implementation, cell inputs and outputs of the 9 nearest
neighbors (including the cell under study) are weighed and

collected at the cell under study. This is performed by 18
multipliers, or more generally coefficient or weighing circuits
and a summing circuit in every cell. The information among
cells is exchanged through the coefficient circuits. In the SIMD
conception, every processing element (PE) is locally connected
to the four nearest neighbors through the main four cardinal
directions. Every PE contains an ALU and the connectivity
among neighbors is done through the so-called North-East-
West-South (NEWS) bus system.

It is apparent that there is a significant difference in the
amount of resources used for every architecture. In principle,
the greater number of connections of a CNN cell with its
neighbors leads naturally to faster processing than the SIMD
architecture, although at the cost of less density of integration,
and thus parallelism.

The density of integration becomes important when design-
ing FPGA-based systems. This paper explores the feasibility
of fine-grained parallelism on FPGAs for low-level image
processing with SIMD and CNN architectures. The paper is
devoted to B/W image processing. This can be regarded as a
serious limitation of this work. Nevertheless, many algorithms
and applications in the realm of early vision make an intensive
use of binary image processing, on occasions being even more
time-consuming than the gray-scale processing itself [6].Also,
the ever larger density and higher clock frequencies of FPGA
platforms make ever feasible a design with gray-scale and
binary image processing on separated circuits, either on a
single or multiple FPGA chips. The work presented here deals
with the implementation of SIMD and CNN arrays of low to
moderate size (less than100×100 cells/PEs) on a single chip,
the Altera Stratix-EP1S25F672 FPGA.

The paper is organized as follows. Section II addresses the
PE implemented on the SIMD architecture. Section III goes
through the design of the CNN cell. Section IV compares the
performance and functionality of both solutions when dealing
with typical low-level image processing tasks. Finally, Section
V gathers the main conclusions drawn from the paper with a
brief outlook.



II. T HE SIMD PROCESSINGELEMENT

The design of the processing element on the SIMD archi-
tecture is focused on area, aiming at the smallest possible
processing element, in order to get the largest possible array.
With this, the resultant processing element is quite simple.
Fig. 1 displays a detailed view of the PE. It has three main
components: a logic unit, a memory bank and a module for
local connectivity among neighbors within the array through
the classical NEWS system. A global control is proposed with
the aim of reducing the area of each PE. This control unit is
implemented with only a few logic gates using an adequate
instruction set.

Figure 1. Details of the Processing Element for the SIMD solution

The logic unit performs the most basic Boolean functions:
AND, OR, NOT and Identity. This set of operators makes up a
functionally complete logic, so with enough time and memory
we can implement any algorithm for B/W image processing.
The logic unit takes two inputs, namelyA andB, and gives
one output,R. The operandB drives only the AND and OR
gates. The operandA feeds the four Boolean operators. The
operandB comes from memory while the operandA comes
from either memory or the neighborhood (see Fig. 1). The
identity operator can be used to transfer data among memory
elements within the cell under study, or to save a neighbor
variable into the local memory. Also, the identity operatorcan
do synchronous shifts through the NEWS system of either
columns or rows in the array. The function to be done by the
logic unit is selected through a 4:1 multiplexer controlledwith
a 2 bits signal. In addition, it would be easy to include new
operators in the logic unit to meet the time needs of specific
applications or algorithms, although at the expense of area.

The memory bank comprises a configurable set of one bit
registers. The memory bank takes a one bit word as input,
labeled Mem In, and provides two simultaneous outputs,
labeledMem A and Mem B, of one bit each. This con-
figuration permits to handle both internal operations and data
exchange among neighbors. The identity operator in the logic
unit is needed for the latter. In addition, it is doable to
read and write simultaneously at the same memory address.
This reduces the number of storage elements needed for a
generic algorithm, as it is feasible to do operations of the type
Register(0) = Register(0) AND Register(1). Finally, the

control logic for the memory bank includes anS : N decoder,
being N the number of storage elements andS complying
with 2S = N , to select the write address, and an additional
1 bit enable signal to state whether or not the memory is
written. The read address is selected by means of two N:1
independent multiplexers controlled by two signals of S-bits
wide each. This yields signalsMem A and MemB. The
number of control bits is set by the memory size, in this case
3S + 1. Finally, it should be noted that the memory bank
is one of the most critical modules in the processing element.
The number of storage elements should be reduced as much as
possible because it occupies most of the area in the processing
element and the performance of the implementation improves
when the global lines and the fan-out decrease.

The connectivity among processing elements is set through
the NEWS system. Every processing element counts on four
inputs and one output. A 4:1 multiplexer decides which one
of the four neighbors is used for processing at the processing
element under study. Inner connections draw this value to the
appropriate module. The instruction determines what to do
with the output from every processing element.

Concerning the connectivity within the processing elements,
all the modules described above are directly connected to each
other, with the exception of a 2:1 multiplexer to select where
the operandA comes from, either the memory bank or a
neighbor (see Fig. 1). The internal buses in the processing
element provide the following functionality:

• Select neighbor
• Select two memory values
• Select between two operation modes

1) Mode 1- with two operands, either with two mem-
ory values or with a memory value and a neighbor
(AND/OR)

2) Mode 2- with one operand, either from the memory
or from a neighbor (NOT/Identity)

• Write the operation result into the memory bank
• Provide the processing element output

In our implementation, we choose a memory size of 8 bits
(N=8 and S=3), with a instruction set of 15 bits wide. For a
more detailed explanation, readers are addressed to [7].

III. T HE CNN CELL

As in the case of the SIMD processing element, the area is
the main parameter to optimize in the design of the CNN cell.
To this end we use one-quadrant coefficient circuits working
on positive values [8]. In this way, the cells/PEs outputs are
restricted to either 0 or 1 instead of -1 and 1 as in the case
of the classical CNN model. Also, the templates are 1-bit
programmable [9]. The resultant model, the so-called 1Q-1bit-
B/W, has proved to yield very dense and fast CMOS chips
[10]. In our approach, as in the 1Q-1bit-B/W implementations
realized in [8] and [10] the bias is 2-bit programmable.

The second step to save area looks at the coefficient circuits.
In a typical CNN there are needed 18 coefficients and 16
connections to the surrounding PEs. In our approach, the



number of coefficient circuits and, with that, the number of
connections to neighboring PEs are dropped by means of the
Split & Shift techniques [11]. The main idea behind these
techniques is to reuse the hardware, executing every CNN op-
eration in several steps. This leads to an increase in processing
time. Nevertheless, the actual parallelism introduced by the
higher number of cells compensates for this extra time. This
is specially true when the CNN templates are sparse and when
the S&S configuration (number and allocation of coefficient
circuits (cc) in the cell) suits the allocation and number of
non-zero entries of the templates. Another important feature
is that, as the original templates are executed by the addition
of partial results from several sub-templates applied once,
this methodology can only be adopted in synchronous CNN
architectures.

Among the many different S&S configurations in our pixel-
per-processor CNN realization on an FPGA we have selected
the configuration with four cc in diamond shape (Fig. 2). Such
a configuration offers good trade-offs between the hardware
reduction (less coefficient circuits) and the higher number
of operations (longer processing time) that must be done to
emulate a generic template [11]. Furthermore, the diamond
configuration fits the shape of several typical sparse templates,
allowing to realize them in few steps (1 to 3). With this
configuration the shifts are always done from the original
image for a3×3 template, and from either the original or the
shifted image for large neighborhood templates [11], [12].It is
also worth noting that this shape reminds of the typical North-
East-Weast-South SIMD architecture, revealing the proximity
between CNN and SIMD computation [13].

Figure 2. Configuration with four cc in diamond shape.

Fig. 3 displays the schematic view of the CNN cell. Due to
the binary nature of the images to be weighed and the weighing
coefficients, our coefficient circuits are just AND gates. The
contributions of the neighbors that have been weighed, again
binary, are collected by means of an encoder. Its size depends
on the number of coefficient circuits implemented [14]. In
applying the S&S techniques we need an accumulator to gather
all partial results and the bias term. The size of the accumulator
depends on the maximum number and size of the templates
we allow in our implementation. In this case we choose 8
bits. With this size we can approach up to two (A and B)
11× 11 full dense templates with a two-bit bias. This is more
than enough if we take into consideration that the actual large
neighborhood templates are typically sparse and that they are
normally combined with smaller size templates. It is worthy
to note that to avoid negative and not integer values, the bias
term has been changed according to Table I. This implies to
change the threshold value from 1 to 3. As a consequence, the

output-state relationship is done with an OR gate gatheringthe
six more significant bits of the output of the accumulator.

Figure 3. Details of the CNN cell.

In order not to penalize pixel-to-pixel Boolean functions
like AND and OR on two images it will be useful to have
the central coefficients of bothA and B templates, i.e. two
more coefficient circuits. Nevertheless, we can see [14] that a
more efficient solution than to include the central coefficient
is to include a Local Logic Unit (LLU) [15] while keeping the
4 cc configuration of Fig. 2. The functionality of the cell is
completed with the so-called Fixed-State Map [8] and, within
the LLU, a NOT gate. The FSM can be applied with any
template or logic operation and the image used as map is
determined by the programmer. In addition, six Local Logic
Memories (LLMs) [15] are needed to store inputs, intermediate
and final results of any algorithm and to apply the S&S
methodology. These memories are implemented with D-Flip-
Flops. In [17] you can find a more exhaustive description of
the CNN cell.

Table I
CORRESPONDENCE BETWEEN BIAS VALUE IN[16] AND OUR

IMPLEMENTATION .

2-bit Bias [16] −0.5 −1.5 −2.5 −3.5
New Bias Values 3 2 1 0

IV. SIMD AND CNN ARRAYS ON THEFPGA

This Section examines the feasibility of fine-grained paral-
lelism on FPGA-based systems. In so doing, we go through
typical image processing tasks usually found in algorithmsand
applications.

A. FPGA Description

The SIMD and CNN architectures have been implemented
on the Altera EP1S25F672C Stratix FPGA. This FPGA is
embedded on a card that provides a serial interface to the
PC. Obviously, this is not the best solution for a real-life
application. Nevertheless, it gives a deeper insight into the



Figure 4. Floorplan of the SIMD and CNN architectures on the FPGA.

functionality and performance of SIMD and CNN architec-
tures with pixel-per-processor assignment on FPGA-based
systems. Both architectures have been developed in VHDL
to obtain the highest possible performance and to be able to
control at low-level the hardware to be implemented on the
FPGA. The software used to design and test was the Active-
HDL 7.1 provided by Aldec. The Quartus II 6.0 by Altera was
used for the synthesis.

B. SIMD and CNN Arrays

The FPGA implementation is made up of three major
blocks. Fig. 4 displays its schematic view. The processing
block comprises the PE grid, here25 × 25 PEs/cells. With
the selected connectivity, both the CNN cell and the PE of the
SIMD are equivalent in terms of integration into the mesh.
Obviously they differ in the internal logic of the control
elements. The memory block contains RAM memories and
the hardware required for communications with the outside
and the computing grid. There is also a block to control the
execution of instructions and the communications between the
memories and the grid. In our case the images upload onto the
inner RAM memories of the FPGA chip is serielized from the
outside. The images are transferred in parallel from the inner
RAM to the grid. The FPGA floorplan is completed with a
ring of dummy PEs/cells (for the sake of clarity not shown in
Fig. 4) and shift registers to synchronize the communications
from/to the input/output FPGA pins.

C. Synthesized Data

The resources employed by both architectures are sum-
marized in Table II. The SIMD architecture consumes less
resources than the CNN. In both cases, however, the area
is small enough to fit images of low to moderate resolution
(32× 32 to 64× 64).

SIMD CNN
Frequency (MHz) 103.0 55.70

Total logic elements 16.307 (64%) 19.255 (75%)
Total memory bits 1.458 (<1%) 2.187 (<1%)

Table II
SUMMARY OF BOTH ARCHITECTURES WITH A25×25 ARRAY.

D. Examples

In order to illustrate the functionality and assess the dif-
ferences and similiarities between the SIMD and CNN ar-
chitectures discussed here, we go through a series of B/W
image processing tasks. The tasks addressed here are well-
known and very representative of the type of image processing
done in real-life applications. We analyze hit and miss (pattern
matching finder), propagative, large-neighborhood operations
and a relatively complex algorithm of B/W skeletonization
as an example of a morphological task. First we briefly
describe every task. Subsequently we tell how to approach
every example with the SIMD and CNN architectures along
with their corresponding performance data.

1) Pattern Matching Finder:As its name suggests, this
template finds given patterns. As an example, we will find
the pattern shown in Fig. 5. The symbol ”-” means does not
matter. The output is a binary image representing the locations
of the3× 3 pattern of Fig. 5. In a CNN this task can be done
with the template of Eq. (1), where black pixels have set to
+1 and white pixels to -1.

Figure 5. Pattern Matching Finder example.

T =

0@ 1 −1 1
0 1 0
1 −1 1

1A , I = −6.5 (1)

2) B/W Skeletonization:This algorithm finds the skeleton
of a black and white object. Fig. 6 displays the flow diagram
of such an algorithm. In this case we use the templates listed
in [18]. Eq. (2) and (3) are the first two templates of the
algorithm. The rest of the templates are rotated versions ofEq.
(2) (SkelBW3, SkelBW5, SkelBW7) and Eq. (3) (SkelBW4,
SkelBW6, SkelBW8), where again black pixels have been
assigned to +1 and white pixels to -1.



SkelBW1 =

0@ 1 1 0
1 5 −1
0 −1 0

1A , I = −1 (2)

SkelBW2 =

0@ 2 2 2
0 9 0
−1 −2 −1

1A , I = −2 (3)

SkelBW2

SkelBW3

SkelBW4

SkelBW5

SkelBW6

SkelBW7

SkelBW8

SkelBW1

Figure 6. Flow diagram of the Skeletonization algorithm.

3) Hole Filling: This is a very representative CNN propa-
gating template [18]. As its name suggests this template fills
the gaps of all the objects found on an image. In a synchronous
architecture, this template is run iteratively forn iterations,
being n an upper bound set a priori and dependent on the
image resolution.

4) Large-Neighborhood Template:As an example of large-
neighborhood template we have realized a5× 5 line detector
similar to theLE3pixelLineDetectorfound in [18]. The tem-
plate addressed here deletes lines with more than three pixels
in a row along the horizontal, vertical and the two diagonal
directions, keeping only the lines with less than or equal to
three pixels. The template works on binary images, providing
a B/W output image too.

5) SIMD Approach: The pattern matching finder can be
translated easily onto the SIMD architecture. The current pixel
will be active if the conditionOUT = nw.n̄.ne.c.sw.s̄.e is
true (the variablesc, n, nw, etc. refer to central, north, north-
west pixels). For its implementation we have to keep in mind
that the Logic Unit of each PE can only handle 2 inputs and
the access to the neighbors at the corners must be made using
shifts. The following pseudo-code outlines all the steps:

• R0← initial image
• R1← NOT north(R0) =n̄
• R1← R0 AND R1 = c.n̄
• R2← AND south(R0) =s
• R1← R1 AND R2 = c.n̄.s̄
• R2← shift(right)
• R1← R1 AND north(R2) =c.n̄.s̄.nw
• R1← R1 AND south(R2) =c.n̄.s̄.nw.sw
• R2← shift(left)
• R1← R1 AND north(R2) =c.n̄.s̄.nw.sw.ne
• R1← R1 AND south(R2) =c.n̄.s̄.nw.sw.ne.e

In terms of notationneighbor(Register#)like north(R2)
means that we have to access to the register #2 of the north
neighbor to operate. In this example, once the image is loaded
on the array we need 10 cycles (each operation takes one

cycle) and 2 registers. One of them is used to store the final
result. It should be noted that to access a pixel that is not
directly connected to the pixel of interest, it is only necessary
to perform shifts until the value of the pixel shifted reaches
one of the four neighbors and not even the position of the
pixel under consideration. This allows us to increase largely
the performance.

The approach of the B/W skeletonization on the SIMD
architecture is not straightforward and it is necessary to
perform an analysis of the cases in which the active pixel
changes state. The templates of Eq. (2) and Eq. (3) can be
approached as follows:

SkelBW1 = nw.n̄.w̄.e.s.c

= (nw + n + w).e.s.c (4)

SkelBW2 = nw.n̄.ne.s.(sw + se).c

= (nw + n + ne).s.(sw + se).c (5)

In this case, the number of cycles required to compute these
two templates are 9 forSkelBW1and 12 for SkelBW2. After
loading the image, the number of registers used are 2 and
3 respectively. One of them stores the result. For the whole
algorithm, we need 84 cycles and only 3 registers.

As it was mentioned above, the hole filling is a very repre-
sentative CNN propagating template. The approach followed
is similar to that of the Pattern Matching Finder. This template
can be done by the conditionOUT = n+e+w+s. In addition,
it is necessary to perform some additional operations. First,
invert the original image. Second, apply the template. Then,
invert the resultant image and do an OR between this result
and the original image. Once the image is loaded a hole filling
iteration takes 7 clock cycles and needs 2 registers, including
one to store the result. For the image processed (25× 25) we
have set 13 as number of iterations, leading to 91 clock cycles.

Finally, the large neighborhood template of5 × 5 for
detecting lines of less than or equal to three pixels along the
main six directions (two diagonals, horizontal and vertical) is
executed in 59 cycles on the SIMD architecture. It needs only
3 registers.

6) CNN Approach: The simplicity of the 1Q-bit CNN
model usually splits one template into several ones. This is
because the different conditions that turn a black (white) pixel
into white (black) cannot be gathered in only one template.
Additionally, the S&S methodology necessary leads to more
steps. In order to illustrate our procedure we describe thor-
oughly how to approach the pattern matching finder realized
with the template of Eq. (1). The templates for this task are
listed in equations (6) to (8). The templates of Eq. (6) and Eq.
(7) act on the original image. The template of Eq. (8) is run
on the inverted image. Finally, the conditions assessed by the
three templates are checked out with an AND gate. All in all,
the example of pattern matching finder analysed here needs
33 cycles.



T1 =

0@ 1 0 1
0 1 0
0 0 0

1A , I1 = −2.5 (6)

T2 =

0@ 0 0 0
0 0 0
1 0 1

1A , I2 = −1.5 (7)

T3 =

0@ 0 1 0
0 0 0
0 1 0

1A , I3 = −1.5 (8)

Following a similar procedure to what has been used for
the example of the pattern matching finder, the hole filling
amounts to 87 cycles on a25 × 25 image, setting 13 as the
number of iterations.

In the case of the large-neighborhood template, when us-
ing the 1Q-1bit CNN model, the lines along the horizontal
direction are detected by applying the two templates of Eq.
(9) and (10). These templates need to be rotated appropriately
for every direction (two diagonals, horizontal and vertical).

T 1 =
(

1 1 1 1 0
)
, I = −3.5 (9)

T 2 =
(

0 1 1 1 1
)
, I = −3.5 (10)

Altogether, the large-neighborhood template requires 243
cycles.

E. Discussion

Table III shows the time needed to implement the proposed
examples.

SIMD (cycles / µs) CNN (cycles /µs)
Pattern Matching Finder 10 / 0.097 33 / 0.592
Skel. (1 whole iteration) 84 / 0.816 432 / 7.76

Hole Filling (13 iterations) 91 / 0.883 87 / 1.56
Large-Neigh. Template 59 / 0.573 243 / 4.63

Table III
T IME IN µS TO EXECUTE THE PROPOSED EXAMPLES IN BOTH

ARCHITECTURES WITH AN25×25 ARRAY. FREQUENCY: A) SIMD AT
103.0MHZ B) CNN AT 55.70MHZ.

In view of the above results, one can conclude that the
SIMD conception leads to more competitive data on both
area and time consumption. Nevertheless, the FPGA CNN
implementation features too many finite state machines, that
can yield more innefficient solutions. In the short-term future
this is an issue to be addressed. The difference in frequencies
is due to the aggressive segmentation of operations under the
SIMD architecture. As each instruction is very simple, the
critical path is very short, obtaining a high frequency. Thearea
difference is explained taking into account the simplicityof the
PE. The CNN cell integrates, in addition to the logic for CNN
operations, additional logic for Boolean operations. The main
advantage of the SIMD proposal is performance. However, the
translation of CNN templates into Boolean equations requires
further work by the designer of the algorithm. In some cases,

especially for large neighbourhood, to explore the solutions
space may be too hard. It is in these cases where the CNN
proposal stands out, providing a better response at design time
and also in performance.

V. CONCLUSION

This paper has shown that fine-grained parallelism with
pixel-per-processor assignment on FPGA-based systems is
feasible for low-level image processing with binary images
of low resolution (less than50 × 50). This work has proved
on the FPGA Altera EP1S25F672C Stratix for images of
25× 25 pixels. It is possible to process larger arrays on more
modern FPGA models. Also, this work shows that the SIMD
conception clearly outperforms the CNN model, leading to
more competitive area and time consumptions. The FPGA
CNN implementation presented here, however, features a high
number of finite state machines. In the short-term future, this
issue will be improved. This will narrow the gap between CNN
and SIMD architectures for B/W processing. Still, it is likely
that the SIMD architecture continues outperforming the CNN
model.
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Abstract—This paper examines three apparently different
computing models, namely, Threshold Logic (TL), Cellular Non-
linear Networks (CNN) and Single Instruction Multiple Data
(SIMD). TL is an area of interest in modern VLSI design and
computational neuroscience. CNNs are mainly employed in image
processing. Conventional SIMD architectures aim at exploiting
data parallelism to speed up the execution time of computation
intensive algorithms. The scope of this paper is limited to the
processing of binary images. Within this scope, the paper conveys
three main conclusions. First, the three computing models can
be used for binary image processing. Second, not only 2D-CNNs
are a sub-class of SIMD architectures, but also synchronous 2D-
CNNs with a reduced set of coefficient circuits act as a classical
1-bit SIMD processing element with NEWS (North-East-West-
South) for nearest-neighbor communications. Third, TL gates
(TLGs) are proved to be an alternative to implement binary 2D-
CNNs, leading to on-chip solutions with a very high performance.

I. INTRODUCTION
In the realm of early vision, many algorithms make an

intensive use of binary image processing. This is the case of
surveillance or tracking applications based on edge or region
detection, in which, after a preliminary processing on the real
scene to filter out noise and to provide some kind of motion
vector, the algorithms work on binary images [1], [2], [3].
The large amount of data obliges to run such algorithms on
hardware provided with a certain degree of parallelism in
order to comply with video frame rate or even harder time
constraints. On many occasions, in an attempt to design the
system as programmable and general purpose as possible, the
hardware is meant to work on gray-scale images, dealing with
binary images as a particular case of gray-scale processing [4].
In so doing, although the hardware usually meets the video
frame rate constraint, there is still room to improve the
performance and go further.
Today, with the 45 nm technology node around the cor-

ner [5], and with the advent of nanotechnologies is feasible
to have hardware with more and more level of parallelism
and specialization. In this scenario, architectures with modules
for gray-scale and binary image processing separated might
be an alternative to solutions with circuitry for gray-scale
processing only. Eventually, the level of specialization might

increase, as is the case of the architecture presented in [6],
where morphological and arithmetic operations are executed in
different modules. Emerging reconfigurable architectures like
Field Programmable Object Arrays (FPOAs) point to the same
direction, containing modules for specific functions, instead of
circuits for general purpose applications [7].
This work is focused on hardware for binary image pro-

cessing. Our interest is limited to on-chip solutions with fine-
grained parallelism. Approaches with coarse-grained paral-
lelism like general purpose processors or even FPGAs are not
addressed here. In this context, classical SIMD and CNN are
viewed as very suitable computing models [8], [9]. The former
are usually implemented as synchronous digital chips [10],
even though some analog approaches exist [11]. The latter
were initially conceived as an asynchronous model. Neverthe-
less, subsequently a synchronous version was introduced [12].
The result, namely, Discrete Time CNN (DTCNN), resembles
the classical synchronous SIMD model. Furthermore, in a
DTCNN the output of every processing element (PE) is
determined by a threshold function. This kind of functions
have been traditionally realized with TL. In summary, there
is an overlap among the three aforementioned models, TL,
DTCNN and SIMD, sharing design concerns and applications.
This paper goes through the three models, putting the emphasis
on their differences and similarities, and their suitability for
processing binary images.

II. THRESHOLD LOGIC
TLGs have mainly been used in artificial neural networks

(ANN) and microprocessors [13]. TLGs are described by the
threshold function:

Y = sgn[
∑

k

wkrk + z] (1)

where wk mean certain weights or contributions, being these
analog values, rk are digital signals to select the corresponding
wk, and z is the threshold term. If the argument of Eq. (1) is
greater than zero, the outcome becomes high (low), otherwise
it turns low (high). The number of weights or contributions
is determined by the summation term. This number is usually
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Fig. 1. Pseudo nMOS TLG.

fixed. Signals rk are programmable. The threshold term z is
either fixed or programmable. In microprocessor design, the
goal is to find a certain circuit topology with proper transistor
sizing in order to implement a given Boolean function. In this
case, rk are programmable and z is fixed. In ANN design,
both rk and z are programmable, as the function to do is not
known a priori, or even if it is, the circuit has to perform a
wide variety of functions, like for instance general purpose
image processing tasks.
TLGs have come in different ways, ranging from CMOS

to nanodevices. An in-depth survey on TLG implementations
can be found in [13]. This work touches on pseudo nMOS
(pMOS) solutions. Fig. 1 displays the most classical pseudo
nMOS circuit. The NMOS branch competes with the PMOS
transistor to fix the current and voltage at the inverter input
node. The constraint is the Kirchhoff law, so that the current
through the PMOS is equal to the sum of currents through the
NMOS transistors. If the current through the PMOS transistor
due to its Vgs was to be inferior to the total current in the
NMOS branch, the voltage at the inverter input node would go
low, and the output Y high (V dd). If the opposite, the output
is low (gnd). Concerning performance, more evolved versions
to widen noise margins and drop power dissipation have been
reported (again see [13] and references therein). Regarding
functionality, the bias term z can be made programmable
by means of several PMOS transistors in parallel controlled
by different digital signals. As a result, pseudo nMOS gates
turn to be a good candidate to implement DTCNN, or even
Continuous Time (CT) CNN cells with a threshold function
for the output-state relationship. Next section goes through this
issue.

III. CELLULAR NON-LINEAR NETWORKS

CNN has found its main niche of applications in computer
vision [9]. In hardware, one of the goals has been the design
of visual processors provided with an analog or an analogic
(analog and logic operations) core [14], taking advantage of
the CNN computation model to reach a high performance.
The ACE family and the Bi-i system, the latter made up
of an ACE16k and companion DSP and FPGA chips, are
good examples [4], [15]. Both solutions are asynchronous and
capable of running general purpose gray-scale image tasks. In
the case of Bi-i, algorithms executing thousands of frames per
second with a 128× 128 resolution have been reported [15].
In binary image processing, the circuits addressed in [16],

Vdd

Yij

}
Coefficient Circuits

Threshold

Term

Vbias1

wkl

rkl

Vdd

Vbias2

z1

Vdd

Vbias3

z2

Fig. 2. CMOS implementation of a CNN cell with a threshold function for
the output-state relationship.

[17] are shown to be very efficient. Both are 2D-CNN ar-
ray implementations, in which a PE (cell) interacts with its
neighbors within a 3 × 3 neighborhood to perform a wide
variety of functions. In [16], the network can be set to run
either synchronous or asynchronous operations. In [17] only
synchronous tasks are executed. Both cases use the same CNN
model. This can be defined by the next equation:

Yij = sgn[
∑
k,l

wklrkl − z] (2)

where Yij is the output of the cell ij, wkl are the cloning
template coefficients, rkl are cell variables, and z is the
threshold term. The template coefficients wkl determine the
task to be done. These are 1-bit digitally programmable. They
are the same for every cell ij, and set how the cell interacts
with their neighbors within a 3 × 3 neighborhood. The cell
variables rkl are also 1-bit digital signals. Finally, the threshold
term z is also programmable, and its value changes according
to the image task. As it can be seen, Eq. (1) and Eq. (2) are
essentially the same. Both can be realized by a TLG.
Fig. 2 depicts a circuit realization for Eq. (2). This is the

solution adopted in [17]. The major difference with the pseudo
nMOS gate shown in Fig. 1 is that now the programmability
in wkl and z causes to have more transistors. Signals V biask

are analog fixed voltages that set the currents in the circuit.
The number of transistors used for z depends on its number
of bits of programmability. Also, observe that the digital
programmability in wkl and z could be replaced with analog
programmability in V biask. The result would be a less number
of transistors, as the transistors driven by wkl would not be
needed. The price would be slower processing. Keeping the
1-bit digital programmability yields fast and still very dense
solutions [16].
The cell density achieved in the implementation addressed

in [16] can still be improved in CMOS technology by trading
area for speed. The key is to drop the number of coefficient
circuits. In [16], every cell contains 9 coefficient circuits (only
one 3× 3 template). The methodology discussed in [18] goes
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one step further, coming down up to 3 coefficient circuits. In
so doing, every template is split into a succession of sub-
templates. In the end, there is a final step to collect the
outcomes of every sub-template. This is known as the split
and shift methodology. The same idea is applied to large-
neighborhood templates [19]. This methodology is doable
because current CMOS technologies permit that every sub-
template be executed fast enough as to still meet video frame
rate in complex algorithms or applications. Furthermore, if
the image acquisition is fast, thousands of frames per second
might be feasible [20]. Also, the smaller area per cell produces
more benefits. The most straightforward is to have chips with
more cells. Another possibility is to occupy the saved area with
modules to realize specific functions, or to enlarge transistors
to have a better yield [21].
Concerning the optimal number of coefficient circuits,

in [20] it is found that 4 coefficient circuits is a good
compromise between area and time. In this case, if the
allocation of such coefficient circuits faces North, East, West
and South, and the architecture is synchronous, the resultant
DTCNN cell resembles quite well the classical 1-bit SIMD PE
with the North-East-West-South (NEWS) for nearest-neighbor
communications. This is analyzed thoughout the next section.

IV. SINGLE INSTRUCTION MULTIPLE DATA
SIMD is a computation paradigm that has been around in

high-performance computing for many years. Today, clusters
of PCs or workstations or some other technologies like vector-
based are among the most successful supercomputers [22],
[23]. Nevertheless, SIMD continues being a field of interest
and giving high performance. In fact, the CNN chip ACE16k
is a particular realization of an SIMD architecture with a peak
performance about 0.19 TOPS in low-level vision applications
for images with a 128×128 resolution, 7 bits of accuracy and
an area around 1.44 cm2 with 4 Watts of power consump-
tion [4].
The mainstream of applications covered by SIMD falls into

the category of numerically intensive tasks like scientific or
engineering applications [8]. One of these applications is early
vision. In this field, most of the operations are convolutions,
being a repetitive operation for every pixel within the image.
This leads to inherent data parallelism that suits SIMD quite
well. Visual processors are examples of such systems. This
kind of chips contains both the image acquisition plane (pho-
todetectors) and the PE array [24]. It should also be noted that
in the case of visual processors, the photodetector is normally
embedded in every PE, even though there are chips in which
the PE is shared among several photodetectors [6].
Fig. 3 shows a schematic view of a classical SIMD PE

with its constituent parts. The PEs are arranged in a 2D array.
All of them receive the same instruction from a Global Logic
Unit (GLU). The Arithmetic Logic Unit (ALU) performs local
processing like convolutions and logic operations. The North-
East-West-South (NEWS) module is used to communicate
with the nearest neighbors (located along the four cardinal
directions). The flag system permits to do global operations,

as for instance to know the first pixel (PE) to reach a certain
state, or to inhibit the activity in certain PEs. Finally, some
kind of register system or bank of memories (MEM in Fig. 3)
is needed to store PE variables.
Both analog and digital PEs have been reported in the

literature of on-chip solutions for early vision [11], [25].
In the digital domain, although the chips usually work syn-
chronously, there are new solutions that combine asynchronous
and synchronous operations on the same silicon substrate [26],
[27]. The size of the digital word can vary from one to several
bits. The use of 1-bit ALUs performing bit-slice computation
to process wider digital words is also an alternative [28]. In
binary image processing, the easiest approach consists of 1-bit
ALUs. Also, as it has been pointed out throughout this paper, a
PE composed of a dedicated ALU for binary image processing
along with other circuitry for gray-scale operations can pro-
duce very efficient solutions, especially in those applications
with a big percentage of B/W processing [17].

V. DISCUSSION
In the case of a 1-bit ALU for running low-level im-

age tasks, the modified pseudo nMOS TLG displayed in
Fig. 2 seems to be a good solution. The difference from a
synchronous CNN cell to a classical SIMD PE lies in the
coefficient circuits and the communication among neighbors.
In a CNN, the coefficient circuits transmit the information to
the neighbors. Usually, cell (PE) states like memory contents
do not go directly from cell to cell, but through the coefficient
circuits. In this sense, in a CNN, the coefficient circuits can be
regarded as the ”NEWS” system. In the SIMD conception, the
coefficient circuits would make part of the ALU. Coefficient
circuit outputs and any other memory or flag contents would
be sent to the neighbors via NEWS. The resemblance between
synchronous CNN cells and classical SIMD PEs is even
higher when the number of coefficient circuits drops to four
and they interact with the neighbors along the four cardinal
directions [20].
As the sizes of the processing arrays grow larger, capability

to perform global operations effectively is becoming the key
aspect in high speed applications. For example, objects of
interest need to be identified and their location on the image
plane needs to be extracted. A commonly used global opera-
tion is the global OR that identifies whether at least one PE
fulfills a pre-defined criterion. However, the global OR does
not tell what is the location of the first pixel to fulfill the
criterion. The location can be found e.g. iteratively if flexible
addressing [29] is included in the design. Another interesting
means to notify of local events globally is the address event
representation; if an event is generated, a PEs sends its
address off the array and resets itself [30]. If the number
of events is low enough, the temporal relations between the
events are preserved and virtual connections between PEs are
possible. A technique that can be used for detecting more
complex events (combinations of bits) is possible by using
a content addressable memory (CAM); PEs fulfilling a certain
bit combination make their address available globally. When
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parallel write operation is added to the CAM, the resulting
CAM associative processor can perform computation and data
shifts by using parallel read and write operations successively
[31]. A CAM associative processor and a SIMD processor can
also be combined [32]. Such combinations of effective local
and global processing capabilities are promising, since they
result in a flexible computing platform.

VI. CONCLUSION
The paper has gone through three apparently different

computing models, namely, TL, CNN and SIMD, examining
their differences and similarities. It is concluded that when it
comes to binary image processing, the synchronous CNN cell
comes down to a a classical 1-bit SIMD PE. Its realization
by means of pseudo nMOS (pMOS) TLGs has proved to be a
very efficient solution to process binary images. In current and
future CMOS technologies, this means to have either binary
chips with higher resolution or PEs with modules to run more
specialized functions.
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Abstract—This paper presents an 8-bit FPGA implementation
of a Discrete Time Cellular Neural Network (DTCNN) suitable
for small image gray-scale pre-processing (simple operations with
high computational burden). It uses Split&Shift techniques to
have a 31 × 31 grid that processes more than 2500 images per
second. As this work evolves from a previous binary DTCNN
implementation, results are compared in terms of area occupancy,
routing complexity and processing time. Several design tech-
niques have been applied to optimize the VHDL implementation
on an Altera Stratix II-EP2S60F484C5 FPGA device. Moreover,
as technology independent description allows easy migration
to other devices or vendors, the benefits of FPGA technology
evolution are discussed, focusing on DTCNN implementations.

I. INTRODUCTION

Discrete Time Cellular Non-linear Networks (DTCNN) are
good examples of a practical solution for image computation
operating in discrete time steps, with direct pixel-to-processor
assignment thanks to their local connectivity. Its basic func-
tionality relies on templates, which are matrices of synapses
values that establish the relationship between neurons. These
templates are stored in libraries, and their combination allows
the execution of different purpose instructions and even com-
plex algorithms. The neighborhood level defines the maximum
distance of local interconnections required between neurons,
fixing also the size of the templates [1] and conditioning the
physical architecture of the implementation.

Field Programmable Gate Array (FPGA) can implement
parallel hardware structures very efficiently, specially locally
connected ones. Moreover, their quick Time-to-Market and
easy re-programmability makes them a very attractive solution.
This paper shows an FPGA topographical implementation
of an 8-bit gray-scale DTCNN which uses the Split&Shift
techniques [2]. By applying these techniques a great reduction
on the number of local interconnections between neighboring
neurons and on the cell’s internal arithmetic complexity is
achieved. However, this is at the expense of execution time,
because several sub-templates need to be applied through
different stages in order to obtain the same result as with the
original full template [3]. A configuration with four coefficient
circuits in diamond shape, the so called North-East-West-
South (NEWS), has the best trade-off between area reduction

and processing time [2]. Also, it seems to be the most usual
template shape in CNN algorithms and applications [4]. This
is the configuration chosen for the 8-bit gray-scale DTCNN,
as it was in the binary DTCNN case [5]. A full comparison
with the binary DTCNN presented in [5] is performed taking
into account aspects related to area, routing complexity, and
performance.

A first approach to 8-bit gray-scale (which is a standard
resolution) is preferred. This DTCNN implementation is a
general purpose one, so being able to execute any kind of
algorithm. That means to loose the opportunity of applying
ad-hoc optimizations that can be realized in an application ori-
ented implementation [6]. Still, hardware optimizations have
been performed whenever possible in the design but always
retaining the original general purpose nature of the DTCNN. In
this sense, dedicated hardware to implement fixed state maps
[1] has been removed, as they can be easily implemented using
an instruction sequence. Moreover, the basic DTCNN cell
operates on positive numbers, and thus the original templates
need to be adapted to the physical hardware implementation.
Our technology-independent VHDL description of an 8-bit
DTCNN can be easily synthesized on different FPGA devices.
So, it serves also as a good benchmark for testing technology
evolution. We confirm significant improvements when migrat-
ing from an Altera Stratix I device to a Stratix II one.

The paper is organized as follows. Section II briefly recalls
the DTCNN binary implementation. Section III explains the
8-bit gray-scale DTCNN implementation and design criteria.
Discussion and comparisons of both implementations are
performed in Section IV. And finally, in Section V, concluding
remarks are given together with an insight of work in progress.

II. BINARY DTCNN

The binary DTCNN is focused on black and white (B&W)
image processing, which is enough for most of the low level
applications like the robot guidance algorithm addressed in
[8]. The core network consists of a grid of identical Processing
Elements (PEs), or cells, that are locally connected and where
each one is associated to a single pixel. This processing block
interacts with a communication block, which includes the
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memories required as temporal storage for image input/output.
Finally, there is a global Finite State Machine (FSM) acting as
a control unit for all the system. It is responsible of loading
the image to the grid, applying the Split&Shift techniques,
managing the instruction set to apply an algorithm and finally,
controls the communication block. A detailed description of
the binary DTCNN implementation can be found in [5].

III. 8-BIT GRAY SCALE DTCNN

Although the basic functionality of the 8-bit implementation
is the same of the binary one, its hardware structure is quite
different. For instance, the FSM has been moved inside the
PE while the local memory, implemented as an 8-bit RAM
register, has been moved outside. These changes are made
in order to save area. In this section the basic elements are
described following a bottom-up approach, from the basic cell
to the support structure of the Cellular Neural Network.

A. The Processing Element (PE)

The DTCNN cell/PE architecture is shown in Fig.1. The
data received from the four neighbors is multiplied by the
template data, obtaining a 64-bit result. A multiplexer chooses
between accumulating the bias or the neighbors contribution.
Finally, depending on the instruction being executed, the
calculated data or the previous image data are send to the
output. All this process, as well as the truncation needed to
normalize data lengths, is controlled by a small local FSM.

Fig. 1. Block diagram of an 8-bit gray-scale cell.

The main blocks of the PE are briefly discussed next.
1) 32-bit Multiplier: the 32-bit (8-bit*4) neighbor data are

multiplied by the 32-bit (8-bit*4) template coefficients to
obtain a 64-bit (16-bit*4) output which is the concatenation
of each neighbor weighted contribution. This is done asyn-
chronously to reduce time penalization and to simplify the
general FSM.

2) 64-bit Multiplexer: chooses between the 64-bit calcu-
lated data and the 8-bit bias information (corresponding to the
high part of the bus). In any case, the output is extended to
64-bit.

3) Accumulator: this element adds, and then accumulates,
the output of 64-bit Multiplexer. First, the global contribution
of the neighborhood (or bias) is calculated by adding the 16-
bit blocks in which the multiplexer output is divided. After
that, the result is truncated. Its output is synchronized.

4) 8-bit Multiplexer: this element is necessary to choose
between the processed pixel or the original one than can
be needed for the application of sub-templates or a different
operation.

B. The DTCNN Grid

The DTCNN network is a grid of MxN cells connected in a
NEWS way. The outer cells, due to the lack of some of their
neighbors, are implemented as dummy cells that only provides
the image value in the corresponding pixel.

Fig. 2. 8-bit gray-scale DTCNN implementation schematic

The uploaded image is placed in a bus. The least significant
byte is assigned to the North-West dummy cell, the one next to
the right receives the second byte, and so on, until the East-
South dummy cell receives the most significant byte. Data
flow according to the local FSM, depending on the instruction
being executed.

C. The CNN top

This block permits to upload and download an image to
the grid. Also, it manages the instruction storage, which is
necessary to apply any algorithm. This model is an upgrade of
the B&W DTCNN implementation [5]. Apart from the obvious
increase in the data size, from bit to byte, there are also two
significant differences among both implementations. The first
one is in the instruction block, that due to the cell changes has
been redesigned, and the other one is in the memory manager,
which will be discussed in the next section.

The instruction fields are shown in Table I. Notice that
they are sets of nibbles (4-bit data groups). The increase from
binary DTCNN implementation is obvious, as templates data
are now 8-bit length. The reserved nibbles are to complete the
64-bit bus size and they can be used as future expansion to
add others features.

The field meanings are as follows. The Bias field corre-
sponds to the bias to be applied in the cell. When the operation
value is 0 the image is put out of the grid, else it is processed.
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TABLE I
INSTRUCTION ARRAY (FIELDS IN NIBBLES)

Bias Template Operation WMR WMW OE Reserved
2 8 1 1 1 1 2

The Which Memory Write (WMW) nibble indicates in which
memory segment of M×N size (being M×N the size of the
image). The Which Memory Read (WMR) reads it in case the
cell has to operate with a different image than the actual one.
Finally, the Output Enable (EE) starts the Parallel Input Serial
Output (PISO) register in order to get the image out of the
grid.

The global FSM is divided in two parts (see Fig. 2). The
first one manages the grid controlling the image reception,
processing it while doing the fetch and executing the instruc-
tions, and finally sending the image to the host. The second
one is the memory manager, which writes and reads one of the
six M×N memory blocks as needed by the algorithm being
executed.

IV. FROM BINARY TO 8-BIT DTCNN IMPLEMENTATION

The DTCNN implementations using Split & Shift tech-
niques are aimed at saving area and power consumption
at expense of a reasonable time penalty. As shown in [5]
and [2] some of the design decisions are only valid for 1-
bit implementations, so new ones are needed for an 8-bit
system. Also, as the 8-bit DTCNN is implemented in an Altera
Stratix II EP2S60F484C5 device while 1-bit DTCNN was
implemented on an Altera Stratix I EPS25F672C one, we can
study how hardware resource usage changes with technology
evolution. Finally, at the end of this section the results in terms
of occupancy and performance of both implementations are
compared.

A. Design Changes from 1-bit to 8-bit

Most design changes are introduced to alleviate the increase
on area consumption, that is, PEs and routing complexity,
when going from B&W to gray-scale DTCNN.

1) RAM registers instead of local flip-flops: in the binary
DTCNN implementation each cell has 6 D flip-flop registers.
Only 6-bit of storage are needed, and its direct implementation
inside the PE is better than using dedicated memory to reduce
routing complexity and increase performance. However, in the
gray scale implementation, each flip-flop becomes an 8-bit
register, and then these 6 registers are better mapped in a local
memory block inside the FPGA (see Fig.2).

2) Truncation instead of Activation Function: the output-
state relationship on the binary DTCNN implementation is
given as an OR function of the 6 Most Significant Bits (MSB)
obtained from the accumulator. Obviously, in the gray-scale
DTCNN the output-state has a value range different from 1 or
0. So, the neighbor contribution is accumulated, then a bias is
added and finally the output is normalized using a truncation
technique. The truncation method has to be set according to the
activation function chosen. As the activation function is piece

wise linear, in the 8-bit implementation, a simple truncation
method is used which selects the 8 LSB (Least-Significant-
Bits). Of course, this can be easily changed if the application
requires it.

3) Local FSM instead of global FSM: in some cases, 8-bit
implementation multiply 8 times the number of connections,
causing, in some cases, a not tolerable increase of in con-
nection complexity. Distributed control system simplifies the
FPGA routing permitting to increase the grid size. So the grid
Control FSM has been simplified and a Local Cell FSM of
only 3 states has been implemented [9].

4) Remove of the Local Logic Unit (LLU): experimental re-
sults have confirmed our supposition that in the 8-bit DTCNN
implementation it is better to use template-based instructions
to perform binary image operations (NOT, OR and AND)
instead of having a dedicated LLU as it was used in the binary
implementation [5].

B. Experimental instances

In order to achieve bigger and faster DTCNNs equivalent
FPGAs from different technologies, Stratix I-EP1S25F672C
and Stratix II-EP2S60F484C5 FPGAs by Altera, are tested.
Comparing these two technologies it is apparent that a more
efficient DTCNN can be implemented as better performance
FPGA appear. The results shown in Fig. 3, Fig. 4 and Fig. 5
confirm this prediction.
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However, static elements created to improve features of new
FPGA families can be a problem so the routing gets more
complex losing area due to elements that have no possible
connections.

V. RESULTS & CONCLUSIONS

A complete study to demonstrate the efficiency of an 8-bit
gray-scale DTCNN FPGA implementation has been realized
with Synplicity 9.6.2 version and Quartus II 8.0 through
Aldec Active-HDL 8.1 Interface. This implementation allows
to process a 31× 31 8-bit gray-scale image in 394µs, having
high enough performance for low resolution gray scale image
processing applications (See Table II). Bigger images can be
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processed using windowing techniques. Moreover, as far as
there is still enough hardware resources left in the Altera
Stratix II-EP2S60F484C5 device, it is envisaged to implement
an embedded processor inside the FPGA. This will allow the
application of the windowing techniques while avoiding the
performance penalty introduced by the communication, if a
host PC were used instead.

In order to verify the functionality of the implementation
we have evaluated a heat-diffusion template in terms of time
consumption. 361µs are needed to load, process and save the
output to memory of a 20 × 20 image (this is the maximum
size achievable in the Stratix I FPGA). This is fast enough for
typical FPGA image processing algorithms [10].

As expected, there is a real progression in terms of grid
size if better FPGA devices are used (See Table III). So
better results can be obtained as FPGA families evolve.

TABLE II
31X31 DTCNN RESULTS

RAM Memory 7688 of 2,544,192 < 1%

Logic Elements 48321 of 48352 100%

Average Interconnect 59%

Maximum Frequency 39, 06Mhz

However, surprisingly enough, embedded FPGA blocks, like
dedicated DSP elements, will increase the router complexity
when used. The results show that they penalize DTCNN
features in lieu of making it better, probably because their
use hinders taking advantage of the local-connection paradigm
of the DTCNN implementation. Of course, as the maximum
working frequency directly depends on the routing complexity,
designers have to be very careful in setting the synthesis
options, thus DSPs are avoided. To obtain these results Altera
Stratix III-EP3SL70F484C4 device and Altera Stratix IV-
EP4SGX70DF29C4 device are used.

TABLE III
20×20 GRID DTCNN FEATURES

Binnary Implementation
Area LE Max.Freq.(Mhz) Routing Complexity

Stratix I 44% 11354 52,69 15%

Stratix II 27% 13253 65,08 9%

Stratix III 21% 11288 87,86 6%

Stratix IV 21% 12155 112,54 4%

8-bit Gray Scale Implementation
Area LE Max.Freq.(Mhz) Routing Complexity

Stratix I 93% 23809 27,98 50%

Stratix II 31% 15150 41,84 16%

Stratix III 28% 15155 66,19 13%

Stratix IV 26% 15159 56,89 8%

Finally, the hardware architecture has been designed using
VHDL to be easily scalable both on image size and pixel bit
depth, and benefits from being technology independent so it
can be mapped to bigger and/or more powerful FPGA devices,
even from a different vendor. This has the secondary effect
of allowing easily benchmarking of the efficiency of DTCNN
implementations on different FPGA devices, vendors, or using
different synthesizing software. In the mid-term this ability,
added to the natural technology evolution, will contribute
on having bigger, more powerful, and application oriented
DTCNN implementations on FPGA devices.

REFERENCES

[1] L.O. Chua et al., The CNN Paradigm, IEEE Trans. Circuits and Syst.,
vol. 40, pp. 147-156, 1993

[2] N.A. Fernández-Garcı́a et al., Split and Shift Techniques for CNN Hard-
ware Reduction: First Mesurements, ECCTD07, Seville, Spain, Aug. 2007

[3] N.A. Fernández-Garcı́a et al., On the Reduction of the Number of Coeffi-
cient Circuits in a DTCNN Cell, CNNA06, Istambul, Turkey, Aug. 2006

[4] N.A. Fernández-Garcı́a et al., Template-Oriented Hardware Design based
on Shape Analysis of 2D CNN Operators in CNN Template Libraries and
Applications, CNNA08, Santiago de Compostela, Spain, July 2008
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Appendix C

Acronyms List

ALU Arithmetic Logic Unit

APR Analog Program Register

ASIC Application Specific Integrated Circuit

B/W Black and white

CC Coefficient Circuit

CNN Cellular Non-linear Network

CNN-UM Cellular Non-linear Network-Universal Machine

CNNUM, CNN-UM CNN Universal Machine

CNT Carbon Nanotubes

CPA Cellular Processor Array

CPU Central Processing Unit

CSW Cellular Wave Computing Library

CTCNN, CT-CNN Continuous Time CNN

DSP Digital Signal Processor

DTCNN, DT-CNN Discrete Time CNN

DT-CNNUM Discrete Time CNN Universal Machine

FoM Figure of Merit

FPGA Field-Programmable Gate Arrays

FSR Full-Signal Range Model

G/S Gray-Scale
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GACU Global Analogic Control Unit

GAPU Golbal Analogic Programming Unit

GPU Graphics Processing Unit

HR Hardware Reduction

H/V Horizontal and Vertical separability

II Integral Image

ITRS International Technology Roadmap for Semiconductors

LAM Local Analog Memory

LAOU Local Analog Output Unit

LCCU Local Communication and Control Unit

LLM Local Logic Memory

LLU Local Logic Unit

LN Large Neighborhood

LPA Linear Processor Array

LPR Logic Program Register

MAC Multiplier Accumulator Circuit

MIMD Multiple Instruction Multiple Data

NEWS North-East-West-South

OIF Operation Increment Factor

OPT Optical Sensor

PE Processing Element

PLS Pixel Level Snakes

RPO Reduction Per Operation, percentage of hardware Reduction Per Operation
increased per original operation

RTD Resonant Tunneling Diodes

S and S Split and Shift

SCR Switch Configuration Register

SET Single-Electron Tunneling
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SIFT Scale Invariant Feature Transform

SIMD Simple Instruction Multiple Data

SoC System-on-Chip

SURF Speed-Up Robust Features

TP Topological Transformation

VSoC Vision-System-on-Chip
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Baburés ands, and X. Vilaśıs-Cardona. Robot guiding with obstacle avoidance al-
gorithm for uncertain environments based on DTCNN. In The 2010 International
Joint Conference on Neural Networks (IJCNN), July 2010. 71, 155
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L. Carranza, F. Jiménez-Garrido, G. Liñán-Cembrano, E. Roca, S. E. Meana, and
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