
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Departamento de Electrónica e Computación

Ph.D. THESIS

PLATFORM AS A SERVICE INTEGRATION FOR SCIENTIFIC
COMPUTING USING DIRAC.

A dissertation presented by:
Víctor Manuel Fernández Albor

Supervisor:
Anselmo Tomás Fernández Pena
Ricardo Graciani Díaz
Juan Jose Saborido Silva

Ricardo Graciani Díaz, Profesor Titular de Universidad del Área de Física Teórica de la Universidad

de Barcelona

Juan José Saborido Silva, Profesor Titular de Universidad del Área de Física Atómica Molecular y

Nuclear de la Universidad de Santiago de Compostela

Anselmo Tomás Fernández Pena, Profesor Titular de Universidad del Área de Arquitectura y

Tecnología de Computadores de la Universidad de Santiago de Compostela

HACEN CONSTAR:

Que la memoria titulada PLATFORM AS A SERVICE INTEGRATION FOR SCIENTIFIC COM-
PUTING USING DIRAC. ha sido realizada por D./Dña. Víctor Manuel Fernández Albor bajo nues-

tra dirección en el Departamento de Electrónica e Computación de la Universidad de Santiago de Com-

postela, y constituye la Tesis que presenta para obtar al título de Doctor.

Ricardo Graciani Díaz
Codirector tesis

Juan José Saborido Silva
Codirector de la tesis

Anselmo Tomás Fernández Pena
Codirector de la tesis

Doctorando
Autor de la tesis

A mi familia, mis padres y mi hermano.

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Overview about New Models of Distributed Computing 1
1.2 Cloud Computing as an Innovation Process 5
1.3 Big Data and MapReduce Paradigm . 7
1.4 Research Objectives . 8
1.5 Thesis Overview . 9

2 State of the art 11
2.1 Cloud Computing Overview . 11

2.1.1 Hardware virtualization . 11
2.1.2 Cloud managers . 14
2.1.3 Cloud managers study . 16

2.2 Big Data Overview . 18
2.3 DIRAC Evolution . 19

2.3.1 Grid computing evolution . 19
2.3.2 DIRAC Interware . 24

2.4 Software Distribution Systems . 28
2.5 Virtualization and HEP Software . 29

2.5.1 HEP software description . 30
2.6 Federated Metacomputing . 32
2.7 Summary . 34

viii Contents

3 Software Distribution and Virtual Performance 37
3.1 Software distribution . 37

3.1.1 Motivation . 37
3.1.2 CernVM-FS vs Tarball Comparison 44
3.1.3 Software Service Repository . 48

3.2 Performance of High Energy Physics software 55
3.2.1 Defining Method and Experimental Set-up 56
3.2.2 HEP-Software Hardware Architecture Performances Problems 57
3.2.3 Statistical Performance Analysis . 58

4 Design 67
4.1 Methodology . 67

4.1.1 Software Prototyping Process . 69
4.2 Requirement Analysis . 70

4.2.1 General objectives . 70
4.2.2 User case analysis . 71

4.3 Architecture Design . 77
4.3.1 Prototypes modelling . 77
4.3.2 CloudStack prototype . 84
4.3.3 Multi-EndPoint prototype . 87
4.3.4 Federated hybrid clouds architecture 91
4.3.5 Big Data architecture . 100

5 Evaluation of the Prototypes 113
5.1 Results and Evaluation of CloudStack Prototype (2011) 113
5.2 Results and Evaluation of Multi-EndPoint Prototype (2012-2013) 117

5.2.1 Results for CloudStack with Multi-VO and Multi-Platform 117
5.2.2 Results of Multi-SITE for CloudStack and OpenNebula 120

5.3 Results and Evaluation of Federated Hybrid Clouds Prototype (2013) 125
5.4 Results and Evaluation of Big Data Prototype (2014-2015) 132

6 Conclusions And Future Work 145

Bibliography 155

List of Figures

Fig. 1.1 Grid protocol architecture. 2
Fig. 1.2 Cloud protocol architecture. 3
Fig. 1.3 Grid an Clouds overview. 7

Fig. 2.1 Hipervisors comparison with HEP-Spec06 Benchmarks 14
Fig. 2.2 Cloud managers features . 17
Fig. 2.3 Globus Toolkit components . 22

Fig. 3.1 CernVM-FS internal structure. 39
Fig. 3.2 CernVM-FS shadow tree for Atlas experiment. 40
Fig. 3.3 CernVM-FS proxy and mirroring errors. 41
Fig. 3.4 CernVM-FS stratum servers. 42
Fig. 3.5 Features of the LHC experiments software. 43
Fig. 3.6 CernVM-FS repository and Architecture Deployment. 44
Fig. 3.7 CernVM-FS comparison with Direct Download. 46
Fig. 3.8 CernVM-FS Scalability on the Node Increasing and on the Remote Access. . 47
Fig. 3.9 Ibergrid CernVM-FS software repository structure. 51
Fig. 3.10 Sum of installation time and configuration time. 53
Fig. 3.11 Transmission times for files of different sizes. 53
Fig. 3.12 Times to load different LHCb environments. 54
Fig. 3.13 Walltime mean values of all HEP-Software in Virtualized and Non-

virtualized nodes . 59
Fig. 3.14 Medians of HEP-Software by experiment 60

x List of Figures

Fig. 3.15 All MANOVA centroids. The legend indicates the number of cores, amount
memory, large or short jobs and the thread number. 61

Fig. 3.16 Correlation means of HEP-Software Wall-time 63
Fig. 3.17 Centroids of short and large jobs . 64
Fig. 3.18 BM and KVM Centroids . 65

Fig. 4.1 Methodology of software design cycle process. 68
Fig. 4.2 Methodology of software design, Prototyping Process. 70
Fig. 4.3 Use Case diagram with the system roles. 72
Fig. 4.4 Activity diagrams. 78
Fig. 4.5 Sequence diagram of Multi-EndPoint prototype and Software Service

repository. 80
Fig. 4.6 Activity diagram of the VM Scheduler component. 81
Fig. 4.7 Entity-relationship diagram of MultiEnd-Point Prototype 82
Fig. 4.8 Class diagram of MultiEnd-Point Prototype, with the Virtual Machine Agent

and Virtual Machine Manager Service. 83
Fig. 4.9 Component diagram of the integration of DIRAC and CloudStack 85
Fig. 4.10 A generic Virtual Machine submission in DIRAC 88
Fig. 4.11 A generic Virtual Machine running Job in DIRAC 90
Fig. 4.12 Rafhyc Overall Architecture. 92
Fig. 4.13 Rafhyc Persistent Information Flowchart. 94
Fig. 4.14 Rafhyc Dynamic Information Flowchart. 95
Fig. 4.15 Diagram of the Big Data software and DIRAC integration architecture. . . . 101
Fig. 4.16 Sequence diagram of the Big Data job submission process. 103
Fig. 4.17 Sequence diagram of the Big Data job interactive submission process. 104
Fig. 4.18 Sequence diagram of the Hive job submission process. 105
Fig. 4.19 BigDataDIRAC scheduling system schema. 110

Fig. 5.1 CloudStack prototype design in the Formiga-Cloud project. 114
Fig. 5.2 Total number of executed jobs in the CloudStack prototype. 115
Fig. 5.3 Cumulative jobs of DIRAC and CloudStack integration in Formiga-Cloud

project. 116
Fig. 5.4 Multi-EndPoint prototype: USC CloudStack infrastructure Multi-VO and

Multi-Platform tests. 118

List of Figures xi

Fig. 5.5 Executed short jobs by final minor status. 119
Fig. 5.6 Executed long jobs by final minor status. 119
Fig. 5.7 Executed short jobs CPU efficiency. 120
Fig. 5.8 Running VMs monitoring. 121
Fig. 5.9 OCCI / OpenNebula Integration with DIRAC Test Results. 123
Fig. 5.10 EndPoint prototype with Multi-SITE Cloud monitoring. 124
Fig. 5.11 EndPoint prototype with Multi-SITE instances status monitoring. 124
Fig. 5.12 Running VMs in the 2k Jobs Test. 127
Fig. 5.13 Running VMs by End-point in the 2k Jobs Test. 127
Fig. 5.14 Biplot (2k Jobs Test): Correlations between Endpoints and Performance

Metrics. 130
Fig. 5.15 Histogram (2k Jobs Test): VM Metrics by End-point. 131
Fig. 5.16 BigDataDIRAC Setup for testing the architecture. 133
Fig. 5.17 Total jobs of the first campaing by SITE. 137
Fig. 5.18 Cumulative jobs of the first campaing by EndPoint. 137
Fig. 5.19 Total big data jobs grouped by EndPoint. 138

List of Tables

Tabla 2.1 Advantages and disadvantage of paravirtualization 12
Tabla 2.2 Advantages and disadvantage of Hardware-assisted virtual machine 13
Tabla 2.3 Virtual machines specifications . 13
Tabla 2.4 VM lost of perfomance . 14
Tabla 2.5 Grid Computing, Metacomputing and Cloud Computing 33

Tabla 3.1 File properties for ROOT and CernVM-FS 45
Tabla 3.2 Testing algorithms of the software area. 46
Tabla 3.3 Separate Analysis of Variance Survey . 61
Tabla 3.4 MANOVA Survey . 62
Tabla 3.5 MANOVA Survey . 64

Tabla 4.1 Use Cases of the infrastructure . 72
Tabla 4.2 Manage the Cloud infrastructure Use Case 73
Tabla 4.3 Upload virtual machines templates Use Case 73
Tabla 4.4 Manage the Cloud private network Use Case 73
Tabla 4.5 Manage the job submission for multi-VO Use Case 73
Tabla 4.6 Manage the user software for muti-VO Use Case 74
Tabla 4.7 Manage the job submission through Web Platform Use Case 74
Tabla 4.8 Apply to the access to the Platform via Web Browser Use Case 74
Tabla 4.9 Manage User Data Use Case . 74
Tabla 4.10 Monitoring job and VM status Use Case 75
Tabla 4.11 Manage the Big Data software Use Case 75

xiv List of Tables

Tabla 4.12 Functional requirements needed in the Cloud and Big Data infrastructure
for job submission. 76

Tabla 4.13 Use Case and functional requirements traceability matrix 77

Tabla 5.1 Separate Analysis of Variance Survey (2k Jobs Test) 129
Tabla 5.2 MANOVA Survey (2k Jobs Test) . 130
Tabla 5.3 Job average features of Wordcount MapReduce 138
Tabla 5.4 Job average features of Hive job query . 139
Tabla 5.5 Read and write HDFS bytes in wordcount and Hive join query per job . . . 139
Tabla 5.6 Federated BigDataDIRAC splited: Randomwrite 2GB 140
Tabla 5.7 Single cluster: Randomwrite 2GB . 141
Tabla 5.8 Federated BigDataDIRAC replicated: Sort 1 GB 142
Tabla 5.9 Single Big Data cluster: Sort 1 GB . 142
Tabla 5.10 Federated BigDataDIRAC splitted: Grep 1 GB 144
Tabla 5.11 Single BigDataDIRAC splitted: Grep 1 GB 144

CHAPTER 1

INTRODUCTION

1.1 Overview about New Models of Distributed Computing

The term "Distributed computing" is used to describe any sort of operation that involves a
distributed system, that is, multiple computers that communicate through a network. In this
sense, distributed systems include from tightly connected systems, like a parallel computer
or a cluster, to loosely coupled ones, like Grids. A cluster involves a set of nearly identical
nodes in close proximity, connected via gigabit or fiber-optical networks [13]. Since the
only hardware support for distributed computation in clusters is the network connecting the
nodes, all of the application-level parallelism in such environments is achieved via software
middleware as Message Passing Interface (MPI).

Grid Computing can be seen as a federation of computer resources from multiple loca-
tions. These resources usually are loosely coupled, heterogeneous, and geographically dis-
persed. The Grid takes its name from an analogy with the electrical "power Grid". The idea
is that accessing computer power from a computer Grid would be as simple as accessing
electrical power from an electrical Grid.

According to Foster et al. [62], Grid Computing aims to "enable resource sharing and
coordinated problem solving in dynamic, multi-institutional virtual organizations". So, Grids
provide a distributed computing infrastructure that spans across multiple virtual organizations
(VO), where a VO consist of a dynamic set of physically distributed individuals or institutions
defined around a set of resource-sharing rules and conditions. The goal of this infrastructure
is to enable federated resource sharing in dynamic and distributed environments.

2 Chapter 1. Introduction

Foster et al. [62] defined the Grid architecture as a provider of protocols and services at
five different layers as is shown in the Figure 1.1. At the fabric layer, Grids provide access
to different resource types such as compute, storage and network resources, etc. The con-
nectivity layer defines core communication and authentication protocols for easy and secure
network transactions. The resource layer defines protocols for the publication, discovery, ne-
gotiation, monitoring, accounting and payment of sharing operations on individual resources.
The collective layer captures interactions across collections of resources and directory ser-
vices. Finally, the application layer comprises whatever user applications built on top of the
above protocols and APIs and operate in Virtual Organization environments [61].

Figure 1.1: Grid protocol architecture.

In the last few years, there has been an evolution that has been a result of a shift in focus
from an infrastructure that delivers storage and compute resources, such as Grids, to one
that is economy based aiming to deliver more abstract resources and services, as is the case
of Cloud Computing. The Cloud Computing consists, basically, in the usage of computing
resources that are delivered as a service over a network. The name comes from the use, in
system diagrams, of a Cloud-shaped symbol as an abstraction for the complex infrastructure
it contains.

There is a little consensus on how to define the Cloud [126] into the world of distributed
computing, one of them is the definition of Foster et al. [62]:

1.1. Overview about New Models of Distributed Computing 3

"A large-scale distributed computing paradigm that is driven by economies of scale, in

which a pool of abstracted, virtualized, dynamically-scalable, managed computing power,

storage, platforms, and services are delivered on demand to external customers over the In-

ternet."

There are also multiple versions of definition for Cloud architecture, and in [62] Foster et
al. defined a four-layer architecture for Cloud Computing, in comparison to the Grid archi-
tecture, composed of fabric, unified resource, platform, and application layers, as is shown in
the Figure 1.2.

Figure 1.2: Cloud protocol architecture.

In this architecture, the fabric layer contains the raw hardware level resources(computing
and network). The unified resource layer contains resources that have been abstracted/encapsulated
(usually by virtualization) so that they can be exposed to upper layer and end users as inte-
grated resources, for instance, a virtual computer/cluster, a logical file system, a database
system, etc. The platform layer adds on a collection of specialized tools, middleware and ser-
vices on top of the unified resources to provide a development and/or deployment platform.
Finally, the application layer contains the applications that would run in the Clouds.

As for Utility Computing [141], Cloud Computing is not a new paradigm of computing
infrastructure; rather, it is a business model in which computing resources, such as compu-
tation and storage, are packaged as metered services similar to a physical public utility, such
as electricity and public switched telephone networks. Utility computing is typically imple-

4 Chapter 1. Introduction

mented using other computing infrastructure (e.g. Grids [59]) with additional accounting and
monitoring services. It is possible for Clouds to be implemented over existing Grid tech-
nologies, leveraging more than a decade of community efforts in standardization, security,
resource management, and virtualization support. But, the migration process of applications
from one computing environment to another in general, and from Grid to Cloud Comput-
ing in particular, is a complex process. It requires a deep understanding of the application
to be ported, considering requirements, architecture, functionality etc. to be able to design
and restructure the application for the new environment, providing the same or even better
functionality. Some major steps have to be considered when porting an application from one
computing environment to another [106]:

1. Extract or recover the information from the initial application.

2. Refactor the application to be migrated to the new environment.

3. Assure interoperability between services and data after refactoring.

4. Validate and test the new applications to ensure the same functionalities are provided.

Some lacks of Grid computing systems are related to the use of heterogeneous systems for
different user groups. In this way, Cloud Computing offers an innovative vision of resource ac-
cess with infrastructure flexibility, faster deployment of applications and data, cost control or
adaptation of Cloud resources to real needs. There are three basic types of Clouds [97], Pub-

lic Clouds, which are owned and operated by third party service providers, Private Clouds,
which are those that are built exclusively for an individual enterprise, and Hybrid Clouds,
which combine the advantages of both the public and private Cloud models. Examples of
Public Clouds are Amazon EC2 (Elastic Cloud Computing) [2] with Simple Storage Service
(S3) [3], where computing and storage infrastructures are open to public access with a util-
ity pricing model, or Microsoft Azure [136], where as EC2, users rent virtual machines for
running their own applications and are charged by the amount of time their virtual machine is
running. On the other hand, CloudStack [32] and OpenNebula [103] are examples of Private
Clouds, which are open source Cloud implementations, that provide a compatible interface
to Amazon’s EC2, and allow people to set up a Cloud infrastructure at their premises and
experiment with the infrastructure prior to buy commercial services.

In general, Clouds provide services at three different levels (IaaS, PaaS, and Saas [81]),
although some providers can choose to expose services at more than one level:

1.2. Cloud Computing as an Innovation Process 5

– Infrastructure as a Service (IaaS) provisions hardware, software and equipment to de-
liver software application environments with a resource usage-based pricing model.
The infrastructure can scale up and down dynamically based on application resource
needs. Some examples are Amazon EC2 or CloudStack.

– Platform as a Service (PaaS) offers a high-level integrated environment to build, test
and deploy custom applications. Generally, developers will need to accept some re-
strictions on the type of software they can write in exchange for built-in application
scalability. An example is Google’s App Engine [70], which enables users to build
Web applications on the same scalable systems that power Google applications.

– Software as a Service (SaaS) delivers special-purpose software that is remotely acces-
sible by consumers through the Internet. Salesforce is an industry leader in providing
online CRM (Customer Relationship Management) Services. In the business model
of using software as a service, users are provided access to application software and
databases. The Cloud providers manage the infrastructure and platforms on which
the applications run. SaaS is sometimes referred to as "on-demand software". SaaS
providers generally price applications using a subscription fee. Some of the biggest
Cloud Computing services include Web-based email (e.g. Outlook.com, Gmail), so-
cial networking (e.g. Facebook, Twitter, LinkedIn), document hosting services, (e.g.
Google Docs, Flickr, Picasa, YouTube) and back up services (e.g. Dropbox), etc.

Although Clouds provide services at these three different levels (IaaS, PaaS and Saas),
standards for interfaces to these levels still remain to be defined. This leads to interoperability
problems between today’s Clouds, and there is little business incentives for Cloud providers
to invest additional resources in defining and implementing new standards. Network as a
Service (NaaS), Storage as a Service (STaaS), Security as a Service (SECaaS), Data as a
Service (DaaS), Database as a service (DBaaS), Test Environment as a Service (TEaaS), API
as a service (APIaaS), Backend as a service (BaaS) or Desktop virtualization.

1.2 Cloud Computing as an Innovation Process

It is considered an established fact, that the largest computing centres know the benefits of
Cloud [9], and they are in a migration process to move their resources from dedicated hosts to

6 Chapter 1. Introduction

virtualized machines, more flexible and reliable than traditional systems. The Cloud Comput-
ing migration involves changes not only in the form that the resources will be available, but
also in the internal structure and the software that will be needed by these computing centres.
On the other hand, there is Grid software that has been created to provide access to distributed
computing systems, in order to allow the researches from different groups run their jobs.

So, the question is: is it possible for Clouds to be implemented over existing Grid tech-
nologies? In [62], Foster et al. state that "Cloud Computing not only overlaps with Grid
Computing, it is indeed evolved out of Grid Computing an relies on Grid Computing as its
backbone and infrastructure support".

Grid Computing was created as a distributed computing system and the main purpose of
this technology is to provide the researchers with an easy way to run their jobs. The Grid
solved large-scale computation problems using a network of resource-sharing commodity
machines that deliver the computation power affordable only by supercomputers and large
dedicated clusters at that time. Then, what advantages exist in the use of Cloud Computing?,
why the computing centres should do a migration? Firstly, Cloud Computing can provide
flexibility and a reduction in computational costs that the Grid cannot offer. In this sense, the
cost reduction will be influenced by the inclusion of virtual machines with the pay-per-use in
Public Clouds by user demand. Furthermore, Cloud Computing is the solution for a comput-
ing cluster with heterogeneous platforms, that hosts different configurations for different user
groups, providing the specific set-up that each different user needs in the cluster. The main
motivation behind this can be summarized in two words: "heterogeneity" and "flexibility".

Figure 1.3 shows an overview of the relationship between Clouds and other domains it
overlaps with. Supercomputing and Cluster Computing have been more focused on traditional
non-service applications. Grid Computing overlaps with all these fields where it is generally
considered of lesser scale than supercomputers and Clouds as is shown in the figure 1.3

Summarizing, it is said that Cloud Computing is a new and different way to architect and
remotely usage computing resources. Therefore, it is important to study both its shortcomings
and its advantages which could help to resolve current Grid issues, as the host dedicated
platform for specific groups. Here are some of its significant advantages:

– Lower cost: Cloud Computing requires lower cost for data processing when compared
with the older model of maintaining software on local machines. The use of the Cloud
removes the need for purchasing software and hardware and shifts the costs to a pay-
per-use model.

1.3. Big Data and MapReduce Paradigm 7

Figure 1.3: Grid an Clouds overview.

– Mobility and flexibility: As the service is delivered through the Internet, users can
access the resources no matter where they are located. Instant deployment and the pay-
as-you-go business model offer users more flexibility than other computing services.
Users do not need to worry about the installation or updates of the applications.

– More capacity: Cloud Computing offers virtually limitless storage and computing power,
thus enhancing the user’s capability beyond the capacity of their local machines.

– Device independence: Users are no longer tethered to a single computer or network.
Existing applications and data follow users through the Cloud.

Thus, the next evolutionary step of High Performance Computing will most likely involve
a departure from the mono-platform Grid computing to dynamic and heterogeneous multi-
platforms of federated Clouds, connecting together the computational powers of today’s clus-
ters with other scientific resources.

1.3 Big Data and MapReduce Paradigm

More than ever, scientific communities need to access large computational resources. Scien-
tists are generating datasets that are increasing exponentially in both complexity and volume,
making their analysis a significant challenge. Science is also becoming increasingly global,

8 Chapter 1. Introduction

with more multinational projects being performed by geographically dispersed scientists that
require environments through which they can seamlessly access data, software, and process-
ing resources which usually are distributed and managed under separate administrative do-
mains.

Big Data technologies have arisen as a very viable alternative for problems involving
the processing of very large amounts of data. The MapReduce programming model [37]
abstracts the common difficulties linked to distributed processing on large clusters, providing
an easy-to-use programming model that features automatic parallelization, scalability and
data locality-based optimizations. Moreover, the excellent fault tolerance features of popular
implementations of MapReduce, like Hadoop [5], make them well-suited for its execution in
unstable environments such as commodity clusters or cloud infrastructures.

1.4 Research Objectives

In this PhD thesis, a new approach to the design of distributed systems is explored, focusing
in a mix of different Grid, Cloud and Big Data technologies and the provision of a scalable
software distribution system. A set of middleware and interware software to seamlessly con-
nect resources and services is also described. Typically, the resources are not only physically
apart, but also belong to different organizations which would imply possible administrative
barriers. CloudStack [32], OpenNebula [103], DIRAC [40], Hadoop [5] or CernVM-FS [29]
constitute the basis of the software solution presented in this thesis.

This PhD thesis proposes a job submission system for several Virtual Organizations [61],
which is based in Cloud Computing environments with a central software service repository
that provides the necessary software to execute the applications. The proposed mechanism
performs resource allocation between non-dedicated and dedicated clusters providing differ-
ent platforms depending on the user group and with the possibility of sending jobs to different
Cloud managers. In other words, Federated Clouds and computer labs of institutions sharing
their resources will allow researchers to send their jobs using in each case the most appropri-
ate platform for the software, in collaboration with the Formiga-Cloud project [75]. This PhD
thesis also proposes a distributed system as a way to provide the necessary software to run
the jobs that can be used by several platforms and that is scalable for the successful mission
of this thesis. The proposed mechanism is based on studies of several Cloud managers and
efficiency of different software distribution systems.

1.5. Thesis Overview 9

The main goals of this work are:

– The integration of dedicated and non-dedicated resources, such as computing labs of
universities or colleges. This will increase the computing power, particularly at night
and weekends, when there is no academic activity.

– A scalable solution for software distribution. This is needed to achieve a low latency
and maximize the efficiency in usage of resources.

– An easy management of the computing infrastructure and a seamless tool for job sub-
mission by several user communities. This will allow researches to focus on their work
rather than worrying about the specific characteristics of the hardware and software of
the facilities where the jobs are running.

– Each group of users (Virtual Organization) will have a specific platform, software and
user priorities to run their jobs.

– Big Data software integration under Cloud environments for running jobs with dis-
tributed datasets.

– Possibility to incorporate further resources when available like Grids, Clouds or Big
Data clusters from other providers.

– Inclusion of multi-Cloud Computing managers. The Cloud environment builtin with
this system, based in CloudStack, is supposed to be cheap, easy to use and manage.
This, together with the use of the DIRAC software are the main components of this
thesis. The integration of VMDIRAC, extension of DIRAC, allows the use of other
Cloud managers as OpenNebula.

1.5 Thesis Overview

This thesis is organized as follows:
Chapter 2 explains basic features and concepts of the technology on which this PhD thesis

is based, focusing on resource management in distributed environments, such as concepts of
virtualization and Cloud Computing, Big Data, DIRAC Interware that is the software in charge
of job submission, Grid evolution and some history, systems of software distribution, Hight
Energy Physics(HEP) software description, and finally federating clouds.

10 Chapter 1. Introduction

Chapter 3 contains an study about software distribution methods aimed to choose the
the most scalable option. Section 3.1 describes some other systems, with benchmarks that
were done in these solutions. After that, the deployment, benchmark algorithms and results of
test infrastructure are described. In the last part, the final conclusion of the study of software
distribution with CernVM-FS is presented, and a new concept of Software Repository Service
with the CernVM-FS solution, and the prototype results is shown. Section 3.2 contains the
statistical performance analysis of HEP software running in Cloud Technologies.

Chapter 4 describes the methodology, the modelling tools and approaches used through-
out the modelling phase in the first part. Second part describes the problem that we are trying
to solve in greater detail by analysing the requirements and proposing use-cases. There are
four prototypes with use-cases: the first-one as the beginning of the project; the second-one
as an evolution applying the learned lessons from the first, the third was created with the
feedback provided by previous prototypes and the fourth that allows the Big Data software
integration. A potential real world use-case scenario is described, in which the proposed solu-
tion may be deployed to efficiently manage the infrastructure and the final goal of the project
in a complex computational Cloud environment is defined. The last part, contains the archi-
tecture and the design of the three prototypes created for job submission to the infrastructure.

Chapter 5 validates the proposed model. The evaluation is divided into fourth major
parts:

– The evaluation and results of CloudStack prototype.

– The evaluation of the Multi-EndPoint Prototype. This section includes the validation of
experiments conducted on the deployment of the prototype in a real world use-case with
several groups of users, these groups come from the different fields of HEP-Software,
and with the feature Multi-SITE1.

– The evaluation of a new Federated Hybrid Clouds Architecture.

– The evaluation of a Big Data Architecture using the software of Hadoop ecosystem.

Chapter 6 summarizes the results of this research and discusses further enhancements
that should be addressed in future work.

1”SITE: provider of computing resources in a distributed way.”

CHAPTER 2

STATE OF THE ART

This chapter provides a brief overview of thesis technologies, furthermore describes the stud-
ies that have relation with the design decisions and the final resulting infrastructure.

2.1 Cloud Computing Overview

The best way to understand the Cloud Computing is to start by server virtualization [12],
this concept refers to enable multiple instances of operating systems and applications (virtual
machines or VMs) to run on the same physical hardware. The Cloud Computing services are
being used with the server virtualization of a cluster or a computer lab. Customers can rent
virtual machines running on hardware owned and managed by third-party providers, this is
known as Public Clouds.

Or instead of that they can virtualize their private infrastructure or cluster, it’s called Pri-
vate Clouds. The next section describes virtualization and the basic concepts of Cloud Com-
puting.

2.1.1 Hardware virtualization

Server virtualization is achieved by a hypervisor, which is in many ways similar to that
of an operating system. As an operating system manages access by processes to underlying
resources, so too a hypervisor must manage access by multiple virtual machines to a single
physical machine. In either case the choice of scheduling algorithm will involve a trade-off
between factors such as fairness, usage caps and scheduling latency. As in operating systems,

12 Chapter 2. State of the art

a hypervisor scheduler may be vulnerable to the behaviour of virtual machines, resulting
in inaccurate or unfair scheduling. Modern hypervisors may be classified by the methods of
executing guest OS code without direct hardware access: (a) binary emulation and translation,
(b) para-virtualization, and (c) hardware virtualization support. There are two main open-
source hypervisors XEN [139]and Kernel-based Virtual Machine (KVM hereinafter) [90].

XEN has two methods of executing guest OS, the Paravirtualization and the XEN HVM.
The XEN Paravirtualization (PV hereinafter) is a form of virtualization, which provides

near-native performance and the appearance of isolation at the hardware level, in contrast to
another equally popular virtualization platform called OpenVZ, which isolates at the OS or
process level. The PV runs a complete and unmodified operating system and behaves exactly
like a physical machine, excluding the kernel, boot loader and partition layout. By default PV
uses the same kernel that the host machine is running, but in XEN case through a technology
called Pygrub [109], it is also possible to run your own kernel inside your Virtual Private
Server (VPS), e.g. the native kernel your favourite linux distribution provides. Table 2.1
shows the advantages and disadvantage of PV.

Paravirtualization advantages Paravirtualization disadvantages
Complete and secure isolation Supports Linux only
Runs a full unmodified OS, excluding
bootloader + kernel

Limited to only the precreated OS tem-
plates

Highly scalable, low overheads Can not modify the OS options during in-
stall

Easy OS reloads with precreated templates Can not compile and install a custom ker-
nel unless using Pygrub

Direct allocations of RAM + HDD, not
oversold and cannot be used by other VPS

Fixed two file system layout with two par-
titions, one for hdd one for swap

Easily upgraded/downgraded or migrated
to another host machine if required

Table 2.1: Advantages and disadvantage of paravirtualization.

The XEN Hardware-assisted virtual machine (HVM) is more popular, and offers the
most flexibility. Like PV, XEN HVM provides near-native performance (although the over-
heads are slightly higher), and provides full hardware isolation, assisted by the Virtualization
extensions in modern processors. In a nutshell this means it really is a Virtual Dedicated
Server, allowing you to install any operating system, with complete control over every aspect

2.1. Cloud Computing Overview 13

of it including the kernel, boot loader, file systems + partition layout. Some advantages and
disadvantages of HVM are shown in Table 2.2.

HVM advantages HVM disadvantages
Complete and secure isolation Slower / more time consuming re-installs
Run Linux, Unix, BSD or Windows Higher overheads than XEN PV
Customize your kernel, and even your par-
tition layouts

More difficult to upgrade/downgrade or
migrate to another host machine if required

Behaves exactly like a real physical server
Library updated regularly

Table 2.2: Advantages and disadvantage of Hardware-assisted virtual machine.

KVM is a full virtualization solution for Linux on x86 hardware that contains two types
of virtualization extensions (Intel VT and AMD-V). It consists of a loadable kernel module,
kvm.ko, that provides the core virtualization infrastructure and a processor specific module,
kvm-intel.ko or kvm-amd.ko. KVM also requires a modified QEMU although work is under-
way to get the required changes upstream.

XEN-para VM XEN-hvm VM KVM VM
Processor 1 vcpu 1 vcpu 1 vcpu
RAM 2 GB ram 2 GB ram 2 GB ram
HD disk on a file disk on a file disk on a file
Net “netfront” network

driver
e1000 network driver
emulation

HV Version XEN v.3.2.1 XEN v.3.2.1 KVM v.83

Table 2.3: Virtual machines specifications.

There are several studies that show comparisons of the hypervisors [31], in the Figure 2.1
is shown the comparison of XEN, KVM and the host with the measure of CPU and the HEP-
Spec06 [78] benchmarks, which is the standard in Hight Energy Physics (HEP) community
for CPU performance benckmarking and it is a based on subset of Spec benchmark [116].
The Figure shows an increasing number of virtual machines that are running concurrently on
the host, and the results confirm that we can “overload” the cores of our machine and run
8 VMs concurrently, without any significant performance loss. Table 2.3 shows the VMs
specs in the benchmarks. The OS installed are for the Host, "OS Scientific Linux 5.2, kernel
2.6.18-92.1.22.el5" and for the VMs "OS Scientific Linux 4.5, kernel 2.6.9-67.0.15.EL.cern".

14 Chapter 2. State of the art

Figure 2.1: Hipervisors comparison with HEP-Spec06 Benchmarks.

Table 2.4 shows the exact percentage loss compared to physical CPUs. With virtualization
technologies, either XEN or KVM, the loss is comparable to a CPU downgrade (to the pre-
ceding model). The benchmark specifications were running in an dual intel E5420 processor,
16GB ram and two 10k SAS disks connected to a LSI Logic RAID controlled.

Virtualization Technology % loss from non Emulated CPU (E5420,
8VM)

E5420 KVM 3.42
E5420 XEN-HVM 4.55
E5420 XEN-Para 2.02
E5410 vs. E5420 4.07

Table 2.4: VM lost of perfomance.

2.1.2 Cloud managers

Cloud computing is a service that relies on a highly virtualized physical infrastructure. In
the Cloud, applications generally run on virtual servers that are independent of the underlying
hardware. But there’s more to the Cloud than virtualization, in that Cloud Computing is
based on the concept of a “utility computing” service, where RAM, CPU cycles, storage and

2.1. Cloud Computing Overview 15

network bandwidth are commodities to be consumed on a “pay per use” basis, like water or
electricity.

A Cloud Computing environment relies on many physical and virtual servers. It is con-
figured both in hardware and software to provide high reliability and availability. Clouds are
also very flexible and scalable, in the sense that an application simply consumes resources as
needed. Two such public Clouds computing services are Amazon’s Elastic Compute Cloud

(EC2) service and Microsoft Windows Azure Platform; in addition, similar services are offered
by a number of web hosting providers, referred to as Virtual Private Servers (VPS). In each of
these services customers are charged by the amount of time their virtual machine is running
(in hours or months), rather than by the amount of CPU time used. The benefit of Cloud
Computing is that the provider takes care of the infrastructure your application runs on. You
can eliminate the start up costs associated with hardware, and the infrastructure of a cluster is
able to support multiple platforms dynamically.

Currently, there are several Cloud manager open-source solutions, which you can chose
depending on you want to do. Some of the main important are OpenNebula, Eucalyptus and

CloudStack.
The OpenNebula Cloud manager allows building any type of Cloud: public, private, and

hybrid. It was designed to be integrated with any type of network and storage, and can be
adapted into any existing datacenter. OpenNebula can be managed through a Web manage-
ment server that provides access to all features and it has a powerful REST-Full-API that
allows accessing all features too. It adopts classical cluster-like architecture with a front-
end and a set of hypervisor-enabled cluster nodes where VMs will be executed. The main
components of an OpenNebula Cloud are: the front-end, nodes, the image repository, the
OpenNebula daemon, and the drivers.

OpenNebula supports two user roles, privileged user that can manage the OpenNebula
Cloud and not privileged users that can manage their own virtual networks and VMs.

OpenNebula support the hypervisors XEN, KVM and VMWare ESX [133]. It employs a
Virtual Machine Definition File (VMDF) to launch a VM. The VMDF is a template defining a
set of attributes to specify a VM, and it can be managed through the Command Line Interface

(CLI) whose syntax is similar to the Linux shell.
OpenNebula supports several Cloud client interfaces such as Amazon EC2, OGF OCCI

and vCloud interfaces. The most important feature of OpenNebula is the contextualization

16 Chapter 2. State of the art

which allows modifying on boot the configuration parameters of the VM, such as, DNS,
hostname, or even adding user SSH keys.

The Eucalyptus Cloud manager allows building private and hybrid Clouds adding external
Cloud resources. Eucalyptus has five types of components: the Cloud Controller, Walrus,
the Cluster Controller, the Storage Controller, and the Node Controller. As OpenNebula it
manages 2 roles of users, one with privileges to manage the Cloud and the other without
privileges to manage their own virtual networks and VMs. The hypervisors supported are
KVM and XEN. It has specific images called Eucalyptus Machine Images (EMIs) that are a
combination of a disk image, a kernel, a ramdisk, and a XML file containing metadata about
the image. It can be managed through the eucatools CLI whose syntax is similar to the Linux
shell. Eucalyptus provides a client interface that is compatible with Amazon EC2 and S3 [3]
Web Services.

Finally, CloudStack is an open-source software architecture, which permits building any
type of Cloud: public, private, and hybrid. It allows the deployment and management of
elastic computing environments. It has four types of components, the Management Server,

Pods, Availability Zones, and Compute Nodes. As a difference to the others, it has 3 user roles;
root administrator, domain administrator, and not privileged users. The domain administrator
new user has the peculiarity of performing administrative operations for users who belong to
that domain. The hypervisors supported are XEN and KVM. It uses Qemu Copy-On-Write

QCOW [119] format as virtual machine disk images. As OpenNebula, CloudStack can be
managed through the web management server and it has a powerfull REST-Full API [33]
to access all features of the Cloud manager.

2.1.3 Cloud managers study

The first step towards providing a distributed infrastructure solution to support multi-site en-
vironments for scientific research is to analyse the features of the available open-source [69]
Cloud managers. OpenNebula 2.0Beta, Eucalyptus 2.0.1 and CloudStack 2.1.4 were the soft-
ware versions which were analysed. Fig 2.2 show the features of the analysed Clouds.

The categories have been grouped in two subsets, the first one contains the basic fea-
tures that must be present in all Cloud management platforms and the second one defines
the advanced characteristics that are desirable in Cloud managers. And as final results of this
analysis CloudStack is the one with the highest score in terms of features, and it is followed by
OpenNebula. About CloudStack it is remarkable the web interface that provides the complete

2.1. Cloud Computing Overview 17

Figure 2.2: Cloud managers features.

18 Chapter 2. State of the art

management of the Cloud, both for the system administrator and for the unprivileged user,
at the same time it provides useful information such as monitoring data, resource utilization
statistics, registering information and alerts. Other important point for the infrastructure is
the way it defines the availability of VMs that the system maintains operational without user
or administrator intervention at all. Furthermore, it allows creating a Cloud with a simple
interface to offer it to internal or external users.

2.2 Big Data Overview

In [37], Google introduced MapReduce programming model offering an efficient way of per-
forming distributed computation over large data sets. After that, Big Data technologies has
become the most interesting option for data-intensive analyses in the cloud and in commodity
clusters due to its excellent fault tolerance features, scalability and the ease of use. Although
it have been argued that MapReduce does not suit well for many scientific algorithms, several
works [44], [72] have shown that the MapReduce model can be used successfully even for
solving complex scientific computing problems. Different implementations of the Google’s
original MapReduce model [37] has been proposed, like Twister [43] for iterative computing
or Phoenix++ [118] for shared-memory systems, being Hadoop [5] and Spark [143] the most
popular ones. Several extensions have been done to use MapReduce in different architectures
like GPUs [48], [80], manycores [93] or HPC [47], [94].

In the cloud, AWS EMR [10] is the best known example of Hadoop-as-a-Service. Other
cloud based implementations are Azure MapReduce [72], qosh [113], Sahara [112], Dynamic
MapReduce [92], or Cloud MapReduce [91].

There are several projects that have addressed the Hadoop federations, allowing the MapRe-
duce tasks to run on multiple clusters. In [134], the Hadoop MapReduce framework was
extended for this purpose, reusing the user authentication and job submission mechanism of
Hadoop. Hadoop has also created the Hadoop File System (HDFS) Federation [6], for scaling
horizontally, and the federation of multiple and independent NameNodes. Other works like
[85], have created with a front-end the Hadoop data management over several clouds, and
new Hadoop architectures like [111] for federation have tried to emulate to Amazon EC2,
provisioning Hadoop clusters and submitting jobs, allowing also users to focus on writing
their MapReduce applications rather than managing cloud resources.

2.3. DIRAC Evolution 19

In addition to extending DIRAC for Big Data technologies, we propose global scheduling
by load balancing (LB). The concept is sensible, following other LB approaches in similar
distributed computing environments. LB between different cloud providers has been demon-
strate to save costs [122]. Both job completion and LB are targets of max-min strategy for job
scheduling in cloud computing environments [45], including QoS constrains. Furthermore,
there are a variety of algorithms for distributed computing LB, like the Hierarchical Load
Balanced Algorithm (HLBA) for Grid environment [88] or the Dynamic Load Balancing Al-
gorithm (DLBA) [117] or DLBA with genetic algorithms in [89]. These works motivate the
use of LB as a sensible approach to deal with the global scheduling in DIRAC as a Big Data
federation.

2.3 DIRAC Evolution

The Large Hadron Collider (LHC) is the world’s largest and highest-energy particle acceler-
ator. It was built by the Centre of European Organization for Nuclear Research (CERN).
Four big detectors have been constructed at the LHC, and the Worldwide LHC Computing
Grid (WLCG) project was created with the mission of analyse all raw data generated by the
LHC. Furthermore, most of the computing resources needed by the LHC experiments as well
as for some other communities are provided by Computing Grids. Grids provide a uniform
access to the computing and storage resources which simplifies their usage. The Grid middle-
ware stack offers also the means to manage the workload and data for the users. However, the
variety of requirements of different Grid User Communities is very large and it is difficult to
meet everybody’s needs with just one set of the middleware components.

For LHCb, DIRAC was developed as a Grid middleware [40]. It was designed to be a
generic system with LHCb specific features well isolated as plug-in modules. It allows to
construct medium sized Grids of up to several tens of thousands processors by uniting PC
farms with most widely used cluster software systems as well as individual PCs within its
integrated Workload Management System. Next sections provides an brief overview of Grid
Computing DIRAC and the evolution from middleware to interware.

2.3.1 Grid computing evolution

The Grid Computing is the federation of computer resources from multiple administrative do-
mains to reach a common goal. Ian Foster, an expert in the field defined the Grid Computing

20 Chapter 2. State of the art

as a "hardware and software infrastructure that provides dependable, consistent, pervasive,

and inexpensive access to high-end computational capabilities". He later clarified this defi-
nition by creating a three-point checklist [59] that characterizes a Grid as a system that, first
coordinates resources that are not subject to centralized control, second uses standard, open,

general purpose protocols and interfaces, and finally delivers non-trivial qualities of service.
Another similar vision of Grid Computing was made by Baker [11] that present four basic

characteristics that define a Grid:

1. Multiple administrative domains and autonomy. Grid resources are geographically
distributed across multiple administrative domains owned by different organizations.
The autonomy of resource owners needs to be honoured along with their local resource
management and usage policies.

2. Heterogeneity. A Grid involves a multiplicity of resources that are heterogeneous in
nature and will encompass a vast range of technologies.

3. Scalability. A Grid might grow from a few integrated resources to millions. This raises
the problem of potential performance degradation as the size of Grid increases. Con-
sequently, applications that require a large number of geographically located resources
must be designed to be latency and bandwidth tolerant.

4. Dynamicity or adaptability. In a Grid, resource failure is the rule rather than the
exception. In fact, with so many resources, the probability of some resource failing is
high. Resource managers or applications must tailor their behaviour dynamically and
use the available resources and services efficiently and effectively.

This Grid vision requires protocols, interfaces, and policies that are open, general purpose,
and standard. The standard allows users to establish resource-sharing arrangements dynam-
ically with any interested party to create something more "that a plethora of balkanized, in-

compatible, non-interoperable distributed systems." The commercialized embodiment of this
work has been the Globus Toolkit.

Looking back at the evolution of Grid technologies, one has to mention an important
change that followed the proposal of the Open Grid Service Architecture (OGSA). The
OGSA was introduced in the paper “The physiology of the Grid” by I. Foster , C. Kesselman,
J.M. Nick and S. Tuecke in 2002 [60]. OGSA introduced the notion of a Grid Service, that

2.3. DIRAC Evolution 21

is, an extended Web Service [135] with a more specific semantics tailored towards handling
state, persistence and life cycle management.

Besides OGSA, over the last decade, a vast number of architectures, protocols and stan-
dards were created by the Grid community and, consequently today Grid technologies form
a whole stack of various components. To facilitate the development of Grid-related standards
and tools, the community formed the Global Grid Forum (GGF). In 2006 the GGF merged
with the Enterprise Grid Alliance forming the Open Grid Forum (OGF) which continues to
be an important forge of Grid standards and common APIs. One of the most notable recom-
mended standards prepared by the OGF is the Distributed Resource Management Appli-
cation API (DRMAA) [101]. The adoption of DRMAA allows for interoperability between
different Grid frameworks.

Figure 2.3 shows Globus Toolkit components with several Grid frameworks. Globus
Toolkit was the first open source framework that enabled to create Grids. The first stable
release (1.0) appeared in 1998. According to Tannenbaum the toolkit includes software for
security, information infrastructure, resource management, data management, communica-
tion, fault detection, and portability. It is packaged as a set of components that can be used
either independently or together to develop applications [1]. Globus focuses on interoper-
ability and thus defines a set of protocols and common components that form the Open Grid
Service Architecture (OGSA). The details describing the basics of the toolkit were provided
by Foster et al. in papers entitled “The Anatomy of Grid” [61] and “The Physiology of the

Grid” [60].
The Globus Toolkit was developed by companies, organizations and individuals gathered

around the Globus Alliance that was officially created in 2003 to formalize and bring together
developers formerly working on the Globus project.

Another important framework was UNICORE, which stands for UNiform Interface to
COmputing REsources. It is an open source Grid framework developed and used primar-
ily in Europe. The project was initially funded by the German Ministry of Education
and Research (BMBF) and mainly evolved around the German Supercomputing Centre,
Forschungszentrum Jülich. The initiative was started in 1997 as an attempt to integrate the
infrastructure of German supercomputing centres. The main characteristics of UNICORE
project [127]:

1. Open source under BSD license.

22 Chapter 2. State of the art

Figure 2.3: Globus Toolkit components.

2. Standards-based, conforming to the latest standards from the Open Grid Forum (OGF),
W3C, OASIS, and IETF, in particular the Open Grid Services Architecture (OGSA)
and the Web Services Resource Framework (WS-RF 1.2).

3. Open and extensible realized with a modern Service- Oriented Architecture (SOA),
which allows to easily replace particular components with others.

4. Interoperable with other Grid technologies to enable a coupling of Grid infrastructures
or the users needs

2.3. DIRAC Evolution 23

5. Seamless, secure, and intuitive following a vertical, end-to-end approach and offering
components at all levels of a modern Grid architecture from intuitive user interfaces
down to the resource level. Like previous versions UNICORE 6 seamlessly integrates
in existing environments.

6. Mature security mechanisms adequate for the use in supercomputing environments and
Grid infrastructures. X.509 certificates form the basis for authentication and autho-
rization, enhanced with a support for proxy certificates and virtual organizations (VO)
based access control.

7. Workflow support tightly integrated into the stack while being extensible in order to use
different workflow languages and engines for domain-specific usage.

8. Application integration mechanisms on the client, services and resource level for a tight
integration of various types of applications from the scientific and industrial domain.

9. Different clients serving the needs of various scientific communities, e.g. graphical
clients to define complex workflows, command line tool, web-based access.

10. Quick and simple to install and configure to address requirements from operational
teams and to lower the barrier of adopting Grid technologies. Similar the configuration
of the various services and components is easy to handle.

11. Various operating and batch systems are supported on all layers, i.e. clients, services
and systems; Windows, MacOS, Linux, and Unix systems as well as different batch
systems are supported such as LoadLeveler, Torque, SLURM, LSF, OpenCCS, etc.

12. Implemented in Java to achieve platform independence

Glite [66] was implemented as part of the EU-sponsored Enabling Grids for E-Science
in Europe (EGEE) project that started in 2004. After prototyping phases in 2004 and 2005,
convergence with the LHC Computing Grid (LCG-2) distribution was reached in May 2006
when gLite 3.0 was released. It was born from the collaborative efforts of more than 80 people
in 12 different academic and industrial research centres as part of the EGEE Project. GLite
provides a framework for building Grid applications tapping into the power of distributed
computing and storage resources across the Internet. The gLite is a service-oriented Grid
framework, it is a middleware platform designed from the beginning to support the Grid built

24 Chapter 2. State of the art

within and around CERN. The gLite Grid services follow a Service Oriented Architecture
which facilitates interoperability among Grid services and allows easier compliance with up-
coming standards, such as OGSA, that are also based on these principles. The services are
expected to work together in a concerted way in order to achieve the goals of the end-user,
however, they can also be deployed and used independently, allowing their exploitation in
different contexts.

The gLite project ended in 2010, the development of the gLite middleware was then taken
over by the European Middleware Initiative, and is now maintained as part of the Euro-
pean Middleware Initiative (EMI) [46] software stack. The distributed computing infras-
tructure built by EGEE is now supported by the European Grid Infrastructure (EGI) and
runs the Grid middleware produced by the European Middleware Initiative, many components
of which came from the gLite middleware, UNICORE [127] or dCache [36].

In order to summarize this section, the examples given show that Grid Computing is a
relatively widely adopted and well established technology that introduced a significant num-
ber of architectures, standards and protocols. However, despite the immense diversity among
different Grid technologies, there are some general shortcomings which are still present nowa-
days. One of the most important deficiencies is the complexity of the available architectures
and solutions that make them difficult to deploy and manage. Another important aspect is
the lack of stability that may result from the fact that Grids emerged as a technology made
for scientists by scientists and despite being around for more than a decade they still lie pri-
marily within the domain of science. Another important issue with current Grid technologies
involves the high complexity, instability, potential single point-of-failure due to static configu-
ration and impaired performance as a result of using XML and SOAP. Section below describes
the federated metacomputing approach followed in this research and shows how these issues
are addressed in the architecture of a Federated Clouds Environment.

2.3.2 DIRAC Interware

The DIRAC project was initially designed, in 2003, as a community management software
to support scientific computing in the LHC context [124]. DIRAC was created as a Grid
middleware to support the Grid community of the LHCb experiment and at the beginning
with the specific use case of Monte Carlo (MC) simulation. Although developed for the LHCb
experiment, it is designed to be a generic system with LHCb specific features well isolated
as plug-in modules. The DIRAC architecture consists of numerous cooperating distributed

2.3. DIRAC Evolution 25

services and light agents built within the same DIRAC SEcure Transport (DISET) [26]
framework following the Grid security standards. DIRAC introduced the now widely used
concept of Pilot Agents [27]. This allows efficient Workload Management Systems (WMS)
to be built. The workload of the community is optimized in the central Task Queues. The
WMS is carefully designed to be resilient to failures in the ever changing Grid environment.

The DIRAC Project has all the necessary components to build Workload and Data man-
agement systems of varying complexity. It offers a complete and powerful Grid solution for
other user Grid communities and due to this characteristics DIRAC is the perfect tool to inte-
grate with the infrastructure of this thesis.

Nowadays, DIRAC is used by LHCb as the management middleware of the community,
including not only MC, but all the other computing activities such as the reconstruction of
the experiment data collection, the selection of events by different filters, the reprocessing
of that data, the user analysis or the data transfers. Moreover, other scientific communities
besides LHCb are using DIRAC such as ILC, Belle II and others [123]. Some of them have
extended the DIRAC core functionality to fulfil their requirements [71]. These experiences
have been useful to validate two important characteristics of the software: the robustness of
the framework, and an extensible design, resulting in a solid software stack able to deal with
different use cases in a flexible manner.

DIRAC offers different tools to provide an integral solution for workload and data man-
agement on distributed computing infrastructures. From the beginning of the project, the need
to provide a user friendly interface in the context of Virtual Organizations (VOs) was clearly
identified. To fulfil this need, DIRAC provides a web portal offering a friendly multi-user and

multi-VO GUI, matching the different users operations, rights and permissions, including the
computing administration in different layers, the final user analysis, or the anonymous view
of the public domain. The DIRAC portal also offers the possibility to integrate other web
portals.

Using DIRAC one can deal with the overlaying middleware in a transparent way. DIRAC
was designed to make use of Grid and non-Grid technologies. For example, at the begin-
ning of the project in 2003, the distributed resources were only available to LHCb via direct
submissions to the Local Resource Manager Systems (LRMS). Later, the Grid technolo-
gies evolved towards offering Grid interfaces for remote access to batch queues. For these
reasons DIRAC can be defined as an interware that allows interoperability among different
computing resources via different drivers to each of the middleware solutions. Some of the

26 Chapter 2. State of the art

new drivers developed are in the field of Cloud Computing in order to extend the DIRAC

interoperability, starting from the Belle experiment using Amazon Elastic Compute Cloud

(EC2) [71].
The following are some of the DIRAC main components:

1. Secure Transport: DIRAC components use a custom protocol for client-server commu-
nication; the DIRAC SEcure Transport [26]. This protocol provides a uniform way
for building distributed applications which are connected securely through X509 certifi-
cates [58] and Grid proxies [108] for authentication. DIRAC components on the Cloud
will also use the DISET protocol for communicating with other parts of the system to
ensure the security of the setup.

2. Configuration: The Configuration System (CS) is the set of DIRAC components that
provides configuration of the rest of the DIRAC framework. CS includes the configu-
ration system itself, to locate each other using Service URLs (SURLs). At the same
time, it allows global default values for configuration parameters of any DIRAC com-
ponent to be set. DIRAC configuration options are organized in a tree structure where
each node in the tree is a section that contains options and/or other sections. Each op-
tion gets an associated value that can be retrieved with a single call inside the DIRAC
python code.

3. Workload Management: The Workload Management System (WMS) is one of the
central pieces of the DIRAC framework. It is based on a pull scheduling paradigm
with late binding of resources to payload. DIRAC implements the pull scheduling as
follows:

– A central WMS server keeps the list of pending tasks organized in TaskQueues.

– Each TaskQueue contains tasks with identical execution requirements, e.g., CPU
time requested by the user, the required platforms to execute, or the identity of the
submitter.

– Dedicated DIRAC agents attempt to get hold of appropriate computing resources
for each TaskQueue. This is done via pilot job, see jobs [27], both when using
Grid resources, local batch systems or Clouds.

– Once a pilot manages to execute at a certain resource, a WN, it checks the envi-
ronment and requests a pending task from the central server.

2.3. DIRAC Evolution 27

– After the execution of the task is completed, the pilot uploads the results, reevalu-
ates the computing resources available and requests a new pending task if appro-
priate.

4. Data Management: There is a limited set of components from the DIRAC Data Man-
agement System (DMS) that are relevant for the proposed setup. They are the follow-
ing:

– Storage Element (SE): DIRAC provides a secure remote interface to the local
storage of a server via the Storage Element service using the DISET. It is mostly
used for hosting input/output sandboxes for WMS tasks.

– File Catalog (FC): DIRAC provides a Replica File Catalog server implementa-
tion including access control and trivial metadata like file size, checksum or cre-
ation timestamp. Additionally DFC provides a complete metadata catalog solution
fully integrated with the replica catalog. DIRAC also provides abstract interfaces
to third party SE and FC solutions for early integration in the final system.

5. Web Portal and Other Components With the Web Portal System DIRAC provides
the possibility to monitor and control the activity of the system and its behaviour via a
dedicated web portal. Connections to the portal are encrypted and the user is authenti-
cated by the user’s Grid certificate that it is imported to the browser.

6. Accounting Provides a persistent backend and report generation tool for the informa-
tion relative to the different actions controlled by DIRAC such as user task execution or
data upload and registration.

7. User Interface Allows the authorized user to submit the Tasks and retrieve their out-
puts.

The previous list shows that DIRAC is a suitable software with the characteristics needed
to create a scalable system to submit research jobs and that can easily integrate Cloud re-
sources. The other part now is the software distribution, when the job is submitted to some
SITE or computer lab in order to be executed without penalties problems.

28 Chapter 2. State of the art

2.4 Software Distribution Systems

One important part in distributed computing is the access to the software that is needed for
execution of the researcher’s applications. Nowadays EGI has established a large production
Grid with thousands of users belonging to different communities that are organized in hun-
dreds of Virtual Organizations (VO). Each of these VOs requires different applications that
ideally should be available in the nodes where they are going to run. Research groups pro-
cessing data in distributed systems often need specific software. This software needs to be
downloaded and installed in the local operating system in order to correctly execute the user
jobs. It is therefore interesting to develop an infrastructure that allows to automatically down-
load the software, with the possibility of being operated externally by a self-updating version
manager, which could be used with virtualized environments. Different SITES have different
alternatives to distribute the software of each VO. The most common way is to use a NFS
directory shared between all the nodes in the cluster. This approach has several drawbacks
especially for large clusters. First, it imposes an important performance penalty when all the
nodes try to access the same NFS server. In addition, it seriously limits the scalability of the
system.

One option is to use several NFS servers, splitting the software repositories among them.
But this solution is more difficult to deploy and requires some planning to decide how the
different software repositories will be splitted between the different servers. Another option
is to use NFS caching abilities that appear in the last version of Red Hat Enterprise Linux
based systems (RHEL6), but most SITES are still using operating systems based on RHEL5.

There is also the option of using a distributed file system like OpenAFS [102], but it
requires the kernel installed in the nodes to support it, and it usually involves a complex
configuration process.

In addition, the software area management in each of the SITES is a redundant adminis-
tration task, introducing inconsistencies between the publication in the software area of the
different SITES. Ideally, one aims to have a single administration of the software area for all
the SITES.

Another option is the use of TARBALL files, which are encapsulated software files com-
pressed in Tar [120] and Gzip format [74]. The distribution of theses files is done through
HTTP servers, these files are downloaded to the worker nodes and they are decompressed to
run the scientific software. But depending on the number of Nodes, the download latency
could be a serious problem in the execution time of the scientific software.

2.5. Virtualization and HEP Software 29

There are programs that solve some these problems, and can help in these tasks as Cern
Virtual Machine File System [30] (hereinafter CernVM-FS), which provides the necessary
software without concern for the user. CernVM-FS is a software designed to easily recover
files from an HTTP server. This solution uses file catalogs to establish read-only file systems
through HTTP protocol. Files are first transferred to the local Squid proxy, if available, and
then to the local cache of the node; greatly reducing the network traffic in case of jobs that
use the same software. Software distribution will be explained in more detail in chapter 4.

2.5 Virtualization and HEP Software

Cloud promised to address with the same shared set of physical resources a large user base
with different needs. However, the virtualization could be an issue if the performance of the
applications is being decreased excessively, and an important question arises: is the virtu-
alized performance of Clouds sufficient for scientific software? Albeit early attempts to
characterize Clouds and other virtualized services [90] [12], this question remains largely
unexplored. One of the chapters of this thesis will try to analyse systematically the perfor-
mances in virtualized platforms, of different setups and several types of software used in the
HEP field.

The majority of Cloud projects are using for virtualization one of the two main open-
source hypervisors Kernel based Virtual Machine [90] and XEN [139]. In addition, most
of virtualized SITES are using KVM with their Cloud managers configuration. In the case
of KVM, it is a full virtualization solution for Linux on x86 hardware containing virtualiza-
tion extensions (Intel VT or AMD-V). It consists of a loadable kernel module, kvm.ko, that
provides the core virtualization infrastructure and a processor specific module, kvm-intel.ko

or kvm-amd.ko. KVM also requires a modified QEMU although work is underway to get the
required changes upstream [61]. There have been studies that characterized the effectiveness
of Cloud technologies and virtualization over competing technologies. In this vein L. Youseff
et al. [142] did a study of the performance of paravirtualized systems based on XEN with
benchmarks from HPC Challenge, LLNL ASCI and NAS parallel suits. An application for
simulation of oceanographic and climatological phenomena was also used as a benchmark.
For most of the tests they found no overhead when using a virtualization environment. Mean-
while, E. Deelman et al. [38] did an study of the costs of using a commercial Cloud services
versus the cost of having a dedicated infrastructure. They estimated the cost by running an

30 Chapter 2. State of the art

astrophysics application to compute mosaics of input images, obtaining the amount of CPU
used by the runs, the size of the input and output files and multiplying these numbers by the
costs of a CPU-hour, GB of storage, input transfer and output transfer. Their results show
that commercial Clouds could be an interesting alternative for certain class of scientific jobs.
Finally, A. Chierci et al. [31] did a qualitative study performance of XEN versus KVM by
changing a computing element and a monitoring from XEN, the technology used for all the
machines LHCb TIER-2 they are hosting at CNAF, by two KVM machines. Although the
users were not informed, they did not notice the change in the more than 3 weeks that the test
was run. A second part of their study consisted on comparing two XEN, paravirtualized and a
hardware VM, and one KVM virtual machines. The HEP-Spec06 [78] test, based on a subset
of the SPEC benchmark is a standard benchmark suite in HEP community used to measure
CPU performance, iperf and bonnie++ tests were used to do the quantitative comparisons.
The intent of this thesis is to obtain a quantitative evaluation of the overhead of using a KVM
VM to run HEP software applications instead of a bare metal machine which has not been
addressed by these previous works. This evaluation of the performance is an important issue
to answer the question of wether the Cloud is a sufficient performance solution for Scientific
software.

2.5.1 HEP software description

Three computer programs have been selected to make the test: (i) GAUSS which is a specific
software developed for the LHCb experiment; (ii) AIRES developed for Auger, an experiment
to study cosmic rays; and (iii) a program developed by one of the groups at the Instituto Galego
de Física de Altas Enerxías (IGFAE) [8, 7], which are belonging to ALICE experiment and
makes use of FastJet. FastJet is software that contains jet finding algorithm used by major
experiments like ATLAS, CMS, D/0, CDF, and others. In the following section more details
of these computer programs will be given.

The software used in HEP experiments can be classified in three categories: simulation,

event reconstruction and physic analysis. Simulation software is used in all stages of an
experiment, from the design to the commissioned phases. In the design phase, it is used
to obtain some estimates needed for making detector choices, also in the development of the
reconstruction and analysis programs and, finally, helps to evaluate the physics potential of the
detector. Once the detector is commissioned, these programs are used to look for unexpected
effects and backgrounds or, when a theory is not well known, to compare the results with

2.5. Virtualization and HEP Software 31

various models. Simulations are also used to make studies of the detector performance and
to provide efficiency values for the data analysis. The second group is the software that
reconstructs the trajectories followed by the different particles produced in a collision. This
is not a trivial task because, even in the case that there were just one initial collision, the
high energies involved imply a high numbers of particles and, therefore, a high number of
simultaneous active sensors that have to be matched to the different particle tracks. The third
group is the software that performs the physic analysis, this is the most heterogeneous group of
the three since apart from the software used to select the interesting events for a given study it
includes customized software developed to do the actual physic analysis of the reactions under
study. The tests ran for this thesis belong to the first and third categories. Thereby GAUSS

and AIRES belong to the simulation class software whereas FastJet software belongs to the
physic analysis category. The AIRES package [115] was developed for the Auger experiment
with the objective of simulating the production of particle showers created by the collision
of ultra high energy particles present in cosmic rays, some of them with energies well over a
million times the highest energies attainable at LHC, with the Earth’s atmosphere. Because
this code generates most of the needed data via algorithms, the IO load is low compared with
the CPU load. This IO load is related to the input of the simulation parameters, the output
of the results, logs and some summary files, and the update of the internal dump file (IDF),
which contains the necessary internal data to restart a broken simulation from the last update
of this file.

The second program used for the tests is GAUSS [42] that is a Montecarlo simulation
program developed by the LHCb collaboration. The program uses the GAUDI framework,
also developed by LHCb, that simplifies its interface with other programs. GAUSS is used
to generate the collision that is going to be studied. For this purpose, it can make use of
programs like Pythia [110], EvtGen [83], etc. This simulation is done by GEANT4 [34] a
program developed for the simulation of the passage of particles through matter and which is
currently used in HEP experiments, astroparticle physics, nuclear physics, space and medical
applications, to name a few fields. These simulations are the most CPU consuming events
in HEP experiments. For example, a typical GAUSS simulation takes 50000 SPECInt2000
sec/event while reconstruction takes of the order of 20 times less [64]. Just as with AIRES,
the IO load of GAUSS comes, mainly, from the reading of the configuration files, and the out-
put of the results, logs and summary files. Unlike AIRES, that does not need to be supplied
with information about the distribution of matter in the volume of simulation because it uses

32 Chapter 2. State of the art

a model of the atmosphere that generates this information, GAUSS needs to read this infor-
mation because the complex distribution of matter inside the detector can not be modelled by
a simple algorithm. Nevertheless, this information needs to be read just once, independently
of the number of collisions that a given GAUSS run will simulate. Another difference with
AIRES is that GAUSS does not need checkpoints because it only takes about a couple of
minutes to generate a single event.

The last program used corresponds to the analysis category. It was developed by the phe-
nomenology group of the IGFAE to study the contamination of jets by background particles
in heavy ion collisions. Jets are groups of particles, produced in the disintegration of high-
energy particles, whose trajectories lie within an small angle cone. In [7], two programs were
considered, but we have just used the one based in the FastJet [23] package. This package, via
a plug-in architecture, has access to a plettora of algorithms ranging from those taking O(N3)

steps, where N is the number of particles to analyse, to those taking just O(N logN). In this
case the IO load is also small compared to the CPU load of the job despite the fact that the
amount of input data that has to be read is considerably higher than in the previous cases.

As part of this thesis an evaluation of the usefulness of the current Cloud Computing
services for scientific applications will be presented. The Kernel-based Virtual Machine
(KVM) performance of a sample of HEP software under different setups is analysed with the
use of a multivariate analysis of variance (MANOVA).

2.6 Federated Metacomputing

Catlett and Smarr have defined the term metacomputing as “the use of powerful computing

resources transparently available to the user via a networked environment” [28]. Their view
is that a metacomputer is a networked virtual supercomputer. To a certain extent our usage
of the term metacomputing still holds true to this definition apart from explicitly referring to
“powerful” computing resources. Other terms have also been used to describe this computing
paradigm, such as seamless, scalable, global computing, Grid Computing and more recently
Cloud Computing.

The most significant conceptual difference between Grid Computing and metacomputing
is the location of the main business logics of a program. While Grid Computing focuses on
finding the best host to execute a program that contains the main logic, in metacomputing
the main logic reside above in the metaprogram. The metaprogram is not executed by a

2.6. Federated Metacomputing 33

certain host but instead, by a whole network of services that federate dynamically and form
the virtual metacomputer. In the case of Cloud Computing the logic is a mixture and extension
of both concepts, because in the case of select the best host to execute a program, there are
more parameter to consider such us the cost of the resources or the overload of the machine.
Furthermore, in Cloud Computing it is needed to know the specific Cloud environment in
order to create the appropriate instance.

Grid Computing Federated Meta-
computing

Cloud computing

Architecture Centralized/Client
Server

Service-2-Service Service-2-service
with Cloud man-
agers and client-
server with WN

Task scheduling Schedulers and
queues

No schedulers or
queues - resources
are scheduling
assigned dynam-
ically at runtime
from all available
providers in the
network

queues systems
and dynamic
resources creation

Managed by Central resource
manager/scheduler

Decentralized
coordinating ser-
vice/scheduler in-
voked per request
(many instances
may operate
simultaneously)

Cloud managers
and central re-
source managers

Configuration Static using DNS
or IP addresses

Dynamic using
discovery/join
protocols

Static using DNS
or IP addresses

Remote invoca-
tion

RPC over web ser-
vices/SOAP

Federated Method
Invocation execut-
ing metaprograms

SOAP, RestFull
and specific Cloud
manager protocols

Table 2.5: Grid Computing, Metacomputing and Cloud Computing

Another important difference refers to the architecture, discovery of services and binding.
While Grids are de facto built using Client-Server Architecture, the federated metacom-
puting is a true peer-to-peer service-to-service environment where all service providers are

34 Chapter 2. State of the art

located using dynamic zero-configuration discovery/join techniques, and in the case of the
new Cloud Computing model, there are a mixture of services and resources where by one
hand there is a client-server architecture in the manager of job submission side and the other
side is the peer-to-peer service-to-service environment where the Cloud managers need to be
known about other servers with specific protocols.

Detailed comparison of Grid, Cloud and Metacomputing is presented in Table 2.5.
The metacomputing environment offers functions at the level of the whole metacomputer

in form of decentralized system services that handle security across all providers, distributed
storage, distributed file system or services that coordinate the execution of complex metapro-
grams across the network. Taking into account the previous critical view of Grid technologies
and this platform level approach, it should be noted that Grid technologies should be regarded
as batch schedulers that move executable code around a network of statically connected com-
puter nodes. They perform these high level system functions in a centralized manner. In
contrast, in a metacomputing environment all resources are treated together in a dynamic, de-
centralized way, similar to an integration with a Cloud Computing model where for one side
you should have a unique batch scheduler for job submission, but the resources have to be
treated together in the way of to know the specific SITE characteristics.

2.7 Summary

The state-of-the-art and relevant literature that allows to set the approach taken and the con-
tribution of this dissertation with respect to currently available technologies were presented
in this chapter. As the introduction explained, the Cloud Computing overview in order to
understand the main purpose of Cloud environments and some of the main characteristics
of open-source Cloud managers to select the most suitable for our purpose in this thesis.
The current ecosystem Big Data software environment was also presented. Furthermore, a
brief introduction of the Grid Computing and some gaps were described, with some solutions
based in Cloud Computing model. The DIRAC Grid middleware, its transformation to an
interware, and the main components of this software were shown. Several distribution sys-
tems and the most suitable are for the purpose of this thesis were discussed. Several High
Energy Physic software (HEP-Software), which KVM performance will be statistically anal-
ysed, were shown. And finally the details of metacomputing approaches, and how to the cur-

2.7. Summary 35

rent solutions do not address federated metacomputing models based on Cloud environments
is described, which is one of the contributions in this thesis.

CHAPTER 3

SOFTWARE DISTRIBUTION AND VIRTUAL

PERFORMANCE

This chapter contains the studies of scalable systems for the software distribution and the
performance of HEP software in virtual environments.

3.1 Software distribution

This section contains the study to select an scalable system for the software distribution for the
infrastructure of this thesis, describing the motivation and the problems of current software
distribution, defining the deployment of the CernVM-FS repository with benchmarks [50] and
finally showing how to create a Software Repository Service.

3.1.1 Motivation

Currently, there is a big number of researchers that need to run their jobs using distributed
systems, and they need specific software, which is usually not installed in the worker node.
The most of the times, the user is in charge of installing the software to run the simulations,
and it increases the working time. This working time is the maximum time including the
software installation in the node as shows the next equation:

max
i∈ND

(
max
j∈Si

Ti j + ti

)
, ND = {1,2, . . . ,M}, Si = {1,2, . . . ,Ni}

Ni = max jobs in i node

38 Chapter 3. Software Distribution and Virtual Performance

Ti j = total time of software execution

ti = software installation time

i = node of running jobs

j = number of jobs per node

As it has been shown, with the increasing the time due to software installation, it will in-
crease the amount of total finish time of the user jobs. The computing in distribution systems
needs reliable and efficient systems to get the software that the researchers need to run their
programs. The Worldwide LHC Computing Grid [137] provides a distributed infrastructure
for processing the data of the Large Hadron Collider [121]. The model currently in use con-
sists in executing some special jobs at each SITE that install locally the software in a shared
area. Such jobs are executed under particular conditions in order to give them high priority,
as they are essential for the usability of the SITE and they must be assigned to a particular
WN of the farm for which the shared area is mounted in write mode. The WNs can then
access it through the local network through NFS protocol. Problems related to this procedure
for software distribution happen very often and make the SITE unavailable for running jobs.
The most frequently observed issues concern the shared area availability and the software
installation jobs.

The shared area is made available to the WNs through NFS (or AFS) protocol. This type
of setup presents several limitations: any outage of the NFS/AFS server makes the content
of the shared area inaccessible and immediately causes the failure of all running jobs. Also,
in case of high load, the NFS/AFS server can become very slow, causing the jobs to time
out in the execution of the application and eventually fail. In a infrastructure where computer
classrooms are included, it would be necessary one NFS per class in order to make an scalable
solution. Even if, in principle, SITES or institutions set up an infrastructure for the shared area
able to serve concurrent connections from all the WNs of the computing farm or computing
labs, it cannot be excluded that there will be peaks of load for the NFS/AFS server. This can
be due to the concurrent execution of application software especially demanding for the file
system hosting the software, like scripts with recursive listings of directory or code compila-
tion and thus many system calls. These situations are difficult to foresee, as they might depend
on the activity of private users, which is totally uncoordinated, and they are rather difficult to
manage, since setups based on NFS/AFS servers are not easily scalable. Furthermore, the

3.1. Software distribution 39

Cloud environment will increase the latency to get the software from the NFS server due to
this lost of performance.

Another very frequent source of issues resides in software installation jobs. Almost daily
some of these jobs fail either because there is no space left on the shared area, or because the
path to the shared area is not correctly set, or because network connection is too slow and
the execution exceeds the job timeout. Also, permission problems have been often observed,
i.e. the job has no permission to write on the shared area, due to some lock on the NFS file
system.

Figure 3.1: CernVM-FS internal structure.

One possible solution could be the CernVM-FS software, which is a network file system
developed in the framework of the CERN virtual machine [29] project at CERN. According
to this model the WNs access the software deployed in a central repository at CERN through
HTTP protocol by mounting the CernVM-FS. CernVM-FS provides efficient caching func-
tionality of files data and metadata, and reduces to the minimum the network latency when
the software is accessed several times. During job execution, the WNs access the software
through the HTTP protocol. Only the programs and libraries that are actually used during
run time would be accessed, and then cached locally on the WN local disk. The optimized
caching mechanism of CernVM-FS limits the network traffic between the node and the origin
web server, which is furthermore reduced by mean of a zlib compression of the transferred
files. Additionally, one or more HTTP proxies can be deployed at the SITE, in order to cache
locally the software packages and to reduce the load on the central software repository at

40 Chapter 3. Software Distribution and Virtual Performance

CERN, as well as to reduce latency due to data transfer through the WAN. CernVM-FS can
be mounted as a normal file system through File in the User Space (FUSE) [63]. Using FUSE,
CernVM-FS has been implemented as a file system in user space as shows Figure 3.1, and it
has been extensively tested in Cloud environments [20], with the virtual images of CernVM,
and in physical platforms with different OS.

Figure 3.2: CernVM-FS shadow tree for Atlas experiment.

Clear advantages of this solution are the elimination of the complicated task of installing
the software SITE by SITE, and the fact that the SITE does not need to maintain a shared
area and mount it through some protocol in all WNs. The way CernVM-FS is working in
World Large Hadron Grid is with an independent repository path for each LHC experiment
as is shown in the Figure 3.2, as well as it has been designed to create a directory subtree in a
read-only web server, so the client side only needs HTTP/HTTPS connectivity to the server.

CernVM-FS does aggressive file caching at different levels. The files are cached on the
local disk of the computing nodes as well as on proxy servers, allowing the file system to scale
to a very large number of clients. Furthermore, if some proxy fails the network traffic could
use another available proxy, as shows the Figure 3.3. Thanks to that, CernVM-FS solves some
problems that are present in other software distribution systems such as NFS [86] [18], which
overloads the shared areas when there are millions of system calls in few minutes.

3.1. Software distribution 41

Figure 3.3: CernVM-FS proxy and mirroring errors.

In the software cycle on CernVM-FS, the procedure to construct, install and validate soft-
ware versions is the responsibility of a version manager. Once this is done, the directory
subtree has to be recreated in the repository. In the current version, the repository has a partic-
ular format, which is a content addressable storage called Shadow tree. From the next version
forward a new backend with snapshots will be used [17]. The creation of the repository in-
cludes the tasks of creating the file catalog(s), compressing the files and calculating content
hashes. Moreover, the files are stored locally, within a cache on the server, as SHA1 data
fragments. This is done in order to exploit the SHA1 redundancy, and to use it as a key when
downloading files. This avoids possible firewall blocking of HTTP requests to download files
named root.exe. Once this is done, the new software is released through the CernVM-FS

server.
The native CernVM-FS of CERN repository has a configuration of the cache hierarchy as

shown in Figure 3.4. The tests performed in this thesis have used the standard one deployed in
the LHCb production environment. Some of the features of this structure as cached hierarchy
are, the local batch node memory, the local batch node disk cache, the backbone is Stable
and distributed and public p2p network of webservers, the Cloud SITE Squid proxy servers,
the CERN distributed stratum CernVM-FS mirror servers, the CERN central repository and
finally the worker nodes are independent P2P cells building a decentralized memory cache.

CernVM-FS offers several repositories for different experiments. Figure 3.5 shows in the
of the left picture (A) some features of the experiments software such as the number of objects
of each of them or the type of system call. And it shows the number of increasing objects, in
a period of time, in the LHC experiments under the CERN CernVM-FS repository. For some
of the tests described in this thesis, the lhcb.cern.ch repository has been used in order to run
Monte Carlo LHCb applications.

42 Chapter 3. Software Distribution and Virtual Performance

Figure 3.4: CernVM-FS stratum servers.

Some previously comparisons using LHCb software [87], NFS vs CernVM-FS, have
shown that the job execution time is equal or lower than the one observed using the cur-
rent setup based on a shared area accessed through NFS software. The network traffic seen
between the WNs and HTTP proxy and between this and the central servers at CERN are mod-
est, illustrating the efficiency of the local cache and data compression policies of CernVM-FS.
Also, the size of the local disk cache needed for a realistic application has been found to be
a small fraction of the size of the local disk available in a typical WN today. The test was
running at PIC TIER-1 [107] over 16 WNs that were put off line from the computing farm
and configured to be visible under a test queue. Each node is a 8 core system, running SL5
and gLite 3.2 WN middleware. The test consisted in executing a LHCb DaVinci test job,
which is an LHCb package for data analysis, after setting the environment in order to read the
software through the CernVM-FS. The results relative to the execution of this test job show a
very low execution time for CernVM-FS, and no dependence with the increasing number of
parallel jobs. On the other side, when reading the software from the shared area through NFS

3.1. Software distribution 43

Figure 3.5: Features of the LHC experiments software.

protocol there is a clear dependence with the number of parallel jobs running on the same
node. Several runs have been taken, when the load of the NFS server (quantified by the CPU
percentage usage) was at different levels, from almost 0% to 80%, depending on the load on
the TIER-1 at that moment, since the production NFS server was used to do the measure-
ments. It has been verified that the load of the NFS server has an effect on the client side,
as the total number of jobs (128) is by far too low to overload the NFS server. Moreover the
same behaviour has been observed submitting an increasing number of parallel jobs to only
one node.

44 Chapter 3. Software Distribution and Virtual Performance

In order to compare with another way of software distribution, we have studied Tarball
servers vs CernVM-FS. Next sections describe the process and results.

3.1.2 CernVM-FS vs Tarball Comparison

Figure 3.6: CernVM-FS repository and Architecture Deployment.

This subsection defines the deployment of CernVM-FS in order to have a test infrastruc-
ture as realistic as possible. An heterogeneous test environment has been deployed, consisting
of virtualized nodes using CloudStack in the Galician Supercomputing Center (CESGA), and
normal nodes in the LHCb TIER-2 cluster of the University of Santiago de Compostela (USC).
The main components of the test infrastructure are, at the USC TIER-2, a CernVM-FS repos-
itory served by Tomcat on a machine of the LHCb cluster and a Squid HTTP proxy, which
is important to check the scalability of the solution. An additional machine with a proxy
server is also installed at CESGA to improve scaling. To test the possible overhead caused by
CernVM-FS when executing typical HEP analysis jobs, a test-bed environment was deployed
based on the ROOT system (http://root.cern.ch).

Figure 3.6 shows the repository deployment and the rest of the CernVM-FS architecture
for testing the loss of performances in a worst case scenario for the CernVM-FS, which can
then be compared with the direct download, as detailed below. Table 3.1 shows some of the

3.1. Software distribution 45

properties of CernVM-FS and the ROOT software, in particular, the number of files and the
cache size.

Filesystem Size (MB) Files Avg. Size (KB)
ROOT 218 (56 .tgz) 4630 2.5
CernVM-FS Cache 69 628 4.0

Table 3.1: File properties for ROOT and CernVM-FS.

Section 5.3 describes the algorithms and the benchmarks that were running in these de-
ployment.

Benchmarks

The benchmark tests show a comparison of CernVM-FS versus Direct Download (TarBalls
Files) from the same HTTP server. The VMs used are based on the KVM hypervisor, which
is known to have about a 5% of performance reduction due to the virtualization overhead. To
make a reliable comparison from a known and reproducible state, all caches are cleared up in
every test iteration (the so called cold-cache method). After a specified number of iterations
are performed, the one which provided the worst results is chosen. The aim is to measure the
loss of performance in a realistic case where a typical user has never launched any job in the
nodes beforehand. This seems the most realistic simulation because it can be compared as
well with the direct downloads tests, where the user is not going to own the cached software
when downloading the files.

The first algorithm in the Table 3.2 describes the application logic used to test the CernVM-
FS performance and scalability in terms of execution time. The second algorithm shows the
application logic used to test the Direct Download execution times in some scaling setups.

Each of the tests was performed several times to compare all the results and to verify
the errors of network saturation or peak network, which could have affected them. It was
taken into account the impact of the bandwidth in wide area networks, where there is a higher
latency than in local area networks.

Results

The results of the benchmarks are shown in Figure 3.7, which on the left has a test using non
virtualized nodes and on the right a test on a virtualized nodes environment. The comparison

46 Chapter 3. Software Distribution and Virtual Performance

Algorithm 1: Algorithm 2:
CernVM-FS Performances Direct Download Performances

Input: Node list Input: Node list
Output: Time results Output: Time results

if { multicore execution } then; if { multicore execution } then;
run iterate in each node/core run iterate in each node/core
time A ? mount CernVM-FS time A ? download root
set env set env
time B ? run rf202 extendedmkfit time B ? run rf202 extendedmkfit

if { node execution finish } then; if { node execution finish } then;
get results() get results()

umount ? CernVM-FS delete ? Squid cache in each subnet
delete ? Squid cache in each subnet return [worst result]
delete ? CernVM-FS in each node

return [worst result]

Table 3.2: Testing algorithms of the software area.

between virtualized and non virtualized nodes has no sense, since they are heterogeneous
environments, with different computing power, different network bandwidth, and additionally,
the non virtualized results are performed in a non dedicated production environment, while
the virtualized is a dedicated environment.

Figure 3.7: CernVM-FS comparison with Direct Download: (A) execution time of core/job in non virtualized
nodes, (B) execution time of core/job in virtualized nodes.

3.1. Software distribution 47

Figure 3.8: CernVM-FS Scalability on the Node Increasing and on the Remote Access: (A) Execution time of
job/core in normal and virtualized nodes (B) Several types of software execution from USC
CernVM-FS Repository to Barcelona University Cluster.

The left plot on Figure 3.7 shows the real execution time of tests in non virtualized nodes
as a function of the number of nodes, for two different software repository infrastructures:
CernVM-FS (red line) and direct HTTP download (green line). The execution time when
using the CernVM-FS repository is substantially smaller than the one using direct HTTP
download. The latter also increases strongly with the number of software requests, showing a
clear advantage in favour of the CernVM-FS repository for a big number of simultaneous jobs
running in the system. The low overhead of CernVM-FS caused by the software downloading
needed to run the user’s job could still be further reduced in a realistic situation, because
usually that software has been already cached locally by previous jobs. This test (left plot)
was performed in the same local area network, therefore there is not latency effect. The right
plot of the Figure shows the execution time of tests in virtualized nodes. When using the
HTTP download method (green curve) the time increase is proportional to the number of
nodes, reaching about 6 minutes in the worst case (10 nodes). On the other hand, the curve
corresponding to the CMVFS solution shows no significant execution time increase.

The left plot on Figure 3.8 shows the tests execution time in environments composed of
a mixture of normal and virtual nodes. Again, for the the HTTP download method the time
increase is proportional to the number of nodes involved in the test, while the CernVM-FS
shows only a very moderate increase when going from 16 to 20 nodes. This time increase
is due to network congestion. The right plot of the same figure shows the execution time
(one job per node and one job per core) for four different tests. In this case, the real time

48 Chapter 3. Software Distribution and Virtual Performance

(red colour) increase is due to the latency of wide area networks, and it roughly doubles the
execution time when going from CernVM-FS to HTTP download.

Summarizing the results obtained in the PIC tests on NFS and CernVM-FS comparisons,
and the tests on Tarball servers and CernVM-FS comparisons, it is concluded that the best
scalable and reliable software distribution system to be utilized in this thesis is CernVM-FS.

3.1.3 Software Service Repository

This subsection proposes a CernVM-FS service deployment, integrating different software
appliances to allow the adoption in the different SITES such as universities, colleges or
schools that have high computational resources in their computer labs or cluster farms with
different setups. First the CernVM-FS software repository deployment is described. Second,
it shows how an integration script can be run by the users so, depending on the SITE where the
job run, a native CernVM-FS client or, alternatively, a user space CernVM-FS client with the
proper configuration, is dynamically set up to run on the given SITE. And finally, are shown
the results of benchmarks of this repository service.

Deployment

The CernVM-FS server repository was deployed at University of Santiago de Compostela,
with the purpose of running the integration test, as well as the performance tests of the pos-
sible alternatives. The production CernVM-FS server repository service would be installed,
configured and supported at CESGA, as a contribution to the Ibergrid operations [49]. From
the experience of the LHC experiments, which have in production a CernVM-FS repository
with a specific deployment for the Tier-1 SITES, it is clear that the scaling issue of the server
should be considered. Initially, a single central CernVM-FS server can be deployed, but pre-
vious experiences have shown that it is necessary further server deployment to scale up even
with a not so large user community or software repository. For example, the LHCb opera-
tions in 2011 shows that about 3,000 sustained jobs running in the early SITE adopters of
CernVM-FS (Tier-0, Tier-1 and Tier-2 SITES) may overload a single CernVM-FS server,
causing performance degradations on the server side. A Squid proxy is deployed at the SITE
of the CernVM-FS server to support those client requests that have not a a local Squid proxy.
Our CernVM-FS server scaling have to face similar situations, therefore two server stages
can be useful, following the learned lessons of the LHC experiments. In these sense, differ-
ent server configurations were deployed, first a stand alone CernVM-FS server or dedicated

3.1. Software distribution 49

server, other option is a central master CernVM-FS server not directly accessible by clients,
with a set of associated mirrors distributed along the infrastructure (the so called stratum
CernVM-FS servers). And finally a small number of mirrored CernVM-FS servers with a
round robin scheme [16].

For a user to run a job using the CernVM-FS repository, the worker node must be running
a CernVM-FS client, which should have been installed and configured previously by a privi-
leged user. Unfortunately, this is not the case for many of the WN of SITES or the computers
in institutions. A possible solution for this problem could be the use of statically compiled
versions of CernVM-FS and Parrot. We propose to supply a CernVM-FS client integration
script. This script will check if a native CernVM-FS client is installed in a specific WN and, if
that is not the case, it installs and configures a static binary of CernVM-FS and Parrot to be run
in the user space. This is not the most desirable option, because the local cache on CernVM-
FS client instance would not take advantage of the WN local caching, since the caching will
be done at the user level, not at the WN level as in a native CernVM-FS client instance.

Parrot is an open source software that can be used as an application environment for
data-intensive computing, acting as an interposition agent. It can be used to attach existing
applications to filesystems without requiring code or kernel changes. Parrot intercepts the
system calls of an application through the ptrace debugging interface: system calls that do
not affect I/O are passed through unmodified, while those affecting I/O, like open or read, are
executed by Parrot on behalf of the application. This allows Parrot to contact a remote storage
resource like CernVM-FS, get the necessary files, and pass them to the application simulating
the access to a local file. Parrot allows to get software from CernVM-FS repository with the
help of the CernVM-FS 2.0 release library interface [30]. Parrot can be modified in order
to compile with static libraries and to create the multi-platform static binary of the Parrot
software within the CernVM-FS driver.

The integration of CernVM-FS and Parrot needs several libraries as jemalloc, libcurl,

libfuse and c-ares in order to have the same functionalities that a CernVM-FS client. The main
functionalities supported are intermediate web proxies and local disk caching for scalability.
On the security front, data integrity is verified with cryptographic checksums.

The Parrot software can be configured using command line options or with environment
variables. The main option is the remote repository that is set via the "-r" switch or with
"PARROT_CVMFS_REPO" environment variable, to indicate the repository. The repository
syntax is:

50 Chapter 3. Software Distribution and Virtual Performance

repo name:options repo name2:option2

In the infrastructure case, the options that have to be configured are "url", with the URL
of the CernVM-FS server (url1;url2) and "proxies" contains the HTTP proxy list, such as
(proxy1|proxy2) (default values are given by the -P option). Proxies separated by "|" are
randomly chosen for load balancing. Groups of proxies separated by ";" may be specified for
failover: if the first group fails, the second group is used, and so on down the chain. Other
options to be configured are: "cachedir", to indicate where to store disk cache; "pubkey", with
the public RSA key that is used to verify the whitelist signature; and "mountpoint", with the
root path of the repository.

The main disadvantage of Parrot with CernVM-FS client library is the limitation of only
one repository mounted at a time. Parrot can destruct and re-initialize libCVMFS when
switching between repositories due to severe performance penalty for frequent switching.

Besides Squid caching is used between the CernVM-FS server side and the CernVM-
FS client, which is another caching layer that uses the simple HTTP proxy service. Squid
caching aims to improve performance, thanks to user affinity using a common local CernVM-
FS proxy server, and also to reduce the CernVM-FS server load. Currently most of the SITES
have a Squid server to provide HTTP proxy in the working nodes. For those SITES which are
not able to support HTTP proxy for CernVM-FS caching, additional remote Squid proxies
will be deployed, which give worse performance than local Squid, but are better than no
proxy. For those SITES having a CernVM-FS client installed on the working nodes, this
information of the associated HTTP proxy is configured by the administrators. For the rest of
the SITES, the client integration script checks if an environmental variable at the WNs (called
"CVMFS_HTPP_PROXY") is defining a list of local HTTP proxies for CernVM-FS. If this
variable has been not defined by the administrators of the SITES, the client integration script
will define it with a set of default remote Squid proxies.

Users should be able to get their software from CernVM-FS repositories accessing to
the software area repository, using the infrastructure proposed in this thesis, and this process
should be scalable and fail-tolerant. This structure should be independent of the SITES that
execute their jobs (i.e. the SITES may have installed or not CernVM-FS clients), and it should
be able to distribute the software of the VOs, providing the tools and the mechanism to get
the software independently of the SITE where the job would execute. This thesis proposes a
software repository with several Squid caching level in the middlelayers between the SITES
where the software is being executed and the end-point, that is the software repository in

3.1. Software distribution 51

charge of distributing the software. This structure can be complemented with SITE proxies
in order to decrease latencies. The software repository should be split with the software of
each VO, and it should have a downloadable script with preconfigured variables for the local
execution of CernVM-FS-Parrot binary in the SITE.

The structure of the software repository has to follow the convention of CernVM-FS with
the name of the VO group and, at the end of VO path, the script with the Parrot and the
libCernVM-FS previously configured. This way, the software can be automatically obtained
from the SITE.

Figure 3.9: Ibergrid CernVM-FS software repository structure.

Figure 3.9 shows the steps of a user job that has been submitted to the infrastructure,
which are:

1. Check if the CernVM-FS client has been installed in the node. If it is installed, the
software can be obtained using the normal way;

2. In the negative case, the script with the Parrot binary and the environment config-
uration should be obtained from the repository. The script has the variable "PAR-
ROT_CVMFS_REPO" configured to access to the VO software;

52 Chapter 3. Software Distribution and Virtual Performance

3. Finally, the job should execute Parrot, specifying a mount point into the user space (e.g.
/expSoftware). This mount point has to be indicated with the environment variable
"VO_NAME_CVMFS_DIR". The downloaded files are cached in the /cache CernVM-
FS folder.

The Software Repository Service is proposed as the Ibergrid software repository, and will
be deployed in this thesis in order to test the infrastructure in Cloud environments. The Parrot
binary will not be used because the infrastructure has a CernVM-FS repository available.

Prototype Results

This subsection summarizes the experience with the setup described in Section 3.1.2. It cov-
ers several typical use cases in the LHCb experiment and others, sending files of different
sizes. This allows study of the stability of the setup. The infrastructure was created with an
Cloud environment with the CloudStack v.2.2.3 manager, the server and client machines are
virtualized. The host and the server are a Dell PowerEdge SC1425 with two processors PIV
Xeon at 2.8 GHz and 1 GB of RAM per processor. Each one of the virtual machines has 500
MB of RAM memory and 10 GB of Hard Disk.

The test-bed has the following structure:

1. A CernVM-FS repository served by Tomcat on a machine of the LHCb cluster.

2. A Squid HTTP proxy is also installed in order to minimize response times. All nodes
are interconnected with 100Mb/s switches.

3. The CernVM-FS Clients with the native software and the Parrot solution with CernVM-
FS Lib.

Figure 3.10 shows the sum of the installation and configuration time with the CernVM-FS
native client and the solution with Parrot and CernVM-FS lib.

In this test the Parrot client is faster than the native client, because the Parrot does not
need to be installed and can be executed directly by the user once configured, while the native
client needs to be installed by a privileged user.

Figure 3.11 shows two plots with the times needed to receive big and small files stored on
the CernVM-FS repository to virtualized nodes. The left plot shows the time to receive 100
files of 100 MB each. The time is about 40 minutes with the Parrot solution, and only of 7

3.1. Software distribution 53

Figure 3.10: Sum of installation time and configuration time.

Figure 3.11: Transmission times for files of different sizes.

minutes for the native client. It can be seen that for big files, as well as for small ones (100
KB) shown in the right side of the plot, the native client is much faster than the Parrot one
due to the fact that the Parrot ptrace debugging interface needs to catch the system calls. In
these tests, the caching system has not proven useful, but in the next successive iterations, and
on different nodes, both the proxy server and the local cache native system will influence the
time to get the software.

Figure 3.12 shows a plot with the time needed to get files from the LHCb experiment on
CERN Repositories, which are used to load several of the typical LHCb work environments

54 Chapter 3. Software Distribution and Virtual Performance

Figure 3.12: Times to load different LHCb environments.

with the SetupProject software, which has been introduced to address the need of a tool to
prepare customized environments where to run LHCb applications. To be able to use the
LHCb SetupProject utility, one needs a minimal LHCb environment. The first test is to load
the minimum LHCb environment, which is shown in blue colour in the plot. The second test
is to load LHCb DIRAC environment using the SetupProject utility. Finally the last test is to
load the LHCb ganga environment [19]. The results show that the time to load environments
using the native client is shorter than the one using the Parrot client, as was also the case for
file transmission. These tests were repeated several times, and in some of them the Parrot
solution was failing. When loading the LHCb minimum environment the failure rate was
about 20%, with around 10 tests. When loading the LHCb DIRAC environment the failure
rate was 40%. Finally, the failure rate observed when loading the LHCb ganga environment
it was 60%. It is then clear that with large environments the Parrot solution is not reliable.

As a conclusion the Software Repository Service is based in previous tests and bench-
marks and we have found an improvement in software distribution of CernVM-FS vs systems
as NFS or HTTP servers. The thesis shows the way to get CernVM-FS software repository
access by normal users, with improvements in the scalability, and avoiding problems as the
high latency by using several level caching systems. The setup of the infrastructure shown
as Parrot can be an option in very simple cases, but when the complexity increases Parrot

3.2. Performance of High Energy Physics software 55

is unreliable. The described approaches make use of flexibility provided by CernVM-FS,
with some characteristics as the multiplatform clients or the possibility of execution in Cloud
environments, for all these reasons the main conclusion is that the Software Repository
Service with CernVM-FS is the optimal solution to provide software in the distribution
environment of this infrastructure.

3.2 Performance of High Energy Physics software

This section describes the experimental design and the hardware and software configurations
used to run the HEP experiments in order to know if the execution of scientific software in
the Cloud infrastructure has an reasonable performance [55]. Experimental design1 is in gen-
eral, the process of defining a method to gather and analyse data to study variable phenomena
that can be under the full control of the experimenter or not. This method establishes a se-
ries of steps that will increase the possibility of obtaining a meaningful information from a
experiment. The first step is the statement of the problem, that is, what is the question the
experimenter wants to be answered. The second is the subject matter model or what are the
factors that will affect the outcome of the experiment. The third step has three parts: treatment
design (deciding which combinations of the values of the identified factors is the experimenter
going to explore), error-control (how the treatments are assigned to the experimental units to
minimize errors) and, the last part, sampling and observation (design how the data is taken).
These steps define the experiment and the data to be taken. To analyse the data we first have
to model the response, fourth step, in terms of the treatment and error-control factors. The
fifth step is to choose the variable the experimenter is going to measure, or response. This
choice is not always obvious but the variable should be chosen in a way that inferences and
results from the experiment can be clearly stated an communicated. The last step is the prin-
ciples of analysis or the application of statistical analysis to the data obtained in concordance
with the experimental design and its associated model. Experimental design is, arguably, the
most important part of an experiment because a faulty design could lead to the failure of said
experiment.

At the treatment design phase it is decided how many factors should be used and how
many levels per each factor. Often the treatments are chosen to have a factorial structure.
In this case, we have several factors, each with a set of qualitative or quantitative levels.

1For a detailed exposition of the subject the reader is refereed to [79]

56 Chapter 3. Software Distribution and Virtual Performance

Suppose our factors denoted by Fi with i = 1, . . . ,N being N the number of factors, and their
respective levels by fi j, where j = 1, . . . ,#levels(Fi). A factorial treatment is then a set of
combinations of levels, one per factor, which are denoted by (f1i1 f2i2 · · ·− fNiN). This type of
treatment can be applied to any error-control design and it answers questions about the effects
of single factors or the interference of several of the factors. Depending on whether all the
factors have the same number of levels or not we distinguish between symmetrical or pure
and asymmetrical or mixed factorial structures.

3.2.1 Defining Method and Experimental Set-up

Following the steps outlined in the introduction of this section we can describe our experiment
as follows:

(i) Statement of the problem: our main objective is to study the performance of HEP
scientific software on virtualized and non-virtualized environments. As aside questions
we also want to find the behaviour of the applications in terms of the amount of mem-
ory/CPU resources available or the length of time the job is runing.

(ii) Subject matter: Considering the posed questions some of the factors to consider are
obvious: virtualization, amount of memory, number of CPU cores, or length of the job.
We also consider another factor, which we will name Benchmark, that will consider the
software being executed.

(iii) Three aspects of design:

• Treatment design: we are going to use a mixed factorial design of the type 23×
32. The 2 level factors are virtualizations whose values are baremetal and KVM,
memory 2 and 4 GB and job length for which we will consider short and long jobs.
The 3 level factors are the number of cores either 1, 2 or 3 and the benchmark.

• Error-control design: each combination is going to run four times with different
random seeds to provide a reasonable amount of randomization.

• Sampling and data taking: the experiment will be run in a way that maximizes
the use of the CPU resources. For example, for the configuration with two cores,
there should be always two jobs running. In this case the number of jobs per
combination ran will be 8: 4 repetitions times 2 jobs running simultaneously.

3.2. Performance of High Energy Physics software 57

(iv) Modeling the response: we have four treatment factors: virtualization, memory, num-
ber of cores and length of the job; and one intrinsic factor: the benchmark used.

(v) Response choice: the variable we are going to measure is the walltime of the job.

(vi) Principles of analysis: to perform the statistical analysis we are going to use the mul-
tivariate analysis of variance or MANOVA for short.

The hardware used to run these tests consisted on two DELL Poweredge 1950 machines
both with two Intel Xeon 5160 CPU’s and 16 GB RAM. These processors have two cores
each and run at 3 GHz. The operating system, where the tests were run, was Scientific Linux
6.3 with a gcc version 4.4.6. The software was served via a CernVM-FS [30] client, version
2.0.19-1.el6. Finally, with respect to the virtualization host, the KVM framework version
0.12.3+noroms-0ubuntu9.21 with a libvirt version 0.7.5-5ubuntu27.23 was used with Ubuntu
10.04 as the host operating system. To run the test in an environment as realistic as possible,
the machines were kept fully loaded, running as many concurrent jobs as cores were available.
The number of cores were controlled through the /sys/devices/system/cpu-/cpu#/online file,
where # is the processor number in the system. The amount of memory accessible to the
jobs was controlled via the cgroups service. A Python script was in charge of running the
test, setting up the amount of memory at the job’s disposal and, in the case of non-virtualized
environment, configuring the number of active cores.

3.2.2 HEP-Software Hardware Architecture Performances Problems

As was mentioned in the previous subsection, our test bed was formed by machines with Intel
processors. Nevertheless, those same tests were also run in AMD machines. In particular, two
Supermicro AS 2022TG-HTRF equipped with two eight core AMD 6128 @2 GHz CPUs and
16 GB for the bare metal tests and 20 GB for the virtualized ones were used. A performance
loss of around 5% was observed for FastJet and AIRES and for both, Intel and AMD archi-
tectures when comparing the performances in a virtualized and non-virtualized environments.
In contrast the observed performance loss for GAUSS test was of 20-30% for AMD but of the
order 5% for Intel. With the help of perf, a profiling program for Linux, the loss performance
was traced to a specific function in GEANT4 software. We suspected that these differences
were, in part, due to the fact that, whilst the version of GAUSS we used was precompiled by
LHCb Computing group with some optimization flags, FastJet and AIRES were compiled by

58 Chapter 3. Software Distribution and Virtual Performance

us with no special optimization flags. The difference could be pin on KVM, since the versions
shipped with Ubuntu 10.04 do not support all AMD CPU characteristics notably 3dnow and
3dnowext.

Because of incompatibilities with systems libraries, it was not possible to use a version
of KVM more up to date. This same problem appears on other distributions like Scientific
Linux, SUSE, etc. To confirm this last point the host operating system was updated to Ubuntu
12.04 which allowed to install a more recent version of KVM. The new version, along with
NUMA, admit more AMD CPU characteristics, although still not all of them.

3.2.3 Statistical Performance Analysis

In this subsection the results of MANOVA analysis of the tests are presented. Around 800
simulations were executed with 28 different setups and hardware platforms. The KVM hy-
pervisors were launched by hand with the different setups, and the data was extracted with
a specific format. In the case of non-virtualized nodes, all setups were run with the same
Python executable, which changed the different configuration of memory and cores, with a
high isolation level.

Trend of Means and Median Set-ups

Once the jobs were executed in all the different setups, the resulting walltimes were selected
from the data depending on the platforms where they were executed. Figure 3.13 shows the
means of the walltimes for the different setups with virtualized (KVM) and non-virtualized
or bare metal nodes (BM hereinafter). Two types of jobs are shown, large and short, with
different configurations depending on the HEP-software.

The trend shows that the job walltime decreases when the number of cores increases.
However, the amount of memory is not an important factor to run these type of jobs.

Figure 3.14 shows the walltime medians of each experiment. In the GAUSS medians, the
interquartile ranges (rectangles) are bigger than for the Alice and Auger software, and the
distance of medians between large and short jobs in FastJet and AIRES are shorter than the
GAUSS, which shows a worse performance in GAUSS jobs with setups of 1 Core and 2-4 GB.
Figure 3.14 also shows that in the case of GAUSS large jobs, the lower and upper quartile are
more separated than in the case of short jobs, and it gives clear information about this type of
jobs, which have variable performances depending on the number of events. In this sense, the
setups of 2Cores-2GB and 1Core-4GB seem to have more stable performances.

3.2. Performance of High Energy Physics software 59

Figure 3.13: Walltime mean values of all HEP-Software in Virtualized and Non-virtualized nodes

BM and KVM Performance Analysis

This subsection, shows the results of Multivariate Analysis of Variance. The statistical design
is a MANOVA 1-way, in which the dependent variables are the different HEP-Software with
several setups of memory and cores, and with large and short jobs.

The survey of separate analysis of variance is shown on Table 3.3. In this case, the null
hypothesis (H0) is the walltime of the executed jobs. All the dependent variables have statistic
results that show a normal distribution, and they are significant with P < 0.01 and F > 1. The
independent variable is the job walltime. The MANOVA with all the setups without means is
shown in Figure 3.15.

The range of variables depending of discriminations setups are: FastJet KVM, FastJet
BM, AIRES KVM, AIRES BM, GAUSS BM, GAUSS KVM.

60 Chapter 3. Software Distribution and Virtual Performance

Figure 3.14: Medians of HEP-Software by experiment

3.2. Performance of High Energy Physics software 61

Figure 3.15: All MANOVA centroids. The legend indicates the number of cores, amount memory, large or short
jobs and the thread number.

Table 3.4 is a MANOVA survey, to consider the possible correlations between the six
dependent variables. The multiple analysis of variance offers results of all variables instead of
the individual results of Table 3.3. The Canonical Vectors (CV) are projections of the original
data in a lower dimensional space that allow a better discrimination between categories.

Table 3.3: Separate Analysis of Variance Survey

GAUSS BM GAUSS KVM
Snedecor F 157.9286 171.4093
Probability P 0.0000 0.0000

AIRES BM AIRES KVM
Snedecor F 2082.0955 1559.9788
Probability P 0.0000 0.0000

FastJet BM FastJet KVM
Snedecor F 1233.9208 2925.2098
Probability P 0.0000 0.0000

62 Chapter 3. Software Distribution and Virtual Performance

Table 3.4: MANOVA Survey

Exact Wilk’s Pillai’s
Signif. Lambda Prob. P Snedecor F Trace
CV 1 5.143E-005 0 2.3368 2.5391
CV 2 0.08621 0 1.4718 1.5397
CV 3 0.4338 0.9324 0.7788 0.7384
CV 4 0.6143 0.9913 0.6235 0.4446
CV 5 0.7893 0.9985 0.4691 0.2229
CV 6 0.8979 0.9833 0.4443 0.1020

CV 1 and CV 2 correspond to GAUSS, CV 3 and CV 4 to AIRES and, finally, CV 5 and
CV 6 to FasJet. On each of the three groups the first and second canonical vectors correspond
to BM and KVM respectively. In this case, the survey shows that the Wilk’s Lambda and the
Pillai’s Trace, are both significant in terms of probability P and Snedecor F, but only for CV

1 and CV 2 of LHCb software. In these Wilk’s Lambda is close to 0 (< 0.08) and the Pillai’s
Trace is higher than 1 with 2.53 CV 1 and 1.53 CV 2. The conclusion is that in the MANOVA
of all dependent variables the significant ones are the GAUSS performances in BM and KVM.

In this way, simple ANOVA is showing significance for each separated dependent variable
and, as conclusion, the performances change depending on the setup. Furthermore, in the
set of dependent variables in MANOVA is observed that there are correlations between the
performances obtained for FastJet and AIRES and those obtained for GAUSS jobs, and this
fact was expected as a response of the different software.

Further on the correlation analysis, we show a biplot in Figure 3.16. The biplot is the
shadow in 2-dimensions of the normalized data, which maximizes variation. The measure-
ments are shown as one unit of each axis, to give the idea of observations plotted correlations,
which are corresponding to the distances between the points of the plot. The setup of the
centroids is defined by core number, memory, large and short jobs, the thread number and
finally, the Centroid number. This configuration is going to be the same for all the biplots in
the remainder of the chapter.

Figure 3.16 plots the occurrences of the performances of the six dependent variables. The
first analysis of the biplot considers the different setup discriminations. The main discrimi-
nation of correlated occurrences is the type, either large (right side) or short (left side) jobs.
These discriminations are shown more in detail in Figure 3.17.

3.2. Performance of High Energy Physics software 63

Figure 3.16: Correlation means of HEP-Software Wall-time

As shown in Figure 3.17, the occurrences of single cores (green color) are on similar areas
with the setups of 2 and 4 GB, but the distance of the other setups along with the trend of the
means, are suggesting that the single core setups are providing not optimal performances
of HEP-Software. Another clear categorization are the occurrences of 2 Core setups (red
color) in large and short jobs. Independently of the amount of memory, there are correlations
between them. These correlations allow us to conclude that an increase in memory does not
improve performances. The occurrences of 4 Core setups (yellow color) are correlated in
short and large jobs, this categorization shows that in large jobs the occurrences are closest
with 4 GB of memory, therefore this type of jobs are more stable.

Individually Performance Analysis of BM and KVM

Finally, in order to complete the Statistical Analysis, a study of BM and KVM performances
was done. Table 3.5 shows the MANOVA survey that considers the possible correlations
between three dependent variables in BM and KVM. And in this way, the set of dependent
variables in MANOVA BM and KVM show a 2 dimensional significance with P < 0.01, (
9.3296e-111, 0.002) in the case of BM and (2.1501e-118, 2.7345e-09) in the case of KVM.
The Pillai’s Trace is higher than 1 in both cases, and the Wilk’s Lambda is close to 0.

64 Chapter 3. Software Distribution and Virtual Performance

Figure 3.17: Centroids of short and large jobs

Table 3.5: MANOVA Survey

Exact Wilk’s Pillai’s
Signif. BM Lambda Prob. P Trace
CV 1 0.00035287 9.3296e-111 1.6816
CV 2 0.41196 0.002807 0.68244
CV 3 0.80721 0.72265 0.19279
Exact Wilk’s Pillai’s
Signif. KVM Lambda Prob. P Trace
CV 1 0.00023424 2.1501e-118 1.8774
CV 2 0.24353 2.7345e-09 0.8783
CV 3 0.8273 0.83787 0.1727

As in the previous case, the MANOVA analysis of all the dependent variables for the
current case indicates that the significant variables are the performances of GAUSS in the BM
and KVM environments. The rest of dependent variables are probably correlated with the
ones that characterize GAUSS.

Figure 3.18 shows the centroids correlation of BM-MANOVA and KVM-MANOVA, they
are similar to the sets of Figure 3.16. Notice that there are some differences such as the
distance between large jobs, with setups of 4 Cores and 2-4 GB, in the case of KVM are

3.2. Performance of High Energy Physics software 65

Figure 3.18: BM and KVM Centroids

closer than in the case of BM. This distance shows that the analysed HEP-Software seems to
have stable performances in this type of setups for Virtualized environments.

An additional comment can be made about the distanced between the centroids in the
KVM and BM separated analysis. These distances are higher in KVM for the different se-
tups, which shows that in these HEP-Software the virtualized setup is a relevant factor to be
considered when looking for a better performance.

The main conclusion of this section is that it is possible to create a Cloud infrastructure to
be used by researchers to submit jobs of scientific data analysis.

CHAPTER 4

DESIGN

This chapter contains the software development methodology as the framework that is used
to structure, plan, and control the developing process of software in this thesis.

4.1 Methodology

This section presents the methodology and the design approach chosen to solve the research
problem that will be defined in the requirements section. Before focusing on the results,
it is important to know the tools and techniques used during this phase. In particular, this
section describes the Software prototyping process and the architecture design using this type
of software lifecycle.

In every domain with a high level of uncertainty and, consequently in the domain of re-
search, it is necessary to confront the requirements and the resulting conceptual design with
state-of-the-art solutions drawn from the available literature. It is also necessary to conduct a
feasibility study for every major step of the problem solving process. This results in a series
of iterative steps that are performed as shown in Figure 4.1. At first, during the requirements
analysis stage, brainstorming sessions are held and the research problem is analysed and de-
fined in detail. Later, it is broken down into a number of smaller problems that are easier to
understand and solve. Next, for each of these smaller problems, a detailed literature review is
pursued. This may result in a list of potential solutions or at least hints and traces on how to
solve the analysed problems.

As a solution to model these smaller problems, in this thesis The Unified Modeling Lan-
guage (UML) was used, which is a standardized general-purpose modelling language in the

68 Chapter 4. Design

Figure 4.1: Methodology of software design cycle process.

field of software engineering [128]. The current UML standard contains several different
diagrams and modelling techniques that can be applied at practically all steps of an IT sys-
tem’s design, implementation and deployment. In the requirements and design phase of the
prototypes the following techniques were used:

1. Use Case Diagram: model the low level the infrastructure and the requirements.

2. Activity Diagram: model the multiEnd-Point virtual machine submission.

3. Sequence Diagram: depict the control flow during the job submission.

4. Class Diagram: model the classes of the project.

5. Entity - Relationship model (ER model): abstract way to describe the database.

Next sections will show some of the UML diagrams described.

4.1. Methodology 69

4.1.1 Software Prototyping Process

Software Prototype [14] is an approach to software development that uses prototypes to help
both the developers and their customers to visualize the proposed system and predict its prop-
erties in an iterative process. In the context of this thesis, the software prototype can be useful
to create a first software to understand better the way as Cloud Computing works and how
to create improvements in the integration of DIRAC and Cloud managers. In this way, the
original purpose of the first prototype in this thesis is to allow users to evaluate developer pro-
posals for the design of the eventual product by actually trying them out, rather than having to
interpret and evaluate the design based on descriptions. In this sense, Prototyping can also be
used by end users to describe and prove requirements that developers have not considered, and
that can be a key factor in the final result and next prototypes. Interaction design in particular
makes heavy use of prototyping with that goal.

This process contrasts with the 1960s and 1970s monolithic development cycle of building
the entire program first and then working out any inconsistencies between design and imple-
mentation, which led to higher software costs and poor estimates of time and cost. The mono-
lithic approach has been dubbed the Slaying the Dragon [96] technique, since it assumes that
the software designer and developer is a single hero who has to slay the entire dragon alone.
Prototyping can also avoid the great expense and difficulty of changing a finished software
product. Figure 4.2 shows all the steps in the Prototyping Process

In this thesis the steps followed for the software prototyping process involve:

1. Identify basic requirements: determine basic requirements including the input and
output information desired.

2. Develop initial prototype: the initial prototype is developed including basic function-
alities in user interfaces and job submission to one Cloud manager.

3. Review: the users, examine the prototype and provide feedback on additions or changes.

4. Revise and enhance the prototype: using the feedback both the specifications and the
prototype can be improved. Negotiation about what is within the scope of the solution
may be necessary. With the changes introduced, iteration of steps 3 and 4 might be
needed.

70 Chapter 4. Design

Figure 4.2: Methodology of software design, Prototyping Process.

4.2 Requirement Analysis

4.2.1 General objectives

The general objective of this thesis is to provide researchers an easy way to submit and exe-
cute their jobs to Cloud Computing environments. The system should be able to use Cloud
resources in computer rooms of universities, institutes and public schools as was defined in
Formiga-Cloud proyect, and the functionalities will be extended to be used in cluster farms.
The integration of CloudStack manager and DIRAC is the starting point, for computer rooms
virtualization. It also seeks interaction with other Cloud systems via the integration of OCCI
interfaces and OpenNebula’s Contextualization and with Big Data software over Cloud, as
well as integration with the existing system, currently DIRAC management within EC2. An-
other objective is the complementarity of the new system created with the traditional works
deliveries through the Web Portal.

4.2. Requirement Analysis 71

The software described in this thesis is based in the Software Prototyping Process, where
the creation of the final solution follows an incremental development. This new software
should have the following features:

1. Manage Virtual Machines.

2. Manage Cloud Infrastructure with one Cloud manager and increase for multi-clouds.

3. Manage and configure the system for multiple user groups in a dynamic way.

4. Provide a way of deployment and configuration adapted to classrooms and clusters,
being flexible, scalable, user friendly and dynamic.

5. Complement existing queuing system with job submission system to the Cloud infras-
tructure through Web-Portal.

6. Testing the infrastructure with real cases of multi-VOs.

7. Manage job submission to Big Data software.

The next section describes the Use Cases for these objectives.

4.2.2 User case analysis

This section defines the list of steps, typically defining interactions between a Role or Actor
and Systems, to achieve the objectives. In this thesis there are a group of Roles and Actors
that interact with the infrastructure:

1. Cloud Admin (A): in charge of manage the Cloud infrastructure.

2. Researcher (R): use the system and submit their jobs.

3. DIRAC Admin (D): in charge of manage the job submission platform.

4. Software Manager (S): in charge of manage users software.

5. Big Data Admin (B): in charge of manage Big Data software.

72 Chapter 4. Design

UC Rol Use Case
UC.1 A Manage the Cloud infrastructure
UC.2 A Upload virtual machines templates
UC.3 A Manage the Cloud private network
UC.4 R/D Manage the job submission for multi-VO
UC.5 R/S Manage the user software for muti-VO
UC.6 R/D Manage the job submission through Web Platform
UC.7 R Apply to via Web Browser the access to the Platform
UC.8 D Manage user data
UC.9 D Monitoring job status and VM status

UC.10 B Manage the Big Data software

Table 4.1: Use Cases of the infrastructure

Figure 4.3: Use Case diagram with the system roles.

4.2. Requirement Analysis 73

Role A
Use Case Manage the Cloud infrastructure
Acronym MCI

Description The Cloud Admin is in charge of the maintenance
tasks of the Cloud infrastructure. He should take
care of the integrity of the platform and the NFS
storage.

Table 4.2: Manage the Cloud infrastructure Use Case

Role A
Use Case Upload virtual machines templates
Acronym UVM

Description The Cloud infrastructure needs templates, and the
Cloud Admin is in charge of create and maintain-
ing these templates.

Table 4.3: Upload virtual machines templates Use Case

Role A
Use Case Manage the Cloud private network
Acronym MCP

Description The Cloud infrastructure needs a private range
network for the Virtual Machines submission and
the Cloud Admin is in charge of assign this IP
range.

Table 4.4: Manage the Cloud private network Use Case

Role R/D
Use Case Manage the job submission for multi-VO
Acronym MUM

Description The DIRAC Admin should take care of the
DIRAC Infrastructure, furthermore he is in charge
of the multi-VO user configuration, which is
needed for users can execute their jobs. The
DIRAC Admin have to manage the Cloud settings
in order to submit the jobs.

Table 4.5: Manage the job submission for multi-VO Use Case

74 Chapter 4. Design

Role R/S
Use Case Manage the user software for muti-VO
Acronym MUS

Description The Software Manager is in charge of the mainte-
nance of the software version for the groups that
are being supported.

Table 4.6: Manage the user software for muti-VO Use Case

Role R/D
Use Case Manage the job submission through Web Platform
Acronym MJS

Description The DIRAC Admin is in charge of the setting up
and maintenance of Web Platform. The Users
or Researches submit their jobs through the Web
Page.

Table 4.7: Manage the job submission through Web Platform Use Case

Role R
Use Case Submit a form through the Web in order get access

of the platform
Acronym AWP

Description The Researcher could submit his acceptance in the
infrastructure through the DIRAC Web Page.

Table 4.8: Apply to via Web Browser the access to the Platform Use Case

Role D
Use Case Manage User Data
Acronym MUD

Description The DIRAC Admin is in charge of the user data
stored in the DIRAC main server.

Table 4.9: Manage User Data Use Case

4.2. Requirement Analysis 75

Role D
Use Case Monitoring job status and VM status
Acronym MJV

Description The DIRAC Admin is in charge of the Virtual Ma-
chine monitoring and the user jobs, and he should
take action in case of failures.

Table 4.10: Monitoring job status and the VM Use Case

Role B
Use Case Manage the Big Data infrastructure
Acronym MBD

Description The Big Data Admin is in charge of the mainte-
nance tasks of the Big Data infrastructure. He
should take care of the integrity of the platform
and the Hadoop File System.

Table 4.11: Manage the Big Data software Use Case

The specific Use Cases for the roles are shown in Table 4.1. Figure 4.3 contains the
Use Cases diagram. Use Cases are described from Table 4.11 to Table 4.10. Functional
requirements needed in the Cloud infrastructure shown in Table 4.12 and Table 4.13 shows
the traceability matrix.

There are other requirements that must be detailed such as packaging, support or license
holder. These details are provided in the complementary specification, and they determine all
things not covered in the Use Cases. Some of these requirements are:

1. Easy management: the system should have a user-friendly intuitive interface, which
should help the researcher to easily get the results of the jobs.

2. Reliability: the system must be precise in the operations, and the infrastructure should
be scalable in all components.

76 Chapter 4. Design

Description Comments
FR.1 The system allow to manage the Cloud

infrastructure
FR.2 The system should provide a mecha-

nism that allows the user to upload an
image of a virtual machine

The user should register his own image
of VM

FR.3 The system should provide external ac-
cess to the private Cloud

FR.4 The system allow to get scientific soft-
ware from scalable repositories

The software repositories could be ex-
ternal and the groups Cloud have their
own repository which could include ad-
ditional software.

FR.5 The software repository should have a
specific format for the software groups

The specific path depends on the user
group

FR.6 The system allows to job submission
through the Web Portal

This will be possible with the proxy
certificate delegation

FR.7 The users could registered through the
Web Portal

This make the aceptance process more
agile

FR.8 The software allow to dynamic man-
agement to create new instances for dif-
ferent user groups

This requirement will be an extension
in the prototypes and will be necessary
the Cloud manager API

FR.9 The system store the jobs of all users
FR.10 The system save the history of the rela-

tion of Virtual Machines and SITES or
EndPoints

FR.11 From the system is possible the job
monitoring and the queue management
of the Virtual Machines

FR.12 The system allow to manage the Big
Data infrastructure

Table 4.12: Functional requirements needed in the Cloud and Big Data infrastructure for job submission.

4.3. Architecture Design 77

MCI UVM MCP MUM MUS MJS AWP MUD MJV MBD
FR.1
FR.2
FR.3
FR.4
FR.5
FR.6
FR.7
FR.8
FR.9
FR.10
FR.11
FR.12

Table 4.13: Use Cases and functional requirements traceability matrix

3. Development restrictions: It will be developed in an OO language. On the other hand
Web-Services (SOAP) are needed to Cloud Manager connections.

4. Open-source development: the source code will be developed as far as possible with
Open-source tools such as DIRAC, CloudStack, Hadoop or MySQL. The resulting de-
velopments will be made available via integration into the central repository of the
corresponding software package.

4.3 Architecture Design

4.3.1 Prototypes modelling

The previous subsection introduced the steps of software prototyping model, and this subsec-
tion shows the models and diagrams. Part (a) of Figure 4.4 shows the Activity diagram with
all the components of the thesis in a Top Level of abstraction before focusing on specific more
concrete scenarios.

Part (a) of Figure 4.4 shows that the researcher has 3 ways/interfaces to submit a job such
as the web portal, the user interface or command line, and the DIRAC API. When the job is
submitted to the DIRAC Server, the system should connect with the specific Cloud manager
and then create the necessary instance through the Cloud API. The next step is to download

78 Chapter 4. Design

Figure 4.4: (a)Top level abstraction Activity diagram.(b)Job submission to CloudStack manager Activity diagram.

4.3. Architecture Design 79

the software, and execute the job. Finally, the DIRAC Agent will execute the job, and upload
the Output to the DIRAC Server. These are the steps and subsystems of the infrastructure with
a high abstraction level.

Our first prototype or CloudStack prototype, is a basic Cloud Manager connection and
job submission. This prototype is designed for Formiga-Cloud proyect, and it has provided
feedback for the Multi-EndPoint prototype. Part (b) of Figure 4.4. shows the prototype,with
the following steps:

1. Researchers send their jobs through the DIRAC User Interface to the DIRAC’s Worload-

ManagerSystem (WMS). The WMS is responsible for matching requests and create new
tasks pending for execution.

2. The WMS checks if there are pending tasks, and if there are any, the VM Scheduler

component gets the list of nodes in “Up” state and their processing load. Then, it
compares the number of pending tasks and checks whether the available resources are
enough. If the resources are not enough, it checks if there are Hosts with low processing
load and, if this is the case, switch on more VMs.

3. In the phase of "Start Instance", after the standard boot sequence of the operating sys-
tem, Scientific Linux 5 in this case, up-to-date Certification Authorities publickeys
(CAs) and associated Certificate Revocation Lists (CRLs) are downloaded. A private
DIRAC slave configuration server is started and it is configured to connect to the cen-
tral configuration server to get the latest version of the configuration data. It remains
synchronized with the master during the lifetime of the VM.

4. Afterwards, a DIRAC Job Agent is started. It reports back to the VM Manager the
availability of the new VM. Finally a job is matched and run in the new VM.

In the second Multi-EndPoint prototype more functionalities are included. Furthermore,
the design was done to easily support additional Cloud managers and different versions of
them. The researches could submit their scientific jobs through the DIRAC Web Portal with
the previous proxy delegation to DIRAC Server. The user jobs of several groups could be
submitted by researchers in the Multi-EndPoint prototype through the Web Portal. Then, the
computing node will get the specific software for the particular job belonging to the specific
group. The node will execute this job on the platform requested by this group. Figure 4.5
shows the Sequence diagram of the process.

80 Chapter 4. Design

Figure 4.5: Sequence diagram of Multi-EndPoint prototype and Software Service repository.

4.3. Architecture Design 81

The DIRAC integration with Multi-EndPoint is based in the previous prototype and it
works in a similar way to the extension of DIRAC to use Amazon EC2 [57], which has
been proven as a robust and extensible software to provide computing resources for the Belle
scientific community on the Amazon EC2. As a learned lesson, Multi-EndPoint prototype
can be used with different Cloud managers with several versions of them and job submission
to different SITES.

Figure 4.6: Activity diagram of the VM Scheduler component.

This second prototype gets the Cloud EndPoints, as is shown in Figure 4.6. EndPoints are
the list of Cloud Managers that have been configured previously in the DIRAC CS [25]. The
pending tasks are obtained from the central TaskQueues matching them with the capabilities

82 Chapter 4. Design

of the defined images. If not enough VMs are available and the maximum VMs threshold is
not reached, then it submits a new VM using the specific VM Director. The VM Scheduler is
in charge of submitting a new VM with DIRAC pre-installed and configured, which executes
the Job Agent, such as is showed in the Sequence Diagram of Figure 4.6.

The DIRAC main server is in charge of the DIRAC Workload Management System (WMS).
It acts as a middleware integration layer between different virtualization solutions. On one
hand, it allows the interaction with other components, containing the logic flow of the VM
scheduling engine. On the other hand, it is responsible of the persistency of the VMs infor-
mation, through an associated database. Images and endpoints are described in the DIRAC
Configuration.

Figure 4.7: Entity–relationship diagram of MultiEnd-Point Prototype

The persistency of the information is another important part of the Multi-EndPoint pro-
totype. The database stores the historic information of EndPoints or Cloud Managers that
are linked with DIRAC, as well as the virtual machine instances that are stored in these End-

4.3. Architecture Design 83

Figure 4.8: Class diagram of MultiEnd-Point Prototype, with the Virtual Machine Agent and Virtual Machine
Manager Service

84 Chapter 4. Design

Points. The change of status of Virtual Machines is stored in the database too. Figure 4.7
shows the Entity-relationship diagram of the database developed in this thesis.

As a result of the infrastructure Sequence and Activity diagrams, the diagram of Figure 4.8
shows the Class diagram for the Multi-EndPoint Prototype. The yellow classes, with Vir-
tualMachineScheduler class, define the variables and methods to interact with several Cloud
Managers, as well as a Data Access Object (DAO) layer with methods that access and modify
the database. The green class, VirtualMachineHandler, includes the variables and methods to
manage the database externally. Finally the blue class, VirtualMachineMonitorAgent, is in
charge of updating the virtual machine status.

The VM Monitor Agent is executed on the VM, starting immediately after the start up of
the operating system. Its first action is to declare the VM running state to the VM Manager-
Handler class.

The feedback provided by MultiEnd-Point prototype was used as the base to create the
Rafhyc (Resilient Architecture of Federated HYbrid Clouds) [98] architecture, that is the
final prototype of this thesis.

4.3.2 CloudStack prototype

This section describes the architecture design of the first prototype. This prototype integrates
DIRAC and CloudStack, that will be part of the Formiga-Cloud project infrastructure. It is
based in previous designs [57], which were adapted to CloudStack and the additional require-
ments. New components are required to perform this integration based in the requirement
analyses and the architecture model. The main contribution of this thesis to the CloudStack
prototype is the design, development and testing of the prototype. After the testing phase will
be created user and admin documents about the infrastructure, and scripts that were be able to
start automatically all the infrastructure.

In Figure 4.9, a component diagram of the integration of DIRAC and CloudStack is shown.
The VM Scheduler agent starts working once it found at least one VM image that is defined
in the configuration. This component gets the list of jobs to run from the central TaskQueues,
matching pending tasks to the capabilities of the defined images. If there are not enough
available VM, it checks if there are available nodes and, if so, then it makes a call to the
Virtual Machine Node Tasks component in order to switch on more VM.

If there are available resources, it checks if there is enough CPU time required by pending
tasks and if the maximum number of VM running limit is not reached through node tasks

4.3. Architecture Design 85

component. If there is enough CPU time available in some of the virtual machines with
running state and with some job agent component available, it submits the Job to this virtual
machine.

The VM Scheduler takes the role of DIRAC PilotDirector used to interface DIRAC with
Grid computing resources. Instead of submitting a pilot that installs DIRAC and executes a
Job Agent on a WN, a full VM with DIRAC pre-installed and configured to execute the job
and the VM Monitor Agents is submitted.

Figure 4.9: Component diagram of the integration of DIRAC and CloudStack

The VM Manager Server works as the middleware layer. It allows interacting with other
components as Virtual Machine Image Descriptors, Virtual Machine Node Tasks or Virtual
Machine Scheduler. Furthermore it contains the logic control of the application, and it re-
ceives requests in order to create actions such as the creation of new instances with some
specific operating system or the start of a new virtual machine in an arbitrary node. On the
other hand this component will take care of the persistency of the information relative to VMs.
It has a associated database.

86 Chapter 4. Design

Before being used, the description of the new templates must be included in the DIRAC
configuration, defining the following parameters.

1. Specific CloudStack parameters:

a) API key: key to add to the sign in order to verify the SHA1-mac.

b) Secret key: key to sign the previous message of the API, before to verify the
SHA1mac.

c) Name: name of the template.

d) Ostypeid: the ID of the OS Type that best represents the OS of this template.

e) Requireshvm: true if the template requires HVM, false otherwise.

f) Volumeid: the ID of the disk volume the template is being created from.

g) Format: the format for the template. Possible values include QCOW2, RAW, and
VHD.

h) Hypervisor: the target hypervisor for the template.

i) URL: the URL of where the template is hosted.

j) Zoneid: the ID zone of the template.

2. Specific DIRAC parameters:

a) UniqueID: unique identifier of the Image as returned by the Cloud provider.

b) MinCPU: minimum amount of cpu time required before a new VM request is
made.

c) MinLoads: minimum load required on the VM, when it drops below this threshold
for a certain period of time the VM is halted.

The methods provided by the VM Manager will be: the creation and registration of new
instance from a template in order to launch Virtual Machines; calls to the Cloud API; declare
the submission of a VM while inserting the unique identifier of the VM instance; start a
VM; stop a VM; and see the current VMs status. All the information arriving through these
methods is kept in the Database. The VM Manager periodically checks for stalled VMs that
have failed to report their activity through the heart beat mechanism for an extended period.

4.3. Architecture Design 87

The VM Templates Descriptor component provides the logic application of the template
creation. With some of the parameters described previously should be enough to create a
new specific template in order to launch new specific VMs. It should interact with the VM
Manager component to take care of the persistence of the information of the new created
templates.

The VM Node Tasks component provides all necessary methods to make calls to the
CloudStack API. It is an important part in this implementation of DIRAC, otherwise the
DIRAC server wouldn’t have any interaction and communication.

Finally, the Job Agent does the matching of user Tasks from the central TaskQueue and
supervises the correct execution of the user Task on the Virtual Machine resource, reports
periodically the activity and takes actions in case of abnormal behaviour or conditions. This
component will connect to the DIRAC WMS matcher to request a new task pending for ex-
ecution. All connections are secured using DISET mechanism and server certificate key-pair
available in the VM and previously declared in the DIRAC configuration. This prototype
results will be shown in the last chapter, and the results provides feedback for the second
prototype or Multi-EndPoint Prototype.

4.3.3 Multi-EndPoint prototype

The Multi-EndPoint prototype section describes the DIRAC integration with Cloud managers.
The multi-VO and multi-platform job submission is based in a bottom-up architecture. Starts
with the low level DIRAC modules or subsystems, and progresses upward to the design of
the Cloud managers, with their main modules, or main subsystem. To determine the order of
execution, a structure chart is needed, and, to complete the bottom up design, the development
of drivers is needed for each of the Cloud managers. In this way, bottom up design makes it
easy to reuse code blocks. This part is based in the previous prototype, which has been proven
a robust and extensible software to provide computing resources for Aula Cesga with around
twenty computers (Formiga-Cloud project) and in the LHCb TIER-2 of the Universidade
de Santiago de Compostela [129]. In this section, the main components of the design and
implementation are described, providing the basic Virtual Machine functionalities to design
and improve the integration of DIRAC, CloudStack and the OCCI/OpenNebula. The main
contribution of this thesis to the second prototype is the integration of CloudStack in the
Multi-EndPoint design, the test of the prototype and analysis of the results.

88 Chapter 4. Design

There are two servers and two VM components. Their mutual relations and their interac-
tions with other DIRAC components are shown in Figure 4.10 and Figure 4.11. In Figure 4.10
the services/servers items have been coloured in light blue, the client and interfaces in green
and red, the DIRAC agents in blue, and in Figure 4.10 the VM components have been coloured
in yellow, the DIRAC server in red and the Cloud manager in blue.

Figure 4.10: A generic Virtual Machine submission in DIRAC

In this prototype the VM Scheduler component gets the list of tasks to be executed from
the central Task Queues, by matching the pending tasks to the capabilities of the defined
images. If not enough VMs are available and the maximum VMs threshold is not reached,
then it submits a new VM using the specific VM Director.

Figure 4.10 shows the general interaction of the VM Scheduler with other components
to submit a VM to a generic Cloud Manager, which can be CloudStack, Amazon EC2 or an
OCCI compliant, i.e. OpenNebula. The DIRAC Admin has previously uploaded the image to
the Cloud Manager using the corresponding Cloud Driver, and set these values on the DIRAC
Configuration.

4.3. Architecture Design 89

The Virtual Machine Scheduler starts a full VM with DIRAC pre-installed and configured
to execute the Job Agent, together with a VM Monitor Agent.

As in the case of the first prototype, the Virtual Machine Manager Service is the part of
the DIRAC Workload Management System (WMS). It acts as a middleware integration layer
between different virtualization solutions. On one hand, it allows the interaction with other
components. Furthermore, it contains the logic of the VM scheduling engine. On the other
hand, this component is responsible for the persistence of the VMs information, through an
associated database. Images are described in the DIRAC Configuration. For these Images,
the following parameters must be assigned:

1. MinCPU, is the minimum amount of CPU time required to trigger the instantiation of
a new VM.

2. MinLoad, is the minimum load required on the VM. This parameter is read by the VM
Monitor process running inside the instantiated VM and, when the load drops below
this threshold for a certain period of time, the VM is halted.

3. Flavor, is the resource provider for which the Image is valid, i.e., Amazon. The same
image can be reused under multiple flavors and/or Cloud providers.

4. MaxVMs, is the maximum number of VMs allowed to run simultaneously in a given
resource provider.

5. Requirements, is the dictionary defining the computing capabilities of the VMs, used
to match tasks.

As in the case of the first prototype, the VM Monitor Agent executes on the VM, starting
immediately after the start up of the operating system. Its first action is to declare the VM
running state in the VM Manager component. If there is an error in the connection or if any
abnormal condition is reported back by the Manager, the VM is halted. The VM Monitor
periodically monitors the CPU load of the VM, the number of executed tasks and the amount
of output data of the VM. This information is reported to the VM Manager in heartbeats.

Finally, if the VM Monitor detects that the load of the VM has dropped below the config-
urable threshold, the VM is halted by the VM Manager.

The Virtual Machine Job Agent does the matching of the tasks from the central TaskQueue
and supervises their correct execution on the VM resource. It reports periodically the activity
and task actions in case of abnormal behaviour conditions.

90 Chapter 4. Design

This component connects to the DIRAC WMS matcher to request a new task pending for
execution. All the connections are secured using the DISET mechanism and server certificate
key-pair available in the VM, previously declared in the DIRAC configuration as in the first
prototype.

Figure 4.11: A generic Virtual Machine running Job in DIRAC

As is showing in Figure 4.11 the Job Agent and the VM Monitor are interacting with
the DIRAC WMS. The communication between the two agents on the VM is indirect. The
VM Monitor gets system statistics to learn about different states of the Job such as stalled or
finished and it reports to the VM Manager. On the other hand, the Job Agent is interacting
with the WMS for the Job matching and manages different states such as downloading input
sandbox, really running or job completed. This functionality of the Job Agent is the same,
independently of whether it is running in a VM or in a standard job in a real Worker Node.

If the VM Monitor detects that the load of the VM has dropped below a certain con-
figurable threshold, the VM is halted by the VM Manager Service if there are no pending
transfers ongoing.

4.3. Architecture Design 91

The Multi-EndPoint prototype was built using CernVM with the OpenNebula Cloud man-
ager. CernVM is a Virtual Software Appliance designed to provide a complete and portable
environment to develop and run LHC data analysis on any end user computer and batch node.
It contains only a minimal operating system required to bootstrap and provide access to the
experiment software. This experiment software is delivered from CERN repository using the
CernVM-FS that decouples the operating system and the software area. CernVM allows con-
textualization using the HEPIX standard [22]. The contextualization is used to make DIRAC
available in the VM and to start the necessary components described previously.

The CernVM instances are automatically managed by the VMDIRAC OCCI develop-
ment [132], including creation, status report, and halting. The VMDIRAC integration with
OCCI/OpenNebula is dealing with the following images:

1. A CernVM batch node. The CernVM image specifically designed for Grid and Cloud
Computing.

2. On the fly configuration image. On the submission of a new VM, an HEPIX Context
section is specified to provide the environment variables. VMID (the current VM ID)
and necessary variables for the CernVM-FS client and the network configuration. The
OCCI Cloud manager creates a temporary ISO image with this environmental variables,
and HEPIX booting system includes them in the system.

3. An ISO context image. It is used by the CernVM HEPIX compliant booting system to
configure the contextualization. First, it obtains the DIRAC VM service certificate and
key for the DIRAC VM agents. Second it triggers the CernVM-FS client repository
configuration and the network configuration. This configuration is done before the
network services are started (prolog.sh script in the ISO). The last booting init process
of the CernVM HEPIX (epilog.sh script in the ISO) is in charge of configuring and
starting the DIRAC Virtual Machine Agents.

With the feedback provided by Multi-EndPoint prototype the next section covers the a
new Federated Hybrid Clouds Architecture design.

4.3.4 Federated hybrid clouds architecture

As the third prototype of this thesis, and based on the previous prototypes, a federated hybrid
Cloud was designed and tested with a MANOVA Analysis. This architecture is named Rafhyc

92 Chapter 4. Design

(for Resilient Architecture of Federated HYbrid Clouds). The main contribution of this
thesis to the Rafhyc prototype is the validation with CloudStack and analysis of the results.

Figure 4.12 shows an overall architecture of Rafhyc. The bottom of Rafhyc has two low
level layers, to deal with the resources and the additional federated community services. The
main layer is supporting a single point of access. The top of Rafhyc is using two interfaces
to allow the integration of science gateways, pilot factories, job factories, science workflows
or scientific applications. The Rafhyc Service Architecture is designed to construct resilient
applications on federated Clouds. The architecture is composed of Layers, each of them,
providing an overall functionality. Furthermore, a Layer is divided in Components for the
different functionalities of the Layer. There are two low-level layers: Rafhyc Multi-Cloud
Layer and Rafhyc Federated Hybrid Cloud Services Layer, supporting the resource access
abstraction. The high-level layer, Rafhyc Resilient Services Layer, provides the resilience of
the service delivery.

Figure 4.12: Rafhyc Overall Architecture.

4.3. Architecture Design 93

The Rafhyc architecture defines a Layer breakdown in Components, following a bottom-
up scheme:

1. Rafhyc Multi-Cloud Layer: low-level layer to access private and public end-points.
Components:

a) The open standard OCCI driver and the industrial standard EC2 driver, or any
specific Cloud manager driver.

b) Image Context Manager to deal with the different policies [21] of the resource
providers.

2. Rafhyc Federated Hybrid Cloud Services Layer: low-level layer to access the Fed-
erated Services interfaces. Components:

a) At least the drivers to access the Information and Monitoring Systems.

b) Federated Services Polling to unify the access to different federated services.

3. Rafhyc Resilient Services Layer: high-level layer to provide service delivery for sci-
entific applications. Components:

a) Persistent Configuration

b) Cloud and Federated Authentication

c) Configuration Interface

d) VM Launcher

e) VM Status Manager

f) VM Interface

g) Availability Matcher

h) Efficiency and Price Optimizer

i) Benchmark

Persistent information is composed by configuration values that are not expected to change
with status of the federated resources. Rafhyc also defines dynamic information, which can
change with the availability and status of the federated resources. Dynamic information is
updated by the Federated Services Polling and it is necessary to adapt to the dynamic and

94 Chapter 4. Design

unpredictable nature of the federated hybrid Cloud model. Moreover, Rafhyc components
can be described attending to their behavior. Services are attending asynchronous request
and triggering actions. Clients, Drivers and Interfaces support different functionalities for the
Services. Clients are internal Rafhyc utilities, while Drivers and Interfaces are binding the
bottom and the top of the architecture. On the bottom, Drivers integrate the necessary func-
tionalities of the federated service APIs and the Cloud end-point APIs. On the top, Interfaces
are supporting the binding with any application adopting Rafhyc.

Figure 4.13: Rafhyc Persistent Information Flowchart.

Figure 4.13 shows the Rafhyc flowchart of the persistent information. Service compo-
nents are in blue (b/w in gray), Client, Drivers and Interfaces are in yellow (b/w in very light
gray). The doted lines represent information flows of persistent information. The Rafhyc Ser-
vice is configured using the Configuration Interfaces and the information collected from the
Federated Cloud Services.

Figure 4.14 shows the corresponding flowchart for dynamic information. On one hand
there is the information polled from federated services, like the image metadata or the Moni-
toring notification by the Alarm Driver. Other examples of such information are the availabil-
ity of the end-poins, the image availability on different end-points, the number of free VM

4.3. Architecture Design 95

slots, or CPU or Credit available for a particular user. On the other hand there is the informa-
tion generated by some components of the Rafhyc, stored as statistical records, such as the
VM Status Management giving the VM failure rate for each image and each end-point, or the
Benchmark records of computing efficiency.

Both Figure 4.13 and Figure 4.14 show two dimensions of the information flow between
the components as a mix of persistent and dynamic information, depending on the nature of
the origin of this information: configuration values (persistent) or system components status
(dynamic).

Figure 4.14: Rafhyc Dynamic Information Flowchart.

Description of Rafhyc components

This subsection describes the components of the persistent and dynamic flowcharts on Fig-
ure 4.13 and Figure 4.14, attending to what they are doing and how they are obtaining the
necessary information.

96 Chapter 4. Design

Persistent Configuration
The configuration is included in Rafhyc in two ways. The core configuration is managed

through the Configuration Interface, by manual or automated operations integrated in a high
lever application. Starting from this core configuration the Federated Services Polling is able
to discover additional configuration information, such as image metadata from a Federated
Marketplace. Furthermore, the Persistent Configuration allows to define the User and Tenant
information.

Cloud and Federated Authentication and Authorization
This component is in charge of Cloud Authentication methods associated to different user

access to the end-points, and some required Federation Authentication with administrator role
to services like image metadata catalog. The Authentication is dealing with different meth-
ods depending on the resource and the IaaS providers. In general terms the authorization to
use the resources would be a third-party system. As a particular implementation example,
EGI Federated Cloud is considering user / password for testing purposes and it is targeting
a production level using X509 proxy with VOMS attribute to match a user to a specific EGI
Virtual Organization (VO). In addition to the end-points, some community services, like im-
age metadata catalog, are supporting token Authentication, but this is transparent for Rafhyc,
a front-end of web server proxy is doing the token management.

Federated Services Polling
The Federated Services Polling is attending two types of requests to poll the Federated

Services. One type is on demand request from the Services. The other type, triggered by
asynchronous alarms notifying a federated Cloud update, polls the corresponding Federated
Services and updates the Persistent Configuration. VM Status Manager Rafhyc tracks the
VM status for statistical and monitoring purposes. Rafhyc images have to include remote
notification of the status update to the VM Status Manager, on the starting of the VM running,
on the VM halting and a periodical heartbeat notification to identified stalled VMs. Rafhyc
VM status are submitted, running, stalled and halted. Thus, VM creation overhead is the time
gap between the submission of the VM creation request and the VM running. Furthermore,
the failures are recorded in the Virtual Machine database and the failure rate of an specific
Cloud end-point can be obtained for a given period of time. The failure rate obtained for a
time window close to the submission is used as a metric of the reliability of a Cloud SITE. In

4.3. Architecture Design 97

the same manner, the VM creation overhead of a time window on a Cloud end-point, would
be a metric to obtain the computing efficiency.

VM Launcher
The VM Launcher sends a request of VM creation to a specific Cloud end-point, based

in the matching and optimization chain. Those services are using historical statistics as ex-
plained below. In this manner, the resilience problem is an exogenous parameter of this com-
ponent. The VM Launcher is creating on-demand VMs as requested by the application adopt-
ing Rafhyc, through the VM Interface. VM Launcher is also submitting the Benchmarking
VMs, which are direct submissions without the matching and optimization chain.

Image Context Manager
This component is in charge of the image contextualization. It is supporting specific

scientific computing with ad-hoc images and context images. The contextualized image man-
agement is based in a practical approach to virtualization in HEP [77]. For this purpose, the
Persistent Configuration has at least one Running Pod, which defines the relationship between
a Rafhyc image with a list of end-points. A Rafhyc image contains a Boot image and the nec-
essary configuration for a particular Contextualization method. This schema allows the use
of golden images to simplify the image management. Instead of a golden image depending
on a platform [21], a generic VM image can be configured using a ssh contextualization, if
an in-bound connectivity is available in the VM for ssh and sftp operations. The context is
a common setup of the VM to the PaaS or SaaS supported by Rafhyc. Moreover, a specific
context setup of a particular end-point is included in the VM submission.

Availability Matcher
The Persistent Configuration includes a list of the end-points supporting a particular im-

age. This information can be obtained from the image metadata catalog. An image may or
may not be uploaded in a particular end-point, the Availability Matcher returns which end-
points have the image upload and if such end-point is available to submit a VM. A Market-
place can be used for image metadata and also can be in charge of broadcasting of the images
to all the corresponding Cloud end-points, but this is not always the case. For example, the
Marketplace in the EGI Federated Cloud does not have such functionality by March 2013.
Additionally, an image may be uploaded at a specific end-point, but the user may have no
more slots for simultaneous VM running in the end-point. This resource constrain is not con-
templated in the common elastic Cloud philosophy, but it has been introduced in the federated
hybrid Cloud model coming from the Grid environment. Thus, Rafhyc keeps track record of

98 Chapter 4. Design

how many VM slots are given for a user at each SITE or end-point. Furthermore, the feder-
ated hybrid Cloud information system can publish dynamically the overall availability of the
resources.

All this information is collected by the Availability Matcher to select a set of Cloud end-
points available to submit the VM creation of an image. In this manner, Rafhyc is avoiding
submissions to Cloud end-points that are going to queue the request until resources are free.
The Availability Matcher is saving user response time and optimizing the virtual resource
distribution because it is sending the VM to the Cloud end-points available for running.

Benchmark
Benchmark is used to measure the efficiency of the different end-points VM running slots.

This component is periodically submitting a set of benchmarks to each Cloud end-point. A
service listening gets the response with the metrics form the VM benchmark. The multiple
Cloud providers have different efficiency in the compute running. This efficiency may change,
so the benchmarking has to be proactive, but it does not need to be as frequent as real VM
creations. Rafhyc benchmarks may include a by default workload type that would be used
for a generic VM creation request. Additionally, different benchmarks would be defined for
intensive computing or high IO computing. The information is recorded and the most recent
benchmarks are used to obtain the computing efficiency, together with the SITE reliability
and the VM creation overhead.

Efficiency and Price Optimizer
This is a central service for the resilience of Rafhyc. As it is shown in Figure 4.14, the

Efficiency and Price Optimizer is receiving inputs from Availability Matcher, Benchmark
and VM Polling. The Availability Matcher providers the list of available Cloud end-points
to create a VM from a particular image y. The set of possible solutions is S = e1,e2...em

for a given image y, where y is not available to VMs creation in other end-points in this
specific time. Then, the Efficiency and Pricing Optimizer takes advantage of the VM Status
Management statistics to obtain the current VM computing cost of each end-point for i=e1 to
i=em, i ∈ S, as it is shown in (1) and (2). The equation analyzes certain time window of VM
submission to each end-point. The first fraction obtains the average of the runnable uptime,
value 1 would be a theoretical VM without overhead and value 0 would be a VM without
runnable uptime. This fraction is multiplied by the inverse of the benchmarking of the end-
point, to obtain the cost of the average runnable uptime to process the benchmark. So, the
submission cost to the End-point can be expressed as:

4.3. Architecture Design 99

Ci =

(
1−

(
n

∑
k=1

O(k,i)/
n

∑
k=1

T(k,i)

))
1/Bi (1)

Where O(k,i) is the VM creation Overhead described above, for the last k VM created in the
end-point i. T(k,i) is the life-cycle time, including the VM status submitted, running and halted,
for the last k VM submitted to the end-point i. Bi is the normalized benchmark associated to
the end-point i and to the type of job of the VM to be submitted. The Efficiency Optimizer is
also considering (2), the evaluation function between any i in S, and the best evaluated option
until such evaluation time. And the heuristic evaluation function can be expressed as:

Ei = ((1− fi)Ci)+(fiCb) (2)

Where fi is the failure rate on the end-point i for a certain time window close to the current
time. Ci is the submission cost in (1) of the the current evaluated end-point i, while Cb is the
submission cost of the best evaluated option up to the current evaluation. The Ei is balancing
the cost of probability of success on VM submission to the i end-point with, in case of failure,
the extra cost to send it to the best end-point option b. The evaluation function can be used
with different optimization algorithms, a simple economical approach can use the evaluation
function to obtain the optimizer end-point destination for a particular VM image in a specific
time. Alternatively, the evaluation function can also support other optimization approaches
such as natural inspired algorithms, genetic algorithms or graph path finding. Besides of
the computing efficiency, this component is also doing a Price optimization. Nowadays, the
economics philosophy of the hybrid Clouds is to use the pay-per-use Clouds when there are
not available Community Cloud resources. For this purpose, two metrics are important, on
one hand the Persistent Configuration has the price list of the commercial Cloud providers.
On the other hand, the previous Efficiency Optimizer allows to normalize such prices in terms
of computing efficiency in the specific time of the VM creation request, as it is shown in (3).

pi = fc(pc)Ei (3)

In this formula pc is the c price on pay-per-use, fc is the function to normalize the c
provider price policy into a common time unit for all the providers. Ei is the heuristic func-
tion associated to the pay-per-use end-point i, in the same manner as described above for
Community Cloud end-points. The Price Optimizer checks all the possible options, and takes
the pay-per-use end-point with lower normalized price to submitted a VM creation request.
The QoS is considering not a theoretical provider SLA, but with the common benchmarking
and reliability measures of every provide, which is within the heuristic function.

100 Chapter 4. Design

4.3.5 Big Data architecture

The use of Big Data endpoints over DIRAC interware had not been done before. Therefore,
the first step was to design the appropriate architecture with the specific database and compo-
nents. These new structures are described in some detail in the next subsections.

DIRAC and the interface for Big Data software

Currently, DIRAC has been using Grid resources with Pilot Scheduler Agent, together with
middleware specific dispatcher (called PilotDirector) to populate Grid WNs with DIRAC pilot
jobs. In the case of DIRAC and Cloud resources, the idea is to make use of VMs instead of
pilots as container for the Job Agent. In the case of Big Data Software the use of Pilots was
considered at the beginning of the project and implemented, but since the endpoint is going
to be the SITE Big Data scheduler resource, which is in charge of managing the queues and
make the Map Reduce tasks, this concept was moved to the direct Job Submission. The direct
job submission is the basic idea for sending jobs to Big Data endpoints with a specific dataset.
In the integration of DIRAC and Big Data Software, three main functional pieces have been
identified, apart from other modifications to deal with this new integration.

BigDataDIRAC components

Three new components, to be executed on the DIRAC main server, were created to provide the
necessary Big Data connectivity: the BigDataScheduler agent, which requests the execution
of new Big Data jobs to the defined endpoints as necessary; the BigDataMonitoring agent,
which controls the storing of the different job Status into a Big Data database (BigDataDB),
reporting them to the JobDB, reporting the condition error (in the case of error), and mov-
ing, when the job finishes, the Job Output data to the OutputSandBox store; and, finally, the
BigDataDirector modules, which allows the use of different Big Data software.

The process of job or pilot submission is showed in Figure 4.15. The first step of this
process is the user job submission, through the DIRAC Wep Portal, to the WMS. The job
is kept in the TasQueue, where there is a list of organized pending tasks. Each TaskQueue
contains tasks with identical execution requirements, e.g., CPU time requested by the user,
the required platforms to execute, or the identity of the submitter. These requirements are
matched with the appropriate computing resources by dedicated DIRAC agents, that in the
case of Big Data are called by the Big Data Scheduler Agent. Once are matched the pending

4.3. Architecture Design 101

Figure 4.15: Diagram of the Big Data software and DIRAC integration architecture.

tasks with the capabilities of the Big Data endpoints, the BigDataScheduler Agent checks if
the limitation in the endpoint of job number is reached. And with a very simple logic, if
there is enough cpu time required by pending tasks, the maximum number of running jobs
is not reached, and the Big Data settings and dataset match with the previous SITES defined
with DIRAC CS, DIRAC FileCatalog and ReplicaCatalog, the job is submitted to the specific
Director. This logic can be more elaborate if necessary. For instance, if several providers
are defined that make available different hardware, the most efficient choice is to be found.
For the purpose of the present prototype, the choice has been reduced to a single option, but
a global scheduling optimization by load balancing will be explained in detail in following
section.

The BigDataDirector module has been coded to submit the requests to different Hadoop
software. For other resource providers, analogous BigDataDirector modules can be imple-
mented. This component takes the role of DIRAC Job Director or Pilot Director [27] used
to interface DIRAC with Grid computing resources. Instead of submitting a pilot that installs
DIRAC and executes a Job Agent on a WN, the normal job is submitted directly to the Job-
Tracker through SSH and the Hadoop Job id is obtained and stored in the BigDataDB. With

102 Chapter 4. Design

the Hadoop Job id the BigDataMonitoring Agent starts to inquire about the status of the job.
The Monitoring request time to the Job Tracker depends on a polling cycle defined by the
DIRAC admin. These agents are using the BigDataDirector for the creation of objects with
information collected from the CS in the Resources and WorkloadManagement system sec-
tions. Finally, when the job has finished, the BigDataMonitoring gets the Output data, and
depending on the configuration, it cleans or keeps the temporary folder and files. This agent
also uploads the data to the Output Sandbox storage.

Submission methods

BigDataDIRAC has integrated three different methods of job submission, two corresponding
to interactive and batch Big Data Job Submission and a third one to make use of High level
languages such us Hive, of Pig. These submitters are being integrated with the BigDataDirec-
tor and they are explained in the following subsections in detail.

Batch Job Submission
The integration of different Big Data software is made possible by developing the specific

interface for each Big Data software version. The Big Data Director is then made aware of
the existence, via the CS, of this new software version.

The current versions developed for BigDataDIRAC are ranged from Hadoop v.1.0.0,
Hadoop v.1.1.2 and Hadoop Yarn 2.0.0. All the methods defined in this classes are creating
the SSH communication with Hadoop, with all the necessary requests to Hadoop Clusters.
The sequence diagram shown in Figure 4.16 explains all the process with a Hadoop v.1.0.
class, from the Job Submission in the BigDataScheduler Agent until the download of the job
output data from the Hadoop Cluster with the BigDataMonitoring Agent. In the first part a
XML wrapper is created, this XML wrapper has the style of a job configuration file [114],
following the process described in [73]. All the relevant information that was attached by the
user when the job was submitted through the Web Portal, such us the DataSet or the Out-
putData, is included in the Job Wrapper. In the next step, the XML wrapper is added to the
job payload which is a self-extracting file that will be executed in the Hadoop, and then this
payload is submitted to the Hadoop Cluster. Once the Hadoop Job Id is obtained, it will be
stored in the Big Data database. This Hadoop Id will be used by the BigDataMonitoring to
inquire about the status of the job. Finally, when the job has been completed, the job output
is retrieved from the Hadoop Cluster and stored in the DIRAC OutpuSandbox.

4.3. Architecture Design 103

Figure 4.16: Sequence diagram of the Big Data job submission process.

Hadoop with interactive submission
The usual method to submit jobs to Hadoop is the direct job submission, and the inter-

active submission tries to emulate this process. Figure 4.17 shows the sequence diagram of
one Hadoop job as interactive submission. In the diagram the red boxes represent DIRAC
components and the blue one is showing the Hadoop part. First, the Hadoop interactive class
creates the job payload with the typical Hadoop submit method, then the payload is submitted
to the Hadoop cluster and the job output is stored in a predefined place, at the same time a
thread with a monitoring system for catching the Hadoop job id is launched, it analyzes the
job output and reports to the server which is the Hadoop id of the job. The monitoring process
is similar to the normal job submission, but in the step of job status, when Hadoop interactive
report to the monitoring that the current job is completed, it ask again to the Hadoop cluster if
there is a new Hadoop job to be launched. This is because some Hadoop processes require of
several Hadoop jobs to finish all their tasks. Finally, and in a similar way of Big Data job sub-

104 Chapter 4. Design

mission, if the Hadoop job is completed and the process does not require any additional jobs,
the job output is obtained from the Hadoop Cluster and stored in the DIRAC OutpuSandbox.

Figure 4.17: Sequence diagram of the Big Data job interactive submission process.

Job submission for High level languages with trapping system
BigDataDIRAC provides the SITES with the possibility of defining, under the utilization

of Big Data Software, the use of High Level Languages such as Pig or Hive. In the case of
Hive Director, the developing was based in Programming Hive book [24]. One of the main
problems when developing the code for Hive is that it creates splitted hadoop jobs from the
submitted job, and it makes difficult to control externally the entire process. Therefore in this

4.3. Architecture Design 105

case we have created a trapping system which is launched from the Hive Director. Figure 4.18
shows how a Hive job is submitted and monitored. Initially, the BigDataScheduling Agent
submits the Hive job and then the Director launches two threads to control the status of the
job in all the transitions. The first thread launches the job and traps its output. The second
thread monitors this job. There are three steps in the process of monitoring a job, the first one
obtains the number of subjobs that will be created in Hadoop to execute the job, the second
controls new jobs, and the last step controls the finalization of the jobs. When there are no
more jobs, this monitoring last thread will get the job output and it will store it in the Sandbox
of a DIRAC Storage.

Figure 4.18: Sequence diagram of the Hive job submission process.

106 Chapter 4. Design

Big Data database and configuration

New settings need to be defined in the DIRAC CS for the new Big Data database. These
settings are needed for DIRAC to know the available resources and how to interact with them.
The database (DB) keeps all the necessary information to enable the communication between
DIRAC and Big Data software. Before they are included in the database, the description of
the new Big Data endpoints must be included in the DIRAC configuration by defining the
following parameters:

1. SiteName: the SITE that stores the Big Data Cluster needs to be known by DIRAC, be-
fore defining the endpoint, the SITE and the Storage Element need to be added by the
admin. These steps allow DIRAC to know where are the clusters, and the Storage Ele-
ment and SITE vinculation since this information is important to include in the DIRAC
File Catalog some specific dataset.

2. PublicIP: as the name implies this parameter contains the IP that allows DIRAC to
communicate with the external world and, in particular, with the Big Data clusters. The
SITE needs to provide an IP or some type of access to the computing resources.

3. User: the resources and HDFS access needs to be granted and assigned to an Hadoop
user, this user needs to be specified to DIRAC in order to access the cluster. Different
users could be defined for managing data with different privilege access in the same
SITE, but then a distinct name should be used for each SITE and manager couple.

4. Port: the SSH or the task tracker port.

5. LimitQueueJobs: the DIRAC admin can define limitations on the number of jobs that
will be submitted to a specific cluster.

6. Big Data Software and Version: DIRAC Directors need to know the software type and
version in order to create the SITE Big Data object with the appropiate features required
by the endpoint.

7. URL: the SITE could define the tracker endpoint in the case of having it.

8. UsePilot: the feature for Pilot submission could be enabled, but by default is disabled.
The project architecture has been tested with direct job submission to the SITE.

4.3. Architecture Design 107

9. IsInteractiveMode: this parameter allows DIRAC to catch and control the job as in the
normal user interactive submission.

10. Requirements: dictionary defining the computing capabilities of the Cluster. It is used
to match tasks to sites.

11. High Level Language: dictionary defining the high level language software (Hive, Pig,
Spark etc...) and the version supported by the SITE.

These parameters are used by the DIRAC directors for the object creation, that allows the
pre-configured endpoint match the requirements with the DIRAC TaskQueue, the submission
of some Pilot or Job to the specific endpoint. The Big Data database keeps the Big Data job
status with the endpoint information related with the SITE where the job was submitted. In
the set of attributes kept in the main table of the database, the BdJobID is an auto increment
primary key. This table also allows to relate this JobID with the DIRAC Job Id and the Big
Data Job Id. Furthermore, the SITE Big Data cluster settings will be saved in this table too.
The Scheduling and Monitoring agents will be in charge of updating the job status in the
database. The DB also keeps the history of the Big Data jobs status and all the changes as
reported through the Monitoring Agent, and depending of the pooling time defined by the
DIRAC admin. The StalledJobAgent is in charge of checking for stalled jobs that have failed
to report back their activity through the Monitoring mechanism for an extended period.

Others DIRAC databases are used by this setup, the FileCatalogDB, JobDB and Account-
ingDB are the databases that offer more utility in our setup.

Federated BigDataDIRAC workload management

The integration of geographically distributed Big Data clusters across different organizations
presents a major workload management problem. This is a classical scheduling problem with
several particular features, among the most important, it can be mentioned the heterogeneity of
resources with different local existing scheduling policies and computing power capabilities,
the large scale data systems with the possibility of multiple replication policies, the rapidly
scaling requisites, the dynamic solution space or the multi-objective problem domain. This
initial definition of federated Big Data scheduling is an NPC problem which requires to deal
with heterogeneity, scale, complexity and dynamism.

Generalist aim could be expressed as an optimization problem. A large corpus in optimiza-
tion theory usually identifies sub-problem heterogeneity to deal with two major components,

108 Chapter 4. Design

intensification and diversification. Intensification is focusing the solution search in a local
region and should ensure the convergence to the optimal. On the other hand, at a global scale,
diverse solutions require to explore the search scale to avoid local suboptimal. With these par-
ticularities, it would be interesting the stochastic heuristic processes instead of deterministic,
because the problem can be described as multimodal (several best solutions) with no continu-
ous distributions (because different nature of services and performances constraints). Turing
was the first using the term heuristic search. In 1948 he described basics ideas of machine
intelligence and learning, neuronal networks and evolutionary algorithms [125]. Other opti-
mization heuristics have been developed and improved like support vector machine [130] and
a wide range of supervised learning taxonomies, including hybrids [68]. Latter approaches
introduce the use of a memory to adapt to dynamically changing problems, an example of
such requirement would be the Big Data cluster readability or available power conditions
changes. Thus, statistic history in the objective or constraint functions would be an advantage
for service level predictions. Well known examples of such heuristics are tabu search [67]
or nature inspired algorithms with ACO [41] and PSO [84]. The more recent nature inspired
approaches like cuckoo search [140], or human inspired like harmony search [65].

On the other hand, generalist heuristics have some disadvantages compared with specific
adaptations or simplifications. First is the theoretical limit of generalist optimizations for
heterogeneous and complex environments. The recent work of [138] demonstrates that some
algorithms outperform others for a given type of optimization problem, i.e. depending on the
workload and running conditions there would be various problems and distinct algorithms will
perform best. Second disadvantage is a high degree of software complexity in the migration
of the theoretical algorithms to the real world, introducing important overheads, unexpected
logic status and divergence in the software maintenance life cycle. These are not minor issues
of the proposed work, since the aim it is not only a theoretical algorithmic approach, but also
a real world solution.

Federated Big Data workload management with DIRAC has adopted a compromise ap-
proach, simplifying the problem in two levels of scheduling optimization: local and global.
Local optimization is done at the Big Data clusters level and it includes vanilla Map Re-
duce scheduling provided by Hadoop, both V1 and YARN releases, but also high level Map
Reduce ecosystems such as Pig, Hive or Spark. In this way, some of the scheduling issues
are moved to the user application space, with particular requirements depending on the ap-
plication. The intensification component of the optimization problem will remain at local

4.3. Architecture Design 109

cluster and user application level, which is an approach to face the fact that some algorithms
outperform others for a given type of optimization problem. On top of these possible local op-
timizations DIRAC integrates a global scheduling optimization. DIRAC Big Data scheduling
is in charge of the diversification component to deal with heterogeneity. DIRAC job schedul-
ing engine [27] has been enhanced for the particular federated Big Data features, covering
job-cluster matchmaking problem by datasets and available technologies, DIRAC group job
priorities, site availability and eventually other user application requirements. In this way; an
NPC problem is simplified to a linear programming problem at global scheduling level, as
detailed in the following subsection.

Global scheduling optimization by load balancing
Big Data federated and DIRAC have proposed an on-line model for global scheduling to

be adapted well to the dynamic conditions of the distributed Big Data clusters. The diversi-
fication component of the optimization problems can be faced in a simple way by load bal-
ancing (LB). Other LB approaches in similar distributed computing environments have been
proposed. LB between different cloud providers has been demostrated to save costs [122],
which is an argument for the rationale of the presented approach. Both job completion and
LB are targets of max-min strategy for job scheduling in cloud computing environments [45],
including QoS constrains, in a similar way of DIRAC Big Data scheduling job requirements
matchmaking. For example, to submit a job based in a particular ecosystem, to some of the
clusters supporting such technology. Other per cluster QoS requirements could be defined
at DIRAC user job level. More related work is found in algorithms for distributed comput-
ing LB, like the Hierarchical Load Balanced Algorithm (HLBA) for Grid environment [88]
or the Dynamic Load Balancing Algorithm (DLBA) [117] or DLBA with genetic algorithms
in [89]. These related works motivate the use of LB as a sensible approach to deal with the
global scheduling in DIRAC federated Big Data.

DIRAC job matchmaking is taking into account the precise running conditions at the re-
source and last moment requests to the system. The DIRAC Workload Management System
provides one single scheduling mechanism for jobs with very different profiles. To achieve
an overall optimization, it organizes pending jobs in task queues. Task queues are created
with jobs having similar requirements. A group job priority is assigned to each task queue.
Pilot pre-allocation submission and subsequent pull job matching are based on these priori-
ties, following a stochastic approach in each task queue and dynamic priorities in case of job
rescheduling. Figure 4.19 shows the schema for Big Data scheduling in DIRAC, based in

110 Chapter 4. Design

Figure 4.19: BigDataDIRAC scheduling system schema.

the Task Queue matching with available resources by a push job to the corresponding cluster.
Vanilla local cluster schedulers with Hadoop are able to process jobs in sequence one by one.
Actually, it is possible to do some job parallelization, in the case when some data nodes are
free of map tasks, by only submitting Reduce tasks and starting an additional job to perform
the map tasks in these data nodes when the Reduce task are done. For this reason, DIRAC
Big Data scheduling is pushing with one waiting job to each cluster, whether there is pending
workload in the tasks queues corresponding to those cluster resources, and maintaining the
rest of the jobs in the central DIRAC tasks queues to latter pushing the job to the appropri-
ated cluster. This dynamic matchmaking is able to provide system LB between distributed
resources. LB aim is to optimize resource usage and a usual metric is the total makespan.
At the same time, the general load conditions of the resource service will affect to the par-
ticular job completion times, so in an indirect way it is also expected a job response average
time optimization. Section 5.4 of this thesis shows different use cases to test the optimization
capabilities of the proposed workload management for federated Big Data. The main hypoth-
esis is that the federated BigDataDIRAC workload management is able to take advantage of

4.3. Architecture Design 111

the aggregated computing power of distributed Big Data clusters by an efficient global load
balancing.

CHAPTER 5

EVALUATION OF THE PROTOTYPES

This chapter contains the validation process of the defined infrastructure. Tests and bench-
marks were created in order to simulate real use-cases. The integration results with Cloud-
Stack prototype and software repository services, in the Formiga-Cloud project, are evaluated.
The MultiEnd-Point prototype is validated under VMDIRAC development and federated hy-
brid Cloud prototype performances are evaluated. Finally, Big Data software and the integra-
tion with DIRAC is tested and validated.

5.1 Results and Evaluation of CloudStack Prototype (2011)

This prototype creates the infrastructure for the Formiga-Cloud project, and it is based in the
design described in chapter 4. The final design of the CloudStack Prototype is shown in
Figure 5.1 that defines the processes and services that are involved in the infrastructure.

The first step in the job submission is the registration of the normal user in the DIRAC CS.
This registration is performed under the DIRAC admin role. DIRAC CS component provides
specific setups for users, Cloud managers and DIRAC services, which are needed to run the
job under a Virtual Organization. This process is shown in Figure 5.1. In a second step, the
user has to choose one of the following 3 ways of job submission:

1. The DIRAC API: is a set of python classes designed for the user to easily access a
large fraction of the DIRAC functionality. Using the API classes it is easy to write
small scripts or applications to manage user jobs and data. The DIRAC API provides
several advantages for the users, which are enumerated below:

114 Chapter 5. Evaluation of the Prototypes

a) Provides a transparent and secure way for user job submission.

b) Allows to debug locally the programs before being submitted.

c) Allows to run single applications or multiple steps of different applications.

d) The user can perform an analysis using understandable Python code.

e) Using local job submission the job executable maybe be executed locally in ex-
actly the same way as it will run on the Worker Node. This allows to debug the
job in a friendly local environment.

f) Using local submission mode the user can check the sanity of the job before sub-
mission.

g) All the DIRAC API commands may also be executed directly from the Python
prompt.

2. COMMAND-LINE in the User Interfaces machines: this is the typical Grid submis-
sion, when the job to be submitted should be described in a JDL file.

3. Web Job Launchpad: this is the new way of job submission through the Web Page.

Figure 5.1: CloudStack prototype design in the Formiga-Cloud project.

5.1. Results and Evaluation of CloudStack Prototype (2011) 115

After user submission, the job goes to the DIRAC Server, which traces the job in order
select the best conditions to the VM submission. This step is done by the VM Scheduler
component and it corresponds to the steps 3 and 4. In the step 5, the DIRAC Server sends
the specific command to the CloudStack Server API [4], and the manager submits the VM,
which is started in SITE hosts in the step 6. In this prototype, the SITE hosts are located in
Aula Cesga as the Formiga-Cloud infrastructure. After the start up of the VM the CernVM-FS
client connects to the CernVM-FS repository, which is hosted in USC TIER-2 and provides
the software for the step 7. Finally, the VM-Manager that is running in the DIRAC Server gets
a message notification from the Virtual Machine, confirming that the VM is in "Up status" and
is running the user job in step 8.

Figure 5.2: Total number of executed jobs in the CloudStack prototype.

116 Chapter 5. Evaluation of the Prototypes

Figure 5.2 shows the total number of jobs in the battery tests, which consisted in the
submission of simple jobs via the DIRAC User Interface (UI) for several VO users. 99.4% of
the jobs(1248) finished successfully.

Figure 5.3: Cumulative jobs of DIRAC and CloudStack integration in Formiga-Cloud project.

Figure 5.3 shows the cumulative number of jobs. A small amount of failed jobs can be
seen in red. The trace of these failures indicates they were due to some of the VMs were halted
by the CloudStack manager. In the MultiEnd-Point prototype, those problems are solved by
identifying the cause of the failures, and resubmitting the failed jobs. Furthermore, in this
first prototype a new planner for CloudStack has been created to efficiently switch on VMs on
non-dedicated resources. Benchmarks have been run with KVM over computer classrooms
in order to identify the relevant information about the execution of VMs. The final goal is a
better use of the computational resources available in the organizations.

5.2. Results and Evaluation of Multi-EndPoint Prototype (2012-2013) 117

5.2 Results and Evaluation of Multi-EndPoint Prototype (2012-2013)

A Multi-EndPoint prototype is created with the feedback provided by the CloudStack proto-
type and the DIRAC-EC2 integration. The main objective of this prototype is the integration
of several Cloud managers in the VMDIRAC development, and also the creation of multi-VO
and multi-platform job submission based in a bottom-up architecture.

5.2.1 Results for CloudStack with Multi-VO and Multi-Platform

This subsection describes the test results for Multi-VO and Multi-Platform [56], where the
objectives were the proof-of-concept of the new Multi-EndPoint architecture with the Cloud-
Stack Cloud manager.

In the proof-of-concept process, simulations of several groups were executed in different
platforms such as, Fedora 12, Centos 5.5 or Ubuntu 9.04, in order to test the Multi-Platform
feature. The test infrastructure was using KVM hypervisor with 4 nodes, and each physical
node was equipped with 2 quad-core processors IntelXeon X5355 @ 2.66GHz, and 16 GB
of total memory. The jobs were classified in short jobs, with a time execution of 20 minutes,
and long jobs, of around 8 hours of execution time. Figure 5.4 shows the infrastructure and
the job submission steps. In this prototype there are several users belonging to different VOs.
In the first step the users with DIRAC admin role makes a user list depending on the VO.
Furthermore, in this first step, the DIRAC admin is in charge of adding the Cloud settings in
the DIRAC CS, taking care of the different preconfigured images of the Cloud manager. The
second and third steps are the job submission, and the job reception by the VM Scheduler
component, from the TaskQueue.

Once that the job is in the VM Scheduler, specific Cloud information is obtained from
the DIRAC CS according to the user credentials, this is the step 4. In this part of the pro-
totype, each user has been configured in a specific VO, and each VO has been assigned to
a unique EndPoint. The VM Scheduler component sends the specific EndPoint command to
the CloudStack Server API [4], and the manager submits the specific image, which in this
case corresponds to Ubuntu, Centos and Fedora, these are the steps 5 and 6. Then, the VM
Scheduler that is running in the DIRAC gets a started message notification from the Virtual
Machine, which confirms that the VM is in "Up status" and is running the user job in step 7.
Finally, when the VM starts up process the CernVM-FS client connects to the USC CernVM-
FS repository, which is hosted in USC TIER-2 and provides the software in the step 8.

118 Chapter 5. Evaluation of the Prototypes

Figure 5.4: Multi-EndPoint prototype: USC CloudStack infrastructure Multi-VO and Multi-Platform tests.

The tests consisted in the submission of the simulations described in Section 3.2, in order
to test the Multi-VO architecture with different instances, which were launched by one Cloud-
Stack 2.2.3 manager. The number of jobs submitted were around 500 of short jobs, as shown
in Figure 5.5, and 50 long jobs, as shown in Figure 5.6.

Figure 5.5 shows 104 executed jobs with errors as "identified as stalled job", which means
there is no contact with the job agent for a long time, 57 errors with "Application Finished
With Errors", where the simulations had some failure in the process of execution, and 3 errors
with no space in disk. The trace of "stalled jobs" failures showed they were due to the satura-
tion of the hosts machines. On the other hand, 443 short jobs finished successfully of all the
executed jobs.

Figure 5.7 shows the low efficiency of short jobs. This problem was solved for long jobs
with the modification of the MaxVMs parameter, described in section 4.3.3, which is the
maximum number of VMs allowed to run simultaneously. Figure 5.6 shows that the long jobs
were executed successfully.

5.2. Results and Evaluation of Multi-EndPoint Prototype (2012-2013) 119

Figure 5.5: Executed short jobs by final minor status.

Figure 5.6: Executed long jobs by final minor status.

120 Chapter 5. Evaluation of the Prototypes

Figure 5.7: Executed short jobs CPU efficiency.

Figure 5.8 shows the running VM-monitoring with the VMs submitted to Cloudstack for
long simulations. The top figure shows the average load of the simulations in the VMs at
the left-side, and the simultaneously running VMs at the right-side. In the bottom figure at
the right-side is shown the executed VMs separated by Platform, and shows a maximun of 8
Centos-VMs, 4 Fedora-VMs and 3 Ubuntu-VMs submitted at the same time.

In the next subsection the Multi-SITE test with PIC and USC is described, together with
a couple of Cloud drivers for Cloudstack and OpenNebula managers.

5.2.2 Results of Multi-SITE for CloudStack and OpenNebula

This subsection includes the test results for Multi-SITES with the CloudStack and OCCI
/ OpenNebula, in order to evaluate the Multi-EndPoint design. The CloudStack testbed in

5.2. Results and Evaluation of Multi-EndPoint Prototype (2012-2013) 121

Figure 5.8: Running VMs monitoring.

this first integration was the virtualized CloudStack Network of the USC LHCb TIER-2. The
OCCI/OpenNebula testbed of the DIRAC integration with OCCI/OpenNebula has been tested,
using an LHCb application workflow. The main steps of the testing jobs are:

1. Environment login configuration (LbLogin)

2. Environment Gaudi and Gauss configuration (SetupProject)

3. Monte Carlo event generator for LHCb (Gauss event generator application based on
the Gaudi framework)

The test job is therefore a scientific application with high CPU consumption and low
I/O. The test infrastructure is the PIC Cloud testbed infrastructure, which is using OpenNeb-
ula Cloud manager and is deployed in 16 physical nodes. In this test, one node is used as
OpenNebula Cloud manager server, implementing the OCCI server. The other 15 nodes are
Cloud nodes with KVM hypervisor. Each physical node has 2 quad-core processors IntelXeon
X5355 @ 2.66GHz each and total of 16GB memory.

A DIRAC service including the VMDIRAC extension integrating the OCCI/OpenNebula
has been deployed. The virtual bootstrap image used for this tests is a cernvm-batch-node
2.4.0 [20]. OpenNebula instantiates VMs of many different sizes. For this test, small instances

122 Chapter 5. Evaluation of the Prototypes

with 1 core and 2 GB of memory have been chosen. This is considered a worst possible case
scenario aimed to define a baseline of performances for comparison purposes.

This test is composed of 500 jobs of 100 events submitted to the DIRAC server. The
DIRAC server is configured to run a maximum of 80 VMs on the OpenNebula Cloud infras-
tructure. Following the scheduling schema described in section 4.3.3, every 60 seconds, the
VM Scheduler agent will check the TaskQueue, and if a matching job is found, it will submit
a new VM. Thus, having all the workload on the TaskQueue at the beginning of the test, the
ramping-up of 80 VMs and continuous execution of the DIRAC Jobs can be tested. When the
80 VMs have been started, a total of 10 Cloud nodes will be used, each running 8 VMs. One
of the goals of the test is to obtain an overhead analysis of the OCCI/OpenNebula submission
system and the HEPIX contextualization, and also, an overhead of the DIRAC machinery.
To analyze the KVM hypervisor overhead, the metric of event/core/hour and the running job
timestamps (walltime) were recorded and compared with the same metrics on jobs running in
a non-virtualized environment. These are 50 jobs of 100 events directly submitted to CREAM
CE [35], and running in a single Worker Node with exactly the same hardware that the Cloud
nodes in the OpenNebula setup and with a standard WLCG production configuration (Scien-
tific Linux 5 OS with a CVMFS client). In both tests, all the jobs were completed success-
fully without resubmission, and all the VMs were running without errors in the OpenNebula
infrastructure. It is worth to mention that preliminary tests were done until a production ready
state was reached. Some technical issues were faced. Additional configuration and tuning
were done in different parts of the Cloud, which initially were affecting performances and
degrading services causing errors, mainly regarding some optional packages of OpenNebula
installation: the improved xmlparser and the nokogiri for html parsing. Also, other technical
issues like the Sunstone SQLite problems when used with NFS, and the reliability of a shared
or dedicated node for the Sunstone server, and the creation and deletion of the DIRAC Virtual
Machine Instance.

The results of this test are shown in Figure 5.9. The ramping-up shows the OCCI/OpenNebula
submission and HEPIX contextualization overhead within green-red lines. On the same ramp-
up within red-black lines one can see the DIRAC running VM overhead with the real jobs
timestamps. On the plateau, the VM submission line (green) and the VM running (red) are
the same and equal to 80. At this point, all the VMs are submitted and running. Moreover,
there is a DIRAC running VM overhead shown within green-black lines. The tail overhead in
this test is about 15 minutes for each VM and can be configured on the DIRAC Configuration

5.2. Results and Evaluation of Multi-EndPoint Prototype (2012-2013) 123

Figure 5.9: OCCI / OpenNebula Integration with DIRAC Test Results.

Server. Regarding the second metric of the test, aimed to obtain the KVM hypervisor over-
head, the result in the Cloud testbed was 23 event/core/hour, while in the real Worker Node
was 24.49 event/core/hour, which is about 6% of overhead in this worst scenario possible,
with single core VMs.

The Multi-SITES test setup is a Monte Carlo LHCb simulation of proton-proton collision.
1000 jobs are submitted to DIRAC to be run on the Cloud, and these jobs will be submitted
to CESGA, PIC and USC. Each job is using the CernVM-FS distributed software reposi-
tory [30] of LHCb to run a simple workflow composed of LbLogin, SetupProject and Gauss
for the creation of 100 simulated events. The used images are in the OpenNebula end-points

(CESGA and PIC) the cernvm-batch-node 2.5 as golden image and a context image. CernVM
images are including the CernVM-FS client. The same golden and context image are up-
load at CESGA and PIC, with the corresponding dynamic contextualization to each end-point
indicated on the creation of the VMs. This contextual parameters are taken from the Config-
uration Server to provide the values of the VM network configuration and the CernVM-FS
HTTP proxy to be used on the VM CernVM-FS client. In the case of the USC, the image is
the CentOS 5.5 with a prepared DIRAC and a CernVM-FS client.

124 Chapter 5. Evaluation of the Prototypes

Figure 5.10: EndPoint prototype with Multi-SITE Cloud monitoring.

Figure 5.11: EndPoint prototype with Multi-SITE instances status monitoring.

5.3. Results and Evaluation of Federated Hybrid Clouds Prototype (2013) 125

The maximum number of VMs to be running simultaneously a this test are 21. It is just
corresponding with the aggregation of the maximum number of VMs slices in the end-points
(PIC 13 VMs, CESGA 4VMs and USC 4VMs). Every VM is an instance of 1 core and 2GB
of memory. The DIRAC VM scheduler has been prepared to create a VM in each of the
EndPoints, in case of jobs pending to be matched, in a loop of 1 min. Figure 5.10 shows the
prototype test results. The plot shows the running VM per end-point. There is a fast ramping-
up corresponding to the scheduler policy of the test, up to the maximum number of VMs per
each end-point. The plateau is maintained for more than 10 hours of VM running, matching
jobs about 25’ running, but this is DIRAC specific. By the end of the test, the USC network
connectivity was flapping. For this reason two of the USC jobs were unable to send heart-beat
to the VM Manager, DIRAC was resubmitting these jobs and this is the reason of the USC
queue of running VMs by the end of the test. Figure 5.11 shows in the Web Portal, the status
of the instances during the execution of the test.

5.3 Results and Evaluation of Federated Hybrid Clouds Proto-
type (2013)

As a final result of the previous prototypes, a new architecture for Federated and Hybrid
Clouds (Rafhyc) were created, and this section shows the results of a prototype based on
this architecture. The test use case was a Monte Carlo LHCb simulation of proton-proton
collisions in order to test this infrastructure with VMDIRAC architecture. 2000 jobs were
submitted to DIRAC to be run on the federated Cloud. Each job is using the CernVM-FS
distributed software repository of the LHCb [30] to run a basic workflow, which contains a
sequence of environment initialization, software stack setup and the creation of 50 simulated
collisions. OpenNebula end-point at Occi-PIC uses the cernvm-batch-node 2.6 as golden
image and a context image which is generic for any OpenNebula IaaS. OpenStack end-point
at Nova-IN2P3 [82] is also using a cernvm-batch-node 2.6 image, it includes the public key
of the VMDIRAC server to allow a ssh contextualization of the VMs.

CernVM images are including the CernVM-FS client. In Occi-PIC and Nova-IN2P3 VMs
are dynamically contextualized using the parameters of the Configuration Server. In the case
of the CloudStack-USC, the image is the CentOS 5.5 with a preinstalled DIRAC, a CernVM-
FS client and all the necessary context within the image.

126 Chapter 5. Evaluation of the Prototypes

VM Horizontal Auto-Scaling Setup
Horizontal auto-scaling is the property to create or halt VMs, depending on the workload.

For this purpose, VMDIRAC has VM scheduling and stoppage policies associated to each
end-point. The VM scheduling policy of the test is elastic and aims a fast ramping-up corre-
sponding with the submission of one VM to every end-point in 1 minute intervals. It is also
targeting a non exhaustive use of the available VMs slots. For this purpose the Running Pod
configuration section has the CPUPerInstance parameter, which defines the minimal overall
CPU of the DIRAC jobs waiting in the task queued to submit a new VM. The parameter is
used for the tuning of the VM delivery elasticity. Therefore, a CPUPerInstance can be set
to a longer time to use the available resources in a more efficient manner, saving creation
overheads, and to a shorter time to setup an exhaustive use of the available resources aiming
to finish the production in a shorter total wall time, but with higher resource costs for the ad-
ditional overhead. In regular basis, CPUPerInstance reference values, from shorter to longer
values, could be defined to:

1. Zero to submit a new VM with no minimal CPU in the jobs of the tasks queue

2. A longer value could be the average required CPU of the jobs as a compromise solution
between VM efficiency and total wall time

3. A very large value to maximize the efficiency in terms of VM creation overhead, for
the cases where the production total wall time it is not a constrain

The testing setup has a compromise CPUPerInstance value, to balance the VM efficiency
and the total wall-time, it is set equal to the required CPU time for the job workload of 50
simulated collisions.

The VM stoppage policy of the test is elastic, which stops the VM if there were no more
jobs running in the last VM halting margin time. The test defines 5 minutes of VM halting
margin time.

The testing setup has 250 VMs as the maximum number of VMs to be running simultane-
ously on the IaaS aggregation: 10 VMs for Cloudstack-USC, 90 VMs for Occi-PIC and 150
VMs for Nova-IN2P3. The VMs use 1 vcpu and 2 GB of memory. The hypervisors are KVM,
and they are hosted as follows:

1. Occi-PIC hosts are BL460c Blade with 8 cores Intel Xeon L5420, 2.50 GHz and a total
of 16 GB of RAM

5.3. Results and Evaluation of Federated Hybrid Clouds Prototype (2013) 127

2. Nova-IN2P3 hosts are DELL Poweredge C6100 systems with 24 cores Intel Xeon
X5675 3.07 GHz and a total of 96 GB of RAM

3. Cloudstack-USC hosts are AMD 6400MT with 16 cores AMD Opteron 6128 Magny-
Cours 2.0GHz and a total of 16 GB of RAM

VM Horizontal Auto-Scaling Results
Figure 5.12 is a plot tool from the VMDIRAC as part of the VM Interface of the Rafhyc

prototype. It shows the running VMs during the test. Figure 5.13 shows the corresponding
breakdown for the different end-points.

Figure 5.12: Running VMs in the 2k Jobs Test.

Figure 5.13: Running VMs by End-point in the 2k Jobs Test.

128 Chapter 5. Evaluation of the Prototypes

Figure 5.12 shows a total of 219 VMs on running status, at the beginning of the plateau
(notice the little point on the green line corresponding to that time). In the same way, Fig-
ure 5.13 shows the information for the last part of the plain. One can see that Cloudstack-USC
and PIC have reached the maximum number of VMs by end-point on the setup, 10 VMs and
90 VMs respectively. In the case of IN2P3, the maximum number of VMs has not been
reached. Therefore, the scheduling policy of the setup is acting as expected, avoiding the use
of all the VM slots. However, with a large enough workload in the DIRAC queue or smaller
CPUPerInstance parameter, all the VMs would be submitted. This scheduling scheme, al-
lows the tuning of each Running Pod for the available aggregated resources and the desired
behaviour.

VM Performance Analysis
Further details of the virtualization overhead analysis (with the three components: VM

creation, VM running and VM halt margin) in the context of separated single end-point sub-
mission to Amazon, CloudStack and OpenNebula can be found in previous works [57] [54] [100]
and also some technical report about submitting multiple OpenNebula end-points in [99]. This
thesis includes a VM performance analysis focused on some VM metrics:

1. VM Errors within Job Running Time

2. VM Creation and Context Errors

3. VM Creation and Context Time: The necessary time gap to boot and contextualize a
VM up to reach the Running status

4. VM Runnable Uptime/Jobs: The VM Runnable time corresponds to the Running status,
except the halt margin, which is the necessary time without running jobs on the VM to
launch the VM halting (in charge of the VM Monitor Agent within the VM, and that in
our test is set to 5 minutes). Number of Jobs corresponds to the total Jobs executed on
a particular VM. Therefore, VM Runnable Uptime/Jobs is a metric of the efficiency of
the VMs.

In the presented test there are no VM Errors within Job Running Time, all the jobs have been
completed without errors and without any resubmission. For the metric VM Creation and
Context Errors, there are no errors in Occi-PIC and Cloudstack-USC IaaS, but for the case of
Nova-IN2P3 a total of 125 VMs were submitted, of which 6 VMs reached the Stalled status
without having Running status. On the forensic analysis of these errors. Two different causes

5.3. Results and Evaluation of Federated Hybrid Clouds Prototype (2013) 129

were found. First, there was a single VM which took more than 30 minutes to be booted with
an available network interface. 30 minutes is a configurable limit for the VM Manager to put
a VM in Stalled status if no heart beat is received on that time. Second, on the scale-up test,
5 VMs where failing due to a bug found on the synchronization between the sftp copy of the
scripts and necessary files, and the ssh run of the contextualization scripts. The bug has been
patched.

The rest of this section, shows a Multiple Analysis of Variance, for the set of VMs which
have run without errors, the 219 aggregated VMs, that are the statistic occurrences. The
statistical design is a MANOVA 1-way, the dependent variables are the VM Runnable Up-
time/Jobs and the VM Creation and Context Time, the independent variable (1-way) is the
end-point with 3 categories: Cloudstack-USC, Nova-IN2P3 and Occi-PIC. Additionally, the
submission time is considered for a histogram sequence. The submission time is a relevant
concept on the Rafhyc architecture, because the optimization heuristic is considering different
submission time windows with heterogeneous and dynamic performances.

That survey of a separate analysis of variance is shown on Table 5.1. The null hypothesis
(H0) is VM Runnable Uptime/Jobs and VM Creation and Context Time, do not discriminate
end-points. Both dependent variables have statistic results with P < 0.01 and F > 1, so they
are significant and the H0 is not verified. Particularly, the separate variable analysis shows
that the VM Runnable Uptime / Jobs is much more significant than VM Creation and Context
Time to discriminate end-points.

Table 5.1: Separate Analysis of Variance Survey (2k Jobs Test)

VM Runnable Uptime/Jobs VM Creation and Context Time
Snedecor F 180.4290 7.8694
Probability P 0.0000 0.0005

Table 5.2 is a MANOVA survey, to consider the possible correlations between the two
dependent variables. A multiple analysis of variance offers results of all variables instead of
the individual results of the previous Table 5.1. The Canonical Vectors (CV) are projections
of the original data in a lower dimensional space which allows a better discrimination between
categories. CV 1 corresponds to VM Runnable Uptime / Jobs and CV 2 to VM Creation and
Context Time. Two statistics are shown for each CV, the Wilk’s Lambda and the Pillai’s Trace,
both are significant in terms of probability P and Snedecor F, in the same way as explained

130 Chapter 5. Evaluation of the Prototypes

above in the separate analysis. Wilk’s Lambda statistic is close to 1 in the CV 2. At the same
time, Pillai’s Trace of CV 2 is close to 0, therefore, the conclusion is that VM Creation and
Context Time are not correlated with the end-points in the overall analysis.

Table 5.2: MANOVA Survey (2k Jobs Test)

Exact Significances Wilk’s Lambda Snedecor F Probability P
CV 1 0.3049 58.1115 0.0000
CV 2 0.9335 7.6819 0.0006
Exact Significances Pillai’s Trace Snedecor F Probability P
CV 1 0.7397 42.2642 0.0000
CV 2 0.0664 7.6819 0.0006

As a summary of the separate and the overall analysis of variance, the two dependent vari-
ables, VM Runnable Uptime/Jobs and the VM Creation and Context Time, are significant to
discriminate end-points, and in the case of VM Creation and Context Time such discrimina-
tion is indirect on the VM Runnable Uptime/Jobs.

Figure 5.14: Biplot (2k Jobs Test): Correlations between Endpoints and Performance Metrics.

Further on the correlation analysis, we show a biplot in Figure 5.14. The biplot is the
shadow in 2-dimensions of the normalized data, which maximizes variation. The measure-

5.3. Results and Evaluation of Federated Hybrid Clouds Prototype (2013) 131

ments are shown as one unit of each axis, to give the idea of observations plotted correlations,
which correspond to the distances between the points of the plot.

Figure 5.14 plots the occurrences of the end-points together with the Structure of the
two dependent variables. The first analysis of the biplot concerns the end-points discrimi-
nations. The three end-points are clearly categorized. VM submissions to Occi-PIC have a
single category of occurrences. The occurrences of Cloudstack-USC are shown in a category
on similar area than Occi-PIC, which are corresponding with the first VM submissions to
Cloudstack-USC, and a group of few separated categories. In the case of Nova-IN2P3 a clear
category is in a similar area than Occi-PIC and few occurrences are spread without a clear
categorization. The previous MANOVA correlations are also shown in Figure 5.14, thus, VM
Runnable Uptime Jobs is correlated with the main categories of the three end-points. On the
other hand, VM Creation and Context Time could be correlated with some of the Nova-IN2P3
occurrences.

Figure 5.15: Histogram (2k Jobs Test): VM Metrics by End-point.

Figure 5.15 shows a histogram to evaluate how the variable correlations are changing
along time. For this purpose, the performance metrics are plotted for each VM on the submis-
sion timestamp. The submission time is a parameter considered on the heuristic proposed on
the Rafhyc approach, to manage the dynamic performance responses of the federated hybrid
Cloud models. However, Figure 5.15 does not show large changes on performances within
the end-points on temporal pattern. Anyway, this analysis is valid for short periods of time
like this test, which is in magnitude of few hours. Previously to the analysis of the histogram,
notice that in the time slice of the higher plateau of Figure 5.15, there was a total of 219 VMs.

132 Chapter 5. Evaluation of the Prototypes

In this moment, the overall load of the end-points, including VM for other purposes, was the
following:

1. Cloudstack-USC: 56% of memory and 28% of CPU of the total available resources

2. Nova-IN2P3: 100% of memory and 53% of CPU of the total available resources .
The hypervisor memory policy was tested, without a strict limit on the VM memory
reservation on the physical memory of the hypervisor host.

3. Occi-PIC: 75% of memory and CPU of the total available resources

In this sense, the test shows reasonable scaling features. The dispersion on the Nova-
IN2P3 performances would be related with the mentioned hypervisor memory policy in this
end-point, which is being currently analysed by the SITE administrators and should be tuned.
In these conditions, Figure 5.15 shows a clear categorization with the VM performances for
the Cloudstack-USC end-point, which has a lower performance (larger values of the two met-
rics) for the second part of the submitted VMs. Moreover, there is a smooth decreasing trend
on the Occi-PIC VM Runnable Up-time / Jobs and a larger dispersion on Nova-IN2P3 VM
Runnable Uptime/Jobs. The response on VM Creation and Context Time of Nova-IN2P3 and
Occi-PIC is as expected because the trends have no slope, which means that this end-points
scales best.

An additional comment about the Nova-IN2P3 VM Creation and Context Time is the
dispersion of responses. This is related to the time to start the VM network interface which is
much higher than the VM booting time. Probably, this is related to the method used for the
IP assignment, while at the other end-points the IP is assigned automatically. And this setup
could also be adopted in Nova.

5.4 Results and Evaluation of Big Data Prototype (2014-2015)

This subsection describes the test results for BigDataDIRAC prototype, where the objectives
were the proof-of-concept of the new DIRAC extension for Big Data software [52].

An architectural view of the implemented solution to integrate Big Data resources with
DIRAC is shown in Figure 5.16. At the top level one can identify five main components:
the user interface represented by a human figure, the DIRAC central servers running at the
University of Santiago de Compostela (USC), with the DIRAC Interware logo, and three

5.4. Results and Evaluation of Big Data Prototype (2014-2015) 133

institutions with four Hadoop clusters. BIGDATA.usc.es and BIGDATAHIVE.usc.es are the
clusters at the University of Santiago de Compostela (USC) in Spain, BIGDATA.cesga.es is
in the Galician Supercomputing Center (CESGA), also in Spain, and BIGDATA.ihep.cn is the
cluster in the Institute of High Energy Physics (IHEP) in China. For better portability of the
setup, all DIRAC components were created as virtual machines running in a CloudStack [32]
cluster at USC. The Hadoop clusters were also created using cloud, using OpenStack [104]
in the case of USC and IHEP, and OpenNebula [103] in CESGA. This last institution is also
using an innovative system [95] for Hadoop Cluster creation, which allows the deploying of
Hadoop clusters on demand [76] in seconds.

Figure 5.16: BigDataDIRAC Setup for testing the architecture.

Figure 5.16 shows the different steps a job goes through until it has finished. Initially, the
user has to specify the basic settings for the job. In this specification the following parameters
are required:

1. The Big Data software (only Hadoop is accepted at this moment, but new directors
could be created for Spark [143], Twister [43], Phoenix++ [118], or other Big Data
software) and version (the currently supported and tested versions for Hadoop are 1.1.0,
1.1.2 and 2.2.0, but other versions could work without problems).

134 Chapter 5. Evaluation of the Prototypes

2. The high level language used (if any) and its version (the 0.12 version of Hive have
been tested in this testbed).

3. The dataset need to be added to the job. This datased should have been previously
registered into the DIRAC file catalog by the DIRAC administrator (for production
environments, a DIRAC agent could register automatically the new datasets associated
to DIRAC.)

4. The input data associated to the job, such as, the jar file or Hadoop configuration files.

There are three different physical DIRAC machines at USC: the DIRAC main server (in-
dicated with a small green rectangle in Figure 5.16), the DIRAC user interface (not shown in
figure), and the Web Portal (blue rectangle), which allows the users to check the accounting
and the job status. It also allows, if the user has the necessary privilege level, to manage the
Big Data EndPoints connected with DIRAC.

Following with the steps of Figure 5.16, after submitting the job through the Web portal,
the dataset is checked by the Data Management system, which ensures that the dataset is well
formed before allowing a job to be created, with the pre-defined DIRAC form /vo/dataset_path.
Furthermore it checks whether the dataset is registered in the File Catalog and, finally, it gets
the SITE or SITES where the files or the replicas are stored. At this moment, the Workload
Management system manages the job with the BigDataSchedulerAgent and BigDataMoni-
toringAgent. As it was described before, if the conditions are satisfied and the Director is
selected, the job is submitted to the specific SITE in the step 5. In parallel, the Workload
Management is constantly requesting the job status of the job. Once the job is finished, the
BigDataMonitoring, in the case of normal job submission, or the InteractiveJobMonitoring, in
the cases of Hive or Pig, gets the job output from HDFS and stores this output in the DIRAC
OutputSandbox storage. During all this process, the user can monitoring the job status, and
when the execution is finished, he can download the job output from the Web Portal.

Figure 5.16 also shows the datasets used in our experiments. The datasets 2GB_* and
1GB_split_* are randomly generated. The datasets 1GB_rep_* are replicas of the 1GB_split_*
ones, in different location. The dataset 1GB_Grimm is a text file, containing books from the
Grimm brothers, whereas the 0.5GB_Grimm_split_* datasets are splitted from the previous
one. Furthermore, each of the datasets A, B and C contains 120 files of books in text for-
mat, of around 1.1 MB. Finally, the dataset D contains two tables, one with information of

5.4. Results and Evaluation of Big Data Prototype (2014-2015) 135

patents (2,923,923 records) and a second one with the cites used by these patents (16,522,439
records).

Discussion of the proposed experimental setup

In order to evaluate the suitability of DIRAC integrated with Big Data software to perform
Big Data analytic using Hadoop we have selected use cases representing typical small and
medium-size jobs. These use cases use real data sets and a fairly common MapReduce oper-
ation, for which the setup described in the last section has been optimized. However, all the
pieces involved are completely neutral and can be directly reused for other purposes with a
different configuration. The strengths of the proposed setup are:

– Usage of a mature framework, DIRAC: the general functionality is well tested and
there is no need to invest extra manpower on developing it. Many additional features
are already built in like accounting or web portal that otherwise would take a long time
to develop, test and setup. Once the use of Big Data resources is achieved, Grid, Cloud
and local resources would seamlessly be available for a big community of users that
could use different systems for software processing.

– Modularity: Different functional pieces are encapsulated and a plugin mechanism is
used to ease their replacement when necessary. For instance, making use of a different
Big Data provider just requires the definition of a new type of Big Data software with an
associated module that knows how to handle the submission request to the new provider.
Everything else remains the same.

– Efficient use of Resources: the proposed solution attempts to get access to computing
resources only when there are waiting tasks matching the capabilities of the resource.
Then, once the resource is accessed, it is used while there are pending tasks or the
resource capabilities are not exhausted. This approach greatly reduces the overheads
due to the resource reservation phase which is something intrinsic to any distributed
computing system.

There are still some aspects that might need further development. For instance those
related to the decision of queue limitation from the resource provider. In the current imple-
mentation, this decision is based on very few parameters: the cpu time requested by pending
tasks, the total number of requested tasks, and still running, but the limits should be added by

136 Chapter 5. Evaluation of the Prototypes

the DIRAC admin in the CS by hand. Of course, if one can reach resources from different
providers, a new algorithm based on availability, capabilities and cpu power, as well as the
priorities of waiting tasks needs to be developed.

Use case tests and results

Description of real-world benchmarks and their results after the execution are included in this
subsection. It is organized as follows: first, a proof-of-concept of BigDataDIRAC is deployed
with common Big Data jobs executed in the different clusters. Second, it is presented a per-
formance evaluation to test the BigDataDIRAC workload management [53], including three
use cases corresponding to typical user job patterns.

Usecase: BigDataDIRAC proof-of-concept
This part covers the initial experience with the usage of small-size Hadoop and High level

languages datasets from the four End-Points shown in the setup described in the beginning of
the section 5.4.

In order to study the stability of the setup in different situations four campaigns were
launched, in the first one, the typical Big Data use cases were launched, and around 300 jobs
of different Hadoop versions and Hive were executed. This first use case, representing small-
size Hadoop and Hive datasets, was based in splitted datasets of Grimm Brother’s books, with
around 1.1 MB in text format, for each SITE. In the case of Hive, 478 MB in two tables
with patents and cites of this patents were used. Figure 5.17 shows the total number of jobs
executed in the End-Points, in the case of Hadoop a word-count was launched and in the case
of Hive a join query with both tables.

Figure 5.18 shows the total number of jobs by SITE, this plot shows that the SITE which
has executed the higher number of jobs was BIGDATA.cesga.es with 54.4% of the jobs exe-
cuted. Figure 5.19 shows the execution time of the jobs submitted and executed in the different
EndPoints, this measure is obtained from the difference between the unix timestamp registered
in DIRAC JobDB database measured when the user submitted the job and the time registered
in JobDB when the job has finished. Some parameters of the BigDataMonitoring agent have
to be tuned, such as the pooling time, in order to decrease the execution time registered in
DIRAC, and also in the first half of the plot the jobs were executed with overloaded Hadoop
clusters, and in the second half the tuning of the agents and the low load of the machines is
showing a decreasing in the jobs execution time.

5.4. Results and Evaluation of Big Data Prototype (2014-2015) 137

Figure 5.17: Total jobs of the first campaing by SITE.

Figure 5.18: Cumulative jobs of the first campaing by EndPoint.

138 Chapter 5. Evaluation of the Prototypes

Figure 5.19: Total big data jobs grouped by EndPoint.

End-Point (SITE) Wordcount
(Sec.)

Task
track.

Rep. Blocks

BIGDATA.cesga.es 1123,55 5 3 118 (avg. block size 7424 B)
BIGDATA.usc.es 2314,09 1 1 118 (avg. block size 7424 B)
BIGDATA.ihep.cn 1404,88 1 1 118 (avg. block size 7424 B)

Table 5.3: Job average features of Wordcount MapReduce

Table 5.3 is showing the job average for the submitted jobs in this first campaign, also
the number of data nodes and the HDFS block size of the HDFS datasets in the different
EndPoints. Table 5.3 shows that in the case of BIGDATA.cesga.es makes sense a lower aver-
age wordcount, despite the fact that the block size is equal to the other two Hadoop clusters,
because this cluster has a greater number of nodes than the others. And in comparison, the
BIGDATA.usc.es and BIGDATA.ihep.cn, having the same number of data nodes and block
size, the second offers a better performance. In the following tests, the execution of a higher
number of jobs will be described in further detailed.

Table 5.3 is also showing the number of replicas, which define how many copies want to be
stored of each block. Cesga is using three replicas that will allow different nodes to execute
the same Map Reduce tasks-speculative execution-mitigating the performance degradation
that could be experienced in a heterogeneous cluster with VMs running under hypervisors
with different load conditions. In the case of others, there is only one dfs replica, which in

5.4. Results and Evaluation of Big Data Prototype (2014-2015) 139

the case of several task trackers having just one replica eliminates the fault tolerance of the
system, making it much less reliable, and with big size datasets could cause to consistently
fail. The Map tasks were 121 and only one Reduce task for each EndPoint.

End-Point (SITE) Join
query
(Sec.)

Task
track.

Rep. Blocks

BIGDATAHIVE.usc.es 2186,4 1 3 1 (avg. block size 78967873 B)

Table 5.4: Job average features of Hive job query

The features of USC Hive EndPoint (BIGDATAHIVE.usc.es) are showing in Table 5.4,
that the average time was around 36 minutes for Hive Jobs. Three jobs were created with a
total of four Map tasks and three Reduce tasks.

End-Point (SITE) HDFS READ (bytes) HDFS WRITTEN
(bytes)

BIGDATA.cesga.es 890743 902218
BIGDATA.usc.es 892277 902218
BIGDATA.ihep.cn 889209 902218
BIGDATAHIVE.usc.es 269766417_Job_A

67883105_Job_B
1110_Job_C
337650632_Total

67882731_Job_A
736_Job_B
440_Job_C
67883907_Total

Table 5.5: Read and write HDFS bytes in wordcount and Hive join query per job

As a result of this first campaign, at least 300 jobs were executed in three days continu-
ously and 132.61 execution hours were consumed, since they were submitted until the output
was uploaded to the DIRAC output sandbox. The wordcount jobs were launched to three dif-
ferent End-Points depending on the specific Input Dataset and they have read and written in
total 231.94 MB and 234.89 MB respectively as is shown Table 5.5. Furthermore, Hive jobs
have read a total of 10.06 GB of data and have written 2.02 GB in the HDFS. In conclusion,
the DIRAC Big Data integration is prepared for more robust tests.

BigDataDIRAC workload management performance evaluation

The performance evaluation is testing the main hypothesis of Section 4.3.5: federated Big-

DataDIRAC workload management is able to take advantage of aggregated computing power

140 Chapter 5. Evaluation of the Prototypes

of distributed Big Data clusters by an efficient global load balancing. For this purpose, three
usecases were tested to characterize typical user patterns: Big Data jobs with high IO through-
put compared with CPU, jobs with balanced CPU and I/O consumption, and classical MapRe-
duce jobs to filter lines including a searched substring, with higher CPU consumption com-
pared to IO. Thus, a wide range of possible user jobs patterns were contemplated.

The three performance evaluation usecases are using a subset of the experimental setup
described above, which is not including the IHEP Big Data cluster and USC Hive cluster, only
the two others: USC and CESGA clusters. Each usecase tests the federated BigDataDIRAC
results compared with single cluster equivalent results, to validate the main hypothesis.

Usecase: Randomwriter for high IO througput
A very extended performance test for Hadoop clusters is the Terasort [105]. This Java job

is composed of a randomwriter run, followed by a sort of the produced outputs for the first
run to complete a terabyte sorting benchmark. In our particular usecase, some modifications
have been introduced. The benchmark was separated in two decoupled runs to keep record
of the system performances for different use patterns. Therefore, the randomwriter usecase
analyses the high IO throughput pattern and storing results in the DIRAC data catalog for
future use of the produced files. The original randomwriter has also been modified to allow
different file size productions, to run benchmarks in the gigabyte magnitude.

Two tests were run, both submitting a single randomwriter job per Big Data cluster. The
first test produces a 2 GB random content file, splitting the file in two parts. The first part is
created with a job running in BIGDATA.usc.es producing a 1 GB file, the second is another 1
GB file created in BIGDATA.cesga.es. Both jobs were submitted to DIRAC at the same time.
Table 5.6 shows results for the split federated 2 GB production, including metrics of Hadoop
jobs runtime (HRT), the corresponding DIRAC jobs response time (RT) and the makespan,
which is the response time for both jobs submitted to DIRAC at the same time. Times are in
seconds.

Big Data Cluster File size Hadoop runtime Response time
BIGDATA.usc.es 1GB 2264 2424
BIGDATA.cesga.es 1GB 950 1029
Total Makespan 2GB 2424

Table 5.6: Federated BigDataDIRAC splited: Randomwrite 2GB

5.4. Results and Evaluation of Big Data Prototype (2014-2015) 141

To compare this federated performance, another test was run for a complete 2 GB random
write file in a single cluster, and repeated for USC and CESGA clusters to test different powers
of the single clusters. This comparison test is shown in table 5.7, where the job response time
corresponds to the 2 GB makespan of the federated case of Table 5.6.

Big Data Cluster File size Hadoop runtime Response time
BIGDATA.usc.es 2GB 4364 4433
BIGDATA.cesga.es 2GB 1900 2052

Table 5.7: Single cluster: Randomwrite 2GB

As expected, randomwrite results obtained by federated BigDataDIRAC shows a perfor-
mance constrained by the cluster with less power, in our case USC. With the tables results a
general rule can be expressed as: given a randomwrite problem of size S, it can be splitted in N

Hadoop clusters using BigDataDIRAC, obtaining a performance improvement of processing
lessPowerCluster(S/N). In this way, with an additional aggregated cluster of similar power
than USC, the federated makespan would be about 4433/3. So far, The hypothesis federated

BigDataDIRAC workload management is able to take advantage of aggregated computing

power of distributed Big Data clusters by an efficient global load balancing has been validated
for this usecase, showing improvement by lessPowerCluster(S/N). Actually, S/N performance
is not exact, because there is some DIRAC overhead corresponding to the difference between
Hadoop runtime and DIRAC response time. Analyzing the federated single jobs of 1 GB, it
is shown overhead ratios of 7.1%(USC) and 8.3%(CESGA), while for 2 GB files production
we have ratios of 1.6%(USC) and 8.0%(CESGA). Thus, generally, the DIRAC overhead is
independent of the job size and is affected by the particular DIRAC and underlying Big Data
resources conditions.

Usecase: Sort for balanced CPU and I/O consumptions
Sort usecase is using the previous DIRAC data catalog of the randomwrite to produce

1 GB sorted files. DIRAC catalog has two replicas for the unsorted files, one at CESGA
and the other at USC. The test reads the input files, processes a MapReduce sort algorithm,
and creates an output file. Total makespan included 10 repeated 1 GB sort jobs. Table 5.8
shows results for the replicated federated 1 GB sorting. In this case the federated strategy is
to replicate the 1 GB dataset, instead of dataset spliting of the previous usecase. The 10 sort
jobs are submitted to DIRAC at the same time, then each job would be run in the first free
cluster found by the load balancing scheduling described in Section 4.3.5.

142 Chapter 5. Evaluation of the Prototypes

Big Data Cluster File size Hadoop runtime Response time
BIGDATA.cesga.es 1GB 766 1104
BIGDATA.cesga.es 1GB 1520 1407
BIGDATA.usc.es 1GB 4344 10735
BIGDATA.cesga.es 1GB 1005 7424
BIGDATA.cesga.es 1GB 762 2540
BIGDATA.cesga.es 1GB 775 6733
BIGDATA.usc.es 1GB 4219 6038
BIGDATA.cesga.es 1GB 1459 3293
BIGDATA.cesga.es 1GB 1412 3984
BIGDATA.usc.es 1GB 2592 8424
Average 4696 1874
Total Makespan 10735

Table 5.8: Federated BigDataDIRAC replicated: Sort 1 GB

Table 5.9 shows the equivalent sort 1 GB test in a single cluster. For comparison reasons
the most powerful cluster has been chosen.

Big Data Cluster File size Hadoop runtime Response time
BIGDATA.cesga.es 1GB 756 808
BIGDATA.cesga.es 1GB 1428 1563
BIGDATA.cesga.es 1GB 747 14909
BIGDATA.cesga.es 1GB 1273 3710
BIGDATA.cesga.es 1GB 1191 5840
BIGDATA.cesga.es 1GB 1004 4430
BIGDATA.cesga.es 1GB 968 3002
BIGDATA.cesga.es 1GB 1425 2285
BIGDATA.cesga.es 1GB 766 13339
BIGDATA.cesga.es 1GB 1421 5152
Average 1097 5287
Total Makespan 14909

Table 5.9: Single Big Data cluster: Sort 1 GB

The average runtime for 1 GB sort jobs is 1,083s(CESGA) and 3,718s(USC). Sort power
can be expressed as the inverse of the Hadoop runtime. Thus the theoretical power of the
federated clusters would be the addition of the sort powers of CESGA and USC. Compared
with the single CESGA power, the theoretical Hadoop improvement would be 29%, whereas

5.4. Results and Evaluation of Big Data Prototype (2014-2015) 143

the actual improvement in the makespans was 39%. Therefore, the main hypothesis of the
proposed approach is validated: federated BigDataDIRAC workload management is able to

take advantage of aggregated computing power of distributed Big Data clusters by an efficient

global load balancing, improving performance more than the simple theoretical power aggre-
gation. This is due to the Hadoop semi-parallel features, which DIRAC can exploit when
federating Big Data clusters: when increasing the federated clusters in N parallel workload is
increasing greater than N.

Usecase: Grep for higher CPU than IO consumption
The Grep usecase is based in a 1 GB text, which is processed to obtain the lines which

are including the search substring. Table 5.10 shows results for the split federated 1 GB Grep.
In this case the federated strategy was to split the 1 GB dataset in two files of 0.5 GB one at
CESGA and the other at USC. To process the grep, it is necessary to submit the job to both Big
Data clusters, so two jobs (one in each cluster) are necessary to complete a single grep. The
complete makespan is composed of 10 grep, corresponding to 20 DIRAC jobs, which were
submitted at the same time and processed stochastically as described in Section 4.3.5. The
results of a complete 1 GB grep are taken from sequential CESGA and USC job submissions,
independently of when they were split processed. Table 5.10 summarizes the second DIRAC
job of the pairs, including the runtime addition, the response time from the pair submission
to the latest job end, and the total makespan from the larger DIRAC job response time. The
concept was to test not only the replication processing strategy, as in the previous sort usecase,
but also possible split processing strategies.

Table 5.11 shows the equivalent 1 GB Grep results for a single cluster submission in the
most powerful cluster of CESGA.

Comparing the total makespan, the hypothesis federated BigDataDIRAC workload man-

agement is able to take advantage of aggregated computing power of distributed Big Data

clusters by an efficient global load balancing has been validated with a performance improve-
ment of 50%. However, the Hadoop runtime power per cluster, as explained in previous sort

usecase, shows a theoretical power improvement of 84%, so in this case the theoretical power
has not been improved in the total makespan. The reason of this is the stochastic job matching,
which in the case of federated splitted pairs of jobs are not taking advantage of the fully par-
allel processing as a pair, obtaining lesser makespan improvement than might be theoretically
expected.

144 Chapter 5. Evaluation of the Prototypes

Big Data Cluster File size Hadoop runtime Response time
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 270 205
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 224 493
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 184 489
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 225 775
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 190 648
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 225 1034
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 262 1053
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 292 755
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 293 767
BIGDATA.cesga.es 0.5GB
BIGDATA.usc.es 0.5GB 256 310
Average 242 652
Total Makespan 1104

Table 5.10: Federated BigDataDIRAC splitted: Grep 1 GB

Big Data Cluster File size Hadoop runtime Response time
BIGDATA.cesga.es 1GB 225 276
BIGDATA.cesga.es 1GB 212 306
BIGDATA.cesga.es 1GB 222 1626
BIGDATA.cesga.es 1GB 208 1656
BIGDATA.cesga.es 1GB 143 606
BIGDATA.cesga.es 1GB 226 1056
BIGDATA.cesga.es 1GB 153 816
BIGDATA.cesga.es 1GB 225 788
BIGDATA.cesga.es 1GB 136 456
BIGDATA.cesga.es 1GB 153 1086
Average 190 759
Total Makespan 1656

Table 5.11: Single BigDataDIRAC splitted: Grep 1 GB

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Motivated by the trend of Cloud, Big Data, and with the technological base of Grid computing,
an integration was developed to allow scientific groups the use of different Cloud managers
and Big Data software. New designs and components have been detailed, proving the DIRAC
software extensibility, based in Open-source development standards, prototyping life cycle
and re-engineering software. The coordination of different software appliances and middle-
ware meet the nowadays beyond the frontline in the computer science state of the art, using
for this purpose the DIRAC interware as the integration of different distributed middleware.
The success of the tests shows different scenario of potential adoptions.

Virtual overhead metrics and simulations for different groups are also showing the viabil-
ity of the Cloud technologies for scientific computing. The simulations were used to anal-
yse statistically the performance over virtualization with different HEP software. One of the
main challenges of this work is to know whether current Cloud technologies provide enough
performance for specific machine configurations. In this sense, the Kernel-based Virtual Ma-
chine performance was analysed with the use of multivariate analysis of variance methods.
Some performance problems were found in relation with hardware architectures, in a specific
software called GAUSS of the LHCb experiment. The analysis of variance, including the
MANOVA statistics, demonstrates the dependent variable walltime to have significant perfor-
mance, for each software, of BM together with KVM, and there are significant differences
depending on the length of the job. Furthermore, the amount of memory, when it is above 2
GB, does not seem to be an important factor in the performance of this job unlike the case
of the number of cores, where it was observed an increase in performance as the number of

146 Chapter 6. Conclusions And Future Work

cores increases. The separated MANOVA of BM and KVM, presents similar results to the
ones obtained in the previous case when MANOVA was applied to the six dependent vari-
ables, but the proximity of the centroids in the configurations of more core-memory shows
more stability in Virtualized machines than in Baremetal.

As Cloud services gain maturity in HEP experiments, the correct configuration and setup
of KVM hypervisor will be an important decision in order to reach an optimal performance in
the specific HEP-Software.

Therefore, the work presented in this thesis proves that different groups may take advan-
tage of the strong points of the Cloud technologies, in particular regarding the platform main-
tenance, the dynamic environment composition of the computing resources, and the hardware
encapsulation on the computing nodes. A specific measurement of the major Cloud weak
points was done: the performance overhead. We have shown that this is not an impediment
for Cloud adoption in scientific computing. In this way, the design and the procedure of the
software distribution has been detailed, and the successful coordination of different software
appliances has been shown. The study case is based in previous tests and benchmarks and
we have found an improvement in software distribution of CernVM-FS vs systems as NFS or
HTTPd servers. This thesis shows the way to get CernVM-FS software repository access by
normal users, with improvements in scalability, and avoiding problems as the high latency by
using several level caching systems. The set-up of the infrastructure shows that Parrot can be
an option in very simple cases, but when the complexity increases Parrot is unreliable. The
described approaches make use of the flexibility provided by CernVM-FS, with some charac-
teristics as the multi-platform client or the possibility of execution in Cloud environments.

Additional challenges of such adoptions, regarding the complexity and the heterogeneity
of Cloud architectures were successfully faced in this work, with the use of the DIRAC in-
terware, overlaying a wide range of the most used specific middleware in Grid and Cloud.
First, CloudStack prototype was tested and implemented for the Formiga-Cloud project in-
frastructure. In the second prototype, tests were performed on the Multi-Site, Multi-VO and
Multi-Platform concepts in different infrastructures. As a result, a new flexible architecture
for constructing Federated Hybrid Cloud services was defined, Rafhyc is organized in Layers
with a core Persistent Configuration and a set of components that can be adopted to fulfil
the requirements of the particular classes of applications. The presented test results for the
prototype implementation of a Rafhyc component subset demonstrates the capability of the
architecture [51] to integrate aggregated resources for scientific computing and efficient im-

147

age management. The analysis of the variance of the test, including MANOVA statistics,
demonstrates that dependent variables are significant in the end-point discrimination, with
heterogeneous results depending on the different end-points conditions, which justifies the
necessity of an heuristic approach to deal with such problem domains, such as the one given
by Rafhyc. As federated Cloud services gain maturity, Rafhyc adopters may automatize the
Federated Service Polling to provide the necessary information to implement the Computing
Efficiency and Price Optimization and reach advanced levels of resilient resource manage-
ment.

Finally, this thesis also shows how to aggregate Big Data resources in a federated con-
text with DIRAC as the connector framework. A setup based on the DIRAC interware for
distributing computing has been described and implemented, with new components to han-
dle the use of Big Data resources running on Cloud clusters. With these components, Big
Data resources can be integrated with other computing resources such as Grid or Cloud. The
setup was implemented and tested using four Big Data clusters, with several benchmarks in a
testbed that have federated three institutions in two countries, Santiago de Compostela Univer-
sity (Spain), Galicia Supercomputing Center (Spain) and the Institute of High Energy Physics
(Beijing). A validation process with different phases was done, in order to verify the stability
and the reliability of the solution. In a first phase three hundred jobs were executed in four
clusters of the three institutions with small and medium-size datasets, using the equivalent in
hours of five days running uninterruptedly. Almost 10.20 GB HDFS reading data and 2.33 GB
HDFS writing data have been produced and successfully stored at HDFS and DIRAC Out-
putSandbox. In a second phase, three job patterns have been evaluated, the high IO, balanced
CPU and IO, and high CPU were the benchmarks created for the performance evaluation. The
benchmarks results have processed 46 GB of data with different medium-datasets of 0.5 GB,
1 GB and 2 GB. The successful execution of these tests have shown that with DIRAC and
Big Data it is possible to take advantage of aggregated computing power, showing an efficient
global load balancing scheduling.

This thesis shows that the integration of DIRAC and Big Data ecosystem in federated
context is possible and it has been validated. The code used by DIRAC is open-source and is
shared in public git repositories [39] [131] [15].

Future work in the roadmap is including the creation of a complete Cloud multi-scheduler,
the integration with Hadoop tests with big-size datasets and real world datasets, the aggrega-
tion of Hadoop Streaming for running jobs written in different languages, like Python or Perl.

Resumen

Cada día crece más la demanda de recursos de computación requeridos por los investigadores,
capacidades de cálculo que coexisten con el creciente volumen de datos generados actual-
mente. Estos investigadores están a demandar un servicio de Computación de Altas Presta-
ciones (HPC) que permitan la ejecución de sus simulaciones a través de la computación dis-
tribuida para poder acceder a los máximos recursos posibles, facilitando este acceso de la
forma más cómoda y segura para ellos. El término computación distribuida se utiliza para
describir cualquier tipo de operación que implique un sistema distribuido, es decir, varios
equipos que se comunican a través de una red. En este sentido, los sistemas distribuidos
incluyen desde sistemas fuertemente conectados, como un supercomputador paralelo o un
cluster, a débilmente acoplados, como en el caso de Grid Computing. El cluster implica un
conjunto de nodos casi idénticos próximos entre sí, conectados a través de Gigabit o redes de
fibra óptica. En el caso de la computación Grid puede ser visto como la federación de recur-
sos de cómputo. Estos recursos generalmente están débilmente acoplados, son heterogéneos
y geográficamente dispersos. El Grid Computing puede definirse según Ian Foster como "la
capacidad de habilitar el uso compartido de recursos para resolución de problemas en orga-
nizaciones virtuales de carácter dinámico y multi-institucionales". Así, el Grid proporciona
una infraestructura de computación distribuida que permite el uso de recursos de cómputo a
múltiples organizaciones virtuales (VO), donde se entiende como VO al conjunto dinámico de
personas o instituciones distribuidas físicamente. Este organización virtual suele estar sujeta
a un conjunto de reglas y condiciones en la gestión de dichos recursos.

Dentro del trabajo que presenta esta tesis, se explora un nuevo enfoque para el diseño de
sistemas distribuidos, centrándose en una mezcla de diferentes tecnologías Grid, junto con
otras tecnologías novedosas en el campo de la computación distribuida como es el caso del
Cloud o las herramientas para procesamiento en el área del Big Data. Todo ello se intentará

150

combinar con una solución escalable para aprovisionamiento del software específico de las
organizaciones virtuales. Dentro del proceso de planificación y creación del nuevo enfoque,
se describe también el conjunto de software intermedio encargado de conectar los recursos.
Este software es necesario debido a que, por lo general, los recursos mencionados estarán físi-
camente distribuidos, y pertenecerán a diferentes organizaciones que podrían poseer posibles
barreras políticas o administrativas, como es el caso de Universidades en donde las políticas
de acceso a recursos internos pueden ser bastante restrictivas. Hoy en día, estas Universidades
poseen redes conectadas con los centros de investigación con una velocidad y fiabilidad que
posibilitan la ejecución de trabajos de cálculo científico de manera distribuida, y disponen
tanto de recursos de cómputo existentes en aulas de informática utilizados para docencia, lab-
oratorios, etc., como clusters de ordenadores pertenecientes a grupos de investigación, que
en muchas ocasiones están infrautilizados en épocas de baja demanda. El uso de tecnologías
distribuidas como el Grid o el Cloud, parte del trabajo de esta tesis, permitirá que estos recur-
sos computacionales heterogéneos puedan ser reutilizados por los investigadores para realizar
simulaciones, aportando una mayor cantidad de cómputo a la ya existente y deslocalizando
los recursos entre distintos lugares alrededor del planeta. Para ello, se contará con soluciones
software como es el caso de DIRAC, un software open-source creado como herramienta Grid
dentro del proyecto LHCb, y que hoy en día es utilizado por un montón de organizaciones
como es el caso de la Iniciativa Grid Europea (EGI) o el sistema de envío de trabajos al Grid
en Francia (France-Grilles). DIRAC funciona como un sistema distribuido con agentes que
permiten la utilización de distinto tipo de recursos de cómputo para la ejecución de tareas de
cómputo de los investigadores. Otras herramientas que serán relevantes para la creación del
nuevo sistema serán los gestores Cloud. Para la selección de los sistemas Cloud más adecua-
dos fue necesario hacer un estudio que recogiese los más idóneos para la infraestructura que
se quería crear, y algunos de los que se han elegido son bien conocidos como es el caso de
CloudStack u OpenNebula. Y por último, en la integración de aplicaciones provenientes del
campo del Big Data, se ha utilizado la herramienta de MapReduce Hadoop junto con otras del
ecosistema como es el caso de Hive o Pig. Y en cuanto al tema de aprovisionamiento de soft-
ware entre distintas plataformas, CernVM-FS constituirá la base de la solución de distribución
de software presentada en esta tesis.

Por lo tanto, el objetivo de esta tesis podría sintetizarse como la creación de un sistema
de envío de trabajos, que permita ser utilizado por varias organizaciones virtuales, basado en
un software creado para funcionar en entornos Grid, pero que se adaptará para trabajar con

151

entornos basados en Cloud Computing y el Big Data. Y que contará con un repositorio de soft-
ware centralizado para proporcionar el software necesario para la ejecución de aplicaciones.
Puesto que el uso de recursos no dedicados es un requisito, el mecanismo propuesto deberá
de realizar la asignación entre clusters no dedicados y dedicados y deberá de proporcionar
diferentes plataformas dependiendo del grupo de usuarios que necesiten ejecutar trabajos. En
otras palabras, el sistema deberá de permitir enviar trabajos de investigadores a Clouds feder-
ados y aulas de ordenadores de organismos, adaptándose a las políticas de acceso que hayan
sido definidas. Deberá ser capaz de utilizar la plataforma más apropiada para su software, y
adaptarse a los requisitos del proyecto Formiga-Cloud, que busca la creación de sistemas de
envíos de trabajos en instituciones con recursos dedicados y no dedicados. Por lo tanto se
pueden considerar como objetivos principales de esta tesis los siguientes:

– La integración de recursos dedicados y no dedicados, tales como salas de ordenadores
en universidades y colegios. Esto permitiría aumentar la potencia de cálculo, especial-
mente por la noche y los fines de semana, cuando no hay actividad académica.

– La inclusión de una solución escalable para la distribución de software. Necesario para
lograr una baja latencia y maximizar la eficiencia en el uso de los recursos.

– Una gestión sencilla de la infraestructura y de la herramienta que permita el envío de tra-
bajos. Esta herramienta deberá de permitir el uso por varias comunidades de usuarios.
Esto facilitará que los investigaciones se centren en su trabajo en lugar de preocuparse
por las características específicas del hardware y software en las instalaciones donde se
ejecutan los trabajos.

– Cada grupo de usuarios (Organización Virtual) tendrá una plataforma específica, soft-
ware y prioridades de los usuarios para ejecutar su trabajo.

– La integración de software de Big Data como Hadoop bajo entornos Cloud para la eje-
cución de los trabajos con que permitan la ejecución de conjuntos de datos distribuidos.

– Posibilidad de incorporar indistintamente recursos Grid, Cloud o clusters Big Data
cuando sea necesario y de proveedores externos.

– La incorporación de múltiples gestores de Cloud. El entorno Cloud con el que se inicia
la creación del sistema estará basado en CloudStack, ya que se supone que es barato,

152

fácil de usar y administrar. Pero será necesario que la solución propuesta permita la
integración del mayor número de gestores Cloud posibles.

Para la creación de todo el sistema, este trabajo comenzó con la obtención minuciosa
de los requisitos necesarios, para pasar después a un proceso de integración básica. Poste-
riormente se estudió la optimización de un conjunto representativo de paquetes de software
científico ejecutado en entornos Cloud. Para ello, fue necesario la realización de estudios
estadísticos lo más próximos posible a los entornos en producción para poder determinar y
crear las infraestructuras adaptadas evitando así la pérdida de rendimiento de los trabajos en
la utilización de los recursos Cloud. Por último en el proceso de desarrollo se creó y probó
el sistema de envío de trabajos que requerirá de grandes volúmenes de datos distribuidos, ha-
ciendo uso de software Big Data. Como resultado de todo este trabajo se diseñaron nuevos
sistemas y componentes, detallados a lo largo de los capítulos de la tesis. El diseño y la ver-
satilidad de las soluciones empleadas demuestran la capacidad de extensión de DIRAC, que
está basado en normas de desarrollo Opensource. Estas extensiones creadas para DIRAC han
sido desarrolladas haciendo uso de prototipos de ciclo de vida y técnicas de reingeniería de
software.

Dentro del proceso de validación de los nuevos sistemas y componentes, se crearon métri-
cas y simulaciones que han permitido demostrar la viabilidad de las tecnologías Cloud en la
computación científica. Dichas simulaciones se utilizaron para analizar estadísticamente el
rendimiento del software que se ejecutó en los entornos virtualizados y con respecto a en-
tornos sin virtualizar. Así que uno de los principales desafíos de este trabajo fue conocer si
el Cloud proporcionaba el suficiente rendimiento en configuraciones de máquinas virtuales
típicas. Como resultado, a raíz del análisis estadístico se encontraron algunos problemas de
rendimiento relacionados con arquitecturas hardware, en la utilización de un software es-
pecífico denominado GAUSS utilizado en el experimento LHCb del Centro Europeo para la
Investigación Nuclear o CERN. Y en cuanto al estudio estadístico, se demostró que el tiempo
de CPU de las simulaciones dentro del Cloud, posee significancia pero esta es dependiente
del software que se ha analizado. Se demostró que hay diferencias significativas en función
de la duración del trabajo. Por otro lado la cantidad de memoria, cuando es superior a 2 GB,
no parece ser un factor importante en el rendimiento de este tipo de trabajos a diferencia del
número de nucleos de CPU que se empleen, donde sí se observó un aumento en el rendimiento
proporcional al aumento de los mismos.

153

Por lo tanto, como parte de la conclusión de esta tesis se puede aseverar que así como
los servicios en el Cloud adquieran madurez en la ejecución de simulaciones en el campo de
la física de altas energías, la correcta configuración de hipervisores del tipo KVM será una
decisión a tener en cuenta importante con el fin de alcanzar un rendimiento óptimo con este
software específico de física de altas energías. Se ha demostrado que diferentes grupos de
investigadores en el área de física de altas energías pueden aprovecharse de las oportunidades
de las tecnologías Cloud, optimizando su rendimiento.

En cuanto a la parte de distribución de software de distintos grupos de usuarios con la
herramienta CernVM-FS, a través de pruebas comparativas se ha demostrado que se mejora
sustancialmente, con respecto a los otros sistemas analizados como es el caso de NFS o servi-
dores HTTP que proveen del software a través de internet. Estos estudios comparativos per-
mitieron el diseño y creación de un procedimiento de distribución de software detallado. En
esta tesis se muestra la forma de obtener software accediendo a un repositorio de CernVM-
FS, con mejoras en la escalabilidad y evitando problemas como la alta latencia utilizando
varios sistemas de almacenamiento en caché a distintos niveles. Dentro del diseño del pro-
cedimiento para la distribución del software, se analizan los sistemas oportunistas como es el
caso del software denominado Parrot, que interpreta el protocolo utilizado por CernVM-FS.
Los resultados muestran que este software puede ser una opción en casos muy sencillos, pero
cuando la complejidad aumenta es poco fiable.

Dentro del proceso de desarrollo prototipado, se realizaron y evaluaron varios prototipos,
que van escalando en complejidad y se adaptan a los requerimientos propuestos inicialmente.
En el primero de los prototipos que permitió una integración de DIRAC y CloudStack fue
probado junto con la infraestructura del proyecto FormigaCloud. En el segundo, se realizaron
pruebas sobre los conceptos multi-sitio, varias organizaciones virtuales y multiplataforma.
Y como resultado, se definió una nueva arquitectura flexible para la construcción de servi-
cios federados con cloud híbridos. Esta arquitectura se denominó Rafhyc y se organiza en
capas. Los resultados de las pruebas realizadas sobre Rafhyc demuestra la capacidad de la
arquitectura para integrar los recursos agregados para cálculo científico así como una gestión
eficiente de imágenes. Y dado que los servicios de Cloud federados ganan madurez, adop-
ciones como Rafhyc permitirán automatizar los servicios federados al proporcionar toda la
información necesaria para aplicar eficientemente sistemas como la optimización de precios
y obtener recursos a un nivel más avanzado.

154

Finalmente, en esta tesis también se ha diseñado, implementado y probado la integración
de un software Big Data como es Hadoop con DIRAC en la agregación de recursos federa-
dos. Durante la creación de la arquitectura fueron creados nuevos componentes, que permiten
que clusters Big Data puedan ser integrados de una manera sencilla con otro tipo de recursos
como es el caso de los clusters Grid o Cloud. Para las pruebas de agregación se utilizaron
cuatro conjuntos de datos distribuidos entre distintos centros de cálculo. Este sistema fed-
erado constaba de tres instituciones en dos países distintos, entre los que se encontraban la
Universidade de Santiago de Compostela (España), el Centro de Supercomputación de Gali-
cia (España) y el Instituto de Física de Altas Energías (Beijing). Para testear la agregación
federada de recursos se diseñó un proceso de validación con diferentes fases, con el fin de ver-
ificar la estabilidad y la fiabilidad de la solución en la primera de ellas, en donde se ejecutaron
trescientas simulaciones en cuatro clusters de Big Data de las tres instituciones mencionadas
con volúmenes de datos de tamaño pequeño y medio, utilizando el equivalente en horas o
cinco días sin interrupción, con casi 10,20 GB en lectura de datos en el sistema de archivos
de Hadoop (HDFS) y 2,33 GB en escritura sobre HDFS. Una vez finalizada la primera base
en donde se comprobó la estabilidad, en una segunda se evaluaron tres características, el alto
IO, el balanceo de carga de CPU y IO, y por último el uso de CPU en condiciones de carga
elevada. Los resultados, que procesaron del orden de 46 GB de datos con diferentes fuentes
de entrada de tamaño medio 0,5 GB, 1 GB y 2 GB, demostraron que con DIRAC y Big Data
es posible aprovechar la potencia de cálculo agregado, y que es eficiente en cuanto al balanceo
de carga, demostrando así que la integración de un sistema Grid como DIRAC y el ecosistema
de Big Data en un contexto federado es posible.

Como trabajo futuro en la hoja de ruta está incluir la creación de un multischeduler en
Cloud, la integración con Hadoop con conjuntos de grandes volúmenes de datos de aplica-
ciones reales, y la inserción de Hadoop Streaming para ejecutar trabajos escritos en diferentes
lenguajes de programación, como Python o Perl.

Bibliography

[1] About Globus Toolkit. http://www.globus.org/toolkit/about.html.
Accessed at Apr. 2015.

[2] Amazon Elastic Compute Cloud. http://www.aws.amazon.com/ec2/.
Accessed at Apr. 2015.

[3] Amazon Simple Storage Service. http://aws.amazon.com/s3. Accessed at
Apr. 2015.

[4] Apache CloudStack. http://cloudstack.apache.org/. Accessed at Apr.
2015.

[5] Apache Hadoop. http://hadoop.apache.org. Accessed at Apr. 2015.

[6] Apache Hadoop HDFS Federation. https://hadoop.apache.org/docs/
r2.6.0/hadoop-project-dist/hadoop-hdfs/Federation.html.
Accessed at Apr. 2015.

[7] L. Apolinario, N. Armesto, and L. Cunqueiro. Background subtraction and jet
quenching on jet reconstruction.

[8] L. Apolinario, N. Armesto, and L. Cunqueiro. An analysis of the influence of
background subtraction and quenching on jet observables in heavy-ion collisions.
2012.

[9] M. Armbrust, A. Fox, R. Griffith, et al. A view of Cloud computing. Communications

of the ACM, 53(4):50–58, 2010.

http://www.globus.org/toolkit/about.html
http://www.aws.amazon.com/ec2/
http://aws.amazon.com/s3
http://cloudstack.apache.org/
http://hadoop.apache.org
https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/Federation.html

156 Bibliography

[10] AWS Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/.
Accessed at Apr. 2015.

[11] M. Baker, R. Buyya, and D. Laforenza. Grids and Grid technologies for wide-area
distributed computing. Software: Practice and Experience, 32:1437–1466, 2002.

[12] P. Barham, B. Dragovic, K. Fraser, et al. XEN and the art of virtualization. SOSP

Proceedings of the nineteenth ACM symposium on Operating systems principles,
pages 164–177, 2013.

[13] G. Bell and J. Grey. What’s next in high performance computing? Communications of

the ACM, 4555(2), 2002.

[14] V. Berzins. Software prototyping. In Article Encyclopedia of Computer Science,
volume 4, pages 1636–1638, 2003.

[15] BigDataDIRAC, github repository.
https://github.com/vfalbor/BigDataDIRAC. Accessed at Apr. 2015.

[16] J. Blomer, P. Buncic, et al. The CernVM file system. Technical report. Accessed at
Apr. 2015.

[17] J. Blomer, P. Buncic, et al. Status and future perspectives of CernVM-fs. In Congress

of Computing in High Energy and Nuclear Physics, 2010.

[18] J. Blomer, P. Buncic, and P. Fuhrmann. Towards Cloud computing for HEP using
CernVM-fs. In Gentner Day, 2010.

[19] F. Brochu et al. Ganga: User-friendly Grid job submission and management tool for
LHC and beyond. In Journal of Physics: Conference Series, volume 219. IOP
Publishing, 2010.

[20] P. Buncic. CernVM - a virtual appliance for LHC applications. In Proceedings of the

XII. International Workshop on Advanced Computing and Analysis Techniques in

Physics Research, volume 12. PoS Publishing, 2008.

[21] P. Buncic, C. Aguado Sánchez, J. Blomer, et al. CernVM: Minimal maintenance
approach to the virtualization. In Journal of Physics: Conference Series, volume 331,
page 052004. IOP Publishing, 2011.

http://aws.amazon.com/elasticmapreduce/
https://github.com/vfalbor/BigDataDIRAC

Bibliography 157

[22] P. Buncic, C. Aguado Sánchez, J. Blomer, et al. A practical approach to virtualization
in HEP. Future generation computer systems, pages 2190–5444, 2011.

[23] M. Cacciari, G. P. Salam, and G. Soyez. Fastjet user manual. Technical report, Cern,
2011.

[24] E. Capriolo, D. Wampler, and J. Rutherglen. Programming Hive. O’Reilly, 2012.

[25] A. Casajus and R. Graciani. LHCb DIRAC team. In Journal of Physics: Conference

Series, volume 219, page 042033. IOP Publishing, 2010.

[26] A. Casajús and R. Graciani. DIRAC distributed secure framework. In Journal of

Physics: Conference Series, volume 219, page 042033. IOP Publishing, 2010.

[27] A. Casajús, R. Graciani, S. Paterson, A. Tsaregorodtsev, et al. DIRAC pilot
framework and the DIRAC workload management system. In Journal of Physics:

Conference Series, volume 219, page 062049. IOP Publishing, 2010.

[28] C. Catlett and L. Smarr. Metacomputing. Communication of the ACM, 35(6):44–52,
1992.

[29] CernVM. http://cernvm.cern.ch/portal/filesystem. Accessed at
Apr. 2015.

[30] CernVM-FS. http://cernvm.cern.ch/portal/. Accessed at Apr. 2015.

[31] A. Chierici and R. Veraldi. A quantitative comparison between XEN and KVM. In
Journal of Physics: Conference Series, volume 219, page 042005. IOP Publishing,
2010.

[32] CloudStack. http://www.cloudstack.com. Accessed at Apr. 2015.

[33] CloudStack Dev. Doc. https://cloudstack.apache.org/docs/en-US/
Apache_CloudStack/4.1.1/html/Developers_Guide/. Accessed at
Apr. 2015.

[34] G. Collaboration. Geant4 - a simulation toolkit. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 5056(3), 2003.

http://cernvm.cern.ch/portal/filesystem
http://cernvm.cern.ch/portal/
http://www.cloudstack.com
https://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.1.1/html/Developers_Guide/
https://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.1.1/html/Developers_Guide/

158 Bibliography

[35] Cream CE. http://grid.pd.infn.it/cream/. Accessed at Apr. 2015.

[36] dCache. https://www.gridpp.ac.uk/wiki/DCache. Accessed at Apr.
2015.

[37] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
In Communications of the ACM 51, pages 107–113. ACM, 2008.

[38] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science
on the Cloud: the montage example. In SC IEEE/ACM, page 50. IEEE/ACM, 2008.

[39] DIRAC, github repository. https://github.com/DIRACGrid/DIRAC.
Accessed at Apr. 2015.

[40] DIRAC grid. www.diracgrid.org. Accessed at Apr. 2015.

[41] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico
di Milano, Italy, 1992. in Italian.

[42] S. Easo, I. Belyaev, G. Corti, et al. LHCb simulation program. Technical report,
LHCb, 2010.

[43] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister:
a runtime for iterative MapReduce. In Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing, pages 810–818. ACM,
2010.

[44] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for data intensive scientific
analyses. In eScience, 2008. eScience’08. IEEE Fourth International Conference on,
pages 277–284. IEEE, 2008.

[45] O. M. Elzeki, M. Z. Reshad, and M. A. Elsoud. Improved max-min algorithm in
Cloud computing. International Journal of Computer Applications, 50(12):22–27,
2012.

[46] European Middleware Initiative. http://www.eu-emi.eu/. Accessed at Apr.
2015.

http://grid.pd.infn.it/cream/
https://www.gridpp.ac.uk/wiki/DCache
https://github.com/DIRACGrid/DIRAC
www.diracgrid.org
http://www.eu-emi.eu/

Bibliography 159

[47] Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan. MARIANE: MapReduce
implementation adapted for HPC environments. In Grid Computing (GRID), 2011

12th IEEE/ACM International Conference on, pages 82–89. IEEE, 2011.

[48] W. Fang, B. He, Q. Luo, and N. K. Govindaraju. Mars: Accelerating MapReduce with
graphics processors. Parallel and Distributed Systems, IEEE Transactions on,
22(4):608–620, 2011.

[49] V. Fernández Albor, J. Cacheiro, R. Graciani, V. M. Muñoz, T. F. Pena, and J. Silva.
User access to cvmfs software repositories on ibergrid. In Iberian Grid Conference

Ibergrid, Lisbon. IOP Publishing, 2012.

[50] V. Fernández Albor, J. López-Cacheiro, F. Gómez-Folgar, R. Graciani,
A. García-Loureiro, and J. Saborido. Study and performance of software scientific
distribution over Cloud environments with cvmfs. In XXII Jornadas de Paralelismo

Universidad de La Laguna, 2011.

[51] V. Fernández Albor and V. M. Muñoz. DIRAC MultiCloud Brokering. Technical
report, Ibergrid, 2012.

[52] V. Fernández Albor, V. M. Muñoz, and T. F. Pena. BigDataDIRAC: deploying
distributed Big Data applications. In IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, Shenzhen, Guangdong, China, 2015.

[53] V. Fernández Albor, V. M. Muñoz, and T. F. Pena. Federated big data for resource
aggregation and load balancing with DIRAC. In International Conference on

Computational Science, Reykjavik, Iceland, 2015.

[54] V. Fernández Albor, J. Saborido, F. Gómez Folgar, J. López Cacheiro, and R. Graciani
Díaz. DIRAC integration with CloudStack. In Cloud Computing Technology and

Science (CloudCom), 2011 IEEE Third International Conference on, pages 537–541.
IEEE, 2011.

[55] V. Fernández Albor, M. Seco, V. M. Muñoz, R. Graciani, T. F. Pena, and J. Saborido.
Multivariate analysis of variance for high energy physics software in virtualized
environments. International Symposium on Grids and Clouds, Academia Sinica,

Taipei, Taiwan, 2015.

160 Bibliography

[56] V. Fernández Albor, M. Seco, V. M. Muñoz, R. Graciani, T. F. Pena, and J. Silva.
Cloud flexibility using DIRAC Interware. In Journal of Physics: Conference Series,
volume 513, page 032031. IOP Publishing, 2014.

[57] T. Fifield, A. Carmona, A. Casajús, R. Graciani, and M. Sevior. Integration of Cloud,
Grid and local cluster resources with DIRAC. In Journal of Physics: Conference

Series, volume 331, page 062009. IOP Publishing, 2011.

[58] W. Ford et al. [RFC3280] Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL). Technical report, The Internet Engineering Task
Force, 2002.

[59] I. Foster. What is the Grid? a three point checklist. GRIDtoday, 1(6), 2002.

[60] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the Grid: An
open Grid services architecture for distributed systems integration. In Open Grid

Service Infrastructure Working Group, Global Grid Forum, 2002.

[61] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable
virtual organizations. International journal of High Performance Computing

applications, 15(3):200–222, 2001.

[62] I. Foster, Y. Zhao, R. Ioan, and L. Shiyong. Cloud computing and Grid computing
360-degree compared. In Grid Computing Environments Workshop, 2008.

[63] FUSE. http://fuse.sourceforge.net. Accessed at Apr. 2015.

[64] G. Corti, Monte Carlo simulation(s) in LHCb and introduction to Gauss.
https://lhcb-doc.web.cern.ch/lhcb-doc/presentations/

TalksNotDirectlyRelatedLHCb/Postcript/

GCorti-MCinHEP-2008.pdf. Accessed at Apr. 2015.

[65] Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic optimization
algorithm: harmony search. Simulation, 76(2):60–68, 2001.

[66] gLite - Lightweight Middleware for Grid Computing. http:
//grid-deployment.web.cern.ch/grid-deployment/glite-web.
Accessed at Apr. 2015.

http://fuse.sourceforge.net
https://lhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/GCorti-MCinHEP-2008.pdf
https://lhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/GCorti-MCinHEP-2008.pdf
https://lhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/GCorti-MCinHEP-2008.pdf
http://grid-deployment.web.cern.ch/grid-deployment/glite-web
http://grid-deployment.web.cern.ch/grid-deployment/glite-web

Bibliography 161

[67] F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 13(5):533–549, 1986.

[68] D. Goldberg and J. Holland. Genetic algorithms and machine learning. Machine

Learning, 3(2):95–99, 1988.

[69] F. Gomez-Folgar, A. García-Loureiro, and J. López-Cacheiro. An open-source Cloud
management platform comparison. 5th Open Cirrus Summit, 2011.

[70] Google App Engine. http://code.google.com/appengine/. Accessed at
Apr. 2015.

[71] R. Graciani Díaz, A. Casajús Ramo, A. Carmona-Agüero, T. Fifield, and M. Sevior.
BELLE-DIRAC setup for using Amazon Elastic Compute Cloud. Journal of Grid

Computing, 9(1):65–79, 2011.

[72] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox. MapReduce in the Clouds for science.
In Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second

International Conference on, pages 565–572. IEEE, 2010.

[73] S. Guo. Hadoop Operations and Cluster Management Cookbook. Packt Publishing,
2013.

[74] GZIP. http://www.gzip.org. Accessed at Apr. 2015.

[75] F. Gómez-Folgar, J. López-Cacheiro, C. Fernández Sanchez, A. García-Loureiro,
R. Valín, and V. F. Albor. Formiga Cloud platform description. In XXII Jornadas de

Paralelismo Universidad de La Laguna, 2011.

[76] Hadoop-on-demand, github repository.
https://github.com/alcachi/hadoop-on-demand. Accessed at Apr.
2015.

[77] A. Harutyunyan et al. A practical approach to virtualization. In The European

Physical Journal Plus, volume 126, pages 1–8, 2011.

[78] HEP-SPEC06. https:
//twiki.cern.ch/twiki/bin/view/FIOgroup/TsiBenchHEPSPEC.
Accessed at Apr. 2015.

http://code.google.com/appengine/
http://www.gzip.org
https://github.com/alcachi/hadoop-on-demand
https://twiki.cern.ch/twiki/bin/view/FIOgroup/TsiBenchHEPSPEC
https://twiki.cern.ch/twiki/bin/view/FIOgroup/TsiBenchHEPSPEC

162 Bibliography

[79] K. Hinkelmann. Fisher. The design of experiments. In John Wiley & Sons Inc.,
volume 1, 2007.

[80] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin. MapCG: Writing parallel program
portable between CPU and GPU. In Proceedings of the 19th international conference

on Parallel architectures and compilation techniques, pages 217–226. ACM, 2010.

[81] IaaS, PaaS, SaaS, Explained and Compared - apprenda.com. http://apprenda.
com/library/paas/iaas-paas-saas-explained-compared/.
Accessed at Apr. 2015.

[82] IN2P3. http://www.in2p3.fr. Accessed at Apr. 2015.

[83] A. Ishikawa et al. Evtgen: A montecarlo generator for b-physics. Technical report,
Cern, 2004.

[84] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of 1995

IEEE International Conference on Neural Networks, pages 1942–1948, Perth,
Australia, 1995.

[85] G. Kousiouris, G. Vafiadis, and T. Varvarigou. A front-end, Hadoop-based data
management service for efficient federated Clouds. In Cloud Computing Technology

and Science (CloudCom), 2011 IEEE Third International Conference on, pages
511–516. IEEE, 2011.

[86] E. Lanciotti. An alternative model to distribute VO specific software to WLCG sites:
a prototype at PIC based on CernVM File System. In Cern,GDB meeting, 2010.

[87] E. Lanciotti, J. Blomer, et al. An alternative model to distribute vo software to wlcg
sites based on CernVM-fs: a prototype at pic tier1. Technical report, 2011.

[88] Y.-H. Lee, S. Leu, and R.-S. Chang. Improving job scheduling algorithms in a Grid
environment. Future generation computer systems, 27(8):991–998, 2011.

[89] C.-C. Lin and D.-J. Deng. Dynamic load balancing in Cloud-based multimedia
system using genetic algorithm. In Advances in Intelligent Systems and

Applications-Volume 1, pages 461–470. Springer, 2013.

[90] Linux KVM. http://www.linux-kvm.org/page. Accessed at Apr. 2015.

http://apprenda.com/library/paas/iaas-paas-saas-explained-compared/
http://apprenda.com/library/paas/iaas-paas-saas-explained-compared/
http://www.in2p3.fr
http://www.linux-kvm.org/page

Bibliography 163

[91] H. Liu and D. Orban. Cloud MapReduce: A MapReduce implementation on top of a
Cloud operating system. In Proceedings of the 2011 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, pages 464–474. IEEE Computer
Society, 2011.

[92] S. Loughran, J. M. Alcaraz Calero, A. Farrell, J. Kirschnick, and J. Guijarro. Dynamic
Cloud deployment of a MapReduce architecture. Internet Computing, IEEE,
16(6):40–50, 2012.

[93] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang, B. He, R. S. M. Goh, and R. Huynh.
Optimizing the MapReduce framework on Intel Xeon Phi coprocessor. In Big Data,

2013 IEEE International Conference on, pages 125–130. IEEE, 2013.

[94] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu. DataMPI: extending MPI to
Hadoop-like Big Data computing. In Parallel and Distributed Processing Symposium,

2014 IEEE 28th International, pages 829–838. IEEE, 2014.

[95] J. López Cacheiro et al. Leveraging EGI federated Cloud infrastructure for Hadoop
analytics. In Proc. of 8th Iberian Grid Infrastructure Conference, IBERGRID’14,
Aveiro, Portugal, Sept. 2014.

[96] G. Marliss and M. Menachem. Slaying the software dragon: A practical guide to
software quality. In International Thomson Computer Press, 1997.

[97] A. Monaco. A view inside the Cloud. The institute, The journal of IEEE news source,
2012.

[98] V. M. Muñoz, A. Casajus, V. Fernández Albor, R. Graciani, and G. M. Arévalo.
Rafhyc: An architecture for constructing resilient services on federated hybrid Clouds.
In Journal of Grid Computing, volume 11, pages 753–770. IOP Publishing, 2013.

[99] V. M. Muñoz, A. Casajus, R. Graciani, and G. Merino. Use case: Running Montecarlo
LHCb simulations using DIRAC with EGI federated Cloud. In EGI Technical Forum

Book of Abstracts. EGI, 2012.

[100] V. M. Muñoz, V. Fernández Albor, R. Graciani Díaz, A. Casajús Ramo, T. F. Pena,
G. Merino Arévalo, and J. J. Saborido Silva. The integration of CloudStack and
OCCI/OpenNebula with DIRAC. In Journal of Physics: Conference Series, volume
396, page 032075. IOP Publishing, 2012.

164 Bibliography

[101] OGF DRMAA Working Group. http://drmaa.org/documents.php.
Accessed at Apr. 2015.

[102] OpenAFS. http://www.openafs.org. Accessed at Apr. 2015.

[103] OpenNebula. http://opennebula.org/. Accessed at Apr. 2015.

[104] OpenStack. http://www.openstack.org/. Accessed at Apr. 2015.

[105] O. O’Malley. Terabyte sort on Apache Hadoop.
http://sortbenchmark.org/YahooHadoop.pdf, May 2008. Accessed at
Apr. 2015.

[106] M. Parastoo, B. Franck, B. Arne, et al. Migrating legacy applications to the service
Cloud paradigm: The REMICS Project. In European Research Activities in Cloud

Computing, pages 97–119. Cambridge Scholars Publishing, 2012.

[107] PIC. http://www.pic.es. Accessed at Apr. 2015.

[108] Proxy Globus.
http://dev.globus.org/wiki/Security/ProxyCertTypes. Accessed
at Apr. 2015.

[109] PyGrub. https://wiki.debian.org/PyGrub. Accessed at Apr. 2015.

[110] Pythia Collaboration. http://home.thep.lu.se/∼torbjorn/Pythia.html.

[111] P. Riteau, A. Iordache, and C. Morin. Resilin: elastic MapReduce for private and
community Clouds. Technical Report RR-7767, Inria, France, Oct. 2011.

[112] Sahara - OpenStack. https://wiki.openstack.org/wiki/Sahara.
Accessed at Apr. 2015.

[113] M. Salgueiro, P. González, T. F. Pena, and J. Cabaleiro. Assessment, design and
implementation of a private Cloud for MapReduce applications. Open Access Library

Journal, 1(3), 2014.

[114] Sample job config file. http://wiki.apache.org/hadoop/JobConfFile.
Accessed at Apr. 2015.

http://drmaa.org/documents.php
http://www.openafs.org
http://opennebula.org/
http://www.openstack.org/
http://sortbenchmark.org/YahooHadoop.pdf
http://www.pic.es
http://dev.globus.org/wiki/Security/ProxyCertTypes
https://wiki.debian.org/PyGrub
https://wiki.openstack.org/wiki/Sahara
http://wiki.apache.org/hadoop/JobConfFile

Bibliography 165

[115] S. Sciutto. AIRES. A system for air shower simulations. Technical report, 2002.

[116] SPEC. http://www.spec.org. Accessed at Apr. 2015.

[117] P. Suri and M. Singh. An efficient decentralized load balancing algorithm for Grid. In
Advance Computing Conference (IACC), 2010 IEEE 2nd International, pages 10–13.
IEEE, 2010.

[118] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: Modular MapReduce for
shared-memory systems. In Proceedings of the second international workshop on

MapReduce and its applications, pages 9–16. ACM, 2011.

[119] C. Tang. A high-performance virtual machine image format for Cloud. In
USENIXATC Proceedings of the USENIX conference on USENIX annual technical

conference, pages 18–18, 2011.

[120] TAR. http://www.gnu.org/software/tar/. Accessed at Apr. 2015.

[121] The Large Hadron Collider. http://lhc.web.cern.ch. Accessed at Apr. 2015.

[122] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente. Cloud
brokering mechanisms for optimized placement of virtual machines across multiple
providers. Future Generation Computer Systems, 28(2):358–367, 2012.

[123] A. Tsaregorodtsev et al. Status of the DIRAC Project. In Journal of Physics:

Conference Series, volume 396, page 032107. IOP Publishing, 2012.

[124] A. Tsaregorodtsev, V. Garonne, J. Closier, M. Frank, C. Gaspar, E. van Herwijnen,
F. Loverre, S. Ponce, R. G. Diaz, D. Galli, et al. DIRAC–distributed infrastructure
with remote agent control. In Proc. of CHEP2003, 2003.

[125] A. Turing. Intelligent machinery. Technical report, National Physical Laboratory,
1948.

[126] Twenty-One Experts Define Cloud Computing.
http://cloudcomputing.sys-con.com/node/612375/print.
Accessed at Apr. 2015.

[127] UNICORE. http://www.unicore.eu/unicore/. Accessed at Apr. 2015.

http://www.spec.org
http://www.gnu.org/software/tar/
http://lhc.web.cern.ch
http://cloudcomputing.sys-con.com/node/612375/print
http://www.unicore.eu/unicore/

166 Bibliography

[128] Unified Modeling Language.
http://en.wikipedia.org/wiki/Unified_Modeling_Language.
Accessed at Apr. 2015.

[129] Universidade de Santiago de Compostela. http://www.usc.es. Accessed at Apr.
2015.

[130] V. Vapnik and S. Kotz. Estimation of Dependences Based on Empirical Data.
Springer, 2006.

[131] VMDIRAC, github repository. https://github.com/DIRACGrid/VMDIRAC.
Accessed at Apr. 2015.

[132] VMDIRAC OCCI. https://github.com/DIRACGrid/VMDIRAC/wiki.
Accessed at Apr. 2015.

[133] VMWare ESX. http://www.vmware.com. Accessed at Apr. 2015.

[134] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen. G-Hadoop:
MapReduce across distributed data centers for data-intensive computing. Future

Generation Computer Systems, 29(3):739–750, 2013.

[135] Web Service Definition Language (WSDL). http://www.w3.org/TR/wsdl.
Accessed at Apr. 2015.

[136] Windows Azure. http://www.windowsazure.com. Accessed at Apr. 2015.

[137] WLCG. http://wlcg.web.cern.ch. Accessed at Apr. 2015.

[138] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[139] XEN. http://www.xen.org. Accessed at Apr. 2015.

[140] X.-S. Yang and S. Deb. Cuckoo search via lévy flights. In Nature & Biologically

Inspired Computing, 2009. NaBIC 2009. World Congress on, pages 210–214. IEEE,
2009.

[141] C. S. Yeo, R. Buyya, M. Dias de Assunção, J. Yu, A. Sulistio, S. Venugopal, and
M. Placek. Utility computing on global Grids, Grid computing and distributed
systems (GRIDS). Technical report, 2010.

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://www.usc.es
https://github.com/DIRACGrid/VMDIRAC
https://github.com/DIRACGrid/VMDIRAC/wiki
http://www.vmware.com
http://www.w3.org/TR/wsdl
http://www.windowsazure.com
http://wlcg.web.cern.ch
http://www.xen.org

Bibliography 167

[142] L. Youseff, R. Wolski1, B. Gorda, and C. Krintz. Paravirtualization for HPC systems.
In In Frontiers of High Perf. Comput. and Networking - ISPA 2006 Workshops, page
4431, 2006.

[143] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation. USENIX Association, 2012.

	Portada
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Overview about New Models of Distributed Computing
	Cloud Computing as an Innovation Process
	Big Data and MapReduce Paradigm
	Research Objectives
	Thesis Overview

	State of the art
	Cloud Computing Overview
	Hardware virtualization
	Cloud managers
	Cloud managers study

	Big Data Overview
	DIRAC Evolution
	Grid computing evolution
	DIRAC Interware

	Software Distribution Systems
	Virtualization and HEP Software
	HEP software description

	Federated Metacomputing
	Summary

	Software Distribution and Virtual Performance
	Software distribution
	Motivation
	CernVM-FS vs Tarball Comparison
	Software Service Repository

	Performance of High Energy Physics software
	Defining Method and Experimental Set-up
	HEP-Software Hardware Architecture Performances Problems
	Statistical Performance Analysis

	Design
	Methodology
	Software Prototyping Process

	Requirement Analysis
	 General objectives
	 User case analysis

	Architecture Design
	Prototypes modelling
	CloudStack prototype
	Multi-EndPoint prototype
	Federated hybrid clouds architecture
	Big Data architecture

	Evaluation of the Prototypes
	Results and Evaluation of CloudStack Prototype (2011)
	Results and Evaluation of Multi-EndPoint Prototype (2012-2013)
	Results for CloudStack with Multi-VO and Multi-Platform
	Results of Multi-SITE for CloudStack and OpenNebula

	Results and Evaluation of Federated Hybrid Clouds Prototype (2013)
	Results and Evaluation of Big Data Prototype (2014-2015)

	Conclusions And Future Work
	Bibliography

