
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS)

Tesis doctoral

MINING COMPLETE, PRECISE AND SIMPLE PROCESS MODELS

Presentada por:

Borja Vázquez Barreiros

Dirigida por:

Manuel Lama Penı́n
Manuel Mucientes Molina

Santiago de Compostela, septiembre de 2016





Manuel Lama Penı́n, Profesor Titular del Área de Ciencias de la Computación e
Inteligencia Artificial de la Universidade de Santiago de Compostela

Manuel Mucientes Molina, Profesor Contratado Doctor del Área de Ciencias de la
Computación e Inteligencia Artificial de la Universidade de Santiago de
Compostela

HACEN CONSTAR:

Que la memoria titulada MINING COMPLETE, PRECISE AND SIMPLE PROCESS
MODELS ha sido realizada por Borja Vázquez Barreiros bajo nuestra dirección en el Cen-
tro Singular de Investigación en Tecnoloxı́as da Información de la Universidade de Santiago
de Compostela, y constituye la Tesis que presenta para obtar al tı́tulo de Doctor.

Santiago de Compostela, septiembre de 2016

Manuel Lama Penı́n
Director de la tesis

Manuel Mucientes Molina
Director de la tesis

Borja Vázquez Barreiros
Autor de la tesis





Manuel Lama Penı́n, Profesor Titular del Área de Ciencias de la Computación e
Inteligencia Artificial de la Universidade de Santiago de Compostela

Manuel Mucientes Molina, Profesor Contratado Doctor del Área de Ciencias de la
Computación e Inteligencia Artificial de la Universidade de Santiago de
Compostela

como Director/res de la tesis titulada:
MINING COMPLETE, PRECISE AND SIMPLE PROCESS MODELS

Por la presente INFORMAN:

Que la tesis presentada por Don Borja Vázquez Barreiros es idónea para ser presentada,
de acuerdo con el artı́culo 41 del Regulamento de Estudos de Doutoramento, por la modalidad
de compendio de ARTÍCULOS, en los que el doctorando ha tenido participación en el peso
de la investigación y su contribución fue decisiva para llevar a cabo este trabajo. Y que está en
conocimiento de los coautores, tanto doctores como no doctores, participantes en los artı́culos,
que ninguno de los trabajos reunidos en esta tesis serán presentados por ninguno de ellos en
otras tesis de Doctorado, lo que firmamos bajo nuestra responsabilidad.

Santiago de Compostela, septiembre de 2016

Manuel Lama Penı́n
Director de la tesis

Manuel Mucientes Molina
Director de la tesis





I love deadlines. I like the whooshing
sound they make as they fly by.

Douglas Adams





You know it is. You pick up a book, flip to the dedication, and

find that, once again, the author has dedicated a book to

someone else and not to you.

Not this time.
- Neil Gaiman

Agradecimientos

En primer lugar, mi más sincero agradecimiento a mis directores de tesis, Manuel Mucientes
y Manuel Lama, por depositar su confianza en mi para llevar a cabo esta tesis. Gracias por
vuestros consejos y ayuda brindada a lo largo de todos estos años.

Dar las gracias al Departamento de Electrónica y Computación, ası́ como al Centro singu-
lar de Investigación en Tecnoloxı́as da Información (CiTIUS), de la Universidad de Santiago
de Compostela por los medios y recursos proporcionados para la realización de la tesis.

Aprovecho para mostrar mi agradecimiento al Dr. Wil van der Aalst por acogerme en su
grupo durante mi estancia predoctoral, y permitirme disfrutar de una experiencia inolvidable
tanto personal, como profesionalmente. Gracias a toda la gente que conocı́ allı́ durante ese
tiempo y que me hizo sentir coma na casa.

También me gustarı́a expresar mi gratitud a las entidades que han financiado el desarrollo
de esta investigación. Concretamente, agradecer el soporte económico recibido por parte del
Ministerio de Ciencia e Innovación a través del proyecto “SoftLearn: Soft computing para
minerı́a de procesos en e-learning” (TIN2011-22935) y del Ministerio de Economı́a y Com-
petitividad, cofinanciado por el Fondo Europeo de Desarrollo Regional - FEDER, a través del
proyecto “BAI4SOW: Soft Computing for supporting Business Intelligence in Social Work-
flows” (TIN2014-56633-C3-1-R).

Imposible olvidarse de los irremplazables compañeros de laboratorio. Gracias por estar
ahı́ durante todos estos años.



10

Gracias también a toda esa gente que por un motivo u otro forma parte de anécdotas y
momentos inolvidables de mi vida durante estos años.

Y, por supuesto, a mi familia: a mis padres y a mis hermanos, gracias; gracias por vuestro
continuo apoyo en los buenos y malos momentos. Sin vosotros no podrı́a ser quién soy ni
estar donde estoy.

Santiago de Compostela, septiembre de 2016



Resumen

En los últimos años ha habido una increı́ble inversión en el desarrollo de tecnologı́as para
automatizar las diferentes tareas que se desarrollan en una organización, ası́ como para alma-
cenar toda la información posible generada durante estas tareas. En particular, en relación con
los procesos de negocio, esto ha dado lugar a un increı́ble crecimiento en la cantidad de datos
relacionados con los procesos de negocio, es decir, información relacionada con la ejecución
de las actividades empresariales. Es evidente que la explosión de este tipo de datos ha abierto
una puerta para proporcionar información sobre la forma real de trabajar en una organización,
para predecir el rendimiento mediante la simulación, para la detección de desviaciones en el
proceso o para mejorar la manera en que ciertas actividades comerciales se ejecutan.

En este contexto, un proceso de negocio o modelo de proceso, se entiende como un con-
junto de actividades estructuradas y relacionadas entre sı́ que producen un resultado especı́fi-
co, por ejemplo, un producto o un servicio. Estas actividades son llevadas a cabo por un
conjunto de agentes para lograr el propósito del proceso. Por ejemplo, en el ámbito educativo,
el diseño de un curso de aprendizaje es un proceso en el que los alumnos deben realizar una
serie de actividades educativas, por ejemplo, publicar en foros, hacer ejercicios y exámenes,
etc., con el fin de alcanzar los objetivos pedagógicos del curso. Por lo general, estos procesos
tienen una descripción detallada, es decir, hay un diseño del proceso en el que se describen
claramente sus actividades y los actores que participan en estos pasos. En esencia, los proce-
sos se diseñan generalmente para obligar a las personas o máquinas a trabajar de una manera
particular. Desafortunadamente, puede haber diferencias entre el modelo de proceso diseñado,
y cómo el proceso se está ejecutando en la realidad. Por ejemplo, siguiendo con el ejemplo
anterior, en el ámbito educativo, los estudiantes pueden llevar a cabo actividades de aprendi-
zaje adicionales, como revisar la bibliografı́a o interactuar con otros estudiantes, a mayores
de las que se especifica explı́citamente en el proceso de aprendizaje diseñado por un profesor.



ii

Ası́, en este escenario, la minerı́a de procesos ha surgido como una manera de analizar
el comportamiento de una organización mediante la extracción de conocimiento a partir de
los registros de eventos, es decir, los datos relacionados con el proceso, y ofreciendo técnicas
para descubrir, monitorizar y mejorar los procesos reales. En otras palabras, la minerı́a de
procesos permite entender lo que realmente está sucediendo en un proceso de negocio, y no lo

que creemos que está sucediendo. Ası́, la minerı́a de procesos tiene como objetivo modelar el
mundo real que está soportado y controlado por varios tipos de sistemas de información. Para
ello, se toman como punto de partida los datos de eventos almacenados en forma de registros
de sucesos por los sistemas de información durante la ejecución de los procesos definidos.

Por lo general, las técnicas de minerı́a de procesos se clasifican en tres grupos principales.
El primer grupo es el de Descubrimiento, cuyo objetivo es recuperar los diferentes tipos de
modelos a partir de la información de un registro de eventos. Por ejemplo, a través de técnicas
de descubrimiento es posible recuperar un modelo en formato de red de Petri que represente
y explique el comportamiento almacenado en un registro de eventos. El segundo grupo se co-
noce como Análisis de conformidad, donde un modelo de proceso se compara con un registro
de eventos del mismo proceso para analizar y cuantificar las diferencias entre el comporta-
miento esperado y el real. Por ejemplo, en la fabricación de un teléfono móvil, éste siempre
se ha de revisar en las últimas etapas del montaje. A través de los análisis de conformidad
es posible detectar si esta regla se cumple o no. Por lo tanto, este tipo de técnicas se utilizan
generalmente para detectar, localizar, explicar y medir la gravedad de las desviaciones entre
el proceso real y lo esperado. Por último, el tercer grupo de técnicas de minerı́a de proceso es
el de Extensión o mejora. En este grupo, un modelo de proceso se mejora de forma dinámica,
enriqueciéndolo o extendiéndolo utilizando un registro de eventos nuevo, u otro modelo de
proceso. Mientras que el análisis de conformidad tiene por objetivo detectar y cuantificar las
desviaciones, la mejora de los procesos trata de extender y/o cambiar el modelo de proceso a
priori. Un ejemplo de mejora es la reparación, es decir, modificar un modelo de proceso para
representar mejor la realidad. Por ejemplo, modificar un paso obligatorio en un proceso que
se modeló inicialmente como opcional. Otro tipo de mejora es la extensión, es decir, añadir
nueva información a un modelo de proceso. Por ejemplo, la adición de la dimensión temporal
a un proceso para mostrar cuellos de botella, tiempos de ejecución, o para las predicciones
de tiempo. Otro tipo de extensiones puede implicar la adición de información sobre recursos,
reglas de decisión, métricas de calidad, etc.

Como se puede ver, los tres grupos en los que se divide la minerı́a de procesos comparten



iii

un componente clave: un registro de eventos. Una secuencia de eventos, por ejemplo, la ejecu-
ción de las actividades relacionadas con una instancia de proceso, se conoce como traza. De
este modo, en esencia, un registro de eventos es un grupo de trazas que consisten en eventos.
Desde el punto de vista de la minerı́a de procesos, es un requisito mı́nimo que los eventos
en el registro de eventos tengan asignados i) un caso, ii) una actividad, y iii) un punto en el

tiempo. Teniendo esta información disponible, es posible, por ejemplo, descubrir un modelo
de proceso, es decir, cuál es el orden entre las actividades de un proceso. Este tipo de técni-
cas que permite descubrir las dependencias entre tareas se conoce como descubrimiento de

procesos, y es el área de interés de la presente Tesis Doctoral.

El descubrimiento de procesos se utiliza para descubrir el proceso subyacente que se ha se-
guido para alcanzar un objetivo. En general, los algoritmos que buscan descubrir este modelo
de proceso subyacente parten de un registro de eventos y no tienen en cuenta el conocimiento
de dominio para derivar el modelo de proceso, lo que permite aplicarlos de manera general.
Sin embargo, dependiendo de la técnica utilizada, es posible obtener diferentes modelos de
proceso, ya que cada técnica tiene sus fortalezas y debilidades —por ejemplo, la expresividad
de la notación utilizada. Por lo tanto, es importante tener en cuenta los requisitos del domi-
nio al decidir qué algoritmo se ha de utilizar, ya que la correcta selección puede dar lugar a
modelos de proceso más ricos.

Por ejemplo, de entre los diferentes ámbitos de aplicación de la minerı́a procesos, es posi-
ble identificar varios campos que comparten un requisito interesante acerca de cómo deben ser
los modelos de proceso. Por ejemplo, en las auditorı́as de seguridad, los modelos descubier-
tos deben cumplir requisitos estrictos. Esto significa que los modelos de proceso descubiertos
deben reproducir todo el comportamiento posible recogido en el registro de eventos, o de lo
contrario es posible que algunas desviaciones pasen desapercibidas (completitud). Por otra
parte, con el fin de evitar falsos positivos, los modelos de proceso deben reproducir solamente
el comportamiento registrado en el registro de eventos (precisión). Por último, los modelos
de procesos deben ser fácilmente legibles para detectar más fácilmente las desviaciones (sim-

plicidad). Otro ejemplo claro de este tipo de requisitos en un modelo de proceso lo podemos
encontrar en el ámbito educativo, ya que para que un modelo de proceso sea de valor para los
profesores y estudiantes, éste debe de satisfacer los requisitos antes mencionados. Es decir,
para garantizar unas correctas evaluaciones, los profesores tienen que acceder a todas las ac-
tividades realizadas por los alumnos, con lo que el proceso de aprendizaje debe ser capaz de
reproducir todo el comportamiento posible (completitud). Por otra parte, el proceso de apren-



iv

dizaje debe centrarse únicamente en el comportamiento almacenado en el registro de eventos
(precisión), es decir, centrarse únicamente en lo que hicieron los estudiantes, y no en lo que

podrı́an haber hecho. Por último, los modelos de proceso deben ser fácilmente interpretables
por los profesores (simplicidad).

Uno de los requisitos anteriores se relaciona con la legibilidad de los modelos de proceso:
la simplicidad. En la minerı́a de procesos, uno de los problemas identificados es la adecuada
visualización de los modelos de proceso, es decir, cómo representar los resultados del descu-
brimiento de procesos de tal manera que se pueda obtener información del mismo de forma
clara y concisa. Esto se deba a que los modelos de proceso que son innecesariamente comple-
jos, pueden dificultar la correcta lectura del modelo, en lugar de proporcionar una intuición de
lo que realmente ocurre en una organización. Dentro de los diferentes enfoques centrados para
reducir la complejidad de un modelo de proceso, el interés de esta Tesis Doctoral se centra
en dos técnicas. Por un lado, mejorar la legibilidad de un modelo de proceso ya descubierto a
través de la inclusión de etiquetas duplicadas. Por otro lado, la jerarquización de un modelo
de proceso, es decir, proporcionar al modelo de proceso una estructura bien conocida dentro
del dominio. Sin embargo, con respecto a este último objetivo, este tipo de técnicas requiere
tener en cuenta conocimiento del dominio, ya que diferentes dominios pueden depender de
diferentes requisitos de la hora de mejorar la legibilidad del modelo de proceso. En otras pa-
labras, con el fin de mejorar la comprensibilidad de un modelo de proceso, la jerarquización
tiene que ser impulsada por el dominio.

Para resumir, podemos identificar dos temas principales de interés en la presente Tesis
Doctoral. Por un lado, el descubrimiento de modelos de proceso que puedan reproducir todo el
comportamiento posible almacenado en un registro de eventos, sin introducir comportamiento
extra. Por otro lado, se pretende reducir la complejidad de los modelos extraı́dos con el fin de
mejorar su interpretabilidad. De este modo, el objetivo principal de la presente tesis se puede
resumir en: descubrir modelos de procesos teniendo en cuenta la completitud, precisión y
simplicidad, prestando especial atención en la recuperación de modelos de procesos altamente
interpretables.

Dentro del área de investigación del descubrimiento de modelos de proceso, se han abor-
dando una gran cantidad de soluciones desde diferentes puntos de vista. Sin embargo, la re-
visión del estado del arte muestra que muchos algoritmos de descubrimiento de procesos se
centran en una o dos de las dimensiones previamente mencionadas, o que la notación utili-
zada no permite representar todo el comportamiento posible. En otras palabras, las técnicas



v

actuales tienen dificultades para recuperar modelos con altos niveles de completitud, pero
siendo lo más precisos y sencillos posible. Considerando este escenario, el Capı́tulo 2 abor-
da la problemática del descubrimiento de procesos bajo la hipótesis: ¿Es posible descubrir
modelos de proceso de alta calidad, en dominios generales, a través de un criterio jerárquico

de búsqueda que se base en la completitud, precisión y simplicidad? Ası́, en este capı́tulo se
presenta ProDiGen, un algoritmo genético para el descubrimiento de procesos guiado por la
completitud, precisión y simplicidad. El algoritmo utiliza una función de evaluación jerárqui-
ca que tiene en cuenta la completitud, la precisión y la simplicidad (con nuevas definiciones
tanto para la precisión y la simplicidad). Además, el algoritmo utiliza heurı́sticas para op-
timizar los operadores genéticos: i) un operador de cruce que selecciona el punto de cruce
a partir de una función de densidad de probabilidad (PDF) generada a partir de los errores
del modelo extraı́do, y ii) un operador de mutación guiado por las dependencias causales del
registro de eventos. La validación del algoritmo se ha realizado con 39 modelos diferentes
y los resultados se han comparado con cuatro algoritmos del estado del arte, demostrando,
estadı́sticamente, que el uso de una evaluación jerárquica permite obtener modelos con una
gran calidad en términos de completitud, precisión y simplicidad.

Por otro lado, la visualización de un modelo de proceso juega un papel importante a fin
de obtener correctamente conocimientos sobre el modelo de proceso. Es decir, los modelos
de procesos que son demasiado complejos, pueden obstaculizar el comportamiento real del
proceso en lugar de proporcionar información de lo que realmente está sucediendo. Dentro de
este contexto, la presente Tesis Doctoral se centra en el concepto de tareas duplicadas. Dentro
de este área de estudio de las tareas de duplicadas se han obtenido resultados muy valiosos, sin
embargo, el estado del arte presenta diferentes debilidades: algunos algoritmos obtienen solu-
ciones peores que sin tareas duplicadas; otras técnicas permiten duplicar cualquier actividad
en el registro eventos; y otras propuestas utilizan heurı́sticas que no consideran las activida-
des duplicadas en algunos patrones de flujo de trabajo, tales como bucles. Ası́, dentro de este
contexto, el Capı́tulo 3 trata este área de investigación bajo la hipótesis: ¿Es posible mejorar
la claridad estructural de un modelo de proceso mediante la duplicidad de actividades de un
modelo de proceso después del proceso de descubrimiento? Con este fin se ha desarrollado
SLAD, un algoritmo que toma como punto de partida un modelo ya minado y, a través de la
información local del registro de eventos, trata de mejorar la completitud, la precisión y la
simplicidad del modelo duplicando aquellos nodos con una mayor densidad de arcos. Con el
fin de validar el algoritmo, se presenta una evaluación detallada con 54 modelos extraı́dos de



vi

tres algoritmos de descubrimiento de procesos. Además, los resultados se han comparado con
ocho algoritmos diferentes del estado del arte, demostrando, estadı́sticamente, que añadiendo
tareas duplicadas tras descubrir un modelo de proceso presenta mejores resultados, en térmi-
nos de precisión y simplicidad, que las técnicas del estado del arte actual.

Siguiendo con la idea de mejorar la visualización de un modelo de proceso, la última sec-
ción de la presente Tesis Doctoral busca mejorar este aspecto con la inclusión de conocimiento
de dominio utilizando técnicas de jerarquización. En otras palabras, la jerarquización de pro-
cesos tiene como objetivo utilizar el conocimiento del dominio para traducir un modelo de
proceso ya descubierto a una representación más especı́fica dentro de un dominio particular
y, por lo tanto, obtener un modelo de proceso más interpretable. Esta idea de jerarquización

de procesos utilizando conocimiento del dominio es, dentro de nuestro conocimiento, una
aproximación novedosa, sin trabajo previo directamente relacionado en el campo de la mi-
nerı́a proceso. No obstante, sigue las mismas ideas que los métodos que tienen como objetivo
descomponer modelos de proceso. Sin embargo, las técnicas de descomposición se centran
en la partición de modelos de proceso y de registros de eventos en partes más pequeñas que
se pueden analizar de forma independiente. Por lo tanto, no devuelven una representación
jerárquica del modelo de proceso, sino una representación todavı́a aplanada del modelo de
proceso original.

De este modo, la hipótesis que se presenta en el Capı́tulo 4 queda definida como: ¿Es
posible jerarquizar automáticamente un modelo de proceso ya descubierto, utilizando el co-
nocimiento de dominio y, por lo tanto, mejorar la interpretabilidad del modelo de proceso?
En este capı́tulo se describe cómo se consigue este objetivo en tres pasos diferentes. En pri-
mer lugar, el modelo de proceso se extrae automáticamente de las secuencias registrados a
través de los algoritmos de minerı́a de procesos desarrollados. A continuación, se aplica un
algoritmo basado en conocimiento sobre la estructura de control de destino para determinar
qué componentes deben ser creados. Por último, se extraen automáticamente las reglas de
adaptación a partir de los registros de eventos —más especı́ficamente, a partir de los valores
de las variables de los registros de eventos— a través de un algoritmo de aprendizaje de tipo
árbol de decisión, y se integran en la estructura del lenguaje destino. En este campo, a pesar
de que buscamos una aproximación general independiente de cualquier dominio en particular,
la validación e implementación de este proceso de jerarquización de modelos de proceso se ha
llevado a cabo en el campo educativo. El catalizador de esta decisión se debe a la existencia
de IMS LD, un estándar de metadatos que describe todos los elementos del diseño de un pro-



vii

ceso de enseñanza-aprendizaje. Por lo tanto, los diferentes componentes de este proceso de
jerarquización se han analizado utilizando un conjunto de nueve cursos reales con diferentes
grados de complejidad. Los resultados experimentales mostraron que la minerı́a proceso es
una buena solución para recuperar una estructura de proceso de un conjunto de archivos de
registro de eventos. Concretamente, en todos los casos se extrajo correctamente la estructura
IMS LD original.

Finalmente, la tesis termina con las conclusiones y el trabajo futuro presentados en el
Capı́tulo 5.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Process discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Enhancing process models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Process hierarchization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.8 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 ProDiGen: Mining complete, precise and minimal structure process models 31
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Process Discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 ProDiGen: Process Discovery through a Genetic algorithm . . . . . . . . . . . . . . . . . . . . . 39

2.6 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Enhancing Discovered Processes with Duplicate Tasks 67
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Splitting Labels After Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Contents ix

3.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Recompiling Learning Processes from Event Logs 99
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 IMS Learning Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6 Mining the learning flow from event logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7 Mining adaptive rules from event logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.8 IMS LD reengineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.10 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 Conclusions 133

Bibliography 137

List of Figures 157

List of Tables 159

List of Algorithms 161





CHAPTER 1

INTRODUCTION

1.1 Motivation

In the last years, there has been an incredible investment to develop technologies to automate
all the different tasks carried out in an organization and to store all the information generated
during these processes. In particular, regarding business processes, the area of interest in this
dissertation, this has lead to an incredible growth on the amount of process-related data, i.e,
execution traces of business activities. Hence, with this flood of information in today’s orga-
nizations, there has raised a special interest, or even a need, for extracting valuable knowledge
from such process-related information [68], and thereby to understand what data really say.
Clearly, the explosion of this kind of information has opened the door to provide insights into
the actual way of working in an organization, to detect deviations in the process or to improve
the way certain business activities are executed.

In this context, a business process, henceforth a process or process model, is understood as
a collection of related structured activities that produce a specific outcome, e.g., a product or
a service [132]. These activities are performed by a set of actors to achieve the purpose of the
process. For instance, in education, the learning design of a course is a process where learners
must undertake a sequence of learning activities, e.g., posting in forums, making exercises and
exams, etc., in order to achieve the pedagogical objectives of the course. Typically, these pro-
cesses have a detailed description, i.e., there is a design of the process where its activities and
the actors participating in these steps are clearly described. In essence, processes are usually
designed to force people or machines to work in a particular way. Unfortunately, there might
be differences between the designed process model, and how the process is being executed



2 Chapter 1. Introduction

Log

Event 
logs

records events,
e.g. messages,
transactions, 
etc.

Information
Systems

discovery

conformance

enhancement

(process)
model

Model
Analyze

Implements

"world"

people

machines

business
processes

components

organizations
Supports
/Control

Specifies
Configures

Analyzes

Figure 1.1: Process mining framework (Adapted from [122]).

in reality [119, 122]. For instance, following with the previous example in the educational
domain, learners can undertake additional learning activities, like check the bibliography or
interact with other learners, apart from those that were explicitly specified in the learning pro-
cess designed by a teacher. The reasons behind this gap are manifold. It might be that there
were human errors while implementing the process model in the information system. Maybe,
the system allows to skip an activity, to change the order in which some activities must be
executed, or to execute activities not defined in the process. Perhaps a particular instance of a
process needs to be restarted or prematurely canceled with no reasons. In a nutshell, creating
process models is a difficult and error-prone task, and there is an evident gap between what we

think is going on (the designed process model) and what is really happening (the real process
model). This deprecates the actual value of process models in organizations [122].

In this scenario, process mining has emerged as a way to analyse the behavior of an orga-
nization by extracting knowledge from event logs, i.e., process-related data, and by offering
techniques to discover, monitor and enhance real processes. In other words, process mining
allows us to understand what is really happening in a business process, and not what we think

is going on [122]. Figure 1.1 depicts the process mining framework. The general view is that
process mining aims to model the real world which is supported and controlled by various



1.1. Motivation 3

LogLog

(a) Discovery.

LogLog

(b) Conformance checking.

LogLog

(c) Enhancement.

Figure 1.2: Types of tasks in process mining (Adapted from [16]).

types of information systems. To do that, it takes as starting point the event data stored in the
form of event logs by the information systems while executing the defined process. Hence,
process mining provides links between the actual observed process execution and the mod-
eled process behavior. Typically, process mining techniques have been categorized in three
different main groups (Figure 1.2):

• The first group is Discovery (Figure 1.2(a)), which aims to retrieve different kinds of
models based on the information of an event log. For instance, through discovery tech-
niques it is possible to retrieve a Petri net model explaining the behavior recorded in the
log. In general, discovery techniques do not take into account any domain knowledge
to derive models, although there are a few techniques that assume a-priori knowledge
to retrieve a model [10, 38, 48, 97].

• The second group is Conformance Checking (Figure 1.2(b)), also known as confor-

mance analysis, where a process model is compared with a log of the same process
to analyse and quantify the differences between the expected and the real behavior as
recorded in the log. For instance, when manufacturing a mobile phone, it has always
to be checked at the end of the assembly process. Through conformance checking it
is possible to detect if this rule is followed or not. Hence, these kind of techniques are
generally used to detect, locate, explain and measure the severity of the deviations.

• The third group of process mining techniques is Enhancement (Figure 1.2(c)). In this
group, a process model is dynamically improved, enriched or extended based on the
information of a (new) log and/or a defined process model. Whereas conformance
checking aims to detect and quantify the deviations, process enhancement tries to ex-
tend and/or change the a-priori process model. An example of enhancement is repair,
i.e., to modify a process model to better depict reality. For example, correcting a pro-
cess where a particular activity was modeled as optional, i.e., it could be skipped, but in



4 Chapter 1. Introduction

Table 1.1: A fragment of an event log loosely based on a fictional loan application process [40], where each
individual line corresponds to an event.

Case Activity Resource Time-stamp · · ·

..

.
..
.

..

.
..
.

..

.

3554 Check application form John 2016-10-08T09:45:37+00:00 · · ·
3555 Check application form Lucy 2016-10-08T10:12:37+00:00 · · ·
3554 Check credit history Harold 2016-10-08T10:14:25+00:00 · · ·
3555 Check credit history Harold 2016-10-08T10:31:02+00:00 · · ·
3554 Appraise property Pete 2016-10-08T10:45:22+00:00 · · ·
3554 Assess loan risk Harold 2016-10-08T10:49:52+00:00 · · ·
3555 Assess loan risk Harold 2016-10-08T11:01:51+00:00 · · ·
3553 Return application to client John 2016-10-08T11:03:18+00:00 · · ·
3556 Check application form Lucy 2016-10-08T11:05:10+00:00 · · ·
3555 Assess eligibility Harry 2016-10-08T11:06:22+00:00 · · ·
3554 Assess eligibility Harry 2016-10-08T11:33:42+00:00 · · ·
3554 Reject application Harry 2016-10-08T11:45:42+00:00 · · ·
3557 Check application form Lucy 2016-10-08T13:48:12+00:00 · · ·
3555 Prepare acceptance pack Sue 2016-10-08T14:02:22+00:00 · · ·

..

.
..
.

..

.
..
.

..

.

reality is a mandatory step. Another type of enhancement is extension, i.e., add new in-
formation to a process model, for instance, adding the timestamps to a process to show
bottlenecks, throughput times, or for time prediction [130]. Other type of extensions
can involve adding information about resources, decision rules, quality metrics, etc.

As can be seen, all the different groups in which process mining is divided share one
component: an event log. Consider Table 1.1 showing a snapshot of an event log of a fictional
loan application handling process. We can see that each event, i.e., each individual row, refers
to an activity. Furthermore, it refers to one case, i.e., a process instance, it has a timestamp,
and it shows which resource executed the task. For instance, let us consider all activities
related to the case 3554. First, John Checks the application form, after which Harold Checks

the applicant’s credit history. Pete Appraises the property, after which Harold performs a
Loan risk assessment. Finally, Harry assesses the eligibility of the client for the loan and, at
the end, he decides to Reject the application. A sequence of events, e.g., the execution of the
activities related to a process instance, e.g., the case 3554, is referred to as a trace. Thereby,
in essence, an event log is a group of traces that consist of events.



1.1. Motivation 5

From the point of view of process mining, it is a minimum requirement that the events
in the log refer to i) a case, ii) an activity, and iii) a point in time (timestamp). Having this
information available, it is possible, for instance, to discover a process model from an event
log. In practice, the actual data stored within a company’s information system might not
necessarily be of the form presented in Table 1.1. Hence, the extracted data often needs to be
transformed. Anyway, such type of required data is present in almost any information system.

Often, a wealth of additional attributes are available in an event log, e.g., customer id,
credit balance, etc. In situations where the log provides a rich source of data, analysts can
decide upon various log perspectives [132] to drive the execution of a process mining tech-
nique. We can distinguish the following perspectives [106, 107, 109, 108, 110] regarding the
analysis of an event log:

- Control flow perspective. The most common perspective. It captures aspects related to
control-flow dependencies between various tasks, i.e., the ordering of activities in the
event log. For example, “check the credit history always after checking the application

form”.

- Resource perspective. It focuses on how the resources, i.e., human (e.g., people) or non-
human (e.g., equipment) actors, are involved and related to the process. “Assessing the

loan risk has to be made by the manager” is an example handled by this perspective.

- Data perspective. It deals with the flow of data through the process, i.e., the pass-
ing of information between activities, the scope of variables, etc. An example of this
perspective would be “if the credit balance is negative, reject the application”.

- Exception handling perspective. This perspective focuses on problems and failures. In
other words, it deals with the various causes of exceptions and the various actions that
need to be taken as a result of exceptions, e.g., “if the application has an error, call the

client for an amendment”.

- Time perspective. This perspective is related to time and performance aspects, e.g., bot-
tlenecks, monitor the utilization of resources, etc. For example, “in January, checking

the application takes more than one day”.

Within this dissertation we primarily focus on the control-flow perspective, i.e., the sequential
ordering of activities w.r.t. cases. Thus, from the control-flow perspective, case 3554 can be



6 Chapter 1. Introduction

written as 〈Check application form, Check credit history, Appraise property, Assess loan risk,
Assess eligibility, Reject application〉.

Note that the different perspectives presented so far are somewhat overlapped. For in-
stance, when detecting an error (exception handling) it may be interesting to check the time
related to that failure (time perspective). Furthermore, there exists an orthogonal relation
between the process mining tasks previously described in Figure 1.1, i.e., discovery, confor-
mance checking and enhance, and the different perspectives regarding the analysis of an event
log [128]. For instance, discovery combined with the control-flow perspective can give as a
result a process model represented as a Petri Net or a BPMN model [26, 79, 85, 112, 126]. But
it can also be combined with the resource perspective to discover a social network to check,
for instance, the handover of work between resources [128, 131]. On the other hand, enhance-
ment [64, 84] can be associated with the time perspective, extending a process model to show
the overall efficiency, i.e., bottlenecks, throughput times, etc. Also, conformance checking
and control-flow can lead to replay or alignment techniques [6, 15, 86]. Concerning this PhD
Thesis, our interest relies on the discovery group combined with the control-flow perspective,
i.e., we are interested in process discovery [7, 27].

Topics of interest

Process discovery algorithms are generally used to discover the underlying process that has
been followed to achieve an objective. In general, these algorithms do not take into account
any domain knowledge to derive process models, allowing to apply them in a general man-
ner. However, as we will see through Section 1.2, depending on the selected approach, a
different kind of process models can be discovered, as each technique has its strengths and
weaknesses, e.g., the expressiveness of the used notation [120]. Hence, it is important to take
into account the requirements of the domain when deciding which algorithm to use, as the
correct assumptions can lead to richer process models.

For instance, among the different domains of application of process mining [80, 115, 117,
142, 145], we can identify several fields that share an interesting requirement about the dis-
covered process models. In security audits [3, 4], discovered processes have to fulfill strict
requisites. This means that the process model should reproduce as much behavior as possible,
otherwise some violations may go undetected (replay fitness). On the other hand, in order to
avoid false positives, process models should reproduce only the recorded behavior (precision).
Finally, process models should be easily readable to better detect deviations (simplicity). An-



1.1. Motivation 7

other clear example concerns the educational domain [146], as in order to be of value for
both teachers and learners, a discovered learning process should satisfy the aforementioned
requirements [100]. That is, to guarantee feasible and correct evaluations, teachers need to
access to all the activities performed by learners, thereby the learning process should be able
to reproduce as much behavior as possible (replay fitness). Furthermore, the learning process
should focus on the recorded behavior seen in the event log (precision), i.e., show only what

the students did, and not what they might have done, while being easily interpretable by the
teachers (simplicity). Section 1.2 provides a more detailed view on these characteristics.

One of the previous requirements is related to the readability of process models: sim-

plicity. In process mining, one of the identified challenges is the appropriate visualization
of process models [135], i.e., to present the results of process discovery in such a way that
people actually gain insights about the process. Process models that are unnecessary com-
plex, can hinder the real behavior of the process rather than to provide an intuition of what
is really happening in an organization. However, achieving a good level of readability is not
always straightforward, for instance, due the used representation [122]. Within the differ-
ent approaches focused to reduce the complexity of a process model [34, 44], the interest in
this PhD Thesis relies on two techniques. On the one hand, to improve the readability of an
already discovered process model through the inclusion of duplicate labels. Section 1.3 pro-
vides a more detailed view on this idea. On the other hand, the hierarchization of a process
model, i.e., to provide a well known structure to the process model. However, regarding the
latter, this technique requires to take into account domain knowledge, as different domains
may rely on different requirements when improving the readability of the process model. In
other words, in order to improve the interpretability and understandability of a process model,
the hierarchization has to be driven by the domain. Section 1.4 provides the intuition, in the
educational domain, on how a discovered process model can be hierarchized to better describe
the structure of a learning process.

To sum up, concerning the aim of this PhD Thesis, we can identify two main topics of
interest. On the one hand, we are interested in retrieving process models that reproduce as
much behavior recorded in the log as possible, without introducing unseen behavior. On the
other hand, we try to reduce the complexity of the mined models in order to improve their
readability. Henceforth, the aim of this PhD Thesis is to:

Discover process models considering replay fitness, precision and simplicity, while pay-

ing special attention in retrieving highly interpretable process models.



8 Chapter 1. Introduction

Throughout the next sections we will review the state of the art related with these objectives.

1.2 Process discovery

The goal of process discovery is to obtain a process model that specifies the relations between
tasks or activities in an event log, i.e., to describe the ordering and flow of events that occur
in a process [132, 134]. From the control-flow perspective, this ordering and flow of the
activities can be represented with several workflow patterns, e.g., activities can be executed
sequentially, activities can be skipped, activities can be concurrent or mutual exclusive, or the
same activity can be executed multiple times.

In general, the representation used for most process discovery algorithms are Petri nets [88],
as they are simple and graphical, while allowing for modeling concurrency. Nevertheless,
there is a plethora of process models notations in the literature (oftentimes referred as the
Tower of Babel [122]), each one of them with a different level of expressiveness and pop-
ularity [15, 122]: BPMN, C-nets, Process Trees, EPCs, etc1. In [120] the authors discuss
that the notation for discovering a process should be driven by its properties, and not by its
graphical representation. Concerning this thesis, we are interested in Heuristic nets [154, 155]
and Causal nets [114, 153]. Both of these notations are especially tailored towards process
discovery [122, 123], allowing to produce rich and high quality results. Furthermore, these
two kind of models are easily translated to both Petri nets and BPMN.

Figure 1.3 shows a simplified event log for a phone production. This log contains nine
different labeled activities, and 1,134 cases represented by nine different traces. In this pro-
cess, when producing a mobile phone, three different parts are manufactured: i) the frame (d
= Produce Frame), ii) the keyboard (c = Produce Keyboard), and iii) the cover (b = Produce

Cover), which is painted in black (e = Paint Black) or white (f = Paint White). After these
three parts are completed, the phone is assembled (g = Assemble Phone). Finally, the mobile
phone goes through a quality control (h = Check Phone), multiple times if necessary, before
finishing its production.

Based on the event log shown in Figure 1.3(a), a discovery algorithm could retrieve the
Petri net model depicted in Figure 1.3(b). This process model can replay all traces in the log,
but it can also reproduce more behavior than the recorded. For instance, the firing sequence
〈a, c, b, f, d, g, h, i〉 is not in the event log. Moreover, there are infinitely many firing sequences

1In general, all these notations can be translated to a Petri net.



1.2. Process discovery 9

Trace #

a b c d e g h i 212
a c b d e g h h i 193
a b d c f g h i 185
a d c b f g h i 146
a b d f c g h h i 105
a b e d c g h i 94
a b d c e g h i 90
a d b c f g h h h i 61
a d c b f g h i 48

(a) Event log.

a

b

c

d

e

f

g
h i

(b) A Petri net discovered for the left log.

Figure 1.3: A log and a process model for the production of a mobile phone. (a = Start Production, b = Produce
Cover, c = Produce Keyboard, d = Produce Frame, e = Paint Black, f = Paint White, g = Assemble
Phone, h = Check Phone, i = End Production).

due to the loop construct in h (Check Phone). At this point, and without more information,
this solution appears to be a representative process model of the behavior seen in the event
log. However, this process model is not the only possible solution. For instance, Figure 1.4
shows four different solutions depicting the behavior of the same log (Figure 1.3(a)). Thereby,
more elaborate criteria are necessary to quantify the goodness of a process model.

When deciding how good a process model depicts the recorded behavior, i.e., how rep-
resentative is a process for the behavior seen in the log, we can distinguish four quality di-
mensions or metrics. The first one is replay fitness. It quantifies how much of the behavior
observed in the log can be reproduced by a process model. A process model has a perfect
replay when it can reproduce all the behavior in the event log. For instance, the process model
in Figure 1.4(a) cannot replay all the traces of the log, e.g., it is not possible to correctly re-
produce 〈a, b, e, d, c, g, h, i〉. All the remaining processes in Figure 1.4 have a perfect replay
fitness. The second dimension is precision, which assesses the ability of the model to disallow
unwanted behavior. Clearly, the flower model2 is an example of lack of precision, i.e., it is an
overly general process model. The process model in Figure 1.4(d) is an example of a solution
with a very high precision, as it almost only reproduces the behavior recorded in the log. The
third dimension is generalization which estimates the extent to which a process model will be

2The flower model allows the execution of any possible combination of activities in the log; hence it always has
a perfect replay fitness.



10 Chapter 1. Introduction

a b

d

c

e g
h i

f

(a) A Petri net discovered with Heuristics
Miner [155] using the default settings.

b

c g h

f

i
a

e

d

(b) A Petri net discovered with ILP [138] miner us-
ing the default settings, ensuring an empty net after
completion.

a
d

b

c

f

e

g
h

i

(c) A Petri net discovered with Inductive Miner [70],
with the 0% noise threshold.

h

f

c

b
b

b

f

ha
e

c
b

d
e

d

c

g

d
id

(d) A Petri net discovered with State-based Region
Theory [9, 113] with no limit in the set size and the
inclusion of all activities.

Figure 1.4: Solutions retrieved with different algorithms using the log shown in Figure 1.3(a).

able to reproduce new behavior. The trace model3 is an example of lack of generalization, i.e.,
it is an overly precise process model. For example, the model shown in Figure 1.4(c) allows
to execute more than the behavior seen in the log due to the loop before an activity g (Assem-

ble Phone). The last dimension is Simplicity, that follows the Occam’s Razor principle, that
is, process models should be as simple and easily readable as possible, while reflecting the
behavior of the log. As can be seen, the process models in Figure 1.4(b) and 1.4(d) (due to the
number of connections) are more complex than the process models in Figure 1.4(c) (which
is more general than the other process models) and Figure 1.4(a) (which does not correctly
replay all the log). In general, the holy grail in process discovery is to find a trade-off among
these four dimensions: replay fitness, precision, generalization and simplicity. However, as
shown with the process models in Figure 1.4, this turns out to be a challenging balance, e.g.,
usually a very simple process model is likely to have a low fitness or a lack of precision, or,
on the other hand, guaranteeing a perfect replay fitness can lead to overly general or overly
specific process models.

3A trace model creates a path for each trace of the log. This kind of process model has a perfect precision as it
only allows the specific behavior recorded in the log, but it is not a desirable solution.



1.2. Process discovery 11

State of the art

Since Cook and Wolf [27] coined the term process discovery, and later on, Agrawal et al. [7]
applied this idea in the context of workflow management systems, a plethora of process dis-
covery algorithms have been proposed. Although we can classify these algorithms based on
different criteria [122, 15], e.g., the notation used to represent the process models, or which di-
mensions they focus the search on, we arrange the different techniques based on the approach
they follow [140]:

• Abstraction-based algorithms. All of them are derived from the α-algorithm [137],
and address some of its drawbacks. On the one hand, the α-algorithm can discover
a large class of process models under the assumption that the event log contains all
the behavior and it is free of noise. But even with this assumption, the α-algorithm
has some problems. The limitations solved with the extensions of this algorithm are:
short loops (α+-algorithm [32]), non-free-choice constructs (α++-algorithm [156]),
invisible tasks (α#-algorithm [157, 158]) and duplicate tasks (α∗-algorithm [75]). A
recent approach to mine invisible tasks in non-free choice4 constructs, (α$-algorithm)
was presented in [56]. Despite the different extensions, none of the abstraction-based
algorithms can tackle all the complex constructs at once, and are based on a complete
and noise free-log. In general, this type of algorithms focuses on simplicity, retrieving
very simple process models but with poor replay fitness.

• Heuristics-based algorithms. In [154, 155], Weijters et al. presented the Heuristics
Miner, an extension of the α-algorithm but taking into account the frequency of or-
dering relations. One of its main advantages is its ability to handle noise based on a
set of thresholds. Thus, this method is appropriate for identifying the main behavior
registered in the log, excluding duplicate tasks and some non-free-choice constructs.
DWS [49] is an extension of Heuristics Miner that identifies different variants of a pro-
cess model by clustering similar log traces. Another extension of the Heuristics Miner
was presented in [21]. It takes into account the timestamp of the activities, expressing
the activity as time intervals instead of single events. In [22] the authors present dif-
ferent stream-aware versions of the Heuristics Miner for mining process models from
event data streams [143]. Fodina [15] is a recent extension of the Heuristics Miner with

4A non-free choice (NFC) construct is a special kind of choice, where the selection of a task depends on what
has been executed before in the process model.



12 Chapter 1. Introduction

different improvements such as mining duplicate activities. Although these heuristics-
based algorithms use replay fitness as their guiding principle, they do not guarantee
optimal results as they only focus on the main behavior of the event log. On the other
hand, Inductive Miner [70] is an approach that produces block-structured [120] process
models able to replay the whole event log, i.e., it guarantees a perfect replay fitness.
However, it is quite sensitive to incompleteness (although different extensions to face
this issue are proposed in [71, 72, 73]), as well as duplicate labels and invisible ac-
tivities, falling back to a flower model when it cannot find a strong relation between
activities. Hence, the Inductive Miner (and extensions) can lead to process models with
a lack of precision and very good generalization.

• Search-based algorithms. These techniques are based on the paradigm of evolution-
ary algorithms [8, 43]. In a nutshell, an evolutionary algorithm is a heuristic search
that mimics the process of natural selection, using techniques like crossover, mutation
and selection to generate a set of possible solutions which are optimized through sev-
eral iterations until a convergence criterion is reached. The major characteristics of a
genetic algorithm are its capability to explore large search spaces, and its flexibility to
incorporate prior knowledge virtually in any part of the algorithm. Within this context,
the first approach presented following this paradigm was Genetic Miner [30]. Alves de
Medeiros et al. proved that it is possible to mine all common constructs and be robust
to noise, all at once, but it cannot ensure simple process models as some of the mined
solutions have implicit places or needless arcs. Another recently proposed approach, so
called Evolutionary Tree Miner (ETM) [18, 141], guides its search taking into account
a balance between the four objectives previously described, but considering only block
structured solutions. However, the expressiveness of block structured process models is
limited as they do not allow certain behavior, such as arbitrary loops, NFC, unbalanced
split/join points, or certain patterns such as the milestone [144]. Moreover, many real
life processes are not block structured [122]. Additionally, although alignments5 are
the de facto standard instrument for conformance checking [6, 124], computing them
is a combinatorial problem and hence, extremely costly [149]. Another search-based
algorithm is presented in [16], where the authors present the initial results of a new
evolutionary algorithm for discovering declarative process models.

5Basically, alignments map as many events as possible from a trace with activities of a process model [5].



1.2. Process discovery 13

• Algorithms based on theory of regions. These algorithms can be classified in two
groups based on their behavioral process specification: state-space and language based.

- The state-space algorithms perform two steps: first, they build a transition sys-
tem [129], i.e., a set of states and transitions between states, and then they con-
struct a Petri net according to that transition system [9, 25, 42, 113]. This group of
algorithms focuses on the synthesis of a Petri net whose reachability graph is sim-
ilar to the transition system. As discussed in [129] and [138] the main problem
of this solution is the non-trivial construction of the state information from a log,
because usually logs almost never carry state information. Other problem is that
it usually results in overfitting process models that can only replay the log without
any form of generalization, hence being very sensitive to noise and incomplete-
ness, leading to very complex processes.

- In contrast, language-based algorithms assume that the log contains words (traces)
of a specific language (the activities are the letters), whereas the target net allows
just words of this language. In [12], the authors distinguish between two methods
to derive Petri nets from event logs: i) using a basis representation, which can-
not tackle duplicate tasks or non-free-choice constructs; and ii) using separating

representation [12, 78] to mine duplicate tasks but not non-free-choice constructs.
These algorithms usually guarantee a perfect replay fitness. However, a problem
of language-based regions is that, in order to construct a Petri net, it is neces-
sary to solve a linear inequation system which, unfortunately, has many solutions.
Moreover, this approach usually leads to overfitted process models due to the
restrictive assumptions about process logs. Additionally, the number of places in-
troduced by both approaches is theoretically high. To overcome these drawbacks,
in [138], authors propose to use Integer Linear Programming to avoid overffited
process models and minimize the upper bound number of places. Nevertheless,
pure region-based techniques still have problems with incomplete behavior, re-
sulting in overly complex processes. Extensions such as [144] try to avoid this
overffitting through heuristics and filtering feedback from the user.

• Machine learning. These algorithms apply different machine learning techniques to
discover the control-flow of the activities. An example of this technique, based on in-

ductive logic programming, was presented by Goedertier et al. [47]. They designed



14 Chapter 1. Introduction

AGNES, an algorithm that introduces artificially generated negative events, i.e., traces
that describe a particular path that is not allowed for a process. Unfortunately, event
logs hardly ever contain information about disallowed behavior. This idea of introduc-
ing negative events was latter applied in [91]. Another approach recently proposed is
the algorithm NPM [76]. This technique, instead of mining the relationship between
two events, mines a set of patterns that could cover all the traces seen in an event log.
Another approach is presented in [159], where the authors describe a technique to dis-
cover declarative process models based on regular expressions and (finite) automata.

• Partial approaches. All the aforementioned techniques focus their search on retrieving
an end-to-end process model. However, in the state of the art we can also distinguish
different process discovery algorithms focused on producing rules or frequent patterns

from an event log. For instance, there are approaches based on sequential pattern min-

ing [116] and episode mining [69], as well as approaches to learn declarative (based on
temporal properties) languages [127].

In summary, a large amount of work has been done in this specific area by addressing
solutions from different points of view. Unfortunately, the review of the state of the art shows
that many end-to-end process discovery algorithms focus on one or two of the aforementioned
dimensions, or the used notation does not allow to represent all possible behavior. In other
words, current techniques have difficulties to retrieve models with high levels of replay fitness,
but being as precise and simple as possible. Considering this scenario, the hypothesis of this
PhD Thesis regarding process discovery can be stated as follows:

H1. Is it possible to retrieve high quality process models, in general domains, through a
hierarchical criteria of replay fitness, precision and simplicity?

1.3 Enhancing process models

The visualization of a process model plays an important role in order to correctly gain insights
about the process [135]. That is, process models that are too much complex, can hinder the
real behavior of the process rather than to provide insights of what is really happening. Within
this context, this dissertation focuses on the concept of duplicate tasks. The notion of duplicate
tasks, or activities, refers to situations in which multiple tasks in the process have the same
label. Concerning the visualization of a process model, this kind of behavior is useful i) when



1.3. Enhancing process models 15

Sequence of events

case1 Attend lecture, Turing Elevator, Check Bibliography, Quiz, Recursive Languages, Quiz, Results.
case2 Attend lecture, Turing Elevator, Check Bibliography, Quiz, Check Bibliography, Recursive Languages,

Quiz, Results.
case3 Attend lecture, Turing Vending Machine, Check Bibliography, Quiz, Recursive Languages,

Check Bibliography, Quiz, Results.
case4 Attend lecture, Check Bibliography, Turing Vending Machine, Check Bibliography, Quiz,

Recursive Languages, Quiz, Results.
...

...
casen . . .

(a) Traces extracted from a synthetic event log.

Attend
Lecture

Quiz

Check
Bibliography

Turing
elevator

Turing
Vending Machine

Recursive
languages

Results

(b) Process model without duplicate labels.

ResultsAttend
Lecture

Turing
elevator

Turing
Vending Machine

Quiz

Check
Bibliography

Recursive
languages

Quiz

Check
Bibliography

(c) Process model with duplicate labels.

Figure 1.5: A log and two process models (Petri nets) exemplifying a lecture of Automata Theory and Formal
Languages.

a particular task is used in different contexts in a process and ii) to enhance the readability of
a model by reducing overly connected tasks.

Figure 1.5 shows an example on how the addition of duplicate tasks to a process model
improves its readability and structural clarity. In this example, considering the sample log of
Figure 1.5(a), the events Quiz and Check Bibliography, are executed at most twice in each
trace. Between the multiple possibilities of modeling the behavior of the log, we can assume
i) an injective relation between the events in the log and the activities in the process model
(Figure 1.5(b)); or ii) that multiple activities can share the same label, i.e., a process model
with duplicate activities (Figure 1.5(c)). In this example, although both process models per-
fectly reproduce all the behavior recorded in the log, i.e., both have a perfect replay fitness, the
process model depicted in Figure 1.5(b) allows to execute both Quiz and Check Bibliography

as many times as we want at any time in the process, hence, this process model is not a rig-
orous picture of the recorded behavior of the log: its precision is lower. On the other hand, if
both activities are duplicated, the resulting process model (Figure 1.5(c)) is more suitable, i.e.,
more precise w.r.t. the recorded behavior in the log, as it does not allow, for example, to check



16 Chapter 1. Introduction

the bibliography (Check Bibliography) during the exam (Quiz), as the model in Figure 1.5(b)
does. Hence, the ability to discover these duplicate tasks may greatly enhance, not only the
readability of the final solution, but the precision of the process model by disallowing unseen
behavior.

From the perspective of process discovery, including duplicate tasks in the mining process
is a well known challenge [136] as, usually, different tasks can be recorded with the same
label in the log, hindering the discovery of the process model that better fits the log. Thus,
algorithms have to find out which events of the log belong to which tasks. In the state of the
art of process discovery, many techniques [33, 71, 96, 138, 147, 153, 155] assume an injective
relation between tasks and events in the log, considering that there cannot be two different
activities with the same label. Therefore, these algorithms, when discovering processes that
can generate logs with duplicate labels, usually give as a result process models with overly
connected nodes or needless loops, decreasing the precision and simplicity of the process
model.

Further, there are techniques that do not make such a restrictive assumption [15, 20, 23,
24, 30, 47, 75]. Typically, all these techniques identify the potential duplicate activities in
a pre-mining step, or during the mining process. One example is the α∗-algorithm [75], an
extension of the α-algorithm [137] to mine duplicate tasks. However, the heuristic rules used
in this algorithm require a noise-free and complete log [140]. Fodina [15] is an algorithm
based on heuristics that infers the duplicate tasks transforming the event log into a task log

following the heuristics defined in [30]. Other solutions, like DGA [30] and ETM [20] (based
on evolutionary algorithms), or AGNES [47] (an approach based on inductive programming)
include the possibility to mine duplicate tasks. However, these techniques do not allow to un-

fold loops [30], or they are very permissive allowing to duplicate any activity in the log [20].
Region-based algorithms [23, 24] are also able to mine duplicate tasks, but, when searching
for regions, they usually allow to split any label in the log without any bound. In [94] the au-
thors present an approach for discovering duplicate tasks specifically based on BPMN models
using the Heuristics Miner. On the other hand, besides these process discovery techniques,
the closest works that follow the idea of improving the readability of an already mined process
model are presented in [34, 44]. However, these techniques do no try to enhance a process
model with the inclusion of duplicate labels. A recent technique [118] introduces the concept
of label refinements, i.e., the authors perform the label splitting based on data attributes of the
recorded events, for instance, using the time attribute of events.



1.4. Process hierarchization 17

To sum up, although very valuable results have been achieved in this field, the state of
the art algorithms have different weaknesses. Some obtain, in specific logs, worse solutions
than without duplicated tasks [15]. Others allow to duplicate any activity in the log [20], or
generate solutions with a lower simplicity [24], i.e., more complex solutions. Finally, other
proposals use heuristics that do not consider duplicate activities in some workflow patterns
such as loops [30, 75]. Therefore, based on the above overview, the hypothesis of this PhD
Thesis regarding enhancing process models can be stated as follows:

H2. Is it possible to improve the structural clarity of a process model by duplicating the
activities of a process model after the discovery process?

1.4 Process hierarchization

In the previous section, we showed that taking into account duplicate labels can drastically
change how a process depicts the behavior recorded in the log. However, it is possible to
reach a further level of readability of a process model by applying hierarchization techniques,
through the use of domain knowledge. The exploitation of domain knowledge to retrieve
richer process models is still in an incipient phase with some recent studies [10, 38, 48, 97],
mostly because domain knowledge is, in most of the cases, very difficult to obtain. However,
there is one particular difference with these approaches and the idea of process hierarchiza-

tion. Instead of using domain knowledge during the discovery phase, process hierarchization
aims to use domain knowledge to translate an already discovered process model to a more
specific representation within a particular domain, and, thus, retrieve a more interpretable
process model.

This idea of process hierarchization using domain knowledge is, to the extent of our
knowledge, a rather new approach, with no previous work directly related within the field of
process mining. Nonetheless, it follows the same idea as methods that aim to decompose pro-
cess models [74, 87, 121]. However, decomposition techniques focus on the reduction of the
complexity of the models by slicing them, i.e., to partition larger process models and event
logs into smaller parts that can be analyzed independently. Thereby, the resultant process
model using decomposition techniques is still a flatten representation of the original process
model, i.e., through these techniques they do not completely hierarchize a process model.
Another notable technique worth mentioning is the Fuzzy Miner [54, 55], an approach that
can construct hierarchical process models, by moving less frequent activities to subprocesses



18 Chapter 1. Introduction

or clusters of activities. Hence, this hierarchization is driven by the frequency of use of the
different activities and arcs. In [14], the authors present an extension of the Fuzzy Miner,
called Fuzzy Map Miner, that follows a two-phase approach, by first simplifying the log to a
desired level of granularity, and later discovering the models from this simplified log. More
specifically, the discovery of hierarchical process models is enabled through the automated
discovery of abstractions (of activities), during the first step of the approach. These abstrac-
tions are defined through the discovery of common execution patterns in the log [13]. Another
approach based on this idea of hierarchical process models is presented in [50, 51]. In this
approach, the idea is to produce hierarchical views of the process that satisfactorily capture
the behavior of the log at different levels of detail. In other words, it aims to discover different
variants (different usage scenarios) of the process by means of clustering. Hence, instead of
a single, possible intricate and complex process model of the whole process, the aim is to
retrieve a collection of more compact and easier to understand process models.

Concerning this PhD Thesis, although we seek for a general approach independent of any
particular domain, we focus the process hierarchization in the educational field. The catalyst
behind this decision is due the existence of IMS LD [46], a meta-data standard that describes
all the elements of the design of a teaching-learning process. In this specification, one of the
main components is the learning design. This component is understood as the coordination
of the learning activities to be performed by the participants to achieve the pedagogical ob-
jectives, i.e the learning design describes the learning flow, or learning path, to be followed
by learners. To describe this learning design, the IMS LD specification follows a theater
metaphor where there are a number of plays, that can be interpreted as the runscripts for the
execution of the course and that are concurrently executed, being independent of each other.
Each one of these plays is composed by a set of acts, which can be understood as a module
or chapter in a course. Acts are performed in sequence and define the activities that partic-
ipants must do. This model also allows the assignation of roles to the participants and the
partitioning of the activities of an act according to those roles, which are called role-parts. In
this case, each one of the partitions can run in parallel. Finally, in each of these partitions,
activities or activity structures are selected. The latter may consist of a sequence or a selection

of activities.

Taking this structure into account, the hierarchization process would consist of identifying
the different IMS LD elements from a discovered process model, e.g., a Petri net, where these
elements are also represented as Petri nets. However, a Petri net is a flatten process, while



1.4. Process hierarchization 19

IMS LD is a hierarchical structure in which each layer is composed of a different type of
elements, i.e., each layer of the tree corresponds to a layer of IMS LD. Specifically, the first
layer represents plays, the second acts, the third role-parts, and the remaining layers activities
or activity structures. Moreover, as IMS LD also allows to specify adaptive learning strategies,
through this process it would also be necessary to extract the adaptive rules that constrict
the learning flow. Hence, the the problem to be solved is how to hierarchize an IMS LD
course from a process model and an event log, i.e., how to transform a process model into the
IMS LD standard to depict a more readable process model. In this way we can provide a more
interpretable process model to teachers, as they can work directly with learning elements. For
instance, a teacher can directly change a sequence of learning activities, or even a role part,
without further knowledge about Petri nets. Furthermore, thanks to this standardization of a
process model, the learning processes become reusable between different platforms. That is,
teachers would be able to take the reconstructed course, change it, and use it as a new course
in a different environment.

In the state of the art, we can find several approaches related to this idea of reconstructing
an IMS LD course. In [82], the authors focus on the reconstruction of an IMS LD course
based on a visual language, which hides the complexity of the process model. Moreover, this
approach requires a close collaboration between developers and teachers to simplify the gap
between the technical and pedagogical point of view of the course. In [2], and later in [1],
the authors present a four-step approach for process reenginering in higher education. How-
ever, the reengineering process is also not fully automatic, as it requires the participation and
feedback from all the appropriate personnel and users. In [67], the authors present PETRA,
a system to extract new knowledge rules about transitions and learning activities in processes
from previous platform executions. However, this tool is not oriented towards process recon-
struction and discovery, but on process extension, i.e., it requires an already defined process
model in order to enrich such process. In summary, the main drawback of the state of the
art approaches is that the course is not automatically reconstructed from scratch and needs
the supervision of teachers and even developers. In other words, teachers need to provide
feedback to map the discovered model to the IMS LD representation.

Therefore, considering the aforementioned state of the art, the hypothesis of this PhD
dissertation on this scenario can be stated as follows:

H3. Is it possible to automatically hierarchize an already discovered process model, using
domain knowledge, and, thus, retrieve a more interpretable process model?



20 Chapter 1. Introduction

1.5 Objectives

As previously stated in Section 1.1, we defined two main objectives in this PhD Thesis: i)

to design a process discovery algorithm focusing its search towards replay fitness, precision
and simplicity; and ii) to enhance the interpretability of the discovered process models. To
achieve that, different specific objectives have been pursued:

O.1 Process discovery algorithm guided by replay fitness, precision and simplicity

The first objective in this PhD thesis is to design a process discovery algorithm. Thus,
from the control-flow perspective, the approach should be able to tackle the usual work-
flow patterns. Furthermore, it should be able to mine process models with high levels
of replay fitness and precision, i.e., the discovered process models should represent,
as best as possible, the main behavior recorded while retrieving the simplest process
model as possible. Additionally, the algorithm should be able to deal with different
levels of noise in the event log.

O.2 Enhance models through the inclusion of duplicate activities

The next objective is to extend the mined process models with more behavior, in par-
ticular, with duplicate labels. This is of particular interest from the point of view of
readability and structural clarity of a process model, as with duplicate labels it is possi-
ble to disengage two activities with the same name that take place in different contexts
of the process. The main problem behind this idea is that including duplicate activ-
ities as part of the semantics of a discovery algorithm can significantly increase the
search space, hindering the discovery process. Furthermore, if any activity can be du-
plicated without any bound, this can result in overly-specific process models. Thus, the
main objective is to enhance an already mined process model by duplicating the overly
connected activities, improving the readibility of the resultant process model without
adversely affecting its quality in terms of replay fitness and precision.

O.3 Hierarchization of process models

The last objective relates to the improvement of the interpretability and structural clarity
of a process model. More specifically, the idea is to hierarchize a process model using
domain knowledge. In other words, the pursued objective is to use domain knowledge to
translate an already discovered process model to a more specific representation, within
a particlar domain, and, thus, retrieve a more interpretable process model. This idea of



1.6. Research Contributions 21

process hierarchizarion is of particular interest in domains such as education, due the
existence of the IMS LD standard, a meta-data model that describes all the elements of
a learning process. Thus, taking as an example the educational scenario, the idea is to
use the event logs generated during a course to extract the learning flow structure using
the previously developed algorithms, then to obtain the underlying rules that control the
adaptive learning of students, and finally to combine them into an educational modeling
language standard.

1.6 Research Contributions

The main contributions of this PhD dissertation are as follows:

C.1 Process discovery through a genetic algorithm

We developed a genetic process discovery algorithm (ProDiGen) that automatically
searches for process models with high levels of replay fitness, precision and simplicity,
while being robust to noise. Furthermore, the algorithm is able to face all the com-
mon workflow patterns at once. Thus, through this algorithm we are able to retrieve
high quality process models regardless the domain. More specifically, the novelties of
ProDiGen are:

- A hierarchical fitness function that takes into account replay fitness, precision and
simplicity.

- A new definition of precision based on the log and the mined process model.

- A new definition of simplicity based on the mined process model.

- A crossover operator that selects the crossover point from a Probability Density
Function (PDF) generated from the errors of the mined process model.

- A mutation operator guided by the causal dependencies of the log.

C.2 Mining duplicate labels from discovered process models

SLAD (Splitting Labels After Discovery) is a novel algorithm that enhances an already
discovered process model by splitting the behavior of its activities. Through this al-
gorithm, we analyse the possibility of tackling duplicate tasks after mining a process
model, without adversely affecting the quality of the initial solution. Before the execu-
tion of SLAD, a process discovery technique mines a log without considering duplicate



22 Chapter 1. Introduction

tasks, generating a causal net or a heuristic net. Then, SLAD, using the local infor-
mation of the log and the retrieved process model, tries to improve the quality of the
process model by performing a local search over the tasks that have more probability to
be duplicated in the log. The contributions of this proposal are:

- The discovering of the duplicate activities is performed after the discovery pro-
cess, in order to unfold the overly connected nodes than may introduce extra be-
havior not recorded in the log.

- New heuristics to focus the search of the duplicated tasks on those activities that
better improve the process model.

- New heuristics to detect potential duplicate activities involved in loops.

C.3 Process hierarchization

We present an approach to automatically hierarchize a process model using domain
knowledge. This objective is achieved in three different steps. Firstly, the process
model is automatically extracted from the logged sequences through the developed pro-
cess mining algorithms. Then, an algorithm based on the knowledge about the target
language control structure is applied to determine which components should be created.
Finally, the adaptive rules are automatically extracted form the event logs (more specif-
ically, from the variable values of the logs) by a decision tree learning algorithm, and
integrated into the target language structure. Furthermore, we have implemented and
validated this hierarchization process into the educational domain, enabling the hierar-
chization of process models into a standardized learning process model more suitable
for teachers, i.e., IMS LD. The main contributions of this proposal are:

- A new framework to hierarchize process models using domain knowledge regard-
less the target language.

- A new framework to make process models more interpretable based on domain
knowledge.

- The automatic identification of the adaptive rules from event logs.

- The automatic discovery of learning processes from event logs and its recompila-
tion to IMS LD.

- A new framework to facilitate the reuse of designed courses between different
virtual learning environments.



1.6. Research Contributions 23

C.4 Software Tools

Additionally, in this PhD Thesis, the following software tools have been developed
together with the aforementioned research contributions:

Tool ProDiGen Web6

A web platform to mine, visualize and analyse both event logs and process mod-
els. This platform provides automated process discovery for logs deriving from
different sources, allowing to apply different kinds of filters to retrieve much richer
process models. On the other hand, it provides a dynamic visualization of the pro-
cess as it happened, allowing to instantly spot bottlenecks or deviations. Related
to data, it provides both statistics for the information of the event log and the dis-
covered process model, ranging from how many times an activity was executed in
the process, or which case was the slowest/fastest in the process, etc. Addition-
ally, this web platform also provides access to other algorithms, such as mining the
frequent paths of a process model (WoMine), or the algorithm to mine duplicate
labels (SLAD).

Tool SoftLearn7

SoftLearn [146, 148] is a process mining-based tool which automatically discov-
ers and represents the learning flows that the students have followed in the devel-
opment of the tasks of a specific course. SoftLearn allows teachers to assess the
performance of the students, providing information about their learning process
and behavior throughout the course, and facilitating the evaluation of the learn-
ing activities carried out by learners during the course. This tool is currently been
used by five different teachers in three different courses in the Degree in Pedagogy
at the Faculty of Education of the Universidade de Santiago de Compostela: more
than 150 students are being evaluated through this platform.

6http://tec.citius.usc.es/processmining
7http://tec.citius.usc.es/SoftLearn

http://tec.citius.usc.es/processmining
http://tec.citius.usc.es/SoftLearn


24 Chapter 1. Introduction

1.7 Publications

All the contributions of this PhD dissertation are included in the following publications:

Journal Papers:

Inf Sci B. Vázquez-Barreiros, M. Mucientes, and M. Lama. ProDiGen: Mining com-
plete, precise and minimal structure process models with a genetic algorithm.
Information Sciences, 294:315–333, 2015.
(DOI: 10.1016/j.ins.2014.09.057).

- Impact Factor (JCR 2015): 3.364. Category: COMPUTER SCIENCE, INFORMATION
SYSTEMS. Order 8/143. Q1.

KBS J.C. Vidal, B. Vázquez-Barreiros, Manuel Mucientes, and Manuel Lama. Re-
compiling Learning Processes from Event Logs. Knowledge-Based Systems,
100:160–174 2016.
(DOI: 10.1016/j.knosys.2016.03.003).

- Impact Factor (JCR 2015): 3.325. Category: COMPUTER SCIENCE, ARTIFICIAL IN-
TELLIGENCE. Order 17/130. Q1.

Inf Sci B. Vázquez-Barreiros, M. Mucientes, and M. Lama. Enhancing Discovered
Processes with Duplicate Tasks. Information Sciences, 373:369–387, 2016.
(DOI: 10.1016/j.ins.2016.09.008)).

- Impact Factor (JCR 2015): 3.364. Category: COMPUTER SCIENCE, INFORMATION
SYSTEMS. Order 8/143. Q1.

Int J
Intell
Syst

A. Ramos-Soto, B. Vázquez-Barreiros, A. Bugarı́n, A. Gewerc, S. Barro. Eval-
uation of a Data-To-Text System for Verbalizing a Learning Analytics Dash-
board. International Journal of Intelligent Systems, 2016.
(DOI: 10.1002/int.21835).

- Impact Factor (JCR 2015): 2.050. Category: COMPUTER SCIENCE, ARTIFICIAL IN-
TELLIGENCE. Order 37/130. Q2.

http://dx.doi.org/10.1016/j.ins.2014.09.057
http://dx.doi.org/10.1016/j.knosys.2016.03.003
http://dx.doi.org/10.1016/j.ins.2016.09.008
http://dx.doi.org/10.1002/int.21835


1.7. Publications 25

International Conferences:

BPM B. Vázquez-Barreiros, M. Mucientes, and M. Lama. A Genetic Algorithm for Pro-

cess Discovery Guided by Completeness, Precision and Simplicity. In S.W. Sadiq,
P. Soffer, and H. Völzer, editors, Proceedings of 12th International Conference on

Business Process Management BPM, volume 8659 of Lecture Notes in Computer

Science, pages 118–133, Eindhoven, The Netherlands, 2014.

- Conference Ranking (CORE 2014): A.

ICALT B. Vázquez-Barreiros, M. Mucientes, M. Lama, and J.C. Vidal . SoftLearn: A

Process Mining Platform for the Discovery of Learning Paths. In D.G. Sampson
and J.M. Spector and N.S. Chen and R. Huang and Kinshuk, editors, Proceed-

ings of 14th IEEE International Conference on Advanced Learning Technologies,

ICALT, pages 373–375, Athens, Greece, 2014.

- Conference Ranking (CORE 2014): B.

EC-TEL J.C. Vidal, M. Lama, B. Vázquez-Barreiros, and M. Mucientes. Reconstructing

IMS LD Units of Learning from Event Logs. In C. Rensing, S. de Freitas, T. Ley,
P.J.M. Merino, editors, Proceedings of 9th European Conference on Technology

Enhanced, EC-TEL, volume 8719 of Lecture Notes in Computer Science, pages
345–358, Graz, Austria, 2014.

FIE A. Rodrı́guez Groba, B. Vázquez-Barreiros, M. Lama, A. Gewerc, and M. Mu-
cientes. Using a Learning Analytics Tool for Evaluation in Self-Regulated Learn-

ing. In M. Castro, E. Tovar, editors, Proceedings of 44th IEEE Frontiers in Edu-

cation Conference, FIE, pages 2484–2491, Madrid, Spain, 2014.

- Conference Ranking (CORE 2014): B.

FIE M. Fernandez-Delgado, M. Mucientes, B. Vázquez-Barreiros, and M. Lama. Learn-

ing Analytics for the Prediction of the Educational Objectives Achievement. In M.
Castro, E. Tovar, editors, Proceedings of 44th IEEE Frontiers in Education Con-

ference, FIE, pages 2500–2503, Madrid, Spain, 2014.

- Conference Ranking (CORE 2014): B.

ATAED B. Vázquez-Barreiros, M. Mucientes, and M. Lama. Mining Duplicate Tasks from

Discovered Processes. In W.M.P. van der Aalst, R. Bergenthum, J. Carmona, ed-
itors, Proceedings of 2015 International Workshop on Algorithms & Theories for



26 Chapter 1. Introduction

the Analysis of Event Data, ATAED, volume 1371 of CEUR Workshop Proceed-

ings, pages 78–82, Brussels, Belgium, 2015.

AIED B. Vázquez-Barreiros, A. Ramos-Soto, M. Lama, M. Mucientes, A. Bugarin, and
S. Barro. Soft Computing for Learner’s Assessment in SoftLearn. In C. Conati, N.
Heffernan, A. Mitrovic, M.F. Verdejo, editors, Proceedings of 17th International

Conference on Artificial Intelligence in Education, AIED, volume 9112 of Lecture

Notes in Computer Science, pages 925–926, Madrid, Spain, 2015.
- Conference Ranking (CORE 2014): A.

ICALT A. Ramos-Soto, M. Lama, B. Vázquez-Barreiros, A. Bugarı́n, M. Mucientes, S.
Barro:. Towards Textual Reporting in Learning Analytics Dashboards . In N.S.
Chen and Kinshuk and C.C. Tsai, editors, Proceedings of 15th IEEE Interna-

tional Conference on Advanced Learning Technologies, ICALT, pages 260–264 ,
Hualien, Taiwan, 2015.

- Conference Ranking (CORE 2014): B.

ATAED B. Vázquez-Barreiros, D. Chapela, M. Mucientes, and M. Lama. Process Mining

in IT Service Management: A Case Study. In W.M.P. van der Aalst, R. Bergen-
thum, J.Carmona, editors, Proceedings of 2016 International Workshop on Al-

gorithms & Theories for the Analysis of Event Data, ATAED, volume of CEUR

Workshop Proceedings, pages 16–30, Toruń, Poland, 2016.

BPMDS B. Vázquez-Barreiros, S.J. van Zelst, J.C.A.M. Buijs, M. Lama, M. Mucientes
Repairing Alignments: Striking the Right Nerve. In , editors, Proceedings of 17th

International Conference on Business Process Modeling, Development, and Sup-

port, BPMDS, volume of Lecture Notes in Business Information Processing, pages
266–281, Ljubljana, Slovenia, 2016.

- Conference Ranking (CORE 2014): C.

National Conferences:

JCIS B. Vázquez-Barreiros, M. Mucientes, and M. Lama. ProDiGen: minando mod-
elos completos, precisos y simples con un algoritmo genético. In Jornadas de

Ciencia e Ingenierı́a de Servicios, JCIS, Santander, Spain, 2015.

UNIVEST A. Rodrı́guez Groba, A. Gewerc, B. Vázquez-Barreiros, and M. Lama. SoftLearn:
Una herramienta para evaluar y acompañar la creación de e-portflio. In V Con-

greso Internacional UNIVEST, Girona, Spain, 2015.



1.7. Publications 27

JCIS J.C. Vidal, B. Vázquez-Barreiros, M. Mucientes, and M. Lama. Recompilación
de procesos de educación a partir de registros de eventos. In Jornadas de Ciencia

e Ingenierı́a de Servicios, JCIS, Salamanca, Spain, 2016.

JCIS B. Vázquez-Barreiros, S.J. van Zelst, J.C.A.M. Buijs, M. Lama, M. Mucientes.
Reparación de alignments. In Jornadas de Ciencia e Ingenierı́a de Servicios,

JCIS, Salamanca, Spain, 2016.



28 Chapter 1. Introduction

1.8 Thesis Outline

Figure 1.6 shows the main structure of this thesis:

- Chapter 2 presents ProDiGen, a genetic algorithm for process discovery guided by re-
play fitness, precision and simplicity. The algorithm uses a hierarchical fitness function
that takes into account completeness, precision and simplicity (with new definitions for
both precision and simplicity) and uses heuristics to optimize the genetic operators: i) a
crossover operator that selects the crossover point from a Probability Density Function
(PDF) generated from the errors of the mined model, and ii) a mutation operator guided
by the causal dependencies of the log. Furthermore, ProDiGen was compared with four
state of the art algorithms using 39 process models.

- Chapter 3 focuses on improving the structural claririty and readability of discovered
process models through the inclusion of duplicate labels. For this purpose, we devel-
oped SLAD (Splitting Labels After Discovery), an algorithm that takes as starting point
an already mined model, and using the local information of the log, tries to improve the
replay fitness, precision and simplicity of the model by splitting the overly connected
nodes into two or more activities. In order to validate the performance of the approach,
we present a detailed evaluation with 54 mined models from three process discovery al-
gorithms. Furthermore, the results have been compared with eight different algorithms
from the state of the art.

- Chapter 4 presents a novel framework for the hierarchization of process models through
the inclusion of domain knowledge. More specifically, we show how the hierarchization

Log

Process 
hierarchization

Process
simplification

Chapter 2 Chapter 3 Chapter 4

Role part 2
Role part 1

Act 2Act 1

Play

Chapter 1: Introduction

Process
discovery

Chapter 5: Conclusions

Figure 1.6: Dissertation structure.



1.8. Thesis Outline 29

of a process model using domain knowledge can enhance its interpretability within tan
specific domain. Furthermore, we have implemented this framework in the educational
domain, enabling the hierarchization of a process model into the standard IMS LD. The
main components of this framework are: i) the automatic discovery of learning pro-
cesses from event logs and its automatic hierarchization to IMS LD; ii) the automatic
identification of the adaptive rules from event logs; iii) a new framework to facilitate
the reuse of courses between different virtual learning environments. Moreover, an im-
portant feature of the described approach is its independence from any target language.
Each one of the three parts of the reengineering approach has been analyzed separately
using a set of nine real courses with different degrees of complexity.

- Chapter 5 presents the main conclusions and future work.





CHAPTER 2

PRODIGEN: MINING COMPLETE, PRECISE

AND MINIMAL STRUCTURE PROCESS

MODELS WITH A GENETIC ALGORITHM

Log

Process 
hierarchization

Process
simplification

Chapter 2 Chapter 3 Chapter 4

Role part 2
Role part 1

Act 2Act 1

Play

Chapter 1: Introduction

Process
discovery

Chapter 5: Conclusions

Process discovery aims to obtain a process model that specifies the relations between ac-
tivities in an event log, by combining different control structures such as sequences, choices,
loops, among others, that are used to coordinate the control-flow of the activities in the work-
flow. As indicated in Chapter 1 very valuable results have been achieved in this field. Unfortu-
nately, many process discovery algorithms focus on one or two quality dimensions or the used
notation does not allow to properly represent all possible behavior. For instance, algorithms
that only are able to retrieve block-structured process models cannot tackle non-free-choice
constructs, arbitrary loops, or other common patterns in a real life process model. In other
words, current techniques have difficulties to retrieve models with high levels of replay fitness,



32 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

but being as precise and simple as possible.

To tackle this scenario, in this chapter we present ProDiGen (Process Discovery through
a Genetic algorithm), a process discovery algorithm that guides its search towards replay
fitness, precision, and simplicity. More specifically, the algorithm uses a hierarchical fitness
function that takes into account replay fitness, precision and simplicity (with new definitions
for both precision and simplicity) and uses heuristics to optimize the genetic operators: (i) a
crossover operator that selects the crossover point from a Probability Density Function (PDF)
generated from the errors of the mined model, and (ii) a mutation operator guided by the causal
dependencies of the log. In order to validate the performance of ProDiGen, we have used 39
models from the literature with several levels of noise and different degrees of complexity,
giving a total of 111 different logs. Moreover, we have compared our approach with four state
of the art algorithms using a collection of conformance checking metrics.

This chapter includes a full copy of the following journal paper that describes in detail the
proposed approach:

B. Vázquez-Barreiros1, M. Mucientes1, and M. Lama1. ProDiGen: Mining complete,
precise and minimal structure process models with a genetic algorithm. Information

Sciences, 294:315–333, 2015.
(DOI: 10.1016/j.ins.2014.09.057).

2.1 Abstract

Process discovery techniques automatically extract the real workflow of a process by analyz-
ing the events that are collected and stored in log files. Although in the last years several
process discovery algorithms have been presented, none of them guarantees to find complete
precise and simple models for all the given logs. In this paper we address the problem of pro-
cess discovery through a genetic algorithm with a new fitness function that takes into account
both fitness replay, precision and simplicity. ProDiGen (Process Discovery through a Genetic
algorithm) includes new definitions for precision and simplicity, and specific crossover and
mutation operators. The proposal has been validated with 39 process models and several noise
levels, giving a total of 111 different logs. We have compared our approach with the state of

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela. Santiago de Compostela, Spain.

http://dx.doi.org/10.1016/j.ins.2014.09.057


2.2. Introduction 33

the art algorithms; non-parametric statistical tests show that our algorithm outperforms the
other approaches, and that the difference is statistically significant.

2.2 Introduction

In the last decade, a great effort for developing technologies to automate the execution of
processes has been made in different application domains such as industry, education or
medicine [41]. In this context, a process is understood as a collection of tasks —or activities—
with coordination requirements among them [132]. These tasks are performed by a set of ac-
tors to achieve the purpose of the process. For instance, in education the learning design of
a course is a process where learners must undertake a sequence of learning activities, e.g.,
posting in forums, making exercises and exams, etc., in order to achieve the pedagogical ob-
jectives of the course. Typically, these processes have a detailed description, i.e., there is a
design of the process where its activities and the actors participating in these steps are clearly
described. However, even in this situation there might be differences between what is actually
happening and what is predefined in the process. For instance, following with the example of
the education domain, learners can undertake additional learning activities —like check the
bibliography or interact with other learners— apart from those that were explicitly specified
in the learning process designed by a teacher.

At this point, Process Mining (PM) techniques are needed to get information about what

is really happening in the execution of a process, and not what the people think it is happen-

ing [137]. Typically these techniques use the log files that collect information about the events
detected and stored by the information system in which the process has been performed. PM
techniques can be classified in three different groups [122]. The first one is process discovery,
which aims to retrieve the process model that represents the behavior recorded in an event
log. These algorithms are used to discover the underlying process that has been followed by
users to achieve an objective. The second class of process mining techniques is conformance

checking, where a process model is compared with a log of the same process to analyze and
quantify the deviations between the observed and the real behavior, as recorded in the log.
These techniques are focused on providing an understanding of the real processes that take
place in an organization. The third group is enhancement, where a process model is dynam-
ically modified or extended based on the information from the log. In this paper, we address
the problem of process discovery. More specifically, our interest lies in the control-flow of the



34 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

recorded events, i.e., the ordering of the activities.
Over the last decade, several papers have dealt with the discovery problem in process

mining [19, 30, 32, 137, 138, 155, 156, 157]. Unfortunately, existing techniques may produce
models that are unable to replay the log, may produce complex and unreadable models, or may
retrieve erroneous models. For instance, those approaches based just on the local information
provided by the log [137] are only capable to overcome specific weak points in the field
under some conditions —completeness and noise-free logs—, like short loops [32], non-free-
choice constructs [156] or invisible tasks [157], but not all at once. Other papers solve the
process discovery problem with search-based approaches, based on heuristics or on theory of
regions [19, 30, 138, 155]. Some techniques guarantee sound models [19], others guarantee
the rediscoverability of the main behavior of the log [155], some guarantee perfect fitness
replay [138] and others can tackle all the different and main pattern constructs at once [30]
but leaving simplicity aside. Nevertheless, there is no discovery algorithm that can tackle
all the different structures at once, and that can find complete, precise and simple models.
Furthermore, many of them have problems while dealing with noise.

In this paper we present ProDiGen2 (Process Discovery through a Genetic algorithm), a
process discovery algorithm that searches complete, precise and simple models. The contri-
butions of this proposal are:

1. A hierarchical fitness function that takes into account completeness, precision and sim-
plicity.

2. A new definition of precision based on the log and the mined model.

3. A new definition of simplicity based on the mined model.

4. A crossover operator that selects the crossover point from a Probability Density Func-
tion (PDF) generated from the errors of the mined model.

5. A mutation operator guided by the causal dependencies of the log.

The proposal has been tested with 39 models with several noise levels and different de-
grees of complexity, giving a total of 111 different logs. Moreover, we have compared our
approach with four of the state of the art algorithms using a collection of conformance check-
ing metrics. The results of the comparison have been validated with non-parametric statistical
tests.

2http://tec.citius.usc.es/processmining/prodigen

http://tec.citius.usc.es/processmining/prodigen


2.3. Process Discovery 35

The remainder of this paper is structured as follows. Section 2.3 introduces the process
discovery problem, and Section 2.4 describes the different approaches that have already been
proposed. Then, Section 2.5 presents the proposed genetic algorithm for process discovery.
Section 2.6 shows the obtained results and the comparison with other approaches, and, finally,
Section 2.7 points out the conclusions.

2.3 Process Discovery

The goal of process discovery is to obtain a process model that specifies the relations between
tasks —or activities— in an event log. The basic assumption is that there is a process model
that generates the log with the following rules: i) each event is a well-defined step in some
process; ii) each event is related to a particular case; and iii) the events are sequentially saved
no matter the type of pattern behind. Figure 2.1(a) represents a simple log with 18 events, 6
different activities and performed by three different users.

To discover the underlying process, the proposal presented in this paper only needs the
list of events in the log and their corresponding case identifiers. Other process discovery tech-
niques can use more information, like the timestamp [21, 133] or the data attributes that affect
the routing of the cases [104]. The event log of Figure 2.1(a) shows the process instances of
three different students during the course Automata Theory and Formal Languages. In this
log, all the students started with an introductory class, and then they attended to four different
lessons (finite automaton, regular grammar, context-free grammar and pushdown automaton).
Once all these four lessons are finished, they make an exam. Using the information provided
by the log, the discovery of a process model can take place with different objectives [102]:

• Completeness. Measures how much of the behavior observed in the log can be re-
produced by the mined model. A model is complete when it can reproduced all the
behavior in the log.

• Precision. The objective of this metric is to avoid overly general models. The model in
Figure 2.1(c) is able to parse all the traces in the log. However, it is an overly general
model, as it allows more behavior than the contained in the log. For example, one
valid trace for this model is the possibility to make the exam after attending only to the
introductory class.



36 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

User Event Lifecycle Timestamp

Pablo Introductory class complete 07-03-2013:10:00
Borja Introductory class complete 09-03-2013:16:00
Pablo Finite Automaton complete 11-03-2013:19:30
Pablo Regular Grammar complete 17-03-2013:15:28
Borja Finite Automaton complete 20-03-2013:10:12

Manuel Introductory class complete 20-03-2013:11:42
Borja Regular Grammar complete 21-03-2013:14:34

Manuel Regular Grammar complete 23-03-2013:09:21
Pablo Context-Free Grammar complete 01-04-2013:12:36

Manuel Finite Automaton complete 01-04-2013:15:54
Borja Pushdown Automaton complete 04-04-2013:17:20

Manuel Context-Free Grammar complete 06-04-2013:20:00
Pablo Pushdown Automaton complete 21-04-2013:11:02
Borja Context-Free Grammar complete 22-04-2013:15:09

Manuel Pushdown Automaton complete 28-04-2013:17:45
Pablo Exam complete 06-05-2013:18:45

Manuel Exam complete 06-05-2013:19:01
Borja Exam complete 06-05-2013:19:22

(a) An event log

b

c e

d

fa

(b) A complete, specific and general model: Completeness +, Precision
+, Generalization +, Simplicity +

b

c

d

e

f

a

(c) A complete over-general model:
Completeness +, Precision -, Gen-
eralization +, Simplicity +

ec

a

c e

b

b

c

b d

d

ed f

(d) A complete over-specific model: Completeness +, Precision +, Generalization -, Simplicity -

Figure 2.1: Discovery of a process model prioritizing different objectives. The models are represented as Petri nets.
The name of the activities are: Introductory class (a), Finite Automaton (b), Regular Grammar (c),
Context-free grammar (d), Pushdown automaton (e) and Exam (f)).



2.4. Related Work 37

• Generalization. This metric tries to prevent overly precise models. For instance, al-
though the model in Figure 2.1(d) is complete, it is overly specific because it merely
recreates each one of the traces of the log, not allowing extra behavior. When mining
models, there is a tradeoff between precision an generalization, which can be compared
to the bias-variance tradeoff.

• Simplicity. Indicates to models with a minimal structure that reflects the behavior in
the log. For example, the model in Figure 2.1(d) creates one path for every possible
trace of the log, i.e., it is not simple as it contains several duplicated tasks, which make
the model difficult to read.

Figure 2.1(b) shows a model that takes into account the four objectives. This model is
well-structured, providing not only the behavior shown in the log, but allowing also the trace
“Intro, Regular Grammar, Finite Automaton, Pushdown Automaton, Context-Free Grammar,

Exam”. Moreover, the model does not allow random behavior.

2.4 Related Work

Since Cook and Wolf [27] coined the term process discovery, and later on, Agrawal et al. [7]
applied this idea in the context of workflow management systems, dozens of process discovery
methods have been proposed [122]. Although some mining techniques use a specific target
model for control-flow discovery [55], most of the process discovery algorithms are based on
Petri nets [88]. These algorithms can be classified in four groups [140]:

• Abstraction-based algorithms. This type of algorithms are based on a complete and
noise free-log. All of them are derived from the α-algorithm [137] to address some
of its drawbacks. The limitations solved with these extensions are: short loops (α+-
algorithm [32]), non-free-choice constructs (α++-algorithm [156]), invisible tasks (α#-
algorithm [157]) and duplicate tasks (α∗-algorithm [75]). Despite the different exten-
sions, none of the abstraction-based algorithms can tackle all the complex constructs at
once. In general, this type of algorithms focuses on simplicity, retrieving very simple
models but with poor completeness.

• Heuristics-based algorithms. In [154, 155], Weijters et al. presented the Heuristics
Miner, an extension of the α-algorithm but taking into account the frequency of or-
dering relations. One of its main advantages is its ability to handle noise based on a



38 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

set of thresholds. Thus, this method is appropriate for identifying the main behavior
registered in the log, excluding duplicate tasks and some non-free-choice constructs.
DWS [49] is an extension of Heuristics Miner that identifies different variants of a pro-
cess model by clustering similar log traces. Another extension of the Heuristics Miner
was presented in [21]. It takes into account the timestamp of the activities, expressing
the activity as time intervals instead of single events. Heuristics-based algorithms use
replay fitness (completeness) as their guiding principle, but do not guarantee optimal
results in terms of completeness, as they only focus on the main behavior.

• Search-based algorithms. So far, the previously described algorithms are based on
local information and therefore, they cannot discover some constructs like non-free-
choices. To overcome this situation, the search-based algorithms perform a global
search based on an abstraction from local properties like ordering relations. With Ge-
netic Miner, Alves de Medeiros et al. [30] proved that it is possible to mine all common
constructs and be robust to noise, all at once, but it cannot ensure simple models as
some of the mined solutions have implicit places or needless arcs. Another approach
recently proposed [19] guides its search taking into account a balance between the four
objectives described in Section 2.3, considering only block-sructured solutions.

• Algorithms based on theory of regions. They can be classified in two groups based
on their behavioral process specification: state-spaced and language based. The state-

based algorithms perform two steps: first, they build a transition system [129] —a set
of states and transitions between states—, and then they construct a Petri net accord-
ing to that transition system [9, 25, 113, 42]. This group of algorithms focuses on the
synthesis of a Petri net whose reachability graph is similar to the transition system. As
discussed in [129] and [138] the main problem of this solution is the non-trivial con-
struction of the state information from a log, because usually logs almost never carry
state information. In contrast, language-based algorithms assume that the log contains
words (traces) of a specific language —the activities are the letters—, whereas the tar-
get net allows just words of this language. For language-based algorithms, in [12],
the authors distinguish between two methods to derive Petri nets from event logs, i)

using a basis representation, which cannot tackle duplicate tasks or non-free-choice
constructs; and ii) using separating representation [12, 78] to mine duplicate tasks but
not non-free-choice constructs. Both approaches lead to a model overfitting the log due
to the restrictive assumptions about process logs. Additionally, the number of places



2.5. ProDiGen: Process Discovery through a Genetic algorithm 39

introduced by both approaches is theoretically high. To overcome these drawbacks,
in [138], authors propose to use Integer Linear Programming to avoid overffited models
and minimize the upper bound number of places. However, because no assumptions
are made about the completeness of the log, the solution might be an underfitted model,
allowing for much more extra behavior. These algorithms usually guarantee a perfect
replay fitness, but, unfortunately, these techniques still have problems with incomplete
behavior.

A method that does not fit in any of these categories and is based on inductive logic
programming was presented by Goedertier et al. [47]. They designed an algorithm that
introduces artificially generated negative events, i.e., traces that describe a particular path that
is not allowed for a process. Unfortunately, event logs hardly ever contains information about
disallowed behavior.

In summary, a large amount of work has been done in this specific area by addressing
solutions from different points of view. Unfortunately, none of the techniques can retrieve
models with high levels of completeness, but being as precise and simple as possible. Fur-
thermore, none of these techniques can handle all the different control constructs and noise
all at once, but ensuring completeness, precision and simplicity. Hence, we propose a more
elaborate approach based on the idea of Genetic Miner [30] to overcome these drawbacks.

2.5 ProDiGen: Process Discovery through a Genetic algorithm

Our proposal (ProDiGen) is inspired in the Genetic Miner algorithm [30], which can tackle
all the different constructs at once. However, Genetic Miner has several drawbacks: i) it is
not able to mine complete and precise models when they have many interleaving situations;
ii) the mined models are usually hard to interpret and unnecessarily complex; and iii) it needs
many generations to converge to a solution.

The drawbacks of Genetic Miner are caused by: i) a weighted fitness function that com-
bines completeness and precision in an inadequate way; ii) the precisions of the models are
not very informative as they depend on the precisions of the other individuals of the popula-
tion; iii) the fitness function does not take into account the simplicity of the model; and iv) the
genetic operators are executed in a completely random way, without taking advantage of the
information of the log and the errors of the mined model during the parsing of the traces.



40 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

Table 2.1: Differences between ProDiGen and Genetic Miner.

Fitness The fitness is hierarchical and takes into account the completeness,
precision and simplicity of the mined model.

Precision Definition of a new method to measure the precision of a model.
Simplicity Definition of a new method to measure the simplicity of a model.
Initialization ProDiGen incorporates the result of the Heuristics Miner [155] into

the initial population.
Selection Binary tournament selection.
Replacement It selecs the best individuals of a joint population of parents and offspring.

The reinitialization criterium is based on the improvement of the population.
Crossover The crossover operator is guided by a Probability Density Function (PDF)

generated from the errors of the mined model.
Mutation The mutation operator is guided by the causal dependencies of the log.

The differences between ProDiGen and Genetic Miner are summarized in Table 2.1. As
can be seen, almost all the mains steps of the genetic algorithm have been changed in order to
overcome the previously discussed drawbacks. In particular, one of the major changes takes
place in the hierarchical fitness function, where completeness, precision and simplicity are
considered for the evaluation of an individual. Additionally, we introduce heuristics to guide
the genetic operators, focusing the search on those parts of the mined model that have errors
and, also, looking for new models that are supported by the information in the log.

The main steps of ProDiGen are shown in Figure 2.2. The algorithm has three phases: i)

a pre-processing of the log, which groups and filters out the noise in the log; ii) the core of
ProDiGen is the genetic algorithm phase; and iii) a post-processing of the mined model, to
prune unused and infrequent arcs. The genetic algorithm is described in 2.5.1 and both the
pre-processing and post-processing steps are described in Section 2.5.2.

I II III

VI

IV yes

no

V VII

Pre-process 
the log

Post-process
the solutionGenetic algorithm

Step Description
I Pre-process the log
II Compute dependencies
III Build the initial population
IV Evaluate each solution
V Stopping conditions fulfilled?
VI Generate the new population
VII Post-process the best individual

Figure 2.2: Main steps of ProDiGen.



2.5. ProDiGen: Process Discovery through a Genetic algorithm 41

Algorithm 2.1: Genetic algorithm for process discovery.

1 Initialize population
2 Evaluate population
3 t = 1, timesRun = initialTimesRun, restarts = 0
4 while t≤ maxGenerations && restarts < maxRestarts do
5 Selection
6 Crossover
7 Mutation
8 Evaluate new individuals
9 Replace population

10 t = t +1
11 if bestInd(t) == bestInd(t−1) then
12 timesRun = timesRun−1

13 if none of the individuals of the population have been replaced then
14 timesRun = timesRun−1

15 if timesRun < 0 then
16 Reinitialize population
17 Evaluate population
18 timesRun = initialTimesRun, restarts = restarts+1

2.5.1 Genetic algorithm

Algorithm 2.1 describes the genetic algorithm. The first three steps correspond to an initial-
ization, where t represents the number of iterations, timesRun is used to detect situations in
which the search gets stuck, and restarts counts the number of executed reinitializations. The
evolution cycle of the algorithm starts at Algorithm 2.1:4. This part will be repeated until the
stopping criterion is fulfilled. The main steps of the iterative part are the selection of the indi-
viduals, the crossover and mutation operations to generate new individuals, their evaluation,
the replacement of the population, and the analysis of the population to detect blockages in
the search process. All of these steps are described in detail in the next sections.

Internal representation

Each individual of the population codifies a workflow using the causal matrix representa-
tion [30], which can map any Petri net in terms of causal dependencies. The causal matrix
has a row for each task t in the log, and two columns corresponding to the inputs —I(t)—



42 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

and outputs —O(t)— of each task t (see Figure 2.3 for an example). Those tasks in the same
subset of I(t) have an OR-join relation, and those on different subsets an AND-join relation.
On the other hand, tasks in the same subset of O(t) have an OR-split relation and those in
different subsets an AND-split relation.

D

B

C

A E

start end

(a) Example of a Petri net.

Task I(Task) O(Task)

A {} {{D},{C B}}
B {{A}} {{E}}
C {{A}} {{E}}
E {{D},{B,C}} {}
D {{A}} {{E}}

(b) Causal matrix of the Petri net.

Figure 2.3: Mapping of a petri net into a causal matrix.

Initialization

The initialization follows the heuristic approach described in [30], which is based on the
causality relations between tasks. Moreover, we also add to the initial population an individual
mined with the Heuristics Miner approach [155]. It is important to notice that the inclusion
of the Heuristics Miner individual does not modify the best mined model of ProDiGen in any
of the 111 logs tested in the results section. Nevertheless, the inclusion of this individual in
the initial population speeds up the iteration at which the best individual is found, as the main
dependency relations are captured by Heuristics Miner —these dependencies are more robust
than the ones defined in [30]— and then, with ProDiGen, the different inputs and outputs
bindings are optimized.

Evaluation

Individuals of the population are evaluated with a hierarchical fitness function that takes into
account completeness, precision and simplicity.

Completeness

A natural definition for completeness would be the number of properly parsed traces di-
vided by the total number of event traces . However, this definition is not able to distinguish



2.5. ProDiGen: Process Discovery through a Genetic algorithm 43

between two individuals that cannot process a trace; e.g., one of them because an arc is miss-
ing and the other one because the model is totally incorrect. For this reason, we use the
definition of completeness (Cf) described in [30], which takes into account the number of cor-
rectly parsed tasks3, but also the number of missing and not consumed tokens of the Petri net
encoded in the individual —each missing or not consumed token represents a failure.

Precision

The measurement of the precision of a mined model is difficult, as precision has to detect
the extra behavior, i.e., paths in the model that are not represented in the log. Therefore, our
definition of precision considers all the activities that are enabled while an individual parses
the log:

Pf (L, CM) =
1

allEnabledActivities(L, CM)
(2.1)

where allEnabledActivities is the number of enabled activities when a log L is processed
by an individual CM. allEnabledActivities is evaluated by counting the number of enabled
activities after firing each activity of a trace. This process is performed for every trace in the
log. Thereby, with this definition for the precision ProDiGen punishes those models with too
many enabled activities, as each enable activity represents a possible path for extra behavior.
Contrary to [30], we do not consider the rest of the population in order to compute the preci-
sion of each individual, which can evolve without taking into account the precision of the rest
of the population.

Simplicity

The third dimension of the fitness is simplicity, which measures the complexity of a mined
model based on the number of causal relations of an individual:

Sf (CM) =
1

∑t∈CM
(
∑Φ∈I(t) |Φ|+∑Ψ∈O(t) |Ψ|

) (2.2)

where t is a task of the causal matrix CM, Φ is an element of I(t) —the tasks in Φ have
an OR-join relation—, and Ψ is an element of O(t) —the tasks in Ψ have an OR-split rela-
tion. Therefore, the simplicity counts the number of causal relations of the model using the
cardinality of the input and output subsets of the causal matrix.

3If a task from an individual does not have the proper input arcs, that task will be incorrectly parsed when
reproducing the log, as its input conditions are not fulfilled.



44 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

A D

B

E

YC

X

(a) Mined model with needless branches.

DA

B

CX

E

Y

(b) Simplest mined model.

Figure 2.4: Two possible solutions with the same completeness and precision.

We illustrate the relevance of simplicity to mine the original model with a simple exam-
ple of two traces repeated three times: << X ,B,C,E,Y >3, < X ,A,C,D,Y >3>. Figure 2.4
shows two mined models that discover the non-free-choice4 construction, and have the same
completeness and precision: i) both can parse exactly the same tasks, i.e., completeness= 1.0;
and ii) they enable exactly the same number of tasks during the parsing (36), thus precision =

1/36. However, the model in Figure 2.4(a) has a simplicity = 1/24 while the model in Fig-
ure 2.4(b) has a simplicity = 1/20 and, therefore, the second one is a better model. The
difference between these two solutions —in terms of simplicity— is caused by the output
function of the task X and the input function of the task C: i) the causal matrix of the model
in Figure 2.4(a) has O(X) = {{A,B},{B,C}}, and I(C) = {{A,B},{B,X}} which increases
the complexity of the model by 8; ii) the causal matrix of the model in Figure 2.4(b) has
O(X) = {{A,B}}, and I(C) = {{A,B}} which increases the complexity of the model by 4.

Fitness

ProDiGen uses completeness, precision and simplicity to evaluate the mined models.
However, instead of combining these three objectives in a weighted sum —which requires
the definition of a new weight parameter for each criteria— it defines a hierarchical fitness

4A non-free-choice construction is a mixture of a synchronization and a choice [30]. For example, in Figure 2.4,
the execution of D or E depends on whether the task A or B has been executed.



2.5. ProDiGen: Process Discovery through a Genetic algorithm 45

function that establishes priorities among the objectives:

F(a) > F(b) ⇐⇒ {Cf (a)> Cf (b)}∨{Cf (a) = Cf (b)∧Pf (a)> Pf (b)} (2.3)

∨{Cf (a) = Cf (b)∧Pf (a) = Pf (b)∧Sf (a)> Sf (b)}

where F(a), Cf (a), Pf (a) and Sf (a), are respectively the fitness, completeness, precision and
simplicity of a process model a. The advantage of using this hierarchical fitness function
over a weighted fitness function is that, during the first stage of the evolutionary process, the
GA focuses the search on those individuals that are complete. Once these individuals become
representative in the population, the second level of the hierarchy takes the control, modifying
the models that are complete in order to improve their precision. Finally, in the third stage,
the fitness function guides the GA to improve the simplicity of those models that are both
complete and precise.

If we change the hierarchical order of the fitness measure, the algorithm may find a dif-
ferent solution, as completeness, precision and simplicity are three opposed objectives. Fig-
ure 2.5 shows four different models that can be found mining two traces: << X ,B,C,E,Y >,

< X ,A,C,D,Y >> but prioritizing different objectives. For example, both the models of
Figure 2.5(b) and Figure 2.5(a) have the same completeness but, in order to achieve a bet-
ter simplicity, the solution of Figure 2.5(a) retrieves a lower precision than the solution of
Figure 2.5(b). If we want to retrieve a simple model (Figure 2.5(c)) the solution will have a
lower completeness. On the other hand, if we want to retrieve a model with a better precision
(Figure 2.5(d)), both the completeness and the simplicity will be lower.

X

A

B
C

D

E

Y

(a) Cf = 1.0, Pf = 1/12, Sf = 1/20.

X

A

B

C

D

E

Y

(b) Cf = 1.0, Pf = 1/14, Sf = 1/16.

EB C YX

(c) Cf = 0.2, Pf = 1/18, Sf = 1/8.

E

DA

C

B

YX

(d) Cf =−0.2, Pf = 1/6, Sf = 1/20.

Figure 2.5: Four different models prioritizing the different search criteria.



46 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

Genetic operators

The process to create new individuals starts with the selection phase. ProDiGen uses as se-
lection mechanism a binary tournament selection, in which two individuals of the population
are randomly picked —with replacement—, and the best of them is selected. Then, each pair
of individuals in the selected population is crossed and mutated.

Crossover

The crossover operator replaces causality relations of an individual with causality relations
of another individual. As the process models are represented through causal matrices, and the
size of the causal matrix increases with the number of activities in the log, the number of
possible crossover points could be really large. Therefore, picking the crossover point at
random produces a poor performance of the crossover operator, as most of the offspring have

a fitness lower than their parents. ProDiGen makes the selection of the activity that is going
to be crossed using a non uniform PDF. This PDF assigns a null probability of being selected
to those activities that have been correctly fired during the parsing of the traces in the log.
On the other hand, those activities that were incorrectly fired receive a uniform probability,
inversely proportional to the number of incorrectly parsed activities, of being crossed.

Algorithm 2.2: Crossover operator.

1 r← getRandomNumber() // returns a random number between [0,1)
2 if r < crossoverRate then
3 incorrectlyFiredActivities← /0
4 if fitness(parent1) >= fitness(parent2) then
5 incorrectlyFiredActivities← set of incorrectly fired activities of parent1
6 else
7 incorrectlyFiredActivities← set of incorrectly fired activities of parent2
8 if incorrectlyFiredActivities 6= /0 then
9 crossoverPoint← randomly select an activity t from incorrectlyFiredActivities

10 else
11 crossoverPoint← randomly select an activity t from the bag of all possible

tasks in the log

12 offspring1, offspring2← doCrossover(parent1, parent2, crossoverPoint)
13 Repair offspring1 and offspring2



2.5. ProDiGen: Process Discovery through a Genetic algorithm 47

Algorithm 2.2 summarizes the behavior of the crossover operator. By incorrectly fired
activities we mean i) activities that need extra tokens in their inputs to be fired, i.e., tasks that
do not have the correct input arcs, and ii) activities that have left tokens in their outputs after
the parsing, i.e., activities that do not have the correct output arcs. This process generates, for
each individual, a bag of incorrectlyFiredActivities. Thereby, the crossover point is selected
from the set of incorrectlyFiredActivities of the fittest parent (Algorithm 2.2:4). Note that if
the fittest individual has a completeness equal to 1, the set of incorrectlyFiredActivities of the
fittest individual is empty (Algorithm 2.2:8); thereby the crossover point is randomly chosen
from the bag of all the possible tasks in the log (Algorithm 2.2:11).

After the crossover point is selected, the crossover (Algorithm 2.2:12) is performed as
defined in [30]. The following example illustrates how the crossover operator works. Let’s
suppose that the crossover point is task A, and the input of the individual 1 for that task is
I1(A) = {{D},{B}} and for individual 2 is I2(A) = {{D,B},{C}}. First, both input sets are
split randomly. This process generates four sets, two for each input function:

• I1
1 (A) = {{D}} and I2

1 (A) = {{B}}.

• I1
2 (A) = {{D,B}} and I2

2 (A) = {{C}}.

Then, these four sets are swapped — I1
1 (A) with I2

2 (A) and I1
2 (A) with I2

1 (A)— in order to
generate the new input sets for the task A of the offspring. During this process, each subset of
these sets can be added as a new subset into the other set or merged with another subset of the
other set. For instance, the subset of I1

1 (A) can be added as a new subset of I2
2 (A), resulting in

I′1(A) = {{D},{C}}; and the subset of I1
2 (A) can be joined with the existing subset of I2

1 (A),
resulting in I′2(A) = {{D,B}}—subsets do not allow duplicate tasks. Finally, this process is
repeated for the output set of the crossover task A.

Note that when adding/removing causal relations from an input/output (I/O) set of a task
t —being t the crossoverPoint— there may be inconsistencies. For instance, a task t ′ does not
appear in the output set of the task t, but the input set of t ′ contains the task t. Therefore, after
an I/O set is modified, we have to check the consistency of the individual (Algorithm 2.2:13).
This process first checks those relations that were removed during the modification of the
individual, and after that, it checks those relations that were created. This prevents to create
again a relation that was previously removed.



48 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

Mutation

The mutation operator modifies the causality dependencies of the individual by adding or
removing relations. The mutation operator may perform one of the following three actions
to the input/output set of a task: i) randomly add a task t’ to input or output sets of a task t;
ii) randomly remove a task t’ from the I/O sets of a task t; and iii) randomly redistribute the
elements from the I/O sets of a task t.

Algorithm 2.3: Mutation operator.

1 while the individual does not change do
2 Randomly choose one task t in the individual
3 mutationType← getRandomNumber() // returns a random number

between [0,1)
4 if mutationType < 1/3 then
5 Randomly add a new task t’ to I(t), being t’ a task from inputDependencies(t)
6 if getRandomNumber()< 1/2 then
7 Randomly choose one subset X ∈ I(t) and add the task t’ to X

8 else
9 Create a new subset X, add the task t’ to X, and add X to I(t)

10 else if mutationType < 2/3 then
11 Randomly choose one subset X ∈ I(t) and remove a task t’ from X, where t’ ∈

X. If X is empty after this operation, exclude X from I(t)

12 else
13 Randomly redistribute the elements from I(t)

14 Repeat from line 3, but using O(t) instead of I(t) and outputDependencies(t)
instead of inputDependencies(t)

15 Repair the individual

There are four differences between our mutation operator and the one used in Genetic
Miner [30]: i) the individual is iteratively mutated until it is different from its parent —a
mutation could generate an individual equal to its parent due to a reparation; ii) only one task is
affected by the mutation operator; iii) individuals are always forced to mutate —the mutation
probability is 1; and iv) the task t ′ added to the I/O set of a task t must belong to the set of
tasks that have an input/output dependency with t. The major goal of these modifications is
to avoid duplicate individuals within the same population, or at least minimize its duplicates.
Hence, although the offspring are equal to their parents after the crossover, we force each



2.5. ProDiGen: Process Discovery through a Genetic algorithm 49

offspring to mutate until it changes, creating different individuals with new features. With
these modifications, we have a more diverse population.

Algorithm 2.3 describes in detail the mutation operator. It uses two sets for the addition
of a new task: outputDependencies(t) and inputDependencies(t). Both sets are created when
calculating the dependencies between tasks at the first stages of the algorithm. ProDiGen
uses these sets to reduce the set of tasks that are appropriate to be inserted in an I/O set,
preventing the inclusion of a new task that never appears in a trace of t within the log. A
first approach could be to include in the dependencies sets those tasks that have a dependency
with t as calculated in the initialization phase. However, if we only take into account these
dependencies, there will be not enough new material to discover, for instance, the non-free-
choice constructs. Therefore, inputDependencies(t) will be the set of tasks appearing before t

in any trace of the log and, in the same way, outputDependencies(t) will be the set of activities
that appear after t in any trace of the log. In this way, the mutation operator focuses only on
those regions of the search space that represent information contained in the log. As a result,
the success of the mutation operator increases, finding better offspring. Again, after each
mutation the individual has to be repaired (Algorithm 2.3:15) following the same strategy as
explained with the crossover.

Replacement

At each iteration, the algorithm generates N offspring, being N the size of the population.
These offspring and the parent population —current population— are joined and sorted —
using the fitness— generating a 2N-size population, and then the replacement operator selects
the N best individuals. In order to maintain a diverse population, those repeated individuals
are placed at the bottom of the ranking, keeping one representative in the original ranking
position.

Reinitialization

A reinitialization takes place when the value of timesRun goes under 0 (Algorithm 2.1:15),
which indicates that the search process was not improving in the last iterations. This situation
is detected in two ways. The first one (Algorithm 2.1:11) is when the new population of an
iteration has no new individuals —in comparison with the initial population of that iteration.
The second indicator (Algorithm 2.1:13) is the fact that the best individual does not improve.
Each time that one of these situations is detected, timesRun decreases. The initial population



50 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

after a reinitialization is generated in the same way as in the initialization stage. Moreover,
ProDiGen also includes in the new population a mutation of the best individual of the last iter-
ation. The maximum number of reinitializations is limited, and when it reaches the threshold
(maxRestarts) ProDiGen ends.

2.5.2 Pre-processing and post-processing steps

Noise can be defined as a low-frequent incorrect behavior in the log [140]. The main difficulty
to deal with noise is that the logs —usually— contain only positive examples, i.e., there is no
explicit information about the characteristics of the noisy traces. Additionally, there is low-
frequent correct behavior in the log that cannot be easily distinguished from the low-frequent
incorrect cases.

ProDiGen explicitly handles the noise in two phases: i) a pre-processing of the log; and ii)

a post-processing of the mined model. In the pre-processing of the log, ProDiGen groups all
the traces that are equal, and calculates the normal distribution of the frequency of the traces
N (µ,σ), where µ and σ are respectively the weighted mean and the weighted standard
deviation. Finally, all those traces with frequency(trace) < µ − ξ σ will be removed, where
ξ is a parameter. Therefore, ProDiGen eliminates those traces that are infrequent, and the
threshold depends on the characteristics of the log.

The post-processing stage of ProDiGen consists in a post-pruning over the mined model.
It removes those arcs that are used less frequently than a certain threshold, being this threshold
a percentage of the frequency of the most used arc. This post-pruning was also applied in other
process discovery techniques [30, 52, 58].

2.6 Experimentation

ProDiGen has been validated with 111 different logs. We have classified these tests in two
different groups: i) 18 process models to generate logs with five noise levels —0%, 1%, 5%,
10%, and 20%—, which results in 90 logs; and ii) 21 unbalanced logs, i.e., logs that contain
traces with very different frequencies, which correspond with 21 process models that contain
many interleaving situations.

Moreover, we have also compared the performance of ProDiGen with four of the state
of the art process discovery algorithms, using non-parametric statistical tests. The selected
algorithms are: i) α++-algorithm [156]; ii) Heuristics Miner (HM) [155]; iii) Genetic Miner



2.6. Experimentation 51

(GM) [30]; and iv) ILP [138]. These are well-known algorithms for process models discovery
from event logs, and they are available in the ProM framework [139], a very complete and
excellent tool for process mining and analysis.

2.6.1 Logs

The algorithms have been tested with 39 process models, and a total of 111 different logs5.
From those models, 18 out of 39 were used to generate 90 synthetic logs with different degrees
of noise. The rest of the logs —21 out of 111— come directly from [19] and [30] with their
corresponding original models.

Balanced logs

We have conducted an experiment with 18 different process models with increasing degrees of
complexity. Table 2.2 summarizes the structural complexity of these models ranging from 5
to 16 tasks that contain sequences, choices, parallelism, loops and non-free-choice constructs.
For each of these models, a synthetic log was randomly generated with all the possible paths
represented in the model. Table 2.2 also shows the characteristics of the logs, where column
#traces indicates the number of traces and the column #events the number of total activities
in the event log.

Afterwards, each noise-free log was used to generate another four logs with 1%, 5%, 10%
and 20% of noise. Four different types of noise were used [83]: i) missing head; ii) missing

body; iii) missing tail; and iv) swap tasks. We followed the same strategy as [30] to generate
the noisy traces. Assuming that each trace is defined as σ = t1 · · · tn, these noise types behave
as follows. The first three types, respectively, randomly remove sub-traces of events from the
head, body and tail. The head goes from t1 to tn/3, the body goes from t(n/3)+1 to t2n/3 and the
tail goes from t(2n/3)+1 to tn. Swap noise interchanges two random chosen events.

To incorporate noise, the traces of the original noise-free logs were randomly selected and
then one of the four noise types was applied —each one with an equal probability of 0.25.
This combination of noise types is called mixed noise. We focus our tests on this noise type,
as it is the typical noise in real logs. Note that the number of traces of each log is the same
after applying the noise, but the number of events may change —some type of noise may
remove events from cases, reducing the number of total events in the log.

5The reader can found all the logs and models used in our experimentation in http://tec.citius.usc.
es/processmining.

http://tec.citius.usc.es/processmining
http://tec.citius.usc.es/processmining


52 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

Table 2.2: Process models used in the experimentation. Balanced logs.

Activity structures Log content

Model #Tasks
Sequence

Choice
Parallel

ism

Length-O
ne Loop

Length-Two Loop

Arbitr
ary

Loop

Stru
ctu

red
Loop

Non-lo
cal NFC

Local NFC

Invisib
le tasks

#tra
ces

#events

Caminatas 12 X X X 700 4,200
A8 7 X X X 300 1,200
D2 6 X X 300 1,200
Ml1lSkip [30] 6 X X X X 500 4,757
Ma5 [30] 7 X X X X 300 2,178
Ml2l [30] 6 X X X 300 4,668
MDriverLL [30] 11 X X X X X X 700 13,303
allLoops 5 X X X X X X 300 1,035
l2la 6 X X X X 300 2,264
Ma7 [30] 9 X X X 500 2,427
Herbst6p37 [30] 16 X X 700 12,600
MexampleL [30] 8 X X X 300 1,645
Ma6nfc [30] 8 X X X 300 2,006
MParallel5 [30] 10 X X 700 12,600
NC 7 X X X X 300 1,704
L2LP 7 X X X X X X X 300 5,476
NCB 7 X X X X X 300 2,950
DWS [49] 12 X X X X 500 4,033

Unbalanced logs

The second type of logs consisted in 21 more complex case scenarios without noise. These
models and logs6 are summarized in Table 2.3. Some of the models used in this experimenta-
tion contain unbalanced AND-split/join points, i.e., there is not a one-to-one relation between
the AND-split points and the AND-join points. Moreover, all the logs are imbalanced, i.e.,
they contain traces with very different frequencies, as it is unrealistic to assume that, from a
model with many interleaving situations, all the possible paths are equally executed. Hence,
with this experiment, we can check whether an algorithm overfits or underfits the data due to
the unbalanced frequencies of the traces in the log.

6In this experiment, both the process models and the logs were taken from other papers [19, 30].



2.6. Experimentation 53

Table 2.3: Process models used in the experimentation. Unbalanced logs.

Activity structures Log content

Model #Tasks
Sequence

Choice
Parallel

ism

Length-O
ne Loop

Length-Two Loop

Arbitr
ary

Loop

Stru
ctu

red
Loop

Invisib
le tasks

Unbalanced

AND-jo
in/sp

lit

#tra
ces

#events

g2 [30] 22 X X X X X X 300 4501
g3 [30] 29 X X X X X X 300 14599
g4 [30] 29 X X X X X 300 5975
g5 [30] 20 X X X X X 300 6172
g6 [30] 23 X X X X X 300 5419
g7 [30] 29 X X X X X 300 14451
g8 [30] 30 X X X X X X X 300 5133
g9 [30] 26 X X X X X X 300 5679
g10 [30] 23 X X X X X 300 4117
g12 [30] 26 X X X X X X 300 4841
g13 [30] 22 X X X X X X X 300 5007
g14 [30] 24 X X X X X X 300 11340
g15 [30] 25 X X X X X 300 3978
g19 [30] 23 X X X X X X 300 4107
g20 [30] 21 X X X X X X 300 6193
g21 [30] 22 X X X X 300 3882
g22 [30] 24 X X X X X X 300 3095
g23 [30] 25 X X X X X 300 9654
g24 [30] 21 X X X X X X 300 4130
g25 [30] 20 X X X X X 300 6312
ETM[19] 7 X X X X 100 790

2.6.2 Metrics

The performance of the process discovery algorithms over the different logs has been mea-
sured with two different sets of metrics: i) metrics based on the original model; and ii) metrics
based on the event log.

Metrics based on the original model

We use the metrics defined in [30] to compare the original and mined models. Behavioral

precision (Bp) and Behavioral recall (Br) detect, respectively, if the mined model can process
traces that cannot be parsed by the original model, and if the original model can parse traces
that cannot be processed in the mined model. On the other hand, Structural precision (Sp) and
Structural recall (Sr) checks, respectively, if there are causality relations of the mined model



54 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

that are not defined in the original model, and if there are causality relations of the original
model that are not defined in the mined model.

The mined model is as precise as the original one if Bp = 1 and Br = 1: the closer the
values of Bp and Br to 1, the higher the similarity between the original and the mined models.
Although two models could be equal from the behavioral point of view, their structures may
be different. Sp and Sr measure the similarity from the structural point of view. When the
original model has connections that do not appear in the mined model, Sr will take a value
smaller than 1, and, in the same way, when the mined model has connections that do not
appear in the original model, Sp will take a value lower than 1.

Metrics based on the log

Additionally to the four previously described metrics, we have also used three metrics to
measure the completeness, precision and simplicity taking into account the information of the
log. To measure the completeness (C), we use the proper completion metric [105], which is
the fraction of properly completed process instances. Proper completion takes a value of 1
if the mined model can process all the traces without having missing tokens or tokens left
behind. Also, the precision (P) is evaluated as follows:

P = 1−max{0,P′o−P′m} (2.4)

where P′o and P′m are, respectively, the precision of the original model and the precision of the
mined model, both calculated with the alignment precision defined in [124]. As the original
model is the optimal solution, we use it to normalize the precision. Therefore, P will be equal
to 1 if the mined model has a precision (P′m) equal or higher than the original model (P′o).
When the precision of the mined model is worse than that of the original model, P will take
a value under 1 —the lower the precision of the mined model, the closer the value of P to 0.
Finally, for the simplicity (S) we use:

S =
1

1+max{0,S′m−S′o}
(2.5)

where S′m and S′o are, respectively, the simplicity of the mined model and the simplicity of
the original model, both calculated with the weighted P/T average arc degree defined in [111]
—the higher the value of S′ the lower the simplicity. As explained with the precision, we
use the original model —which is the optimal model— to normalize the simplicity. S takes
a value of 1 if the simplicity of the mined model is equal or higher than that of the original



2.6. Experimentation 55

model, i.e., S′m ≤ S′o. If the simplicity of the mined model is worse than that of the original
model (S′m > S′o), S will take a value under 1 —the worse the simplicity of the mined model,
the closer the value of S to 0. To measure the metrics C, P′ and S′ we have used the tool
CoBeFra [17].

2.6.3 Settings

The settings of the different algorithms were mostly kept to the default options of ProM 5.2
and ProM 6.3. However, some modifications were made for Heuristics Miner and Genetic
Miner to keep the configurations specified by the authors of the algorithms. To be more
specific, the settings used are:

• α++-algorithm: the algorithm has no settings (ProM 5.2).

• Heuristics Miner. We used the default settings established in ProM 6.3: relative-to-best
= 0.05, dependency = 0.9, length-one-loops = 0.9, lenght-two-loops = 0.9, long distance
= 0.9. Additionally, mine long distance dependencies was enabled. These parameters
were set for both the balanced and unbalanced logs.

• Genetic Miner. We set the values of the parameters equal to those established in [30],
as 29 out of the 39 models used in this experimentation were also tested in [30]:

– Settings for the balanced logs: iterations = 1,000, population size = 100, elitism
rate = 0.2, crossover probability 0.8, mutation probability = 0.2 (per task), elitism
rate = 0.02, selection type = tournament 5, extra behavior punishment = 0.025 and
prune threshold = 0.1%.

– Settings for the unbalanced logs: the same as for the balanced logs, except itera-
tions = 5,000, population size = 10, elitism rate = 0.2, selection type = binary and
prune threshold = 0%.

• ProDiGen:

– Settings for the balanced logs: iterations = 1,000, population size = 100, crossover
probability 0.8, initialTimesRun = 35, maxRestarts = 5, prune threshold = 0.1. For
the pre-processing parameter ξ = 2, i.e., two standard deviations.

– Settings for the unbalanced logs: the same as for the balanced logs, except prune
threshold = 0%.



56 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

• ILP: we selected the default settings defined in ProM 6.3: ILP Solver = Java-ILP &
LPSolve 5.5, ILP Variant = Petri net (Empty net after completion), number of places =
Per Causal Dependency and search for separate initial places was enabled.

For ProDiGen, we kept exactly the same settings as Genetic Miner, except for the new
parameters related with the reinitialization process, the pre-processing parameter ξ , and the
mutation probability that in ProDiGen is always 1, as explained in Sec 13. The values of
maxRestarts and initialTimesRun do not affect the results of ProDiGen —provided that they
are not drastically reduced; increasing those values only augments the execution time of
ProDiGen. Moreover, we did not modify ProDiGen parameters when dealing with more
complex logs, contrary to Genetic Miner which requires to increase the maximum number of
iterations to converge when the complexity of the log increases. Additionally, we did not ap-
ply any post-pruning process for the unbalanced logs for both ProDiGen and Genetic Miner,
as these are noise-free logs.

2.6.4 Results on balanced logs

Tables 2.4-2.6 present the results of the algorithms with the balanced logs for the different per-
centages of noise. The rows show the values of the 4 metrics based on the original model and
the 3 metrics based on the log. As both ProDiGen and Genetic Miner are non-deterministic
algorithms, the results shown in the tables are the average results of 10 executions.

For the noise-free logs (Table 2.4) ProDiGen obtains the original model in all the cases,
as the values for both the model and log metrics are 1, proving that it can handle all the main
workflow constructs at once. On the other hand, Genetic Miner is not able to get the original
model for several logs. For instance, for logs Ma6nfc and Ma5, Genetic Miner always gets a
complete model but, on average —ten executions for each log—, the mined model is different
from the original model. This is closely related to the simplicity of the mined model as there
are needless relations that increase the complexity of the model. Heuristics Miner shows a
great performance, but it has difficulties to mine some non-free-choice constructs and short
loops. ILP has problems tackling invisible tasks and, finally, the α++-algorithm fails when
dealing with local non-free-choices and invisible tasks.

For the noisy logs (Tables 2.4-2.6) we have used the same metrics. However, to evaluate
the seven metrics we did not consider the noisy traces, i.e., a completeness of 1 means that
the model is able to process all the noise-free traces of the noisy log. ProDiGen shows again



2.6. Experimentation 57

Table 2.4: Results on the balanced logs with a 0% and 1% of noise.

Logs with 0% of noise Logs with 1% of noise

Caminatas

A8 D2 Ml1lSkip

Ma5
Ml2l

MDriv
erL

L

allL
oops

Ma7
l2la MexampleL

Herb
st6

p37

Ma6nfc

MParallel
5

NC L2LP
NCB

DWS
Caminatas

A8 D2 Ml1lSkip

Ma5
Ml2l

MDriv
erL

L

allL
oops

Ma7
l2la MexampleL

Herb
st6

p37

Ma6nfc

MParallel
5

NC L2LP
NCB

DWS

ProDiGen

Model
metrics

Bp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Br 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Log
metrics

C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
S 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

GM

Model
metrics

Bp 0.84 1.0 1.0 1.0 0.96 1.0 0.9 0.99 0.95 1.0 0.94 1.0 0.98 0.74 1.0 1.0 1.0 1.0 0.68 1.0 0.95 0.99 0.97 1.0 0.92 0.99 0.82 1.0 1.0 1.0 0.98 0.8 1.0 1.0 1.0 0.86
Br 0.98 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.99 1.0 0.97 1.0 1.0 0.97 1.0 1.0 1.0 1.0 0.99 0.99 1.0 0.96 0.99 0.99 1.0 1.0 0.99 1.0 1.0 0.99 1.0 0.98 1.0 1.0 1.0 0.81
Sp 0.85 1.0 1.0 1.0 1.0 1.0 0.93 0.98 0.94 1.0 0.86 1.0 0.96 0.08 1.0 1.0 1.0 1.0 0.79 0.8 1.0 1.0 0.91 0.88 0.94 1.0 0.75 1.0 1.0 0.95 0.96 0.85 1.0 1.0 1.0 0.83
Sr 0.73 1.0 1.0 1.0 0.91 1.0 0.84 0.96 0.97 1.0 0.88 1.0 0.99 0.98 1.0 1.0 1.0 1.0 0.67 1.0 0.87 0.92 0.91 1.0 0.85 0.96 1.0 1.0 1.0 1.0 0.99 0.93 1.0 1.0 1.0 0.95

Log
metrics

C 0.36 1.0 1.0 1.0 1.0 1.0 1.0 0.48 0.15 1.0 0.52 1.0 1.0 0.81 1.0 1.0 1.0 1.0 0.23 1.0 1.0 1.0 1.0 1.0 1.0 0.49 1.0 1.0 1.0 1.0 1.0 0.14 1.0 1.0 1.0 0.82
P 0,81 1.0 1.0 1.0 0,97 1.0 0,93 0,92 0,68 1.0 0,97 1.0 0,81 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0,63 0,96 0,98 0,88 0,88 0,82 0,76 1.0 1.0 0,94 0,92 0,75 1.0 1.0 1.0 0,93
S 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,93 1.0 1.0 1.0 1.0 0,96 1.0 1.0 1.0 1.0 1.0 1.0 0,72 0,88 0,73 1.0 0,85 1.0 0,9 1.0 1.0 1.0 0,92 0,93 0,67 1.0 1.0 1.0 0,88

HM

Model
metrics

Bp 1.0 1.0 1.0 0.97 1.0 1.0 1.0 0.96 1.0 1.0 1.0 1.0 0.91 1.0 0.44 0.82 0.88 0.89 1.0 1.0 1.0 0.97 1.0 1.0 0.93 0.96 1.0 1.0 1.0 1.0 0.9 1.0 0.87 0.82 0.88 0.89
Br 1.0 1.0 1.0 0.95 1.0 1.0 1.0 0.92 1.0 1.0 1.0 1.0 1.0 1.0 0.82 0.93 1.0 0.94 1.0 1.0 1.0 0.92 1.0 1.0 1.0 0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.93 1.0 0.94
Sp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.83 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.81
Sr 1.0 1.0 1.0 0.82 1.0 1.0 1.0 0.83 1.0 1.0 1.0 1.0 0.9 1.0 0.91 0.9 0.88 1.0 1.0 1.0 1.0 0.76 1.0 1.0 0.9 0.83 1.0 1.0 1.0 1.0 0.91 1.0 0.91 0.9 0.88 1.0

Log
metrics

C 1.0 1.0 1.0 0.84 1.0 1.0 1.0 0.73 1.0 1.0 1.0 1.0 0.69 1.0 0.84 0.24 0.0 0.51 1.0 1.0 1.0 0.84 1.0 1.0 1.0 0.73 1.0 1.0 1.0 1.0 0.69 1.0 0.84 0.24 0.0 0.51
P 1.0 1.0 1.0 0,93 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,88 1.0 0,83 1.0 0,14 1.0 1.0 1.0 1.0 0,89 1.0 1.0 0,91 1.0 1.0 1.0 1.0 1.0 0,9 1.0 0,87 1.0 0,14 1.0
S 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,75 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,88 1.0 0,98 1.0 1.0 1.0 0,98 1.0 1.0 1.0 0,79 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,89 1.0 0,98

α++

Model
metrics

Bp 1.0 1.0 1.0 1.0 1.0 1.0 0.87 0.77 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.59 0.88 0.75 0.76 0.82 1.0 0.73 0.84 0.76 0.77 0.94 0.83 0.73 0.4 0.41 0.6 0.87 0.76 0.77 0.88 0.46
Br 1.0 1.0 1.0 1.0 1.0 1.0 0.89 0.83 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.72 1.0 0.63 0.87 0.87 1.0 0.63 0.82 0.69 0.75 0.83 0.85 0.6 0.7 0.52 0.78 0.99 0.86 0.56 1.0 0.45
Sp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.72 1.0 0.81 0.93 0.77 1.0 0.81 0.83 1.0 0.79 0.81 0.83 0.69 0.69 0.46 0.68 0.68 0.84 1.0 1.0 0.74
Sr 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.83 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.88 1.0 1.0 0.87 1.0 0.69 0.83 0.75 0.9 0.75 0.83 0.81 0.75 0.61 0.91 0.86 0.91 0.6 0.88 0.9

Log
metrics

C 1.0 1.0 1.0 1.0 1.0 1.0 0.63 0.25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 1.0 1.0 0.0 0.25 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
P 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,97 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,44 0,14 0,23 0.0 1.0 1.0 0,19 0,96 0,83 0,11 0,96 0.0 0,05 0,05 0,05 0.0 0,01 0.0 0,45 0,14 0,23
S 1.0 1.0 1.0 1.0 1.0 1.0 0,81 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,52 1.0 0,71 0,83 0,86 1.0 0,75 0,63 1.0 0,19 0,72 1.0 0,75 0,8 0,72 0,49 0,75 0,83 0,52 0,83 0,35

ILP

Model
metrics

Bp 1.0 1.0 1.0 1.0 1.0 1.0 0.86 0.81 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.63 1.0 0.82 0.3 0.39 0.64 0.58 0.84 0.63 0.32 0.31 0.42 0.48 0.47 0.33 0.47 0.3 0.52 0.62 0.63 0.42
Br 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.97 0.68 0.56 0.83 0.75 0.89 0.9 0.68 0.53 0.69 0.7 0.75 0.89 0.78 0.74 0.84 0.9 0.99 0.56
Sp 1.0 1.0 1.0 1.0 1.0 1.0 0.86 0.54 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.66 1.0 0.66 0.28 0.53 0.63 0.69 0.75 0.76 0.32 0.53 0.43 0.34 0.41 0.87 0.49 0.45 0.45 0.66 0.66 0.29
Sr 1.0 1.0 1.0 1.0 1.0 1.0 0.93 0.71 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.83 1.0 1.0 0.87 1.0 1.0 1.0 0.95 0.92 0.88 0.96 1.0 0.98 1.0 1.0 1.0 1.0

Log
metrics

C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P 1.0 1.0 1.0 1.0 1.0 1.0 0,93 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,91 1.0 0,95 0,47 0,5 0,72 0,82 0,96 0,7 0,64 0,79 0,57 0,05 0,79 0,6 0,62 0,74 0,63 0,92 0,67 0,74
S 1.0 1.0 1.0 1.0 1.0 1.0 0,99 0,61 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,9 1.0 0,63 0,3 0,64 0,59 0,56 0,63 0,88 0,22 0,34 0,42 0,34 0,53 0,56 0,49 0,38 0,39 0,9 0,88 0,2

a great performance, getting the original models for all the logs with a noise percentage up
to 5%, and all the original models but one for a percentage of 10%. For the logs with a
percentage of the 20% of noise the performance decreases, although ProDiGen finds 6 out of
18 of the original models and is the best algorithm. These results are related with the fitness
definition of ProDiGen, that tries to better fit the behavior of the log. This proves that the pre-
processing —filtering the less used traces— and post-processing —pruning the infrequent
arcs— improves the results of ProDiGen.

With respect to the results of the other algorithms, Heuristics Miner obtains the same
results as for the noise-free logs with very low noise levels (1%), but, the higher the frequency
of noise, the worse the results. Heuristics Miner is known to be good retrieving the main
behavior of the log, hence, since these logs contain a mixture of all noise types, some noise
dependencies can be as frequent as the correct ones, resulting in incorrect models —excluding
those noise-free logs that the Heuristics Miner cannot correctly mine. Nevertheless, with high
levels of noise, it obtains very competitive results. On the other hand, ILP usually gets a
complete model, but it produces very complex and underfitted models because of its inability



58 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

Table 2.5: Results on the balanced logs with a 5% and 10% of noise.

Logs with 5% of noise Logs with 10% of noise

Caminatas

A8-
D2 Ml1lSkip

Ma5
Ml2l

MDriv
erL

ice
nsel

allL
oops

Ma7
l2la MexampleL

og

Mherb
stF

ig6p37

Ma6nfc

MParallel
5

NC L2LP
NCB

DWS
Caminatas

A8-
D2 Ml1lSkip

Ma5
Ml2l

MDriv
erL

ice
nsel

allL
oops

Ma7
l2la MexampleL

og

Mherb
stF

ig6p37

Ma6nfc

MParallel
5

NC L2LP
NCB

DWS

ProDiGen

Model
metrics

Bp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.57 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Br 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.73 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.78 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Log
metrics

C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.86 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
S 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

GM

Model
metrics

Bp 0.8 0.91 0.94 0.99 0.84 1.0 0.88 0.99 0.94 0.94 0.87 0.79 1.0 0.86 0.85 0.95 1.0 0.86 0.92 0.83 0.8 1.0 0.87 1.0 0.92 0.99 0.77 0.87 0.99 0.92 0.88 0.86 0.89 1.0 0.82 0.84
Br 0.99 0.99 0.99 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 1.0 1.0 0.81 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.83
Sp 0.66 0.77 0.77 0.92 0.66 0.88 0.8 1.0 0.8 0.9 0.68 0.76 0.92 0.66 0.69 0.9 1.0 0.83 0.84 0.6 0.75 0.92 0.9 0.88 0.9 0.98 0.57 0.75 0.92 0.95 0.83 0.66 0.91 0.9 0.72 0.79
Sr 0.5 0.87 0.87 0.92 0.66 1.0 0.76 0.96 1.0 0.9 0.91 0.95 1.0 0.66 0.75 0.9 1.0 0.95 0.78 0.75 0.75 1.0 0.83 1.0 0.85 0.96 0.66 0.81 1.0 0.95 0.83 0.66 0.91 1.0 0.88 0.95

Log
metrics

C 0.22 1.0 1.0 1.0 0.69 1.0 0.38 1.0 0.86 1.0 1.0 0.76 1.0 1.0 0.55 0.77 1.0 0.27 0.23 0.5 1.0 1.0 1.0 1.0 1.0 0.61 0.59 1.0 0.53 1.0 1.0 1.0 0.17 1.0 1.0 0.57
P 0,68 0,63 0,86 0,86 0,75 0,81 0,64 0,75 0,77 0,9 0,58 0,65 0,91 0,47 0,62 0,99 1.0 0,82 0,78 0,55 0,45 0,86 0,6 0,58 0,73 0,65 0,51 0,48 0,71 0,79 0,42 0,58 0,75 1.0 0,7 0,76
S 1.0 0,69 0,88 0,64 0,92 0,85 0,94 0,85 0,76 1.0 0,85 0,81 0,76 0,78 0,87 1.0 1.0 0,89 1.0 0,69 0,91 0,73 0,87 0,71 0,95 0,79 0,85 0,84 0,77 0,88 0,74 0,77 0,83 0,83 0,93 0,84

HM

Model
metrics

Bp 0.96 1.0 1.0 0.97 0.92 0.91 0.92 0.93 1.0 1.0 1.0 1.0 0.9 1.0 0.87 0.77 0.88 0.77 0.96 1.0 0.91 1.0 0.92 0.86 0.92 0.93 1.0 0.94 1.0 1.0 0.9 1.0 0.87 0.96 0.88 0.86
Br 1.0 1.0 1.0 0.92 0.79 0.99 0.95 0.83 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.95 1.0 0.94 1.0 1.0 1.0 0.89 0.79 0.99 0.95 0.91 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.81
Sp 1.0 1.0 1.0 1.0 1.0 0.88 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 0.83 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.83
Sr 0.92 1.0 1.0 0.76 0.91 1.0 0.9 0.83 1.0 1.0 1.0 1.0 0.91 1.0 0.91 0.8 0.88 1.0 0.93 1.0 0.75 0.84 1.0 1.0 0.9 0.83 1.0 0.9 1.0 1.0 0.91 1.0 0.91 0.9 0.88 0.95

Log
metrics

C 0.66 1.0 1.0 0.0 0.0 1.0 0.63 0.26 1.0 1.0 1.0 1.0 0.69 1.0 0.85 0.77 0.0 0.0 1.0 1.0 1.0 0.9 0.0 1.0 0.62 0.34 1.0 0.3 1.0 1.0 0.69 1.0 0.84 0.0 0.0 0.0
P 0,92 1.0 1.0 0,19 0,1 0,72 0,98 1.0 1.0 1.0 1.0 1.0 0,9 1.0 0,87 0,99 0,14 0,23 1.0 1.0 0,91 0,19 0,1 0,71 0,99 0,96 1.0 0,93 1.0 1.0 0,9 1.0 0,87 0,45 0,14 0,23
S 1.0 1.0 1.0 0,91 1.0 0,91 1.0 0,79 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,92 1.0 1.0 1.0 0,88 1.0 0,83 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,96 1.0 0,91

α++

Model
metrics

Bp 0.73 0.81 0.69 0.34 0.75 0.63 0.38 0.68 0.83 0.72 0.55 0.38 0.8 0.45 0.75 0.76 0.23 0.57 0.85 0.84 0.84 0.86 0.64 0.61 0.35 0.74 0.84 0.65 0.63 0.33 0.54 0.63 0.62 0.68 0.32 0.43
Br 0.69 0.99 0.83 0.32 0.88 0.68 0.49 0.67 0.97 0.65 0.6 0.47 0.88 0.54 0.99 0.56 0.24 0.66 0.95 0.99 0.99 0.66 0.64 0.65 0.45 0.77 0.99 0.68 0.69 0.41 0.6 0.75 0.97 0.52 0.36 0.56
Sp 0.62 0.41 0.57 0.31 0.46 0.3 0.41 0.5 0.47 0.43 0.36 0.4 0.55 0.37 0.5 0.6 0.5 0.48 0.61 0.46 0.71 0.46 0.3 0.35 0.35 0.41 0.44 0.58 0.37 0.36 0.31 0.29 0.25 0.45 0.66 0.31
Sr 0.82 0.62 0.5 0.38 0.5 0.37 0.57 0.58 0.66 0.63 0.66 0.56 0.91 0.6 0.83 0.6 0.66 0.72 0.75 0.75 0.62 0.53 0.5 0.62 0.61 0.41 0.66 0.63 0.75 0.45 0.58 0.66 0.33 0.5 0.44 0.42

Log
metrics

C 0.0 0.49 1.0 0.0 1.0 0.0 0.0 0.0 0.86 0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.57 0.82 0.0 0.0 0.0 0.0 0.84 1.0 0.0 0.0
P 0,01 0,68 0,94 0,19 0,84 0,16 0,11 0,16 0,84 0,05 0,05 1.0 0.0 0,01 0.0 0,45 0,14 0,23 0.0 0,84 0,84 0,19 0,1 0,15 0,11 0,15 0,76 0,75 0,05 0,99 0.0 0,01 0,75 1.0 0,14 0,23
S 0,36 0,64 1.0 0,28 0,81 0,36 0,15 0,26 0,68 0,28 0,36 1.0 0,55 0,55 0,4 0,39 0,3 0,25 0,52 0,6 1.0 0,3 0,32 0,36 0,19 0,34 0,64 0,41 0,35 1.0 0,37 0,37 0,59 0,81 0,99 0,22

ILP

Model
metrics

Bp 0.13 0.15 0.24 0.48 0.31 0.14 0.07 0.27 0.05 0.14 0.18 0.1 0.24 0.34 0.28 0.36 0.26 0.25 0.16 0.25 0.2 0.33 0.32 0.2 0.12 0.28 0.21 0.12 0.15 0.05 0.13 0.17 0.1 0.41 0.24 0.15
Br 0.3 0.48 0.83 0.33 0.62 0.42 0.21 0.81 0.17 0.44 0.36 0.45 0.59 0.64 0.4 0.69 0.75 0.49 0.25 0.72 0.58 0.47 0.64 0.5 0.19 0.64 0.38 0.42 0.29 0.15 0.43 0.29 0.32 0.72 0.47 0.24
Sp 0.23 0.23 0.32 0.26 0.26 0.17 0.16 0.33 0.23 0.21 0.13 0.09 0.16 0.16 0.23 0.3 0.27 0.13 0.24 0.19 0.34 0.27 0.18 0.18 0.15 0.36 0.19 0.25 0.16 0.06 0.16 0.13 0.18 0.28 0.28 0.12
Sr 1.0 1.0 0.8 0.95 0.93 1.0 1.0 1.0 1.0 0.92 0.92 0.94 1.0 0.78 1.0 1.0 0.91 0.96 1.0 0.83 0.8 1.0 0.87 1.0 1.0 0.95 1.0 1.0 1.0 1.0 1.0 1.0 0.93 1.0 1.0 0.92

Log
metrics

C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P 0,32 0,4 0,41 0,49 0,1 0,42 0,28 0,6 0,57 0,34 0,43 0,05 0,41 0,42 0,47 0,77 0,44 0,58 0,35 0,4 0,43 0,52 0,1 0,4 0,27 0,59 0,42 0,41 0,41 0,05 0,36 0,3 0,31 0,8 0,41 0,5
S 0,14 0,27 0,74 0,16 0,27 0,24 0,1 0,52 0,26 0,21 0,19 0,13 0,18 0,19 0,22 0,38 0,33 0,13 0,17 0,31 0,44 0,22 0,29 0,26 0,1 0,4 0,23 0,24 0,21 0,07 0,2 0,12 0,19 0,35 0,28 0,15

to handle infrequent behavior. Finally, α++ is not robust to noise and, therefore, almost all of
its mined models are not even complete. In summary, ProDiGen correctly mines, i.e., finds the
original model, the 85% (77 out of 90) of the cases. For the other algorithms, the percentage
of correctly mined models was: GM in the 16% (16 out of 90), HM in the 35% (32 out of 90),
α++ in the 15% (14 out of 90), and ILP in the 15% (14 out of 90).

We have compared the results of the algorithms by means of non-parametric statistical
tests. We first applied the Friedman test [45] that computes the ranking of the results of the
algorithms, and rejects the null hypothesis —which states that the results of the algorithms are
equivalent— with a given confidence or significance level (α). Then we applied the Holm’s
post-hoc test [62] for detecting significant differences among the results. However, as we are
using 7 different metrics, the comparison must be done in a multi-objective way. In order to
perform a fair comparison, we have used the criterion of Pareto dominance. We have applied
the fast-non-dominated-sort [35] in order to rank the solutions of the algorithms for each log.
With this method, a mined model a dominates other mined model b, i.e., a� b, if the model a

is not worse than the model b in all the objectives —the 7 metrics— and better in at least one



2.6. Experimentation 59

Table 2.6: Results on the balanced logs with a 20% of noise.

Logs with 20% of noise

Caminatas

A8 D2 Ml1lSkip

Ma5
Ml2l

MDriv
erL

L

allL
oops

Ma7
l2la MexampleL

Herb
st6

p37

Ma6nfc

MParallel
5

NC L2LP
NCB

DWS

ProDiGen

Model
metrics

Bp 0.57 1.0 0.91 1.0 1.0 1.0 0.62 1.0 0.78 0.8 0.75 1.0 0.75 0.92 0.72 0.76 0.8 0.5
Br 0.99 1.0 1.0 1.0 1.0 1.0 0.99 1.0 0.99 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.97 0.99
Sp 0.75 1.0 0.87 1.0 1.0 1.0 0.77 1.0 0.79 0.81 0.76 1.0 0.76 0.78 0.76 0.78 0.8 0.47
Sr 0.85 1.0 0.87 1.0 1.0 1.0 0.89 1.0 1.0 1.0 0.83 1.0 0.83 0.84 0.75 0.85 1.0 0.95

Log
metrics

C 0.34 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.52 1.0 0.69 0.72 0.62 1.0 1.0 0.37
P 0,63 1.0 0,95 1.0 1.0 0,15 1.0 1.0 1.0 1.0 0,95 1.0 0,68 0,8 0,7 0.76 0.89 0,98
S 1.0 1.0 1.0 1.0 1.0 0,22 1.0 1.0 1.0 1.0 1.0 1.0 0,97 0,91 0,98 0.95 0.91 0,92

GM

Model
metrics

Bp 0.56 0.67 0.66 0.85 0.82 1.0 0.44 0.9 0.67 0.77 0.73 0.59 0.65 0.83 0.57 0.95 0.88 0.78
Br 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.81
Sp 0.56 0.46 0.6 0.69 0.72 0.88 0.52 0.88 0.47 0.69 0.64 0.44 0.61 0.52 0.5 0.9 0.8 0.6
Sr 0.6 0.75 0.75 0.69 0.66 1.0 0.52 0.95 0.66 0.81 0.91 0.65 0.66 0.66 0.66 0.9 0.88 0.95

Log
metrics

C 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.3 1.0 0.16 1.0 1.0 0.54
P 0,4 0,42 0,45 0,84 0,45 0,8 0,11 0,61 0,42 0,47 0,43 0,05 0,38 0,6 0,37 0,76 0,65 0,76
S 1.0 0,64 0,91 0,77 0,75 0,85 1.0 0,58 0,81 0,76 0,65 0,63 0,68 0,88 0,84 0,68 0,88 0,84

HM

Model
metrics

Bp 0.97 0.7 0.95 0.9 0.9 0.67 0.9 0.93 1.0 0.94 1.0 1.0 0.89 1.0 0.75 0.77 0.88 0.7
Br 1.0 0.85 1.0 0.8 0.89 0.91 0.92 0.89 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.95 1.0 0.6
Sp 1.0 0.77 1.0 1.0 1.0 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 0.76
Sr 0.95 0.87 0.87 0.76 0.83 0.75 0.9 0.83 1.0 0.9 1.0 1.0 0.91 1.0 0.83 0.8 0.88 0.95

Log
metrics

C 0.34 0.0 1.0 0.0 0.65 0.0 0.63 0.58 1.0 0.3 1.0 1.0 0.69 1.0 0.0 0.0 0.0 0.0
P 0,9 0.0 0,95 0,19 0,94 0,15 0,11 1.0 1.0 0,93 1.0 1.0 0,9 1.0 0.0 0,45 0,14 0,23
S 1.0 0,9 1.0 0,75 1.0 0,81 1.0 0,93 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,96 1.0 0,93

α++

Model
metrics

Bp 0.83 0.88 0.84 0.39 0.61 0.4 0.29 0.73 0.76 0.42 0.4 0.29 0.44 0.75 0.53 0.62 0.29 0.26
Br 0.91 0.99 0.99 0.55 0.56 0.49 0.4 0.82 0.87 0.57 0.75 0.42 0.76 0.99 0.89 0.54 0.4 0.24
Sp 0.59 0.46 0.62 0.23 0.26 0.26 0.18 0.2 0.27 0.25 0.17 0.21 0.23 0.22 0.26 0.15 0.27 0.29
Sr 0.67 0.75 0.62 0.23 0.5 0.5 0.28 0.16 0.41 0.27 0.33 0.3 0.41 0.46 0.33 0.2 0.33 0.42

Log
metrics

C 0.0 0.49 1.0 0.0 0.0 1.0 0.0 0.24 1.0 0.0 0.52 1.0 0.0 1.0 0.83 0.0 0.0 0.0
P 0,01 0,72 0,84 0,19 0,09 0,69 0,11 0,75 0,65 0,05 0,64 1.0 0.0 0,76 0.0 0,45 0,14 0,23
S 0,5 0,58 1.0 0,22 0,29 0,88 0,11 0,86 0,63 0,24 0,41 1.0 0,4 0,42 0,62 0,27 0,36 0,22

ILP

Model
metrics

Bp 0.1 0.09 0.27 0.35 0.31 0.11 0.24 0.29 0.17 0.1 0.2 0.05 0.07 0.2 0.17 0.35 0.41 0.14
Br 0.19 0.23 0.83 0.46 0.57 0.27 0.19 0.63 0.34 0.33 0.31 0.06 0.31 0.35 0.49 0.75 0.84 0.21
Sp 0.23 0.23 0.45 0.28 0.21 0.17 0.19 0.26 0.2 0.22 0.14 0.05 0.14 0.1 0.19 0.29 0.25 0.12
Sr 1.0 0.64 0.8 1.0 1.0 1.0 0.93 0.7 0.97 1.0 1.0 1.0 0.77 0.76 1.0 1.0 1.0 0.96

Log
metrics

C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P 0,32 0,4 0.0 0,49 0,37 0,35 0,27 0,59 0,38 0,32 0,35 0,18 0,28 0,27 0,31 0,71 0,36 0,45
S 0,11 0,2 0,77 0,22 0,18 0,16 0,11 0,5 0,23 0,18 0,16 0,05 0,18 0,14 0,27 0,33 0,26 0,1

objective. Thereby, for each log, all the solutions in the first non-dominated front will have
a rank equal to 1 —these are the solutions more similar to the original model and, therefore,
the best ones—, the solutions in the second non-dominated front will have a rank equal to
2, and the process continues until all fronts are identified7. Therefore, to perform the non-
parametric statistical tests, we first ranked all the solutions for each log based on the Pareto

7Note that there can be as many fronts as possible solutions. Hence, as we are comparing five algorithms, there
can be a maximum of 5 possible fronts, being the solutions in the first front the best ones.



60 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

Table 2.7: Non-parametric test for the balanced logs.

(a) Friedman ranking.

Algorithm Ranking

ProDiGen 1.63
HM 2.52
GM 3.27
ILP 3.5
α++ 4.1

Friedman p-value: 5.34E-11

(b) Holm post-hoc, α = 0.05.

i Comp. z p α/i Hypothesis

4 α++ 10.4 9.73E-26 0.013 Rejected
3 ILP 7.9 2.87E-15 0.017 Rejected
2 GM 6.95 3.57E-12 0.025 Rejected
1 HM 3.77 1.62E-4 0.05 Rejected

dominance and then we used these ranks as input for the Friedman test. Table 2.7 summarizes
the results of the tests. As can be seen, ProDiGen has the best ranking, whereas Heuristics
Miner gets the second position, as it retrieves very competitive results when dealing with
noisy logs, but it still has problems with non-free-choice constructs and some short loops.
On the other hand, Genetic Miner has the third position, closely followed by ILP miner.
In general Genetic Miner retrieves better solutions than ILP, as ILP cannot handle invisible
tasks and infrequent behavior. Finally, α++-algorithm has the worst ranking. This is due the
inability of this algorithm to tackle invisible tasks and handle infrequent behavior in the log,
giving as a result incomplete and very underfited models. The p-value of the Friedman test
(Table 2.7(a)) is really low, indicating a high level of confidence. Furthermore, based on the
results of the Friedman test, we performed a Holm’s post-hoc test (Table 2.7(b)), starting with
the initial hypothesis that all the tested algorithms are equal to ProDiGen. The test rejects
the null hypothesis in all the cases for a confidence level of α = 0,05 —the p-value of each
algorithm has to be lower than α/i in order to reject the hypothesis. This means that ProDiGen
outperforms all the other algorithms, and that the difference is statistically significant for that
confidence level. We have repeated this test considering only the model metrics, and also
taking into account only the log metrics —the results of the tests do not change.

2.6.5 Results on unbalanced logs

Table 2.8 shows the results on the 21 unbalanced logs. ProDiGen mines the original model
in 17 of the logs —the values of the four model metrics are 1—, while in the other 4 logs
the mined model is very similar to the original one. The difficulties in these 4 logs arise
when i) mining logs with parallel constructs with more than two branches and with two or



2.6. Experimentation 61

Table 2.8: Results on the unbalanced logs.

Logs

g2 g3 g4 g5 g6 g7 g8 g9 g10 g12 g13 g14 g15 g19 g20 g21 g22 g23 g24 g25 EMT

ProDiGen

Model
metrics

Bp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.96 1.0
Br 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0
Sp 1.0 1.0 0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.91 1.0
Sr 1.0 1.0 0.97 1.0 1.0 1.0 0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 0.91 1.0

Log
metrics

C 1.0 1.0 0.78 1.0 1.0 1.0 0.52 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 1.0
P 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
S 1.0 1.0 1.0 1.0 1.0 1.0 0,93 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,94 1.0

GM

Model
metrics

Bp 1.0 0.61 0.78 1.0 1.0 1.0 0.84 0.96 0.99 1.0 0.98 0.61 0.8 0.98 1.0 1.0 0.97 0.57 0.83 0.81 1.0
Br 1.0 0.97 0.97 1.0 1.0 1.0 1.0 1.0 0.97 1.0 0.99 1.0 0.97 0.9 1.0 1.0 1.0 0.88 0.88 0.96 0.83
Sp 1.0 0.81 0.81 1.0 1.0 1.0 1.0 0.97 0.9 1.0 0.95 0.95 0.88 0.95 1.0 1.0 0.85 0.76 0.75 0.76 0.85
Sr 1.0 0.81 0.81 1.0 1.0 1.0 0.94 0.98 0.92 1.0 0.94 0.94 0.87 0.89 1.0 1.0 0.85 0.74 0.75 0.74 0.85

Log
metrics

C 1.0 0.31 0.59 1.0 1.0 1.0 0.26 0.48 0.48 1.0 0.75 1.0 0.15 0.2 1.0 1.0 0.43 0.2 0.72 0.41 0.3
P 1.0 0,6 1.0 1.0 1.0 1.0 0,15 1.0 1.0 1.0 1.0 0,81 0,14 0,08 1.0 1.0 0,96 0,42 0,99 0,75 0,94
S 1.0 1.0 0,97 1.0 1.0 1.0 0,72 0,96 0,88 1.0 0,95 0,99 0,88 0,95 1.0 1.0 1.0 0,88 1.0 0,82 1.0

HM

Model
metrics

Bp 1.0 1.0 0.94 1.0 0.9 0.97 0.87 1.0 0.96 1.0 1.0 0.97 0.96 0.97 1.0 1.0 0.99 0.6 0.92 0.76 0.81
Br 1.0 0.98 0.92 1.0 0.98 0.97 0.99 0.98 0.95 1.0 1.0 0.97 0.98 1.0 1.0 1.0 0.99 1.0 0.88 0.94 0.96
Sp 1.0 0.97 0.96 1.0 0.93 0.97 0.95 1.0 0.96 1.0 1.0 0.96 1.0 1.0 1.0 1.0 0.97 0.91 0.89 0.85 0.76
Sr 1.0 0.97 0.86 1.0 0.97 1.0 0.86 1.0 0.96 1.0 1.0 0.92 0.86 0.9 1.0 1.0 0.91 0.94 0.81 0.85 0.74

Log
metrics

C 1.0 1.0 0.78 1.0 0.66 1.0 0.52 0.74 0.78 1.0 1.0 0.91 0.87 0.85 1.0 1.0 0.9 0.0 0.93 0.23 0.37
P 1.0 1.0 1.0 1.0 0,99 1.0 1.0 1.0 1.0 1.0 1.0 0,99 1.0 1.0 1.0 1.0 1.0 0,42 0,97 0,97 0,98
S 1.0 1.0 1.0 1.0 0,99 0,98 0,93 0,96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0,93 1.0 0,94 1.0

α++

Model
metrics

Bp 0.8 0.81 0.95 1.0 0.88 0.92 0.87 0.96 0.94 0.95 0.93 0.58 0.85 0.9 0.64 0.84 0.93 0.71 0.81 0.94 0.99
Br 0.85 0.91 0.94 1.0 0.99 0.9 0.94 0.94 0.9 1.0 0.94 0.92 0.85 0.94 0.94 0.89 0.85 0.67 0.7 0.92 0.93
Sp 0.89 0.94 0.98 1.0 0.79 0.98 0.83 0.98 0.81 0.96 0.88 0.86 0.9 0.9 0.92 0.93 0.82 0.66 0.85 0.91 1.0
Sr 1.0 0.98 0.97 1.0 1.0 1.0 0.94 1.0 1.0 1.0 0.97 1.0 0.97 1.0 0.87 1.0 0.97 1.0 1.0 0.98 0.91

Log
metrics

C 0.33 0.0 1.0 1.0 0.45 0.0 0.35 0.48 0.563 1.0 0.48 0.0 0.05 0.25 0.46 0.68 0.43 0.0 0.0 0.97 0.89
P 0,96 0,18 0,97 1.0 1.0 0,12 1.0 1.0 1.0 0,97 1.0 0,82 0,14 0,98 0,86 0,09 1.0 0,42 0,11 0,26 1.0
S 0,78 0,79 1.0 1.0 0,76 0,93 0,74 0,79 0,76 0,99 0,79 0,79 0,97 0,75 1.0 0,83 0,32 0,34 0,42 0,89 1.0

ILP

Model
metrics

Bp 0.9 0.89 1.0 1.0 0.96 0.96 0.9 0.94 0.92 0.95 0.93 0.85 0.87 0.91 0.72 0.87 0.9 0.58 0.78 0.66 0.98
Br 1.0 0.98 0.99 1.0 0.99 0.99 0.99 0.99 0.97 1.0 0.99 0.99 1.0 0.99 0.95 1.0 0.99 0.88 0.94 0.96 1.0
Sp 0.83 0.85 0.98 1.0 0.78 0.94 0.76 0.89 0.73 0.96 0.78 0.78 0.67 0.85 0.85 0.92 0.72 0.5 0.77 0.64 0.91
Sr 1.0 0.98 0.97 1.0 1.0 1.0 0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.97 1.0 1.0 0.98 1.0

Log
metrics

C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P 0,97 0,97 1.0 1.0 0,99 1.0 0,98 0,98 0,95 0,97 0,07 0,95 0,96 0,98 0.96 0,96 0,93 0,83 0,89 0,8 1.0
S 0,93 0,92 0,96 1.0 0,74 0,93 0,66 0,9 0,68 0,99 0,97 0,69 0,76 0,79 0,79 0,97 0,52 0,28 0,7 0,59 0,93

more tasks in each branch, and ii) when mining logs that came from models with unbalanced
AND-join/split points. These type of patterns are even more difficult to mine considering that
not all the possible combinations admitted by the original model are represented in the log,
and not all the traces have the same frequency. Therefore, ProDiGen tries to better fit the most
frequent behavior of the log, overfitting the data.

• The mined model for log g8 (Figure 2.6(c)) has a behavioral precision and recall equal
to 1. However, the model is not complete because it cannot tackle the output depen-
dencies of the tasks timeout and return-contract, considering them as final tasks. This
results in a incomplete mined model, because all the traces involving these two tasks
will have an extra token at the end of the parsing.



62 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

XOR

Send_bill
(complete)

610

XOR

XOR

No_payment_within_3_weeks
(complete)

310

XOR

 310

XOR

Customer_pays_within_3_weeks
(complete)

300

XOR

 300 310

XOR

And_join
(complete)

300

XOR

 300

XOR

Pick_up_car
(complete)

66

XOR

XOR

Return_car_to_customer
(complete)

66

XOR

 66

XOR

Return_replacement_car
(complete)

66

 66

(a) Detail of the mined model for the log g4.The
tasks highlighted in grey are involved in a unbalanced
AND-join/split point, making very difficult to cor-
rectly mine their inputs and outputs.

XOR

Packaging_SB
(complete)

152

XOR

XOR and XOR

AND_Split
(complete)

167

XOR and XOR

 167

 85

XOR and XOR

Cancel_SB
(complete)

67

XOR

 67

XOR and XOR

Cancel_CB
(complete)

66

XOR

 66

XOR

respond
(complete)

105

XOR

 105

XOR

No_responce
(complete)

88

XOR

 88

 20  25 46  42

XOR

Packaging_CB
(complete)

82

XOR

 82

 82

(b) Detail of the mined model for the log g24. In
the original model, the missing relation is never used,
therefore it is impossible to mine it.

XOR

Start_procedure
(complete)

142

XOR and XOR

 44

XOR

return_contract
(complete)

52

 52

XOR

start_collect_info
(complete)

184

XOR and XOR

 142

XOR

timeout
(complete)

90

 90

XOR

 184

XOR

 184

 43

(c) Detail of the mined model for the log
g8. Both tasks hihglighted in grey are in-
volved in an unbalanced AND-join/split.

XOR

Start_Production
(complete)

293

XOR and XOR and XOR and XOR

XOR

Earphone_Machina_B
(complete)

155

XOR

 155

XOR

Production_Keyboard
(complete)

293

XOR and XOR

 293

XOR

Production_Frame_1
(complete)

293

XOR

 293

XOR

Production_Cover
(complete)

293

XOR

 293

XOR

Earphone_Machine_A
(complete)

138

XOR

 138

XOR

Production_Frame_2
(complete)

293

XOR

 155

XOR

Outsourced_Keys_Production
(complete)

293

XOR

 293

XOR

Production_Board
(complete)

293

XOR

 293

XOR and XOR

Assemble_Keyboard
(complete)

293

XOR

 293

XOR

Production_Electronics
(complete)

293

XOR

 293

XOR and XOR

Assemble_Frame
(complete)

293

XOR

 293

XOR

Paint_Silver
(complete)

143

XOR

 143

XOR

Paint_Black
(complete)

150

XOR

 150

XOR and XOR

End_Phone_Production
(complete)

293

XOR

 143

 293 293

XOR and XOR

Assemble_Phone
(complete)

293

XOR

 293  293

XOR

Check_Phone
(complete)

596

XOR

 293
 303

 293

 138

 150

(d) Heuristic net of the mined model for the log g25. The
mined model incorrectly finds the AND-join point at the task
”End phone product”. This leads to other incorrect relations try-
ing to better fit the log.

Figure 2.6: Heuristics nets of the mined models for the unbalanced logs: g4, g8, g24 and g25.



2.6. Experimentation 63

• The results for log g24 (Figure 2.6(b)) shows that the mined model is almost equal to the
original one, except in only one relation between two tasks (tasks in grey, Figure 2.6(b)).

• The mined model for log g4 (Figure 2.6(a)) has a behavioral precision and recall of 1,
i.e., the mined model allows the same behavior as the original one w.r.t the information
contained in the log. The difference between the mined and original models is that
the mined model cannot find —as with log g8— the output dependencies of the task
return replacement car, therefore it considers that task as final, generating an extra final
token every time the model parses a trace involving this task.

• For log g25 (Figure 2.6(d)) the behavioral recall and precision are closer to 1. This
means that, even when the model is not as precise as the original, it does not allow
for too much extra behavior than the original one. The mined model cannot mine the
original AND-join point.

Analyzing the results of the other algorithms, HM focuses its search on the main behavior
of the log —finding solutions with high levels of simplicity. Hence, it cannot find the original
model on those logs that came from models with many interleaving situations, as it tries to
better fit the most frequent behavior recorded in the log —as the logs are unbalanced, not

all the possible relations have the same frequency. On the other hand, ILP tends to retrieve
complete models, but they usually are very general and, therefore, very different from the
original model. Additionally, although ILP retrieves complete models when possible, it cannot
tackle invisible tasks, giving poor results with the models containing this kind of constructs.
With respect to Genetic Miner, based on its fitness definition —always benefits the individuals
that portrait the most frequent behavior in the log—, it has problems to obtain complete and
precise models when dealing with logs with many interleaving situations. This results in
solutions with poorly precision values and very complex —with many silent tasks. Finally,
the α++-algorithm gets the worse results since it cannot deal with logs with many interleaving
situations, giving as a result very poor values of completeness and precision for almost all the
logs. Comparing the results of the five algorithms: ProDiGen correctly mines, i.e., finds the
original model, the 81% (17 out of 21) of the cases. For the other algorithms, the percentage
of correctly mined models was: GM in the 33% (7 out of 21), HM in the 28% (6 out of 21),
and both α++ and ILP in the 5% (1 out of 21). Tables 2.9(a) and 2.9(b) show the results
for the non-parametric tests for the unbalanced logs. Again, the p-value of the Friedman test
is really low, indicating that there are significant differences among the algorithms with a



64 Chapter 2. ProDiGen: Mining complete, precise and minimal structure process models

Table 2.9: Non-parametric test for the unbalanced logs.

(a) Friedman ranking.

Algorithm Ranking

ProDiGen 1.55
HM 3.17
GM 3.31
ILP 3.43
α++ 3.55

Friedman p-value: 3.58E-7

(b) Holm post-hoc, α = 0.05.

i Comp. z p α/i Hypothesis

4 α++ 4.1 4.15E-5 0.013 Rejected
3 ILP 3.85 1.15E-4 0.017 Rejected
2 GM 3.61 3.05E-4 0.025 Rejected
1 HM 3.31 9.06E-4 0.05 Rejected

Table 2.10: Average runtimes of the algorithms on the 21 unbalanced logs.

ProDiGen GM8 HM α++ ILP

Initial Sol. Best Sol. Total Total Total Total Total

Average Time 2.5s 4.7m 32m 65m 606ms 128ms 33.8s

high level of confidence. Holm’s test also rejects the null hypothesis between ProDiGen and
each of the algorithms used in the comparison. Therefore, we can conclude that ProDiGen
also outperforms all the algorithms with unbalanced logs, and the difference is statistically
significant. We also did the test with only the model metrics and only the log metrics —with
no differences.

Table 2.10 shows the average runtimes of all the algorithms over the unbalanced logs of
Section 2.6.1. As can be seen, Heuristics Miner, α++ and ILP have on average very fast run-
times, being the quality of the results of Heuristics Miner the highest of the three. On the other
hand, ProDiGen improves the execution time of Genetic Miner. The comparison between the
runtimes of ProDiGen and Heuristics Miner requires to take into account that ProDiGen is
an iterative algorithm —it obtains thousands of solutions per execution—, while HM only
gets one solution per execution. The initial solution runtime (Table 2.10) shows the time that
ProDiGen needs, on average, to pre-process the log and retrieve de best solution of the initial
population. The quality of that solution is at least as good as the solution of Heuristics Miner
—as ProDiGen uses the Heuristics Miner solution as part of the initial population. Both the

8Genetic Miner is an iterative algorithm and, therefore, it would be possible to measure the runtimes of the first
and best solutions and the total runtime. We only show the total runtime as the implementation of Genetic Miner
(ProM 6.3) does not measure other runtimes. Nevertheless, the runtime for the initial solution is very similar to that
of ProDiGen, although the quality of that solution for Genetic Miner is usually very low.



2.7. Conclusions 65

runtimes of the initial solution and HM are fast —as mining algorithms do not have real time
requirements. Moreover, the extra-time inverted by ProDiGen in finding the best solution (Ta-
ble 2.10) is worth, as ProDiGen improves the solutions of Heuristics Miner in 58 out of 111
logs —15 out of 21 unbalanced logs— in a fast way for process mining requirements.

2.7 Conclusions

We have presented ProDiGen, a genetic algorithm for process mining that can tackle all the
different constructs at once, and obtains models that are complete, precise, and simple. ProDi-
Gen uses a new hierarchical fitness function that includes new definitions for precision and
simplicity. Moreover, the proposal uses genetic operators that focus the search on specific
parts of the model: i) the crossover operator selects the crossover point based on the errors
of the mined model; and ii) the mutation operator is guided by the causal dependencies of
the log. ProDiGen has been validated with 111 different logs with all kind of workflow pat-
terns, noise, and unbalanced logs. Also, we have compared ProDiGen with 4 of the state of
the art process discovery algorithms using non-parametric statistical tests. Results conclude
that using a hierarchical fitness based on completeness, precision and simplicity shows a great
performance when retrieving the original model. Moreover, ProDiGen outperforms the other
process mining algorithms, as it is able to retrieve the original model in the 84% of the tested
logs.





CHAPTER 3

ENHANCING DISCOVERED PROCESSES

WITH DUPLICATE TASKS

Log

Process 
hierarchization

Process
simplification

Chapter 2 Chapter 3 Chapter 4

Role part 2
Role part 1

Act 2Act 1

Play

Chapter 1: Introduction

Process
discovery

Chapter 5: Conclusions

In Chapter 2 we presented an algorithm for the automatic discovery of process models.
Here, we introduce a new algorithm to support the mining of additional behavior, in partic-
ular, duplicate labels. How to face this type of behavior is of particular interest in process
discovery as, usually, duplicate events are recorded with the same label in the log, hindering
the discovery of the model that better fits the recorded behavior. Taking into account duplicate
activities can enhance the comprehensibility of the mined model. For instance, in the genetic
algorithm presented in the previous chapter, introducing duplicate activities before or during
the mining process can lead to a search space explosion. Furthermore, the incorrect identifi-
cation of duplicate labels can lead to an incorrect representation of the behavior recorded in
the event log. In order to keep the search space within bounds, one possible solution is to
duplicate the most convenient activities after mining the model.



68 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

To tackle this issue, in this chapter we present SLAD (Splitting Labels After Discovery),
an algorithm that takes as starting point an already mined model, and using the local infor-
mation of the log, tries to improve the comprehensibility and understandability of the model
by splitting the overly connected nodes into two or more activities. More specifically, the
contributions presented in this chapter are: i) the discovering of the duplicate activities is per-
formed after the discovery process, in order to unfold the overly connected nodes than may
introduce extra behavior not recorded in the log; ii) new heuristics to focus the search of the
duplicated tasks on those activities that better improve the model; and iii) new heuristics to
detect potential duplicate activities involved in loops. This proposal has been validated with
54 different mined models from three process discovery algorithms. Furthermore, the results
have been compared with eight different algorithms from the state of the art.

This algorithm, as well as the aforementioned comparison, is described in the following
publication:

B. Vázquez-Barreiros1, M. Mucientes1, and M. Lama1. Enhancing Discovered Processes
with Duplicate Tasks. Information Sciences, 373:369–387, 2016.
(DOI: 10.1016/j.ins.2016.09.008)).

3.1 Abstract

Including duplicate tasks in the mining process is a challenge that hinders the process discov-
ery, as it is also necessary to find out which events of the log belong to which transitions. To
face this problem, we propose SLAD (Splitting Labels After Discovery), an algorithm that
uses the local information of the log to enhance an already mined model, by performing a lo-
cal search over the tasks that have more probability to be duplicated in the log. This proposal
has been validated with 54 different mined models from three process discovery algorithms,
improving the final solution in 45 of the cases. Furthermore, SLAD has been tested in a real
scenario.

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela. Santiago de Compostela, Spain.

http://dx.doi.org/10.1016/j.ins.2016.09.008


3.2. Introduction 69

3.2 Introduction

In the recent years, a lot of work has been made for developing technologies to automate
the execution of processes in different application domains such as industry, education or
medicine [80]. In particular, for business processes, there has been an incredible growth on
the amount of process-related data, i.e, execution traces of business activities. Within this
context, process mining has emerged as a way to analyze the behavior of an organization
based on these data —event logs— offering techniques to discover, monitor and enhance real
processes, i.e., to understand what is really happening in a business process [122].

Based on this idea, and in order to model what is really happening in an organization,
process discovery techniques aim to find the process model that better portraits the behavior
recorded in an event log. There are four quality dimensions to measure how good is a model
and, hence, identify which model is the best: fitness replay, precision, generalization and
simplicity. Fitness replay measures how much of the behavior recorded in the log can be
reproduced in the process model. On the other hand, precision and generalization measure if
the model overfits —it disallows for new behavior not recorded in the log— or underfits —it
allows additional behavior not recorded in the log— the data, respectively. Finally, simplicity,
quantifies the complexity of the model, for instance, the number of arcs and tasks. Hence,
the idea behind process discovery is to maximize these metrics in order to obtain an optimal

solution that better describes the flow of the events that occur within the process.

In order to discover the optimal solution, one key question is how to describe the order-

ing and flow of events that occur in a process [134]. From the control-flow perspective, a
model can be represented with many different workflow patterns, such as sequences, paral-

lels, loops, choices, etc. Furthermore, to improve the quality of the solution, models can be
extended with more behavior: duplicate activities, non-free-choice constructs2, etc. Within
the scope of this paper, the notion of duplicate tasks —or activities— [136] refers to situa-
tions in which multiple tasks in the process have the same label, i.e., they can appear more
than once in the process. As previously said, the inclusion of duplicate tasks is useful to
improve the precision and simplicity of a model, and, hence, enhance its comprehensibil-
ity [15, 31]. Figure 3.1 shows an example on how the addition of duplicate tasks to a model
improves its understandability and structural clarity. In this example, considering the sample
log of Fig. 3.1(a), the events Quiz and Check Bibliography, are executed multiple times —

2A non-free choice (NFC) construct is a special kind of choice, where the selection of a task depends on what
has been executed before in the process model.



70 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

Sequence of events
case1 Attend lecture, Turing Elevator, Check Bibliography, Quiz, Recursive Languages, Quiz, Results.
case2 Attend lecture, Turing Elevator, Check Bibliography, Quiz, Check Bibliography, Recursive Languages,

Quiz, Results.
case3 Attend lecture, Turing Vending Machine, Check Bibliography, Quiz, Recursive Languages,

Check Bibliography, Quiz, Results.
case4 Attend lecture, Check Bibliography, Turing Vending Machine, Check Bibliography, Quiz,

Recursive Languages, Quiz, Results.
...

...
casen . . .

(a) Traces extracted from a synthetic event log.

Attend
Lecture

Quiz

Check
Bibliography

Turing
elevator

Turing
Vending Machine

Recursive
languages

Results

(b) Model without duplicate tasks.

ResultsAttend
Lecture

Turing
elevator

Turing
Vending Machine

Quiz

Check
Bibliography

Recursive
languages

Quiz

Check
Bibliography

(c) Model with duplicate tasks.

Figure 3.1: A log and two process models —Petri nets— exemplifying a lecture of Automata Theory and Formal
Languages.

twice in each trace. Between the multiple possibilities of modeling the behavior of the log,
we can assume i) an injective relation between the events in the log and the activities in the
model (Fig. 3.1(b)); or ii) that multiple activities can share the same label, i.e. a model with
duplicate activities (Fig. 3.1(c)). In this example, although both models perfectly reproduce
all the behavior recorded in the log —both have a perfect replay fitness—, the model depicted
in Fig. 3.1(b) allows to execute both Quiz and Check Bibliography as many times as we want
at any time in the process, hence, this model is not a precise picture of the recorded behavior
of the log —its precision is lower. On the other hand, if both activities are duplicated, the
resulting model (Fig. 3.1(c)) is more suitable, i.e., more precise with respect to the recorded
behavior in the log, as it does not allow, for example, to check the bibliography —Check Bib-

liography— during the exam —Quiz. Hence, the ability to discover these duplicate tasks may

greatly enhance the comprehensibility of the final solution, and create a more specific process
model.

From the perspective of process discovery, including duplicate tasks in the mining process
is a well known challenge [134, 136] as, usually, duplicate tasks are recorded with the same



3.2. Introduction 71

label in the log, hindering the discovery of the model that better fits the log —algorithms
need to find out which events of the log belong to which tasks. To face this issue, handling
duplicate tasks is usually considered as a pre-mining step, i.e., the potential duplicate tasks are
identified and accordingly labeled before mining the log, or as part of the process discovery
algorithm. Within this context, there are several techniques in the state of the art that allow to
mine duplicate tasks [15, 20, 24, 30, 47, 57, 58, 75]. However, some approaches can retrieve
worse solutions than without duplicate activities [15], others can duplicate any activity of the
log without imposing any limit to the number of activities that may be duplicated [20, 24, 47],
or they have problems when dealing with duplicate activities involved in certain constructs,
such as loops [30, 75].

In this paper we analyze the possibility of tackling duplicate tasks after mining a process
model, in particular, after mining a causal net [123] or heuristic net [155], without adversely
affecting the quality of the initial solution. Hence, we present SLAD (Splitting Labels After
Discovery) a novel algorithm that enhances an already discovered process model by splitting
the behavior of its activities. Firstly, a process discovery technique mines a log without con-
sidering duplicate tasks, generating a causal net or a heuristic net. Then, SLAD, using the
local information of the log and the retrieved model, tries to improve the quality of the model
by performing a local search over the tasks that have more probability to be duplicated in
the log. The contributions of this proposal are: i) the discovering of the duplicate activities
is performed after the discovery process, in order to unfold the overly connected nodes than
may introduce extra behavior not recorded in the log; ii) new heuristics to focus the search of
the duplicated tasks on those activities that better improve the model and iii) new heuristics to
detect potential duplicate activities involved in loops.

The remainder of this paper is structured as follows. Section 3.3 describes the current state
of the art of process discovery algorithms dealing with duplicate tasks. Then, Section 3.4 de-
scribes in detail the SLAD algorithm to tackle duplicate tasks. Section 3.5 shows the obtained
results with 54 different mined models from three process discovery algorithms as well as a
comparison with other state of the art approaches. Finally, Section 3.6 points out the conclu-
sions.



72 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

3.3 State of the art

In the state of the art of process discovery, many techniques [33, 71, 138, 147, 153, 155,
156, 158] assume an injective relation between tasks and events in the log, considering that
there cannot be two different activities with the same label. Therefore, these algorithms, when
dealing with logs with duplicate tasks, usually give as a result models with overly connected
nodes or needless loops, decreasing the precision and simplicity of the model. On the other
hand, there are techniques that do not make such a restrictive assumption [15, 20, 23, 24,
30, 47, 57, 58, 75]. Typically, all these techniques identify the potential duplicate activities
in a pre-mining step, or during the mining process. One example is the α∗-algorithm [75],
an extension of the α-algorithm [137] to mine duplicate tasks. However, the heuristic rules
used in this algorithm require a noise-free and complete log [140]. Fodina [15] is an algo-
rithm based on heuristics that infers the duplicate tasks transforming the event log into a task

log following the heuristics defined in [30]. Other solutions, like DGA [30] and ETM [20]
—based on evolutionary algorithms—, or AGNES [47] —an approach based on inductive
programming— include the possibility to mine duplicate tasks. However, these techniques do
not allow to unfold loops [30], or they are very permissive allowing to duplicate any activity
in the log [20]. State-based region theory algorithms [23, 24] are also able to mine duplicate
tasks, but, when searching for regions, they usually allow to split any label in the log without
any bound. Herbst et al. also developed a set of algorithms [57, 58] that infer the duplicate
activities in a pre-mining step. However, the algorithms developed by Herbst et al. only
focus their search on block-structured representations of a process model, constraining the
expressiveness of a process model. For example, he only way to represent a non-free-choice
construct, if possible, is through duplicate labels, which can lead to a more complex model.

In summary, although very valuable results have been achieved in this field, the state of
the art algorithms have different weaknesses. Some obtain, in specific logs, worse solutions
than without duplicated tasks [15]. Others allow to duplicate any activity in the log [20],
or generate solutions with a lower simplicity [24] —more complex solutions. Finally, other
proposals use heuristics that do not consider duplicate activities in some workflow patterns
such as loops [30, 75]. Within this context, we propose SLAD, an algorithm to tackle du-
plicate tasks after mining a model, with the objective of improving its quality, i.e., its replay
fitness, precision and simplicity. SLAD combines the actual dependencies of a model mined
by a process discovery technique, and a set of heuristics that use the information of the be-
havior recorded in the log, in order to enhance the precision and simplicity —and hence its



3.4. Splitting Labels After Discovery 73

comprehensibility— of the already mined model, trying to split its overly connected tasks that
are more suitable to be duplicated.

Definition 1 (Trace, Event log). Let T be a set of tasks. A trace σ ∈ T ∗ is a sequence of tasks.

Let B(A) denote the set of all multisets over some set A. An event log L ∈ B(T ∗) is a multiset

of traces.

3.4 Splitting Labels After Discovery

Algorithm 3.1 describes SLAD3, an algorithm to tackle duplicate tasks on an already mined
causal matrix (Definition 2). Usually, when applying a process mining technique, duplicate
events in the event log (Definition 1) are represented as i) overly connected nodes where all
the behavior from different contexts of the model piles up, and with ii) needless loops to allow
the execution of the same label multiple times. Therefore, with the presented approach, we
try to reduce the density of these nodes by delegating some of their inputs and outputs to other
activities with the same label. First, using heuristics, the algorithm detects which activities
may be split into multiple tasks. Then, based on the local information of the event log and the
causal dependencies of the input model, the algorithm splits the behavior of the original tasks
among the new tasks with the same label. Finally, the original model is replaced with the
new one if its quality —how good is the solution— is better than the previous solution. Note
that we measure the quality of a process based on three criteria: fitness replay, precision and
simplicity. Hence, the presented algorithm tries to improve the quality of an already mined
solution by unfolding the overly-connected activities —through duplicate activities— and,
therefore, enhancing the comprehensibility of the model.

Definition 2 (Causal matrix). A Causal matrix is a tuple (T, I,O) where:

T is a finite set of tasks,

I : T → P(P(T )) is the input condition function, where P(X) denotes the powerset of some

set X. Hence, I represents a set of sets of the tasks T.

O : T → P(P(T )) is the output condition function.

If e ∈ T then I(e) denotes the input tasks of e, i.e., a set o sets of tasks, and O(e) denotes

the output tasks of e.

3http://tec.citius.usc.es/processmining/SLAD

http://tec.citius.usc.es/processmining/SLAD


74 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

Algorithm 3.1: Local search Algorithm.
input: A log L

1 ind0← initial solution(L) // Causal matrix retrieved by a process
discovery technique.

2 T ← finite set of tasks of L
3 potentialDuplicates← /0
4 foreach activity t ∈ T do
5 if max(min(|t >L t ′|, |t ′ >L t|),1)> 1 then
6 potentialDuplicates← potentialDuplicates∪{t}

7 ind0← localSearch (ind0, L, potentialDuplicates, true)

8 Function localSearch(ind0, L, potentialDuplicates, un f oldL2L)
9 indbest ← ind0

10 potentialDuplicatesL2L← /0
11 foreach activity t ∈ potentialDuplicates do
12 subsequences← Retrieve all the subsequences (t1tt2) where t1 ∈ I(t) and t2 ∈ O(t) from

parsing ind0
13 combinations← calculateCombinations (subsequences, t)
14 foreach combination c ∈ combinations do
15 t ′← activity t from ind0
16 t.inputs = (t.inputs\ c.inputs)∪ c.sharedInputs
17 t ′.inputs = c.inputs
18 t.out puts = (t.out puts\ c.out puts)∪ c.sharedOut puts
19 t ′.out puts = c.out puts
20 if (I(t ′) 6= /0 && O(t ′) 6= /0 && I(t) 6= /0 && O(t) 6= /0) then
21 Add task t ′ to ind0 and update t in ind0
22 Repair ind0
23 Prune unused arcs
24 Evaluate ind0
25 if ind0 < indbest then
26 ind0← indbest

27 else
28 indbest ← ind0
29 potentialDuplicatesL2L = potentialDuplicatesL2L ∪ {

⋃
O(t)}

/*
⋃

O(t) is the union of the subsets in O(t) */

30 else
31 ind0← indbest

32 if potentialDuplicatesL2L 6= /0 && un f oldL2L then
33 indbest ← localSearch (indbest , L, potentialDuplicatesL2L, un f oldL2L)

34 return indbest



3.4. Splitting Labels After Discovery 75

For the sake of the argument, we will use the example in Figure 3.2 to illustrate the behav-
ior of the presented approach. Fig. 3.2(a) shows a log with three traces and 6 different tasks.
On the other hand, Fig. 3.2(b) shows the initial solution —a causal matrix and its respective
Petri net— mined by the process discovery algorithm ProDiGen [147] without considering
duplicate tasks. Fig. 3.2(c) shows the model obtained after the execution of SLAD to the
model of Fig. 3.2(b). Finally, Fig. 3.2(d) shows each of the steps —described in the next
sections— involved in the process.

3.4.1 Discovering duplicate tasks

The first step of the algorithm is the discovery of the potential duplicate tasks. One naive
solution to detect if a task is a potential duplicate is to set the upper bound for that task to
the number of times it appears in the log. This makes the search space finite, covering all the
possible solutions with duplicate tasks, i.e., all the tasks are identified as potential duplicates.
The problem with this solution is that within this search space is also included the overly-
specific trace-model4. A variant to this approach is to set the upper bound to the maximum
number of times a task is repeated in a trace, instead of considering the complete log. This
will reduce the search space, but at the expense of dismissing the possible duplicity of a task
between traces.

Definition 3 (Follows relation). Let T be a set of tasks. Let L be an event log over T , i.e.,

L ∈ B(T ∗). Let t, t ′ ∈ T :

t >L t ′ iff: there is a trace σ = t1t2 . . . tn and i ∈ {1, . . . ,n−1} such that σ ∈ L, ti = t and

ti+1 = t ′.

In SLAD, instead of going through a blind search over all the tasks of the input model
—ind0—, we decided to apply heuristics to identify and retrieve more information about the
duplicate tasks of the event log. This strategy follows the heuristics defined in [30], where
the duplicate activities can be distinguished based on their local context, reducing the search
space by stating that two tasks with the same label cannot share the same input and output
dependencies. Within this context, the duplicate tasks are locally identified based on the
follows relation (>L) —Definition 3 [137]. Thus the heuristics to detect potential duplicates
can be formalized as described in Definition 4 [30]. In summary, this definition states that if

4A trace-model creates a path for each trace of the log. This kind of model has a perfect precision and replay
fitness as it only allows the specific behavior recorded in the log, but it is not a desirable solution.



76 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

case1 case2 case3
A D G J A D B D H J A D B D B J

(a) Log.

t I(t) O(t)
A {} {{D}}
D {{A,B}} {{G,B,H}}
G {{D}} {{J}}
J {{G,B,H}} {}
B {{D}} {{D,J}}
H {{D}} {{J}}

A

J

G

D

H

B

(b) Initial solution.

t I(t) O(t)
A {} {{D2}}
D1 {{B2}} {{B1,H}}
G {{D2}} {{J}}
J {{G,B1,H}} {}

B1 {{D1}} {{J}}
H {{D1}} {{J}}
D2 {{A}} {{G,B2}}
B2 {{D2}} {{D1}}

B1

D2
HB2 J

G

D1
A

(c) Final solution.

Step t Local variables Unrepaired Solution Repaired Solution

1 potentialDuplicates = [D]

2 D Subsequences from parsing ind0:
ADG, ADB, BDB and BDH

3 D

Combinations:
c[0].inputs = [A]
c[0].out puts = [G,B]
c[0].sharedOut puts = [B];
c[0].sharedInputs = [];
c[1].inputs = [B]
c[1].out puts = [B,H]
c[1].sharedOut puts = [B];
c[1].sharedInputs = [];

4 D
Duplicate D into D1 and D2
using the previous combinations
and repair the causal dependencies

→

t I(t) O(t)
A {} {{D1}}
D1 {{B}} {{B,H}}
G {{D1}} {{J}}
J {{G,B,H}} {}
B {{D1}} {{D1,J}}
H {{D1}} {{J}}
D2 {{A}} {{G,B}}

→

t I(t) O(t)
A {} {{D2}}
D1 {{B}} {{B,H}}
G {{D2}} {{J}}
J {{G,B,H}} {}
B {{D1,D2}} {{D1,J}}
H {{D1}} {{J}}
D2 {{A}} {{G,B}}

5
After duplicating D:
potentialDuplicates = []
potentialDuplicatesL2L = [B,G,H]

6 B Subsequences from parsing ind0:
D2BD1 and D1BJ

7 B

Combinations:
c[0].inputs = [D2]
c[0].out puts = [D1]
c[0].sharedInputs = []
c[0].sharedOut puts = []
c[1].inputs = [D1]
c[1].out puts = [J]
c[1].sharedInputs = []
c[1].sharedOut puts = []

8 B
Duplicate B into B1 and B2
using the previous combinations
and repair the causal dependencies

→

t I(t) O(t)
A {} {{D2}}
D1 {{B1}} {{B1,H}}
G {{D2}} {{J}}
J {{G,B1,H}} {}

B1 {{D1}} {{J}}
H {{D1}} {{J}}
D2 {{A}} {{G,B1}}
B2 {{D2}} {{D1}}

→

t I(t) O(t)
A {} {{D2}}
D1 {{B2}} {{B1,H}}
G {{D2}} {{J}}
J {{G,B1,H}} {}

B1 {{D1}} {{J}}
H {{D1}} {{J}}
D2 {{A}} {{G,B2}}
B2 {{D2}} {{D1}}

(d) Steps of SLAD.

Figure 3.2: An example on how SLAD works.



3.4. Splitting Labels After Discovery 77

for a task t the upper bound is greater than 1, then t is considered as a potential task for being
duplicated and, hence, it is added to potentialDuplicates (Alg.3.1:4-6).

Definition 4 (Duplicate task). Let L be an event log over T . Let t, t ′ ∈ T , |t >L t ′| the total

number of times that task t ′ follows t, and |t ′ >L t| the total number of times that task t ′

precedes t. A task t is considered as a duplicate task iff:

max(min(|t >L t ′|, |t ′ >L t|),1)> 1.

We use this strategy as a first step to detect the potential duplicates, and as a way to
retrieve the local context of the activities. Step 1 in Fig. 3.2(d) shows the potential duplicate
tasks detected after applying the described heuristic over the log of Fig. 3.2(a). In this case,
only D is detected as a potential duplicate task: task D is preceded by tasks A and B and
directly followed by B, G and H. Hence, as max(min(3,2),1) > 1, activity D is a potential
candidate for label splitting. In the next steps of the algorithm, we extend this heuristic in
order to get more information about the duplicate activities and perform the adequate split of
the tasks (Section 3.4.2). Moreover, we improve this heuristic to detect potential duplicate
activities in loops (Section 3.4.3).

One particular scenario of this initial approach to detect the potential duplicate tasks is
related to the start and end activities of a trace. For instance, if we consider the trace σ =

{A,B,C,A}, the activity A is never going to be selected as a potential duplicate task through
this method, as A is only followed by B and preceded by C, i.e., max(min(1,1),1) = 1. To
overcome this situation, one possible solution is to add a dummy start and end activity to each
trace (Definition 5). Thus, by changing σ to σ ′ = {start,A,B,C,A,end}, it is possible to add
the activity A into potentialDuplicates, as max(min(2,2),1)> 1.

Definition 5 (Dummy tasks). Let L be an event log over T . Let ‘start’ be a dummy task with

no predecessors, i.e. |t ′ >L start| = 0, and ‘end’ be a dummy task with no successors, i.e.,

|end >L t ′|= 0. Then L+ is an event log over T+ with the dummy activities such as:

T+ = T ∪{start,end},
L+ = {start σ end | σ ∈ L}.

3.4.2 Extending the model with duplicate tasks

Once all the potential duplicates are identified, the algorithm splits the input and output de-
pendencies of these activities of the model into multiple tasks with the same label through



78 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

the function localSearch (Alg. 3.1:8). Within this function, the algorithm calculates the input
and output combinations for each activity in potentialDuplicates (Alg. 3.1:11-13), in order
to split their behavior among new tasks. To compute these combinations, the algorithm firstly
finds all the subsequences —Definition 6— (Alg. 3.1:12) in the log L that match the pattern
t1tt2 —window of size 1— where t1 ∈ I(t) and t2 ∈ O(t) in the model —being I(t) and O(t) the
inputs and outputs of task t, respectively. We add this input/output constraint to focus only on
those patterns that can be reproduced by the initial model. Following with the example shown
in Figure 3.2, when iterating over potentialDuplicates, the algorithm must find the subse-
quences that match the pattern t1Dt2 in the traces of the log L. The resultant subsequences
are shown in the Step 2 in Fig. 3.2(d). Note that all these subsequences satisfy the input and
output dependencies of the task D in the initial model of Fig. 3.2(b).

Definition 6 (Subsequences). Let CM be a causal matrix (T, I,O). Let L be an event log. Let

σ = t1t2 . . . tn and i ∈ {1, . . . ,n− 1} be a trace such that σ ∈ L. The subsequences of a task

t ∈ T are defined by:

S = {(ti−1titi+1) | ti−1, ti, ti+1 ∈ σ ∧ ti−1 >L t ∧ t >L ti+1 ∧ ti−1 ∈ I(t) ∧ ti+1 ∈ O(t)}.

Algorithm 3.2: Compute the combinations of a task.
1 Function calculateCombinations(subsequences, t)
2 combinations← /0
3 forall ((t1tt2) ∈ subsequences) do
4 c← /0
5 Create a set c.inputs with the subsequences that share the same t1 and add in c.out puts

their respective t2
6 Add c to combinations

7 foreach c ∈ combinations do
8 if c.out puts = c’.outputs where c′ ∈ combinations then
9 c.inputs = c.inputs∪ c’.inputs and c.out puts = c.out puts∪ c’.outputs

10 combinations = combinations\ c′

11 if c.out puts shares an element e with another c’.outputs then
12 c.sharedOut puts← c.sharedOut puts∪{e}
13 if c.inputs shares an element e with another c’.inputs then
14 c.sharedInputs← c.sharedInputs∪{e}

15 return combinations

After obtaining such subsequences, the algorithm creates the combinations —through the



3.4. Splitting Labels After Discovery 79

function calculateCombinations (Alg.3.2)— which will serve as the basis to split the orig-
inal task into multiple activities. These combinations —Definition 7— represent the con-

text in which the original task is involved —in terms of relations— with the other tasks of
the log. calculateCombinations builds such combinations of a task t following three rules
(Alg.3.2:7-14). First, given two subsequences t1tt2 and t3tt4, if t1 = t3, then SLAD merges
both subsequences into a new combination (Alg.3.2:3-6). Second, and after identifying all
the combinations, given two different combinations c and c′, if they share the same out puts,
i.e., c.outputs = c’.outputs, these two combinations are merged (Alg.3.2:8-10). With these
two rules SLAD can split the behavior of the task into different contexts combining the mined
causal dependencies and the local information of the log. Finally, if the intersection between
two combinations is not the empty set, SLAD records which inputs and outputs are shared
by both combinations (Alg.3.2:11-14) —this information is later used in the repairing step.
Step 3 in Fig. 3.2(d) shows the combinations generated from the subsequences in which task
D is involved. For instance, one of the combinations is generated based on the subsequeces
ADG and ADB; and the other one is based on the subsequences BDB and BDH. In this case,
task B is shared in the out puts of both combinations, therefore c[0].sharedOutputs = [B] and
c[1].sharedOutputs = [B]; in the same way, none of the combinations share an element in their
inputs, therefore both sharedInputs subsets are empty.

Definition 7 (Combinations). Let S be a set of subsequences. We define a combination c as a

group of subsequences such as:

C = {c ∈ P(S) | ∀(xyz),(i jk) ∈ S : x = i∧ y = j}.
Let n be the total number of combinations c ∈C and m the total number of subsequences

s∈ c. Hence, for a task t, each c∈C represents a set of k grouped subsequences (t ′tt ′′) where:

c.inputs = {
⋃m

i=1 t ′ | t ′ >L t ∈ sm}
c.out puts ={

⋃m
i=1 t ′′ | t >L t ′′ ∈ sm}

c.sharedInputs ={
⋂n

i=1 ci.inputs | ci ∈C}
c.sharedOut puts ={

⋂n
i=1 ci.out puts | ci ∈C}

After building all the possible combinations, the next steps in Alg. 3.1 are straightforward.
For each combination c (Alg.3.1:14), SLAD creates a new task t ′ equal to the original task t

of the current model (Alg.3.1:15). Then, it removes from Input(t) all the tasks shared with
c.inputs, but keeping the tasks that are in c.sharedInputs (Alg.3.1:16). On the other hand,
for the new task t ′, it retains only the elements in Input(t ′) that are contained in c.inputs



80 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

(Alg.3.1:17). The same process is applied for the outputs of both t and t ′ but with c.outputs

and c.sharedOutputs (Alg.3.1:18-3.1:19). With this process the algorithm redistributes the
inputs and outputs of the original task among the new task. If these two tasks are compliant
with the model, i.e. both their inputs and outputs are not empty5 (Alg.3.1:20), the new task is
included in ind0 —the actual model—, and the original task of ind0 is updated (Alg. 3.1:21).
Otherwise the model goes back to its previous state and tries a new combination. Following
with the example, SLAD, using the combinations previously calculated (Step 3 of Fig. 3.2(d)),
splits the inputs and outputs of the original task D among two new tasks D1 and D2 —for the
sake of the argument we label the duplicate tasks with different subscripts. This process gives
as a result the unrepaired model shown in Step 4 of Fig. 3.2(d).

Definition 8 (Repairing process). Being t the original task, t ′ a new task split from t, a Causal

Matrix (T, I,O) is repaired as follows:

∀t ′′ ∈ O(t ′)→ I(t ′′) = I(t ′′ : t→ t ′)

∀t ′′ ∈ I(t ′)→ O(t ′′) = O(t ′′ : t→ t ′)

When including this new task, the model has to be repaired (Alg.3.1:22), as some of the
dependencies of the original task t are now in a new task t ′ with the same label, resulting in
an inconsistent model, e.g., the activity D2 has the activity B as output, but activity B has no
activity D2 as input, i.e., it still has the activity D1. The repairing process works as stated in
Definition 8. In summary, being t the original task and t ′ the new task, for each task t” that was
eliminated from O(t), the process checks if t ∈ I(t ′′). If that is true, t has to be replaced in each

subset of I(t ′′) with t’. This process is repeated also for the input sets. Then, the algorithm
performs a post-pruning of the model removing the unused arcs, i.e., arcs whose frequency of
use is zero (Alg.3.1:23). In order to evaluate the models (Alg.3.1:24), we based their quality
on three criteria: fitness replay, precision and simplicity. To measure these criteria we used the
hierarchical metric defined in [147], that first compares the fitness replay, then the precision
and last the simplicity of the process models:

Definition 9 (Process models dominance). Let x, x′ be two process models. Let F(x), P(x)

and S(x) be, respectively, the replay fitness, precision and simplicity of the process model x.

5Based on Definition 5, only the dummy activities start and end should have an empty input and output set,
respectively, as they are the only initial and final activities of the event log L.



3.4. Splitting Labels After Discovery 81

The process model x is better than the process model x′ iff:

x� x’ ⇐⇒ [F(x)> F
(
x′
)
]

∨ [F(x) = F
(
x′
)
∧P(x)> P

(
x′
)
]

∨ [F(x) = F
(
x′
)
∧P(x) = P

(
x′
)
∧S(x)> S

(
x′
)
]

Thus, replay fitness is the primary ordering criteria. When two solutions have the same
replay fitness, precision is used to decide the best solution. When two solutions have the same
replay fitness and precision, simplicity is the decisive criterion. Finally, if the new model
with duplicate tasks is better, it means that the task t was correctly duplicated. Therefore, the
best solution indbest is replaced with ind0 (Alg.3.1:28). Otherwise, the model goes back to its
previous state and repeats the process with a new combination.

In the previous example, after splitting D into two new activities, SLAD ends up with an
inconsistent model (Step 4 of Fig. 3.2(d)). Therefore, the dependencies of the model have to
be repaired as explained. Note the task B is shared by both outputs of tasks D1 and D2. This
has to be taken into account when repairing the process model, as B must now contain both
tasks as inputs. When this situation occurs, the repairing process must add a new relation into
the model. In other words, if O(t) and O(t ′) share an activity t ′′ when repairing the model, t ′

should be added in the same subset as t in I(t ′′). Thus in the repaired solution shown in the
Step 4 of Fig. 3.2(d), I(B) contains as input both tasks D1 and D2. Finally, in this example,
the new repaired model after duplicating task D has a better precision than the initial solution,
and therefore the best model is updated.

3.4.3 Handling length-two-loops

One of the novelties of SLAD is its ability to duplicate tasks in loops, specially in Length-
two-Loops (L2L). In process mining, there is a well known relation between duplicate tasks
and loops [136]. For example, in Fig. 3.2(a) the sequence of activities BD is executed multiple
times, i.e., twice, but, as shown in the model depicted in Fig. 3.2(c), it can be considered that it
is not a loop. Depending on the perspective, modeling this behavior as a loop could be a valid
solution —for instance, by generalizing the model and hence allowing more executions of the
loop than the recorded number in the log. With SLAD, we are going to consider that this type
of behavior, i.e., situations where a sequence of activities is executed multiple times —twice
as maximum—, will be modeled with duplicate tasks with the aim of improving the precision

of the model. Otherwise, these situations —more than two repetitions— will be modeled as



82 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

a Length-one-Loop (L1L) or Length-two-Loop (L2L) —we do not want to unfold a loop by
converting it into a large sequence. Detecting if the behavior can be modeled as a L1L or with
two tasks with the same label can be detected with the previous process (Section 3.4.2). The
problem arises when deciding if a L2L can be modeled with duplicate tasks.

The main limitation of the heuristic followed to detect the possible duplicate tasks of the
log —Definition 4— is that it does not cover all the search space, particularly with tasks in-
volved in a Length-two-Loop situation, as it breaks the rule of two tasks sharing the same
input and output dependencies (Definition 3). For instance, considering the log of Fig. 3.2(a),
only the activity D is identified as a potential duplicate activity, making it impossible to in-
clude in the search space the model depicted in Fig. 3.2(c), as B is not identified as a du-
plicate task: based on the log, B is only preceded by D and followed by D and J, hence
max(min(2,1),1) = 1.

Making this process recursive can solve this drawback: when a task t is detected as a dupli-
cate activity, the upper bound for all the tasks t ′ that directly follow t must be updated, because
these tasks will now have multiple tasks with the same label as input. Note that updating only
the tasks t ′ that directly follow t is sufficient, as this situation only occurs when loops of length
two are involved in the computation of this heuristic —a task in a L2L usually have the same
activity as input and output. To avoid a infinite recursion —Theorem 1—, the maximum num-
ber of times a task t can be modified by this recursive operation is twice. This bound is set
also to avoid ending with a potential trace-model by unfolding a loop into a large sequence.
In order to mimic this behavior in the proposed algorithm, if a task t is correctly duplicated in
the model (Alg.3.1:28), we add the tasks that directly follow t into potentialDuplicatesL2L

(Alg.3.1:29). Following with the previous example, when duplicating D, the algorithm also
needs to include B as a potential duplicate task. Therefore, after splitting the behavior of D

among the new tasks D1 and D2, the algorithm adds to potentialDuplicatesL2L the outputs
of D, i.e. potentialDuplicatesL2L = [B,G,H] as shown in the Step 5 of Fig. 3.2(d).

Theorem 1 (Infinite recursion). Given a trace with a very long length-two-loop, recursively

applying Definition 2 after splitting an activity can lead to a trace-model.

Proof. Let T be a set of tasks. Let L be a log over T and σ = . . . t1t2t3t4t5 . . . be a fragment
of trace where label(t2) = label(t4) = a, and label(t3) = b, i.e., σ = . . . t1abat5 . . . . Based on
Definition 4, the task a is selected to be duplicated. Assuming that this task is correctly split,
this results in σ = ...t1a1ba2t5.... As b ∈ O(a), task b is selected as a potential duplicate



3.4. Splitting Labels After Discovery 83

task. If the task b is correctly split, as a2 ∈ O(b), a2 is going to be added again as a potential
duplicate task. Let’s consider now that label(t5) = b2, i.e., σ = ...t1a1b1a2b2.... As b2 ∈O(a2),
b2 is selected again as a duplicate task. If the L2L between tasks a and b in σ is infinite, i.e.,
{. . .abababa . . .}, this could lead to an infinite recursion between these two tasks as long as
they are correctly split.

Once the algorithm ends its iteration over the main loop (Alg.3.1:11-31), it checks if
there are tasks that were affected by the duplication of other activities, i.e., it checks if
potentialDuplicatesL2L is empty (Alg.3.1:32). If this condition is false, the algorithm makes
a recursive call but considering potentialDuplicatesL2L as input (Alg.3.1:33) —following
with the example, now the algorithm has to iterate over [B,G,H]. In this new iteration, the
process is the same as explained before.

Considering that the new task to be duplicated in this new iteration is B, the algorithm first
retrieves the context in which this task is involved. In this new particular case, we have to take
into account that the original task D from the log was duplicated in the model, generating D1

and D2. Therefore, when reproducing the solution over the log, we can check which activities
with the same label D ∈ I(B) were executed just before B and which activities t ∈ O(B) were
executed after B. With this process, the algorithm creates the sequences needed to generate the
combinations to split B: when D2 is executed before B, then D1 is always executed, and when
D1 is executed before B, J is always executed later —where J,D1 ∈O(B). These subsequences
are shown in the Step 6 of Fig. 3.2(d).

Then, with these subsequences the algorithm builds the combinations considering that
the tasks with the same label are different (Step 6 in Fig. 3.2(d)), and create two different
combinations as explained in Section 3.4.2. The resultant combinations are shown in the Step
7 in Fig. 3.2(d). Note that, as these combinations do not share neither inputs nor out puts,
both sharedInputs and sharedOut puts are empty. With this process, the algorithm is able
to split B into two tasks B1 and B2, obtaining the model shown in the Step 8 in Fig. 3.2(d).
After repairing the solution —for instance, I(D1) has to be updated—, this model achieves a
better quality than the best solution so far (Step 8 in Fig. 3.2(d)), allowing to unfold the loop
into a sequence of tasks, and retrieving the model depicted in Fig. 3.2(c). If we would have
extended the log with a new trace repeating the sequence BD more than twice, i.e., a case like
<A,D,B,D,B,D,H,J>, the obtained model would have a lower fitness replay than the actual
best solution —it would be impossible to execute the tasks more than twice— and therefore
this behavior would be modeled as a L2L instead of unfolding the loop.



84 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

At this point the algorithm will continue to check if the other tasks can be duplicated —
and even make another recursive call with the outputs of the already split task B. However,
the model cannot be further improved by SLAD, as it perfectly models the behavior of the
log.

3.5 Experimentation

The validation of SLAD has been done with a set of synthetic models from [30, 75]. Table 3.1
summarizes the original known models on the basis of their activities and the workflow pat-
terns that each net contains6, For example, the FlightCar model has eight different tasks struc-
tured in sequences, choices and parallel constructs. It also has duplicate tasks in sequence7,
meaning that, although the model contains eight different labels, it can be represented with
more than eight activities. For each of these models, there is log with 300 traces. Table 3.1
shows the total number of events in each log. Note that, in these logs, we also included two
additional dummy activities —a start and end activity—, as some algorithms used in the ex-
perimentation, including SLAD, are very sensitive when handling event logs with more than
one start and/or end points [15, 30, 147, 155].

3.5.1 Metrics

The quality of the models retrieved by the proposed approach were measured by taking into
account three objectives: fitness replay, precision and simplicity. To measure the fitness replay
(F), we use the proper completion metric [105]:

F =
PPT
|L|

(3.1)

where PPT is the number of properly parsed traces, and |L| is the total number of traces in
the event log. Hence, proper completion takes a value of 1 if the mined model can process
all the traces without having missing tokens or tokens left behind. Also, the precision (P) is
evaluated as follows:

P = 1−max{0,P′o−P′m} (3.2)

6All the datasets and experiments can be found in http://tec.citius.usc.es/processmining/
SLAD.

7Models with duplicate tasks in parallel mean that the activities with the same label are executed in different
branches, whereas duplicate tasks in sequence are executed in the same branch.

http://tec.citius.usc.es/processmining/SLAD
http://tec.citius.usc.es/processmining/SLAD


3.5. Experimentation 85

Table 3.1: Process models used in the experimentation.

Activity structures Log content

Model Name #Labels

Sequence

Choice
Parallel

ism

Length-O
ne Loop

Length-Two Loop

Stru
ctu

ral Loop

Non-lo
cal NFC

Invisib
le tasks

Duplica
tes

in
Sequence

Duplica
tes

in
Parallel

#tra
ces

#events

betaSimpl [30] 13 X X X X X 300 4,209
FlightCar [30] 8 X X X X 300 2,385
Fig5p1AND [30] 5 X X X 300 2,400
Fig5p1OR [30] 5 X X X 300 2,100
Fig5p19 [30] 8 X X X X X 300 2,428
Fig6p9 [30] 7 X X X X 300 2,592
Fig6p10 [30] 11 X X X X X 300 4,376
Fig6p25 [30] 21 X X X X X X 300 5,661
Fig6p31 [30] 9 X X X 300 2,400
Fig6p33 [30] 10 X X X 300 2,504
Fig6p34 [30] 12 X X X X X X 300 5,406
Fig6p38 [30] 7 X X X 300 3,000
Fig6p39 [30] 7 X X X X 300 2,684
Fig6p42 [30] 14 X X X X X 300 3,420
RelProc [30] 16 X X X X 300 4,155
Alpha [75] 11 X X X X X 300 3,978
Loop 7 X X X X 300 2,175
FoldedOr 6 X X X 300 2,200

where P′o and P′m are, respectively, the precision of the original model and the precision of
the mined model, both evaluated through alignments. More specifically, we used the metric
defined in [6], considering all possible optimal alignments. It takes a value of 1 if all the
behavior allowed by the model is observed in the log. As the original model is the optimal
solution, we use it to normalize the precision. Therefore, P will be equal to 1 if the mined
model has a precision (P′m) equal or higher than the original model (P′o). When the precision
of the mined model is worse than that of the original model, P will take a value under 1 —
the lower the precision of the mined model, the closer the value of P to 0. Finally, for the
simplicity (S) we use:

S =
1

1+max{0,S′m−S′o}
(3.3)



86 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

where S′m and S′o are, respectively, the simplicity of the mined model and the simplicity of
the original model, both calculated with the weighted P/T average arc degree defined in [111]
—the higher the value of S′ the lower the simplicity. As explained with the precision, we
use the original model —which is the optimal model— to normalize the simplicity. S takes
a value of 1 if the simplicity of the mined model is equal or higher than that of the original
model, i.e., S′m ≤ S′o. If the simplicity of the mined model is worse than that of the original
model (S′m > S′o), S will take a value under 1 —the worse the simplicity of the mined model,
the closer the value of S to 0.

We used the tool CoBeFra [17] to compute the different metrics. Note that the model input
representation for this tool is a Petri net, therefore we had to map each heuristic net retrieved
by SLAD into its equivalent Petri net.



3.5. Experimentation 87

Ta
bl

e
3.

2:
R

es
ul

ts
fo

rt
he

18
lo

gs
.

L
og

s

Alph
a

Fold
ed

Loo
p

Fig6
p2

5

be
taS

im
pl.

flig
hC

ar

Fig5
p1

9

Fig5
p1

AND Fig5
p1

OR

Fig6
p1

0

Fig6
p3

1

Fig6
p3

3

Fig6
p3

4

Fig6
p3

8

Fig6
p3

9

Fig6
p4

2

Fig6
p9

RelP
ro

c

1
P

ro
D

iG
en

F
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
P

0.
85

0.
75

0.
8

0.
78

0.
92

0.
81

0.
9

0.
76

0.
73

0.
82

0.
61

0.
65

0.
8

0.
93

0.
93

0.
7

0.
79

0.
94

S
0.

82
0.

84
0.

86
0.

88
0.

92
0.

82
0.

88
0.

69
0.

67
0.

82
0.

61
0.

73
0.

82
0.

84
0.

92
0.

79
0.

79
0.

94

2
H

M
F

1.
0

1.
0

1.
0

1.
0

1.
0

0.
32

1.
0

0.
67

1.
0

1.
0

1.
0

1.
0

0.
41

0.
0

0.
0

0.
07

0.
21

1.
0

P
0.

77
0.

75
0.

8
0.

76
0.

92
0.

81
0.

9
0.

75
0.

67
0.

82
0.

56
0.

6
0.

83
0.

57
0.

6
0.

64
0.

95
0.

94
S

0.
85

0.
84

1.
0

0.
86

0.
99

0.
81

0.
94

1.
0

0.
8

0.
82

0.
63

0.
68

0.
78

0.
62

0.
82

0.
82

0.
99

0.
94

3
Fo

di
na

F
1.

0
1.

0
1.

0
1.

0
0.

23
0.

32
0.

28
0.

32
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

52
0.

31
0.

21
0.

72
P

0.
77

0.
75

0.
8

0.
76

0.
97

0.
88

0.
82

0.
73

0.
67

0.
82

0.
56

0.
6

0.
8

0.
93

1.
0

0.
93

0.
86

0.
96

S
0.

85
0.

84
1.

0
0.

86
1.

0
1.

0
1.

0
1.

0
0.

8
0.

82
0.

63
0.

68
0.

82
0.

91
1.

0
1.

0
1.

0
0.

98

4
IM

i
F

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

P
0.

78
0.

83
0.

73
0.

79
0.

68
0.

81
0.

73
0.

83
0.

7
0.

66
0.

63
0.

67
0.

54
0.

74
0.

95
0.

34
0.

7
0.

76
S

0.
84

0.
88

0.
98

0.
81

0.
98

0.
89

0.
87

0.
92

0.
83

0.
77

0.
69

0.
73

0.
82

0.
86

1.
0

0.
9

0.
84

0.
85

5
P

ro
D

iG
en

+
SL

A
D

F
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
P

0.
97

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
98

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
94

1.
0

1.
0

1.
0

S
0.

91
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

89
1.

0
1.

0
1.

0

6
H

M
+

SL
A

D
F

1.
0

1.
0

1.
0

1.
0

1.
0

0.
32

1.
0

0.
67

1.
0

1.
0

1.
0

1.
0

0.
72

1.
0

0.
53

0.
36

0.
21

1.
0

P
0.

86
1.

0
1.

0
1.

0
0.

99
0.

82
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

94
0.

95
0.

95
1.

0
S

0.
96

1.
0

1.
0

1.
0

1.
0

0.
84

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
99

1.
0

7
Fo

di
na

+
SL

A
D

F
1.

0
1.

0
1.

0
1.

0
1.

0
0.

45
0.

28
0.

32
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

52
0.

31
0.

21
0.

72
P

0.
86

1.
0

1.
0

1.
0

1.
0

0.
88

0.
82

0.
73

1.
0

1.
0

1.
0

1.
0

1.
0

0.
93

1.
0

0.
93

0.
86

1.
0

S
0.

85
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

91
1.

0
1.

0
1.

0
0.

99

8
Fo

di
na

+
D

F
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

52
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

22
0.

75
1.

0
0.

62
P

1.
0

0.
75

0.
74

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
91

1.
0

1.
0

0.
85

0.
93

0.
91

0.
97

1.
0

0.
98

S
1.

0
0.

84
0.

84
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

92
1.

0
1.

0
0.

85
0.

91
0.

92
1.

0
1.

0
0.

98

9
D

G
M

F
1.

0
0.

67
0.

33
0.

38
1.

0
1.

0
1.

0
1.

0
1.

0
0.

43
1.

0
0.

66
0.

41
1.

0
0.

23
0.

38
1.

0
0.

28
P

1.
0

0.
8

0.
87

0.
98

1.
0

1.
0

1.
0

1.
0

1.
0

0.
67

1.
0

0.
85

0.
7

0.
93

0.
78

0.
62

1.
0

0.
78

S
1.

0
0.

78
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

91
1.

0
0.

84
0.

99
0.

91
0.

81
0.

88
1.

0
0.

83

10
E

TM
F

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

P
1.

0
0.

9
0.

83
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

9
0.

73
0.

91
1.

0
0.

95
0.

11
0.

92
0.

14
S

1.
0

0.
93

0.
92

0.
47

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
87

0.
7

0.
9

1.
0

0.
58

0.
41

0.
93

0.
41

11
TS

F
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
P

0.
51

0.
62

0.
87

0.
89

0.
95

1.
0

0.
82

0.
78

0.
75

1.
0

0.
82

0.
82

1.
0

0.
84

0.
94

0.
91

0.
77

0.
84

S
0.

35
0.

74
0.

62
0.

46
0.

55
1.

0
0.

41
0.

7
0.

83
0.

37
0.

59
0.

61
0.

35
0.

61
0.

61
0.

55
0.

46
0.

36

12
Fo

di
na

+
D

+
SL

A
D

F
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

52
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

36
0.

75
1.

0
0.

62
P

1.
0

1.
0

0.
98

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
88

0.
93

1.
0

1.
0

1.
0

1.
0

S
1.

0
1.

0
0.

98
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
0.

91
1.

0
1.

0
1.

0
1.

0



88 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

3.5.2 Setup

As explained in Section 3.4, SLAD takes as starting point a model and a log. Therefore, the
first step in the validation process is to apply a process discovery technique over the previously
described logs (Table 3.1) to retrieve a heuristic net or causal net as input. In order to test how
the solutions of different algorithms affect the behavior of SLAD, we repeated the experiments
taking as starting point the solutions of three different algorithms that retrieve solutions in the
aforementioned format: ProDiGen [147], Heuristics Miner (HM) [155], and Fodina [15] —all
these algorithms, by default, do not handle label splitting. To identify the solutions retrieved
by these algorithms after applying SLAD, we have added the suffix “+SLAD”. Additionally,
we also used Inductive Miner [71] (IMi) in the experimentation8.

On the other hand, we wanted to compare the results of mining the duplicate activities
before or after the discovery process. Therefore, we also repeated the experiments with Du-
plicate Genetic Miner (DGM) [30], Evolutionary Tree Miner (ETM) [20], a state-based region
theory algorithm (TS) [9, 113] and Fodina [15], as it can mine duplicate activities if enabled
—we use the name Fodina+D as a way to reference the algorithm with this parameter enabled.
Additionally, we also tested if it is possible to apply SLAD to an already mined solution with
duplicate activities (with Fodina and DGM). Note that for all these algorithms we used the de-
fault settings specified by the authors. More specifically: i) for Inductive Miner we guarantee
a perfect replay fitness; ii) for DGM we set the maximum number of iterations to 5,000, and
a population size of 50; iii) for the ETM we generate the pareto front for each log, retrieving
the solution with the highest fitness replay and precision; and iv) for the state-based region
theory algorithm, when discovering the transition system, we set no limit in the set size, and
the inclusion of all activities. We used the ProM framework [139] to execute each of these
algorithms.

3.5.3 Results

Table 3.2 shows the results —in terms of fitness replay (F), precision (P) and simplicity (S)—
retrieved for each algorithm over each log. Moreover, Table 3.2 also shows information about
which algorithm retrieves better results for each metric and log —highlighted in grey. In Sec-
tion 3.5.3 we prove that applying SLAD to the mined models improves the solutions retrieved
by the algorithms that do not take into account duplicate tasks. In Section 3.5.3 we show that

8We did not apply SLAD over IMi and ETM, as these algorithms retrieve process trees as a solution, and, in some
situations, this kind of models cannot be easily translated to heuristic nets without changing its internal behavior.



3.5. Experimentation 89

the models obtained with SLAD, considering this case study, are better than those mined with
other algorithms that consider duplicated tasks —Fodina+D, ETM, DGM.

Improvement of the mined models through SLAD.

First, we analyze the results of the algorithms used to retrieve the initial solution for SLAD:
ProDiGen, HM, Fodina and IMi —rows 1-4 in Table 3.2. With ProDiGen and IMi, all the
solutions have a perfect fitness replay, whereas HM and Fodina do not achieve a perfect value
for this quality dimension in some of the cases. In general, for all the algorithms, the mined
nets contain overly connected nodes that make the models hardly readable and complex, i.e,
models with a poor precision and activities with a high density of incoming/outgoing arcs,
needless loops, or too many invisible activities.

Then, we applied SLAD to the models mined by ProDiGen, HM and Fodina. Our proposal
was able to enhance the results in 45 out of 54 solutions —rows 5-7 in Table 3.2. One example
of this improvement can be seen in Figure 3.3, where Figure 3.3(a) shows the original Petri
net mined by HM for the log Fig6p31, and Figure 3.3(b) shows the Petri net after finding the
duplicate tasks through SLAD —task A in this case. In this example, the process model of
Figure 3.3(a) has a very low precision (0.56) as the number of different traces it can generate
is infinite due to the loop with the activity A. However, through the inclusion of duplicate
labels (Figure 3.3(b)), we can limit its behavior to only four different paths, i.e., we create a
more specific process model.

Furthermore, for those initial models mined by ProDiGen, SLAD was able to improve

X

A

C

G
Y

D

F

B

E

(a) Mined model by Heuristics
Miner without duplicate tasks.

B

FD
Y

GC

A

A
AX

E

(b) Mined model by Heuristics Miner and SLAD.

Figure 3.3: A Petri net mined for the log Fig6p31 before and after SLAD.



90 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

the precision in all the cases. Taking as starting point the initial solutions retrieved by HM,
17 out of 18 solutions were improved not only in terms of precision, but also the fitness
replay achieves a higher value in four of those models. After applying SLAD over the results
retrieved by Fodina, 12 out of 18 solutions were improved in terms of both precision and
fitness replay. Analyzing the simplicity of the models, we have to take into account that when
performing the label splitting over the initial models, there is a reduction in the number of
invisible activities —used as control structures— as we are reducing most of the needless
loops and overly connected nodes. For example, with the log Fig6p10, ProDiGen, Fodina and
HM retrieve a solution —the three algorithms retrieve the same solution— with 46 arcs, and
22 tasks —including the invisible activities. After SLAD, the final solution has, in total, 36
arcs and 17 tasks.

Table 3.3: Wilcoxon test for each algorithm with and without SLAD.

Comparison p-value Hypothesys

ProDiGen+SLAD vs ProDiGen 0.0002 Rejected
HM+SLAD vs HM 0.0002 Rejected

Fodina+SLAD vs Fodina 0.0019 Rejected
Fodina+D+SLAD vs Fodina+D 0.014 Rejected

We have compared the results of applying SLAD by means of non-parametric statistical
tests —through the web platform STAC [99]—, checking if each algorithm with SLAD im-
proves its correspondent algorithm without SLAD. The Wilcoxon test [160] has been applied,
using as null hypothesis that the medians of the quality of the solutions are equal with a given
significance level (α). However, as we are using 3 different metrics, the comparison must
be done in a multi-objective way. In order to perform a fair comparison, we have used the
criterion of Pareto dominance. We have applied the fast-non-dominated-sort [35] in order to
rank the solutions of the algorithms for each log. With this method, a mined model a domi-
nates other mined model b, i.e., a� b, if the model a is not worse than the model b in all the
objectives —the 4 metrics— and better in at least one objective. Thereby, for each log, all the
solutions in the first non-dominated front will have a rank equal to 1 —these are the solutions
more similar to the original model and, therefore, the best ones—, the solutions in the second
non-dominated front will have a rank equal to 2, and the process continues until all fronts are
identified. Therefore, to perform the non-parametric statistical tests, we first ranked all the
solutions for each log based on the Pareto dominance and then we used these ranks as input



3.5. Experimentation 91

for the tests.

Table 3.3 summarizes such test. The hypothesis —which states that the solutions retrieved
before and after applying SLAD are equal— is rejected in all the cases, as the p-value for each
comparison is lower than the given confidence level (α = 0,05). This means that SLAD was
able to i) significantly improve the precision of the models, and ii) enhance their structural
clarity by splitting the behavior of the overly connected activities. In summary, SLAD signif-
icantly enhances the solutions of the process discovery algorithms.

Comparison of process discovery algorithms with duplicate activities.

Rows 8-11 in Table 3.2 show the results of the algorithms that take into account duplicate
activities in the mining process. Fodina, when mining duplicate activities, is able to enhance
the solution on 13 out of 18 solutions, however, this algorithm also retrieves a worse solution
in three of the cases —Loop, Fig6p39 and RelProc— than without duplicate activities. On
the other hand, DGM is able to retrieve the original model in eight of the 18 cases, and
ETM in seven of the 18 cases. In particular, these algorithms were able to retrieve to original
solution in cases where two activities with the same label are executed in different branches of
a parallel construct. For instance, the three algorithms were able to retrieve the original model
with the Alpha log. On the other hand, TS was only able to retrieve the original solution in
one case. In all the cases the state-based region theory algorithm results process models with
a guaranteed perfect replay fitness. However, this type of algorithms tend to overfit the event
log, resulting in solutions with a very low simplicity.

Comparing the solutions of performing the label splitting after —rows 5-7 in Table 3.2—
and before —rows 8-11 in Table 3.2— we can extract that with SLAD, the most difficult
scenario is related to those situations where two different activities with the same label are
executed in different branches —log Alpha or Fig5p1AND. To achieve this duplicity of a
label in different branches of a parallel construct, it is necessary to perform the label splitting
before or during the mining step, otherwise the process mining techniques usually isolate the
affected activity into only one branch, precluding the label splitting in a post-processing step.
Additionally, SLAD is highly dependant on the input solution, more specifically, on the fitness
replay of the initial model. As can be seen in the results after applying SLAD over Fodina and
HM —rows 5-6, respectively, of Table 3.2—, if the input model avoids the overly connected
nodes by means of reducing its fitness replay, it is more difficult to perform the label splitting
through SLAD.



92 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

Table 3.4: Friedman ranking for all the algorithms with SLAD.

Algorithm Ranking

ProDiGen+SLAD 25.528
Fodina+D+SLAD 35.583

HM+SLAD 40.611
Fodina+SLAD 44.278

p-value: 0.0941

We also compared in more detail the solutions retrieved with Fodina detecting the du-
plicate activities after (Fodina+SLAD) and before (Fodina+D) mining the model —rows 7-8
of Table 3.2. Within this context, detecting the duplicate activities through SLAD improves
14 out of 18 solutions, whereas detecting the duplicate activities before the mining process,
improves 13 out of 18 solutions. In particular, there are some solutions that were improved
performing the label splitting before —for instance, log Fig6p9—, and after —for instance,
log Fig5p19— the process mining. On the other hand, as previously indicated, in three of the
solutions Fodina+D retrieved a worse model than the one without duplicate activities, whereas
with SLAD the final solution is always the same or better than the original.

It should be noted that performing the label splitting before and after the mining process
is not exclusive, i.e. it is possible to apply SLAD to a solution that already contains duplicate
activities. Therefore, we carried out this experiment with the solutions retrieved by Fodina+D
(Fodina+D+SLAD) and DGM (DGM+SLAD). Fodina+D+SLAD enhances a total of 7 out
of 18 models —row 12 of Table 3.2— of the solutions retrieved by Fodina+D. On the other
hand, SLAD was unable to enhance any of the models mined by DGM, therefore we omitted
this row in the table, as the results where the same as the achieved by the DGM —row 9 of
Table 3.2.

Finally, we compared the algorithms that include the duplicate activities in the mining
process with the best algorithm with SLAD. In order to select the best algorithm with SLAD,
we applied the Friedman Aligned Ranks test [61], using the rank solutions based on the Pareto
dominance. This test computes the ranking of the results of the algorithms rejecting the null
hypothesis —which states that the results of the algorithms are equivalent— with a given
confidence or significance level (α). Then we applied the Holm’s post-hoc test [62] for de-
tecting significant differences among the results. Table 3.4 summarizes this test, ranking
ProDiGen+SLAD as the best algorithm. We omitted the Holm’s post-hoc test, as based on the



3.5. Experimentation 93

p-value of the previous test, the differences are not significant.

Table 3.5: Non-parametric test.

(a) Friedman ranking.

Algorithm Ranking

ProDiGen+SLAD 22.527
Fodina+D 40.833

ETM 44.666
DGM 50.277

TS 69.194

p-value: 0.0248

(b) Holm post-hoc, α = 0:05.

Comparison Adj. p-value Hypothesis

ProDiGen+SLAD vs TS 0.0000 Rejected
ProDiGen+SLAD vs DGM 0.0043 Rejected
ProDiGen+SLAD vs ETM 0.0220 Rejected

ProDiGen+SLAD vs Fodina+D 0.0355 Rejected

The comparison of Fodina+D, ETM, DGM, TS and ProDiGen+SLAD is summarized in
Table 3.5. After applying the Friedman Aligned Ranks test ProDiGen+SLAD has the best
ranking (Fig. 3.5(a)). Based on the results of the Friedman Aligned Ranks, we performed
a Holm’s post-hoc test (Fig. 3.5(b)), starting with the initial hypothesis that all the tested
algorithms are equal to ProDiGen+SLAD. The test rejects the null hypothesis in all the cases
for a confidence level of α = 0.05 —the p-value of each algorithm has to be lower than α in
order to reject the hypothesis. This means that ProDiGen+SLAD outperforms all the other
algorithms, and that the difference is statistically significant for that confidence level.

ProDiGen+SLAD obtains the original model in 15 out of 18 logs. The most difficult situ-
ations for SLAD are the duplicates in parallel. Nevertheless, as previously said, this problem
is more related to the input solution, rather than to the performance of the proposed algorithm
(Figs. 3.4 and 3.5) as it cannot create new behavior in the mined model. More specifically:

• For log Alpha (Fig. 3.4), although the algorithm correctly detects the tasks e and d as po-
tential duplicates, due to the original model retrieved by ProDiGen (Fig. 3.4(a)), it can-
not construct a model with those tasks repeated in the different branches (Fig. 3.4(b)).
This is because ProDiGen finds a non-free-choice pattern that mimics the same behavior
as the model with duplicate tasks disabling the possibility to split the causal dependen-
cies of these activities. In other words, both tasks d and e are always executed in the
same trace. Therefore, ProDiGen mines a parallel construct involving these two tasks.
Then, depending on the execution of g or f, the next task to be executed can be h or i,
respectively.



94 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

e

f

h

x

d

g

i

(a) Detail of the mined model by ProDiGen without
duplicate tasks. SLAD does not improve this part of
the model.

e

f

h
x

ed

d

g i

(b) Detail of the original model with duplicate tasks.

Figure 3.4: Two models depicting the same behavior for the log Alpha, but with and without duplicate tasks.

• For model Fig6p39 (Fig. 3.5) the algorithm cannot correctly obtain the parallelism with
the task A, which is again executed multiple times in different branches. Based on
this, ProDiGen tries to reproduce as much behavior as possible overly connecting the
same task A in only one branch (Fig. 3.5(a)). For this reason, SLAD tries to split the
task A(Fig. 3.5(b)), improving the precision but still allowing for more behavior than
the recorded in the log. This is one example of how duplicate activities executed in
different branches are isolated when mining the log without considering the duplicity.

X S

A

C

B

J Y

(a) Initial solution retrieved by ProDiGen without du-
plicate tasks.

X S
A

C

B

J Y

A

A

B

(b) The same model after the local search.

Figure 3.5: Two models from the log Fig6p39 with and without duplicate tasks.

One of the objectives of SLAD is to retrieve high values of precision, i.e., to create a
more specific process model and, therefore, to reduce the generalization that overly-connected



3.5. Experimentation 95

Table 3.6: Generalization values for 18 logs before and after SLAD.

Logs

Alpha
Folded

Loop
Fig6p25

beta
Sim

pl.

flighCar

Fig5p19

Fig5p1AND

Fig5p1OR

Fig6p10

Fig6p31

Fig6p33

Fig6p34

Fig6p38

Fig6p39

Fig6p42

Fig6p9
RelP

roc

ProDiGen G 0.99991 0.99997 0.99991 0.99945 0.70556 0.51282 0.75333 0.0 0.0 0.9992 0.41667 0.38462 0.99986 0.6375 0.94324 0.96336 0.62308 0.99796

ProDiGen + SLAD G 0.99991 0.99995 0.99991 0.99945 0.38889 0.51282 0.75333 0.0 0.0 0.99887 0.41667 0.38462 0.99982 0.6375 0.9301 0.95229 0.62308 0.99591

HM G 0.99993 0.99997 0.99991 0.9995 0.79722 0.47619 0.75333 .44444 0.33333 0.9992 0.68254 0.69597 0.99984 0.7 0.97596 0.96493 0.725 0.99796

HM + SLAD G 0.99992 0.99995 0.99991 0.99945 0.72639 0.2381 0.75333 0.0 0.0 0.99887 0.41667 0.38462 0.99976 0.5875 0.92241 0.96183 0.725 0.99591

Fodina G 0.99993 0.99997 0.99991 0.9995 0.7911 0.40000 0.5297 0.1363 0.33333 0.9992 0.68254 0.69597 0.99986 0.6375 0.93467 0.97421 0.83334 0.99797

Fodina + SLAD G 0.99991 0.99995 0.99991 0.99945 0.72639 0.40000 0.5297 0.1363 0.0 0.99887 0.41667 0.38462 0.99982 0.6375 0.93467 0.97421 0.83334 0.99797

Fodina + D G 0.99993 0.99997 0.99993 0.99945 0.72639 0.51282 0.85278 0.0 0.0 0.99901 0.41667 0.38462 0.99987 0.6375 0.9783 0.96115 0.62308 0.9976

Fodina + D
+ SLAD

G 0.99993 0.99995 0.99993 0.99945 0.72639 0.51282 0.85278 0.0 0.0 0.99887 0.41667 0.38462 0.99987 0.6375 0.96799 0.96014 0.62308 0.9971

Original Model G 0.99993 0.99995 0.99991 0.99945 0.38889 0.51282 0.75333 0.0 0.0 0.99887 0.41667 0.38462 0.99982 0.6375 0.9246 0.95229 0.62308 0.99591

nodes and unnecessary loops can introduce to the process model. As precision and general-
ization are opposed objectives [19, 122], and SLAD is trying to increase the precision and re-
duce the generalization, we evaluated the generalization separately to analyse how much this
dimension decreases when SLAD introduces duplicate labels. Table 3.6 presents the values
for the generalization —G—, for the models retrieved by ProDiGen, HM, and Fodina, before
and after SLAD, using the Alignment Based Probabilistic Generalization metric [124]. Ta-
ble 3.6 also shows the values of generalization for the original model as a baseline. Note that
a generalization value closer to 1 means that the process model is too general —a less specific
process model— whilst a value closer to 0 means that there is no room for reproducing unseen
behavior —a more specific process model. Furthermore, for each pair of algorithms, we have
shadowed those cases where the generalization changes after applying SLAD. As can be seen,
for ProDiGen the generalization was lower after applying SLAD in 7 out of 18 cases. The
cases where SLAD retrieved the same generalization is because ProDiGen, through its hier-
archical fitness function —Definition 9—, already tries to reduce this dimension of a process
model by focusing in precise process models —generally through the inclusion of non-free-
choice constructs. On the other hand, for HM, in 15 out of 18 cases the label splitting process
retrieved a more specific process model. With Fodina, SLAD reduced the generalization in
9 of the cases —both Fodina and HM usually introduce a high number of unnecessary loops
and overly connected nodes that can be executed any time in the process. Finally, with the
Fodina extension to mine duplicate labels —Fodina+D—, SLAD retrieved a more specific
process model in 6 out of 18 cases —Fodina+D already mines models with duplicate labels,
therefore it retrieves solutions reducing the generalization. It should be noticed that in all the
cases SLAD retrieved equal or lower generalization than its respective process model without
duplicate labels.



96 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

In summary, SLAD was able to detect the duplicate tasks and significantly improve the
precision in 45 out of 54 solutions —considering the initial solutions of ProDiGen, HM and
Fodina— and also the fitness replay in some of the cases. More specifically, after applying
SLAD, 35 out of 54 solutions were equal to the original model. Furthermore, the algorithm
was able to unfold those situations detected as a loop, i.e., situations with repeated sequences
—at most two times— that can be represented with duplicate tasks in order to improve the
precision of the model. Additionally, in none of the cases the presented approach retrieved the
trace-model after the label splitting process, avoiding the overfitted models with one path per
trace. Also, none of the resulting models after applying SLAD were worse than its respective
initial solution.

Complexity analysis.

With respect to the runtime of SLAD, we can identify two main time consuming parts in
the algorithm: discovering the duplicate tasks (Alg. 3.1:4-6), and evaluating the solutions
(Alg. 3.1:24). On the one hand, discovering the duplicate tasks is a costly function as, in
order to detect the follows relation of each activity, it is necessary to build a dependency
graph, which requires one pass through the log and, for each trace, one scan through the trace.
This translates to a complexity O(n), where n represents the total number of events in the
log. Fortunately, most process discovery algorithms [15, 30, 147, 155] already compute this
dependency graph from an event log in order to mine a process model. Therefore SLAD can
reuse this information without the need to recompute it, which reduces this process to check
only once —at the beginning of the algorithm— each of the different activities (T ) of the log,
i.e O(T ). On the other hand, evaluating each solution is the main bottleneck of SLAD. Each
time SLAD generates a new potential solution after splitting a task, the algorithm needs to
evaluate its replay fitness, precision and simplicity. Unfortunately, with current state of the art
conformance checking metrics, such as alignments or token replay techniques, this is a very
time consuming process when dealing with large event logs. Nevertheless, we can approxi-
mately relate the complexity of a greedy conformance checking technique to the number (t)
and length (l) of the traces in an event log, hence O(t · l). In fact, this is equal to traverse all
the events of the log, therefore we can set O(t · l) to O(n). Regardless the complexity of the
conformance checking metric, SLAD has to check and split each one of the activities detected
as a potential duplicate. Thereby, the complexity of this part can be set as O(d · c) where d

is the total number of potential duplicate activities and c is the number of times the activities



3.5. Experimentation 97

can be split. In summary, the complexity of SLAD is O(d · c · n). This does not include the
complexity of building the initial dependency graph.

Regarding the logs used in the experimentation, the runtime of SLAD was, on average,
9 seconds —considering the time needed to compute the dependency graphs. In particular,
the highest time was achieved when applying SLAD over the solution retrieved by ProDiGen
with the log Fig6p42, that took 12 seconds.

Experiments in a real-life scenario.

Finally, we have tested ProDiGen+SLAD in a real-life scenario: a process model within an
IT Service Management platform [145]. This process is related to handling incidents and
requests, henceforth tickets, in a service desk, i.e., a central point of communications between
users and staff in an organization. The process model has 7 different activities. However one
of these activities, notification, is executed multiple times during the process. In particular,
albeit its purpose is to notify different involved staff during the process of handling a ticket,
it is always recorded with the same label. Hence, using this process model we generated an
even log containing 300 traces to check if it is possible to obtain again the original process.

Figure 3.6(a) shows the process model discovered with ProDiGen, and Figure 3.6(b) dis-
plays the same process model after applying SLAD. In this example, both process models
have a perfect replay fitness. However, the precision of the model without duplicate labels
is lower —0.58— than the precision of the process model after applying SLAD —0.87. The
low precision of the model without duplicate labels (Fig. 3.6(a)) is due the overly-connected

Start process update
impact

analysis &
resolution

notification

validation
rejected End process

warning
pending

validation

(a) Initial solution retrieved by ProDiGen without duplicate tasks.

Start process

update
impact

analysis &
resolution

notificationvalidation

rejected End process

warning
pending

validationnotificationnotification

(b) The same model after applying SLAD.

Figure 3.6: Process models mined for a real event log before and after SLAD.



98 Chapter 3. Enhancing Discovered Processes with Duplicate Tasks

activity notification, that enables to repeat the shadowed part of the model without any limit.
On the other hand, the model retrieved after applying SLAD (Fig. 3.6(b)) removes this loop by
duplicating notification three times. Furthermore, the only difference between the designed
process model, and the one retrieved by SLAD, is the shadowed part in Fig. 3.6(b). In reality,
there are always two notifications that are performed in parallel: one of the notifications is
for the Incidents manager and the other one is for the Senior manager. This two activities
always happen as a sequence sharing the same label. As we do not have any other informa-
tion regarding this situation, it is impossible to distinguish them, thus its representation as a
sequence.

3.6 Conclusions

We have presented SLAD, an algorithm to tackle duplicate tasks in an already discovered
model. Our proposal takes as starting point a model without duplicate tasks and its respective
log and, based on heuristics, the local information of the log, and the causal dependencies of
the input mined model, it improves the fitness replay, precision and simplicity of the model.
SLAD has been validated with 18 different logs and 54 different initial solutions from three
different process mining algorithms. Results show that the algorithm was able to enhance the
initial solutions in 45 of the 54 tested scenarios. Moreover, we have compared SLAD with
the state of the art process discovery algorithms with duplicate tasks. Statistical test have
shown that the best SLAD algorithm (ProDiGen+SLAD) is better, and that the differences
are statistically significant. As a future work, and based on the obtained results, we want to
extend SLAD with the possibility to not only redistribute the already mined dependencies of
the model, but introduce new relations based on the combinations of the potential duplicate
activities, in order to enhance those models with a lower fitness.



CHAPTER 4

RECOMPILING LEARNING PROCESSES

FROM EVENT LOGS

Log

Process 
hierarchization

Process
simplification

Chapter 2 Chapter 3 Chapter 4

Role part 2
Role part 1

Act 2Act 1

Play

Chapter 1: Introduction

Process
discovery

Chapter 5: Conclusions

The visualization of a process model plays an important role in order to correctly gain
insights about the process. That is, models that are unnecessary complex, can hinder the real
behavior of the process rather than to provide insights of what is really happening. As shown
in Chapter 3 taking into account duplicate labels can drastically change how a process depicts
the behavior recorded in the log. But this simplification of a process model can be achieved
even further through its hierarchization. However, to get a proper level of hierarchization, it
is necessary to introduce domain knowledge within the process.

To this end, in this chapter we present the insights about how to use domain knowledge
to translate an already discovered process model to a more specific representation, within a
particular domain and, thus, retrieve a more interpretable process model. Specifically, we
present a framework to automatically hierarchize a process model using domain knowledge.



100 Chapter 4. Recompiling Learning Processes from Event Logs

This objective is achieved in three different steps. Firstly, the process model is automatically
extracted from the logged sequences through the developed process mining algorithms. Then,
an algorithm based on the knowledge about the target language control structure is applied to
determine which components should be created. Finally the adaptive rules are automatically
extracted form the event logs (more specifically, from the values of the variables in the logs)
by a decision tree learning algorithm, and integrated into the target language structure. Hence,
an important feature of the presented approach is its independence from any target modelling
language. We have implemented and validated this framework within the educational domain,
enabling the translation of a discovered process model into a standardized learning process
model more suitable for teachers, i.e., the standard IMS LD. For a proper evaluation, the three
parts of the presented framework for the hierarchization process models have been analyzed
separately using a set of nine real courses with different degrees of complexity.

All these contributions are encompassed in the following publication:

J.C. Vidal1, B. Vázquez-Barreiros1, Manuel Mucientes1, and Manuel Lama1. Recom-
piling Learning Processes from Event Logs. Knowledge-Based Systems, 100:160–174
2016.
(DOI: 10.1016/j.knosys.2016.03.003).

4.1 Abstract

In this paper a novel approach to reuse units of learning (UoLs) —such as courses, seminars,
workshops, and so on— is presented. Virtual learning environments (VLEs) do not usually
provide the tools to export in a standardized format the designed UoLs, making thus more
challenging their reuse in a different platform. Taking into account that many of these VLEs
are legacy or proprietary systems, the implementation of a specific software is usually out
of place. However, these systems have in common that they record the events of students
and teachers during the learning process. The approach presented in this paper makes use
of these logs i) to extract the learning flow structure using process mining, and ii) to obtain
the underlying rules that control the adaptive learning of students by means of decision tree
learning. Finally, iii) the process structure and the adaptive rules are recompiled in IMS

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela. Santiago de Compostela, Spain.

http://dx.doi.org/10.1016/j.knosys.2016.03.003


4.2. Introduction 101

Learning Design (IMS LD) —the de facto educational modelling language standard. The
three steps of our approach have been validated with UoLs from different domains.

4.2 Introduction

While designing a course, there are two main concerns that worsen the realization of an edu-
cational scenario: i) how to model a practical pedagogical scenario to achieve the educational
objectives, and ii) how to reuse this scenario in another context than the original. Teachers do
not only define the learning content to be consumed by the learners, but they also include the
different educational objectives, the order in which the learning activities must be undertaken
to achieve these objectives, the evaluation methods, etc. Hence, to reuse and better validate an
educational scenario, it should be explicitly written. Although these learning designs, i.e the
descriptions of the educational process, are usually portrayed with documents that use natural
language, they can be formally described through Educational Modelling Languages (EMLs).
Moreover, when interacting with a virtual learning environment (VLE), learners also perform
additional activities than the specifically defined by the teachers, such as interacting in the
forum, checking the bibliography, etc. This information should be also highlighted to enable
teachers to improve the learning flow, i.e the real workflow of learning activities, as well as
the evaluation process [101]. Therefore, the defined educational scenario is more complex
than the learning design explicitly documented by teachers.

In the last decade a great effort has been made for developing EMLs. The main idea
underlying these languages is to describe, from a pedagogical point of view, the learning
process of the course, i.e., the sequence of steps the learners should undertake to achieve
the educational objectives of the course, by using the available educational resources and
services. Regarding the wide variety of specifications for representing learning designs, one
standard de facto has jumped into e-learning panorama: the IMS Learning Design (IMS LD)
specification [46]. IMS LD enables the formal description of learning processes for a wide
range of pedagogical contexts in a VLE. Although there is some controversy about whether
IMS LD is too complex to be understood by teachers from a practical point of view [37] —
especially with the levels B and C—, most of authors highlight this complexity as a barrier
for adopting IMS LD [82].

To deal with this issue, a number of user-friendly authoring tools have appeared [1, 28, 53,



102 Chapter 4. Recompiling Learning Processes from Event Logs

60, 66, 81, 152], but even with these tools, authoring process of IMS LD units of learning2

(UoLs) is not easy for teachers when these UoLs are complex or require to use advanced
features of this standard. The automatic reconstruction of UoLs could relieve this issue [82],
promoting the use of IMS LD by teachers and instructors. Taking as starting point the event
log files, which stores all the events generated by the learners, it is possible to mine the real

behavior undertaken by the students during the UoL, i.e., what the learners really did, and
the rules that constraint the behavior of the model. Then, by combining these two models,
it is possible to reconstruct the UoL to a specific target language. Therefore, this process
facilitates the reuse of defined UoLs no matter the VLE that has been used, as the techniques
used for both mining the variable values and the formal model are totally independent of the
domain. Therefore, teachers can design their courses within their VLE, avoiding the need to
use an authoring tool with a specific EML notation, and still be possible to reconstruct the
UoLs from the scratch to a target language — such as IMS LD.

In this paper, we present an approach to automatically reconstruct the IMS LD repre-
sentation of an UoL from the events generated by the learners in the VLE. This objective is
achieved in three different steps. Firstly, the learning flow of the UoL is automatically ex-
tracted from the logged sequences through a process discovery algorithm. Then an algorithm
based on the knowledge about the IMS LD control structure is applied to determine which
IMS LD components should be created. Finally the adaptive rules of the UoL are automati-
cally extracted form the event logs —more specifically, from the variable values of the logs—
by a decision tree learning algorithm, and integrated into the IMS LD structure. The contribu-
tions of this proposal are: i) a new framework to facilitate the reuse of UoLs between different
VLEs; ii) the automatic discovery of learning processes from event logs and its recompilation
to IMS LD; and iii) the automatic identification of the adaptive rules from event logs.

Notice that IMS LD has a high expressiveness to allow the definition and orchestration of
complex activity flows in a multi-role setting, but at the expense of complexity. In fact, current
IMS LD research seems to accept the assumption that specification’s conceptual complexity
hiders the authoring process [37]. Taking this into account, another objective of this paper
is to reduce this barrier and facilitate the adoption of UoLs specified in IMS LD by instruc-
tors. Specifically, the proposed semi-automatic approach hides the complexity of the EML
language, so instructors only have to decide which one of the recompiled processes fits better

2An UoL represents a variety of prescribed activities, assessments and services provided by teachers, in a course
or lesson, which is the result of the learning design.



4.3. IMS Learning Design 103

with the learning objectives of the UoL, in terms of structure and adaptive criteria. Hence-
forth, the main research question addressed in this paper is the automatic reconstruction of
UoLs from scratch, as the state of the art heavily relies in the participation and feedback from
all appropriate personnel and users during the whole process, hindering the reuse of UoLs in
different platforms.

The remainder of this paper is structured as follows. Section 4.3 briefly introduces the
main features of the IMS LD specification. Section 4.4 describes the different approaches that
have already been proposed and that motivated our approach. Then, Section 4.5 presents the
framework that supports the mining of log files and the reconstruction of IMS LD. Sections 4.6
and 4.7 detail, respectively, how the learning flow —through a process discovery algorithm—
and the adaptive rules —through a decision tree algorithm— are mined from the logs. Then,
Section 4.8 details the transformation from these two models to the actual target language
(IMS LD). Section 4.9 shows the results and, finally Section 4.10 points out the conclusions
and future work.

4.3 IMS Learning Design

IMS LD specification is a meta-data standard that describes all the elements of the design of
a teaching-learning process [46]. This specification is based on: i) a well-founded conceptual

model that describes the vocabulary and the functional relations between the concepts of the
learning design; ii) an information model that details in natural language the semantics of
every concept and relation introduced in the conceptual model; and iii) a behavioral model

that specifies the constraints imposed to the software system when a given learning design is
executed in run-time. In other words, the behavioral model defines the semantics during the
execution phase. Furthermore, IMS LD defines three levels of implementation depending on
whether the learning design is adaptive or not:

• Level A. This first level contains the main components of a UoL: participants (roles),
pedagogical objectives, resources (services and contents), and learning design. This
last component is understood as the coordination of the learning activities to be per-
formed by the participants to achieve the pedagogical objectives, i.e the learning design
describes the learning flow –or learning path– to be followed by learners in a UoL.
To describe this learning design, the IMS LD specification follows a theater metaphor
where there are a number of plays, that can be interpreted as the runscripts for the exe-



104 Chapter 4. Recompiling Learning Processes from Event Logs

cution of the UoL and that are concurrently executed, being independent of each other.
Each one of these plays is composed by a set of acts, which can be understood as a
module or chapter in a course. Acts are performed in sequence and define the activities
that participants must do. This model also allows the assignation of roles to the partici-
pants and partitioning the activities of an act according to those roles. In this case, each
one of the partitions can run in parallel. Finally, activities can be simple or complex,
the latter may consist of a sequence or selection of activities (simple or complex).

• Level B. This level adds properties and conditions to level A. It also adds monitoring
services and global elements which allow users to create more complex structures. The
properties store information about people (preferences, outcomes, roles, etc.), personal
information, or even about the learning design itself. Level B also establishes i) the
visibility of the elements of the learning flow; ii) if properties are transient or should
persist across multiple sessions; and iii) the set of operators and expressions that may
transform the value of properties and the visibility of elements. For instance, adaptation
is usually based on the visibility of the activities of the learning flow, since IMS LD
does not have control structures such an if-then-else. Therefore, the adaptation rules
use properties, such as a test score, an answer to a specific exercise, and so on, to
decide the learning path of the student through the visibility of the activities.

• Level C. The last level incorporates notifications to level B. Notifications fire automat-
ically in response to events triggered in the learning process. For example, if a student
submits a job, an email to report the event could be automatically sent to the teacher.

Taking this into account, the objective of this paper can be defined more precisely as
recompiling the structure of the learning process defined at level A and the properties and
adaptation rules at level B from event log files.

4.4 State of the Art

We have focused our analysis of the state of the art in the topics and fields that motivated
our approach: i) IMS LD authoring tools; ii) the reconstruction of IMS LD; and iii) the
applications of process mining in education.

For the last years, a number of IMS LD authoring tools have been developed. These solu-
tions allow a better analysis of the related educational design approaches by trying to relieve



4.4. State of the Art 105

the complexity of this standard to teachers and instructors. ASK-LDT [66] provides a graph-
ical interface that allows to hide the complexity of the IMS LD control structure and adaptive
components. The authors define an abstract high-level architecture for designing pedagogical
scenarios that can be reused in different virtual learning environments. In [59], the authors
offer visual templates or patterns for creating learning designs based on pedagogical strate-
gies such as collaborative learning or project based learning. Within this idea, they present
Collage, a specialised high-level collaborative learning editor that guides teachers to create
their own collaborative learning design from the existing patterns. However, this tool is not
intended to edit templates, so it is restricted to the predefined set. Other tools such as Re-
Course [53] or Prolix GLM [60] made a great effort by providing the user-friendly graphical
notation, however they do not have wide support for level B, i.e they have difficulties providing
a visual notation for level B properties and conditions [39]. Other tools, such as LAMS [28]
and MOT+ [89], although they are not based on IMS LD, can handle this standard by making
a translation to their internal EML representation. Nonetheless they can lack of flexibility
—being difficult to interpret by non-experts— or face difficult importation/exportation issues
in order to interoperate with IMS LD. In summary, although these approaches try to hide the
complexity of IMS LD by using a more user-friendly notation, they share the same draw-
back: real users —teachers and instructors— do not have the technical skills needed for a
practical use of these tools, as they still require to know about IMS LD to use the advanced
features of this standard. In fact, this drawback works as a barrier for the practical use of
IMS LD, as teachers are forced to transform their educational scenario into machine-oriented
notation [98].

The automatic reconstruction of UoLs is a novel approach to hide the complexity of the
authoring process of IMS LD. In [82], the authors present an approach that makes a conceptual
distinction between exchange EMLs and authoring EMLs. In this approach, the authors pro-
vide graphical notations —authoring EMLs— to the teachers, which are more user-friendly
than the raw XML format. Then, these notations are translated, via an exportation process.
With this classification, they focus on the reengineering of IMS LD UoLs based on a visual
language, which hides the complexity of the model. On the other hand, this approach also re-
quires a close collaboration between developers and teachers to simplify the gap between the
technical and pedagogical point of view of the UoL. In [2], and later in [1], the authors present
a four-step approach for process reenginering in higher education. However, the reengineering
process is not fully automatic, as it requires the participation and feedback from all appropri-



106 Chapter 4. Recompiling Learning Processes from Event Logs

ate personnel and users. In summary, very valuable results have been achieved in this field,
however, the main drawback of these approaches is that the UoL is not automatically recon-
structed from the scratch and needs the supervision of teachers and even developers. From
the point of view of mining the control flow of processes, a recent approach [29] tries to mine
the adaptive rules of the log by using decision trees. In this approach, the authors define a
framework for deriving and correlating process characteristics.

Process mining has emerged as a way to analyze the behavior of an organization based on
event logs. Specifically, process mining focus is on concurrent processes, trying to discover
the underlying control flow of the behavior recorded in a event log: sequences, parallelisms,
loops, etc. On the other hand, a second important distinction concerns the unit of analysis,
which can be variables or events. Most of the approaches found in the literature use events
for automatically mining the processes; however, this second dimension depends directly on
the information available in the log files. Taking these features into account, and although
process mining from log files has been widely applied [36, 77, 117, 122], its application in
education is a relatively new topic with some recent studies. In [67], the authors present
PETRA, a system to extract new knowledge rules about transitions and learning activities
in processes from previous platform executions. However, this tool is not oriented towards
process reconstruction and discovery, but on process extension, i.e it requieres an already
defined process model in order to enrich such process. In [63] a process mining approach in
adult informal learners is presented. Informal learning situations often exhibit high variability
within the learner population, especially when learning experiences and environments offer
broad availability. However, this freedom of navigation has sometimes negative effects of
learning experiences, particularly when prior domain knowledge or learning skills are weak.
The experience is developed in two steps: firstly, a process discovery using hidden Markov
models is performed [65], and then a process analysis is done using a standard process mining
approach [125]. A similar approach is presented in [92] but for improving on the objectivity
of the assessment as well as to provide the learners with prompt feedback. A set of software
repositories are preprocessed with the FRASR tool [93], to produce event logs and then mine
them using ProM [139]. The first step of this approach is particularly interesting and differs
from previous proposals. The authors do not start the derivation from a log file but from a set
of repositories that have different structures. Another process mining approach for providing
students feedback is described in [90]. In this case, the objective is to discover a process from
the behavior of the students during the course of a MCQ test. They analyzed the navigation



4.4. State of the Art 107

flow of each student when answering the questions, to determine what kind of feedback is
more preferable and more effective for the students. Authors use the α-algorithm [137] for
the process discovery. This three approaches are very similar. In fact they almost use the same
process mining techniques. The main drawback is that the process discovery techniques that
they use do not always guarantee feasible results.

To sum up, although a wide variety of approaches have tried to provide a IMS LD user-
friendly notation by means of graphical tools, its complex specification, particularly the levels
B and C, entails a barrier for adopting this standard by teachers and instructors. The automatic
reconstruction of IMS LD UoLs could relieve this issue, but it is necessary to deep in the au-
tomation of this process from the scratch, avoiding the supervision by teachers and developers
during the whole process, and thereby facilitating the reuse of UoLs in different platforms.

Learning flow discovery
(process mining-based)

Supports / Controls / Monitors

Helps / Assists

Record the events that 
occur during the learning-
teachingprocess

Learning Management System

Monitoring scripts

Learning Resources and 
Services (LMS)

Educational world

Learners

Teachers

Instructors

ResourcesServices

Learning Flow

Learning flow hierarchization
(IMS LD structure)

Adaptation rules
(Decision tree)

Learning flow

IMS LD conditions

IMS LD control 
structure

Teachers use IMS LD units 
of learning through authoring 
and delivery tools

Event Log System

Log

Traces

Variables

Log

VLE-adapters

Figure 4.1: Framework for IMS LD UoLs reconstruction.



108 Chapter 4. Recompiling Learning Processes from Event Logs

4.5 Framework

Figure 4.1 depicts the conceptual framework for reconstructing IMS LD UoLs from the events
generated by learners. It shows all the main parts involved in the reconstruction of the IMS LD
UoLs. The first component of this framework is the educational world. Teachers and learn-
ers are the typical participants in any learning activity. On the one hand, teachers design the
learning flows based on some educational methodology, and support the learning activities of
the course. On the other hand, learners are the core of the educational world since they un-
dertake the learning flow activities by using the resources and services available in the virtual
learning environment. The rest of the components are: the virtual learning environment, the
event log system, the learning flow discovery, the the learning flow hierarchization, and the
adaption rules.

• Virtual Learning Environment. From an educational point of view, virtual learning en-
vironments (VLEs) provide the means to carry out the learning activities planned for an
UoL, allowing learners to access to the learning contents and executing the services re-
quired to facilitate those activities such as interacting with other learners or looking for
information in libraries. Furthermore, VLEs detect and register all the relevant events
generated by learners when undertake the learning activities. These events are stored in
an event log database that contains data about the activities execution, including who
participates in an activity, when it has been performed, the properties values of the UoL
such as a mark of a test, and so forth.

• Event Log System. When a learner undertakes a learning activity, such as answering
a test, uploading an exercise or even asking a question in the forum, the VLE stores
in a database the information generated as result of performing this learning activity.
However, in order to be able to extract the needed information for reconstructing the
IMS LD, it is necessary to translate this information into an input format for both the
process mining and the decision tree algorithm. As Figure 4.2 depicts, this translation
is carried out by VLE-specific adapters that generate an event log register in a standard
format for process mining, so-called eXtensible Event Stream3 (XES) format [150].
XES is a well-known logging standard for process mining, and we have adapted it with
user-defined extensions in order to include in the same file all the outstanding informa-
tion to both obtain the learning flow —by storing the sequence of steps undertaken by

3www.xes-standard.org



4.5. Framework 109

each learner— and the adaptive rules —by storing the information generated as result of
performing the learning activities. Figure 4.2 shows an example of the framework used
to translate the event log from any VLE to an event log in XES format4 through specific
VLE-adapters. These adapters and the use of XES standard provide the independence
of reconstructing the IMS LD with the particular VLE in which the learning-teaching
process takes place, enabling furthermore to generalize the proposed architecture to any
virtual environment. The only restriction required for the VLE is that it must register the
user activity —along with the variable modifications— that takes place in the learning
context.

Log

mdl_logstore_standard_log

transition_log

Moodle 
adapter

Log

OPENET4LD
adapter

Virtual Learning Environment

Event Log System

VLE adapters

Event Log Database

Log

Figure 4.2: Event log infrastructure. Each VLE accesses the event log system through a specific adapter to
transform its log format to XES, the standard format for process mining.

• Learning Flow Discovery. This component implements the algorithm whose aim is to
discover the workflow of learning activities, i.e the learning flow, that learners under-
take during a UoL. Note that this algorithm must guarantee that all the learning paths

followed by learners are represented in the discovered learning flow. Furthermore, this

4Note that we have omitted some of the standard metadata of XES in the event log shown in Figure 4.2 to make
the image more readable.



110 Chapter 4. Recompiling Learning Processes from Event Logs

discovered learning flow should be as simple as possible in order to facilitate the hier-
archization of the learning flow into the IMS LD control structure. This component is
explained in detail in Section 4.6.

• Learning Flow Hierarchization. Once the learning flow has been extracted from the
event logs, an algorithm will translate this learning flow to the control structure defined
by the IMS LD specification. This algorithm starts by detecting sequences and selec-
tions of learning activities and then uses the knowledge about IMS LD to create activity
structures, acts , and plays. The learning flow hierarchization is explained in detail in
Section 4.8.

• Adaptation Rules. The IMS LD specification has an extensive set of adaptation condi-
tions, but this framework is focused on extracting the conditions related to the selection
of learning activities — show and hide mechanism — based on the changes in the prop-
erties values of the UoL. A decision tree technique was implemented to automatically
obtain these conditions, since it is an effective approach to deal with this kind of prob-
lems. This process is explained in Section 4.7.

It is important to emphasize that, although we are depicting this framework for IMS LD
UoLs reconstruction, the framework described can be applied to reconstruct any UoL to any
particular target EML. Both the process mining step and the adaptive rules mining from vari-
able values are totally independent from the target language. In fact, process mining retrieves
graph-based structures independent from IMS LD. On the one hand, graphs are based on Petri
nets, which is the most used formalism for modelling processes. On the other hand, a decision
tree algorithm is used to get the adaptive rules that will guide the students along the UoL. The
learned knowledge is represented through binary trees and, thus, not tied to the specificity of
IMS LD rules.

The last step of this framework, i.e., the combination of these two models into the tar-
get language, is the only dependency between the reenginering process and the target EML.
Nevertheless, the algebra that we are using —explained in Section 4.8— in the reconstruction
of the IMS LD is not so different from any particular EMLs —if -then-else, AND, OR, sums,
etc—. Hence, it is possible to modify the knowledge applied in the last step of the reeinginer-
ing process in order to reconstruct an UoL from any particular VLE to any particular EML.



4.6. Mining the learning flow from event logs 111

4.6 Mining the learning flow from event logs

The goal of process mining is to automatically obtain a process model that specifies the rela-
tions between activities from concurrent processes. Therefore, the aim of the process discov-
ery algorithm in the reconstruction of the IMS LD is to identify the workflow that represents
the learning flow followed by the learners during the UoL [11]. To achieve this objective,
the process discovery algorithm only needs to consume the log in XES format —as this is
the standard format for process mining— and it will retrieve a learning flow representing the
behavior recorded in the event log. From the perspective of process mining [103], the quality
of a learning flow is measured taking into account the following criteria:

• Fitness replay, which indicates how much of the behavior observed in the event log can
be reproduced by the discovered learning path. A discovered learning path is considered
complete when it can reproduce all the events contained in the log database. In order
to guarantee a feasible and correct reconstruction of IMS LD UoLs, all the activities
undertaken by the learners have to be included in the mined learning flow. Additionally,
from the educational point of view, in order to guarantee feasible and correct evaluations
of the learning paths, teachers need to access to all the activities performed by learners.
Therefore, the fitness replay of discovered learning paths is a hard requirement.

• Precision, which measures if the discovered learning path allows an additional behavior
that is not represented in the log, i.e., behaviour never undertaken by the students. Thus,
a discovered learning path is considered as precise when it cannot reproduce events that
are not available in the log database. From the point of view of the learners’ evalua-
tion, this kind of learning paths are desirable, but it is not a requirement as hard as the
fitness replay: the additional learning paths are not needed for the reconstruction of the
IMS LD control structure, since they did not happen. Our focus is on the exact be-
havior of the learners, i.e., what they really did, not in the prediction of their behavior;
therefore we want to avoid overly-general models.

• Simplicity, which refers to discovered learning paths with the minimal structure that
reflects the behavior contained in the log database. A desirable requirement for process
discovery is to obtain simple learning flows, since the simpler is the discovered learning
flow, the easier is to reconstruct the IMS LD control structure.



112 Chapter 4. Recompiling Learning Processes from Event Logs

I

IV

II yes

no

III

ProDiGen

End Step Description
I Build the initial population
II Evaluate each solution
III Stopping conditions fulfilled?
IV Generate the new population

Figure 4.3: Simplification of the main steps of ProDiGen.

In general all process discovery algorithms make assumptions regarding the event log
and, hence, the emphasis on these three different quality dimensions. For example, Heuris-
tics Miner [153] usually retrieves models with high levels of precision, but lacking fitness
replay and/or simplicity. Another example is the ILP miner [138] that guarantees a perfect
replay fitness but resulting in very complex models. Inductive Miner [71], on the other hand,
can guarantee a perfect replay fitness and high levels of simplicity, but the precision is low.
Overall, a large amount of work has been done in this specific area by addressing different
algorithms from different points of view. However, in this paper, and considering the three
previous criteria and their importance when mining a learning process, we selected ProDi-
Gen [147] as process mining algorithm.

ProDiGen is a genetic algorithm for process discovery that focuses its search towards
solutions that replay all the behavior as possible, with high levels of precision and simplicity.
In order to better understand how this algorithm works, Figure 4.3 shows a simplification of
its mains steps: i) the initialization of the population; ii) the evaluation of the individuals; iii)

the stopping criteria; and iv) the generation of the new population. The evolutionary cycle
involves the II, III and IV steps, where the population evolves based on a fitness function.
Finally, the algorithm stops whether it reaches a maximum number of generations, or it gets
stuck on a local minimal solution for a certain number of times.

4.6.1 ProDiGen

The first step in any evolutionary algorithm is the initialization of the population. In this
phase, a population is created with a group of individuals where each individual is a poten-
tial solution, e.g., a learning flow. In ProDiGen, each individual of the population codifies a
learning path using a causal matrix representation, which can be easily translated into a Petri



4.6. Mining the learning flow from event logs 113

net [30]. In terms of causality, both the Petri net and the causal matrix represent the same be-
havior —which learning activities enable the execution of other learning activities. Figure 4.4
shows an example of the mapping between a Petri net (Figure 4.4(a)) and its respective causal
matrix (Figure 4.4(b)). This causal matrix has a row for each learning activity t in the log, and
two columns corresponding to the inputs, I (t), and outputs, O(t), of the activity. The input
and output sets are composed of several subsets, modelling the following relations:

• In the same subset:

– Tasks in the same subset of the conditional function O(t) have an OR-split rela-
tion.

– Tasks in the same subset of the conditional function I (t) have an OR-join relation.

• Between different subsets:

– Tasks in different subsets of the conditional function O(t) have an AND-split
relation.

– Tasks in different subsets of the conditional function I (t) have an AND-join rela-
tion.

Once the initial population is created through heuristics based on the local information of
the log, the individuals —causal matrices— of the population are modified through crossover
and mutation operations to create new potential solutions, i.e., learning flows. These operators

D

B

C

A E

start end

(a) Example of a Petri net.

Task I(Task) O(Task)

A {} {{D},{C B}}
B {{A}} {{E}}
C {{A}} {{E}}
E {{D},{B,C}} {}
D {{A}} {{E}}

(b) Causal matrix of the Petri net.

Figure 4.4: Mapping of a Petri net into a causal matrix. This Petri net represents the learning flow of an UoL about
polymorphism. The name of the activities are: Read about polymorphism (A), Exercise 1 (B), Exercise
2 (C), Answer test (D) and Exam (E).



114 Chapter 4. Recompiling Learning Processes from Event Logs

add and/or remove5 causal dependencies of the individual by modifying the input and output
conditional functions of the tasks. Then, these new individuals are evaluated based on a fitness
function.

In ProDiGen, the quality of an individual is measured taking into account fitness replay,
precision, and simplicity, as ordering criteria, respectively. Hence, when contrasting two
possible solutions, fitness replay is the primary ordering criteria. When two solutions have the
same fitness replay, precision is used to decide the best solution. Finally, when two solutions
have the same fitness replay and precision, simplicity is the decisive criterion.

Thus, when two solutions have to be compared, the individual with highest fitness replay
will be the benefited one. If the values for the fitness replay are equal for both solutions, the
second parameter to be checked is the precision, and, if the same as before occurs, the last
one to be compared is the simplicity. Note that if we change the hierarchical order of the
fitness measure, the algorithm may find a different solution, as fitness replay, precision and
simplicity are three opposed objectives [147].

4.7 Mining adaptive rules from event logs

Using log files of VLEs can help to determine who has been active in the course, what they
did, and when they did it. In this section we use these data to obtain the adaptive rules of
the UoLs that determine the learning flow and the contents and services presented to students.
Unfortunately, the log files provided by VLEs do not follow a standard and therefore a generic
solution cannot be formulated for such purpose. In fact, log files are seldom used mainly
because it is difficult to interpret and exploit them. In most of the cases, the data aggregated
are incomplete or even not logged.

Taking this into account, in this section we describe our approach based on the extract
of the log file represented in Figure 4.5. This log was recorded in OPENET4LD [151], and
exemplifies the typical elements saved by VLEs. Of course, the records formats or even
how they are stored may vary, e.g., Moodle saves this information in tables of a relational
database—, but usually VLEs present very similar information. This particular example has
two parts. On the one hand, the first four records represent the execution of activities and
contain information about the UoL id, its name, the user that performed the activity, the
execution time, and the specific name of the activity, among other information. On the other

5For example, the mutation operation can add a new subset into the output function of a task t, resulting in an
AND-split.



4.7. Mining adaptive rules from event logs 115

(3, ’UOLID 201’, ’GeoQuiz3’, ’root’, ’2013-10-14 01:44:51’, ’13193839-3ddf-41e2-a4b8-7af8dc13d059’),

(4, ’UOLID 201’, ’GeoQuiz3’, ’root’, ’2013-10-14 01:44:52’, ’e4901d0f-8232-4cce-a166-20e29133d279’),

(5, ’UOLID 201’, ’GeoQuiz3’, ’root’, ’2013-10-14 01:44:52’, ’e4901d0f-8232-4cce-a166-20e29133d279’),

(6, ’UOLID 201’, ’GeoQuiz3’, ’d9’, ’2013-10-14 01:44:52’, ’e4901d0f-8232-4cce-a166-20e29133d279’),

...

(289, ’OPENET RMI SOID 0’, ’UOLID 201’, ’setproperty’, ’2013-10-14 01:59:30’, ’user 2’, ’d2’, ’Student’,

’ locpers property 12 ’, ’Answer1’, ’locpers property’, ’string’, ’Venezuela’),

(290, ’OPENET RMI SOID 0’, ’UOLID 201’, ’change property value 0’, ’2013-10-14 01:59:30’, ’user 2’, ’d2’, ’Student’,

’ locpers property 1 ’, ’Value1’, ’locpers property’, ’integer’, ’2’),

(291, ’OPENET RMI SOID 0’, ’UOLID 201’, ’change visibility’, ’2013-10-14 01:59:30’, ’user 2’, ’d2’, ’Student’,

’ learning activity 5 ’, ’flow3’, ’locpers property’, ’boolean’, ’false’),

(292, ’OPENET RMI SOID 0’, ’UOLID 201’, ’setproperty’, ’2013-10-14 01:59:33’, ’user 2’, ’d2’, ’Student’,

’ locpers property 13 ’, ’Answer2’, ’locpers property’, ’string’, ’Siria’), ...

Figure 4.5: Example of a text-based log file.

hand, the last four records represent events on the properties used by the UoL. Specifically,
each one of these records contains information about the UoL id, the operator that favor the
change, the type of the property, and the new assigned value.

4.7.1 Identification of variables and activities

The identification of variables and activities is highly dependent on the type of events recorded
in the log files. Since each VLE may record the events in a different format, the syntactic pat-
terns used to identify these events are usually different. For example, the identified variables
are highlighted in Figure 4.5. In this case, a simple regular expression with the keywords
”setproperty” and ”change visibility” were used to identify the variables, but a different pat-
tern should be used to identify these same variables in an XML-based log file. However, the
main issue in the identification of variables is that they are not always recorded in the log
files. When this situation happens, the mechanism for learning the adaptation rules presented
in this section cannot be applied.

4.7.2 Determining the variable values for each activity

In the ideal situation, each time an event is produced, i) the state of the variables is saved in
a log file. This means that, e.g., at the end of an activity the values of the variables of a UoL
are stored in the corresponding log file. Moreover, ii) in this context a value change is also



116 Chapter 4. Recompiling Learning Processes from Event Logs

considered an event and so is also recorded. However, reality is different and usually both
mechanisms are not supported at the same time —e.g., in the log extract of Figure 4.5 only
variable changes are included. The variables values are subsequently associated to an activity,
so we can determine the state of the properties before and after the activity is performed.
Therefore, each time a variable value changes we must determine when and by who it was
modified. In this procedure, the time of the event is crucial since it will determine the initial
value of variables in the next activity.

4.7.3 Learning rules with a decision tree

IMS LD rules use the following grammar to define the learning flow adaptation:

rule ::= IF <expression> THEN <action>

| IF <expression> THEN <action> ELSE <action>

| IF <expression> THEN <action> ELSE <rule>

In addition, IMS LD declares three types of actions:

action ::= SHOW <activity_id>

| HIDE <activity_id>

| <property_id> = <value>

The first and second actions are used to make visible or invisible a learning/support activity,
activity structure, play, item, or environment. It’s the main adaptation mechanism of IMS LD
used to hide or show a part of the UoL based on some expression value. The last type of
expression is a simple assignment.

IMS LD grammar for expressions include logical operators, and, or, and not, some com-
parative operators, ≤,<,=, 6= . >, and ≥, and some multiplicative and additive operators.
Moreover, it also defines operators to check specifics of UoLs. For instance, to verify if a
play, act, or activity has already finished, or, e.g., the specific role of users.

In this paper, the identification of the adaptive rules is performed by means of the J48
decision tree algorithm [95]. We selected this type of algorithm because of its simplicity,
performance, and especially because adaptive rules can be transformed to a decision tree. As
previously mentioned, IMS LD adaptive rules have an if-then-else structure very similar to
the right part of Figure 4.6, which can be deduced from the graph structure returned by a
decision tree algorithm. A decision tree is a graph-like structure in which each internal node



4.7. Mining adaptive rules from event logs 117

represents a test on an attribute, each branch represents the outcome of the test and each leaf
node represents the class label —or decision taken after computing all attributes. A path from
the root to the leaf represents classification rules, and in our case, an adaptive rule.

Transforming a decision tree to an adaptive rule is straightforward since these trees can
easily be modelled as DNF (Disjunctive Normal Form) rules. For instance, the right part of
Figure 4.6 shows the corresponding rules for this tree. Specifically, each branch is converted
into a rule, where:

• The condition is set as the conjunction of the arc tests of a branch.

• The action of the rule is the leaf node of the branch —class/decision.

• The disjunction of all the rules has the semantics of the decision tree.

Notice that the rules extracted by the J48 support most of the grammar of IMS LD —logical
and comparative operators—, although this is not the main objective here. In fact, we selected
decision trees because they provide a simple but also generic grammar, that should be com-
patible with most of the adaptation mechanisms used in legacy systems. Therefore, it does
not make sense to learn, e.g., IMS LD specific operators. There are however some limitations
since we do not cover complex conditions that combine mathematical operators.

Tree complexity has its effect on the accuracy and is usually determined by the total num-
ber of nodes, total number of leaves, depth of tree, and number of attributes used in the tree

IF T1 <= 40 

THEN visible (Task 1)

IF T1 > 40 AND T1 <= 80 AND T2 <= 50 

THEN visible (Task 2)

IF T1 > 40 AND T1 <= 80 AND T2 > 50 

THEN visible (Task 3)

IF T1 > 40 AND T1 > 80 

THEN visible (Task 4)

T1 <= 40 T1 > 40

T1 <= 80 T1 > 80

T2 <= 50 T2 > 50

Task 1

Task 2 Task 3

Task 4

Figure 4.6: Transformation of a decision tree to a DNF rule base.



118 Chapter 4. Recompiling Learning Processes from Event Logs

construction. The number of variables is therefore a crucial factor since too many of them
may reduce the accuracy of the tree. Moreover, the size of the data required to learn increases
with the number of variables. However, adaptive rules are usually not based on many vari-
ables. Thus, our approach limits the variables considered during the learning of the decision
tree, and specifically, only variables for which the value has changed in the execution of the
activity are included.

4.8 IMS LD reengineering

IMS LD is a well-known EML for adaptive learning which is specified in three different levels
of implementation —levels A, B, and C—, which determine the learning flow, the changes in
the environment, and the notifications, respectively. In this section we describe an algorithm
that compiles IMS LD levels A and B from the information retrieved by the data mining
algorithms described in the former sections. On a first step, the proposed algorithm transforms
the flat process structure retrieved by the process mining into an IMS LD-based structure. On
the second step, the identified adaptation rules are associated to the learning flow.

4.8.1 Pairing the causal matrix with the IMS LD specification

IMS LD learning flow is described as a theatre metaphor where there is a number of plays
that are concurrently performed, being independent of each other. Each of these plays is
composed of a set of acts, which represent, for instance, the modules or chapters of a course.
Acts are performed in sequence and define the activities that participants must do. This model
also allows the assignation of roles to the participants and partitioning the activities of an act
according to that roles. In this case, each one of the partitions can run in parallel. Finally, ac-
tivities can be simple or complex, the latter may consist of a sequence or selection of activities
(simple or complex).

Taking this structure into account, the reengineering process would consist in identifying
the different IMS LD elements from the causal matrix (Petri net) returned by the process
mining algorithm. However, this Petri net is a flatten process while the IMS LD is a tree-
based structure in which each layer is composed by a different type of elements, i.e first plays,
then acts, role-parts, and finally activities. Bearing in mind that the Petri net only identifies
the atomic activities, we decided to structure the search space as a tree in which:



4.8. IMS LD reengineering 119

• Each node of the tree represents how learning activities are grouped. Suppose an or-
dered list of the n activities that must be performed. This list can be divided in n− 1
parts —one for each consecutive activity. Taking this into account, each node is identi-
fied by n−1 digits, where a 1 in the position i indicates that the activities in the positions
i−1 and i are in different groups.

• Each layer of the tree corresponds to a layer of IMS LD. Specifically, the first layer
represents plays, the second acts, the third role-parts, and the remaining layers activities,
simple or complex.

• An edge between a father node and a child node indicates that this child is grouped
according to the configuration defined in the father node. Thus, the child node may add
additional groups but they must respect the groups defined in the father node.

Figure 4.7 depicts the search space for a UoL composed of just tree simple activities,
namely A, B, and C, ordered according to their position in the causal matrix. Let use the
notation [A BC] to facilitate the definition of the list and use the symbol | to indicate a partition.
Taking into account our previous definition of the search space, in this example, nodes can
be identified by two digits where: 00 indicates that the three activities are in the same group
—[A B C]; 01 that there are two groups, a first one with the activities A and B, and a second
one with C —[A B|C]; 10 also represents a two groups be in this case the activities B and C

compose the second group —[A|B C]; and finally, 11 implies that each activity is in a different
group —[A|B|C].

Plays

Acts

Role-Parts

Activities

S

11

11

11

11

10

11

11

11

10

11

11

10

1110

1110

. . .

01

11

11

11

01

11

11

01

1101

1101

. . .

00

11

11

11

10

10

1110

1110

. . .

01

11

11

11

01

1101

1101

. . .

00

01

11

11

01

1101

. . .

00

11

11

10

1110

. . .

01

1101

. . .

00

1110

. . .

01

. . .

00

. . .

Figure 4.7: Example of the search space for a UoL composed of three activities.



120 Chapter 4. Recompiling Learning Processes from Event Logs

Notice that the meaning of the coding is different for each level of the search tree. For
instance, a node identified by 10 at the play level indicates that the activity A is in the first
play, while the activities B and C are in the second play. Thus, the coding defines both the
number of plays and how activities are grouped in the plays. If the node identified by 10 is at
the act level, the node still identifies two groups of activities but in this case for the two acts
defined in this coding.

In addition, child nodes must preserve the groups already defined in the father node. Let
A and B be two nodes, where A is father node of B in the search tree, and a,b ∈ Zn

2 denote the
coding of size n of A and B, respectively. For each ai = 1 ∈ a then bi = 1 ∈ b, i = 1 . . .n, i.e
each position i equals to 1 in the father node is also equal to 1 in the child node. This definition
ensures the hierarchical disjointness of groups, that is, that two activities that are in different
groups cannot be joined in the same group in a lower level of the tree. This constraint also
reduces the search space since many father/child combinations are not allowed. For instance,
a node 01 can only have two children, denoted as 01 and 11, since the father node already
defines two groups —[A B|C]. Suppose that 10 is a valid child node of 01, this would imply
that the activities B and C are in two disjoint groups in the father node but in the same group
in the child node, which is clearly inconsistent with the hierarchical definition of the IMS LD
specification.

Algorithm 4.1 details the main block of the depth-first search procedure. The algorithm
receives two inputs: ni which contains the node that is being evaluated, and the verifiers

list which elements are the functions used to check the structural consistency of the node.
Specifically, each function uses the causal matrix obtained during the process mining step
to check if the activities are correctly grouped, that is, i) if they verify the dependencies
of the causal matrix and ii) the structure is compliant with IMS LD. Since the structural
requirements of each level of the tree are different, the verifiers list contains a specific verifier
for plays, acts, role-parts, and activities. For the sake of simplicity, the position i of the
verifiers list contains the function to check the level i + 1 of the search tree. Since there
are only 4 types of verifiers, nodes which level is greater than 3 will be checked by the last
function of the list —i.e., as activities.

In the first line, the algorithm used the level of the node in the tree to select the corre-
sponding verifier, and uses this function to check the node. This is the most complex part of
th algorithm and consists in looking for specific structural patterns in the causal matrix. As
we will detail in this section, each IMS LD control construct has structural constraints that are



4.8. IMS LD reengineering 121

Algorithm 4.1: explore.
Input: ni is the node to explore, verify is a list of functions used to check the structure

of the nodes.
Output: from np hangs a (sub)tree of possible UoL configurations that can be derived

from the causal matrix.
1 verify← function from verifiers used to check the nodes of the level in which (ni) is

situated
2 if verify(ni) then
3 if level(ni)< MAX and not solution(ni) then
4 foreach j in expand(ni) do
5 n j← new node which value is j
6 add n j as children of ni
7 explore(n j, verify)

8 else
9 if ni has a parent then

10 remove ni from parent(ni)

synthesized in one of these functions. When ni is a solution (i.e., if it is a simple activity) or
the MAX level limit has been reached, then the algorithm backtracks. Otherwise, the node is
expanded (lines 4-7) and a new exploration starts for the children of ni.

4.8.2 Consistency of plays

The verifier of the first level of the search tree checks if the plays are grouped in conformance
with the IMS LD specification. Specifically, the objective of Algorithm 4.2 is to verify that the
activities contained in each group are in parallel since each group identifies a play. Therefore,
in lines 2-11, each activity a j of the group gi is compared with a different activity al of a
different group gk, until all the activities of the different groups have been compared. In
order to check if two activities are in parallel we use the causal matrix M obtained during the
process mining step. In this case, we just check i) that a j is not connected to al , ii) that al is
not connected to a j, and iii) that a j 6= al .

Let suppose the Petri net depicted in Figure 4.8 and its corresponding causal matrix, and
the previously described search space depicted in Figure 4.7. A correct ordering of the activi-
ties of the causal matrix would return [A B C]. Taking this into account, Algorithm 4.2 would
process the nodes of the first level and determine that nodes 01 and 11 are not in conformity



122 Chapter 4. Recompiling Learning Processes from Event Logs

Algorithm 4.2: plays.
Input: n is the node to evaluate
Data: M is the causal matrix obtained during the process mining procedure
Output: A boolean that indicates if the node verifies the constraints of IMS LD for

plays.
1 g← the groups defined in n
2 for i = 0 to length(g)−1 do
3 gi← g[i]
4 for j = 0 to length(gi) do
5 a j← gi[ j]
6 for k = k+1 to length(g) do
7 gk← g[k]
8 for l = 0 to length(gk) do
9 al ← gk[l]

10 if a j and al are not in parallel in M then
11 return false

!ht] start

B

A

C

end

(a) Petri net.

Task I(Task) O(Task)
A {} {}
B {} {{C}}
C {{B}} {}

(b) Causal matrix.

Figure 4.8: Petri net with three activities and its causal matrix.

with the causal matrix. Specifically, in line 10 it would verify for both cases that task B is not
in parallel with C.

4.8.3 Consistency of acts

Algorithm 4.3 checks the structural consistency at the level of acts. Specifically, this function
is used to verify that the groups defined at this level are in conformity i) with the IMS LD
specification and ii) with the causal matrix obtained from the process mining. In this case,
IMS LD requires that the acts of a play must be in sequence. Therefore, the algorithm has an
external loop that iterates the plays identified as consistent, and for each one of these plays
it checks i) that the activities of an act are isolated from other acts (lines 6-8), ii) that last



4.8. IMS LD reengineering 123

Algorithm 4.3: acts.
Input: n is the node to evaluate
Data: M is the causal matrix obtained during the process mining procedure
Output: A boolean that indicates if the node verifies the constraints of IMS LD for

acts.
1 foreach group k of the parent node of n do
2 g← the groups defined in n that are contained in the father group k
3 for i = 0 to length(g) do
4 gi← g[i]
5 So← set of final activities in gi
6 foreach activity a in gi \So do
7 if a is connected to an activity not in gi then
8 return false

9 if i+1 < length(g) then
10 g j← g[i+1]
11 Si← set of initial activities in g j
12 if there is a shared choice between the activities if So and Si then
13 return false

14 foreach activity ao in So do
15 foreach activity ai in Si do
16 if ai and ao are not connected then
17 return false

activities of an act and the next ones are not in conflict because of a choice node (lines 12-
13), and iii) that the acts are connected (lines 14-15), i.e that the last activities of an act are
connected to the first activities of the next act.

Continuing with the example depicted in Figure 4.8, let suppose that we want to evaluate
the node 01 which father play node is also 01. In the two iterations of the first loop, g0← [A]

and g1← [B C] will both have So←{} and Si←{} and thus verify the conditions of the acts’
level. However, let consider that the node to evaluate is 01 and its parent play node is 00. For
the case g0← [A B] the algorithm will fail in line 7 since B is connected to an activity that is
not included in g0.



124 Chapter 4. Recompiling Learning Processes from Event Logs

4.8.4 Consistency of role-parts

In order to check that role-parts are correctly defined we must verify that:

• All the activities included in the role-part have the same role.

• The groups identified in the role part are in parallel.

Since the conditions are similar to those imposed to plays, we will not detail the algorithm
used to verify the consistency of role-parts. For instance, the node 10 pointed by the parent
node 00 is a valid configuration since the activity A is in parallel with the activities B and C.
As aforementioned, all configurations that are valid at the play level are also valid at this level,
but, in addition, nodes must also be compatible with its parent node. Therefore, if the parent
node is 11, the node 10 would no longer be a valid configuration.

4.8.5 Consistency of activities

In IMS LD, activities can be simple or structured as sequences or selection of activities. Tak-
ing this into account, Algorithm 4.4 checks that all the groups verify one of these categories.
Specifically, the function activity only checks that the group has q unique element. The func-
tion sequence verifies that the elements of the group are in sequence, in the same way as
Algorithm 4.3 checks that all the acts of a play are in sequence. Finally, the function selection

checks the last activity structure of IMS LD. Notice that selections are a complex structure
since they combine two patterns, such as a choice between several activities (simple or com-
plex), and a loop, so students may select the same activity more than once. The main issue
here is that process mining algorithms are not able to detect this pattern as it is modelled in

Algorithm 4.4: activities.
Input: n is the node to evaluate
Data: M is the causal matrix obtained during the process mining procedure
Output: A boolean that indicates if the node verifies the UoL constraints of IMS LD.

1 foreach group k of the parent node of n do
2 g← the groups defined in n that are contained in the father group k
3 foreach group gi in g do
4 if not activity(gi) or not sequence(gi) or not selection(gi) then
5 return false



4.8. IMS LD reengineering 125

Algorithm 4.5: Selection.
Input: g is the group of activities to evaluate
Data: M is the causal matrix obtained during the process mining procedure
Output: A boolean that indicates if the group verifies the selection structure of

IMS LD.
1 if length(g)< 2 then
2 return false

3 foreach activity ai in g do
4 if ai is not in a choice with another activity in g then
5 return false

6 if father node is a selection then
7 return false

IMS LD [151]. Instead they usually detect partial choices and combine them with multiple
loops. In order to identify this pattern from the logs we just need to detect if the activities are
in a choice with any other activity in the selection since the loops spread the choice depen-
dencies, lines 3-5 of Algorithm 4.5. Finally, we do not allow the concatenation of selections
(lines 6-7) since they do not change the behaviour of the net and just complicate the design: a
subselection can be moved to a father selection without changing the behaviour of the control
construct.

For instance, Figure 4.9 represents different ways in which process mining may retrieve

A

B

C

(a) Choice of ac-
tivities.

A

B

C

(b) Selection where the activ-
ities are in choice and in a
loop.

B

A

C

(c) Selection where one of the branches is a sequence
of two activities with two loops.

Figure 4.9: Three different ways of representing a selection. Transitions colored in gray represent the activities of
the UoL.



126 Chapter 4. Recompiling Learning Processes from Event Logs

a selection of three activities. Figure 4.9(a) depicts the simplest selection pattern in which
the three activities complete for the tokens of their input place and thus only one of them
can be chosen. In Figure 4.9(b), the first branch also includes a loop, and thus students can
select more than one activity. Finally, Figure 4.9(c) combines a choice, a loop, and a sequence
structure. Notice, that our algorithm detects both the three cases since activities A, B, and C

share the same input.

4.9 Results

The validation of the presented approach has been done with a set of UoLs with different
degrees of complexity. In a first batch, four UoLs of the Degree of Computer Science,
at the University of Santiago de Compostela, were performed in the real environment of
OPENET4LD [151] by students. To complete the dataset, we selected another five UoLs,
collected by the Open University in the Netherlands from different European projects6, and
simulated their behaviour in OPENET4LD environment but with virtual students.

All UoLs were generated in IMS LD, half of the units were performed in a real environ-
ment by students while the other half was simulated, and logs were recorded by OPENET4LD7.
The objective of this experiment is to recompile the UoLs in IMS LD format and minimize
information loss. Table 4.1 lists the nine UoLs tested, on the basis of their activities, struc-
tures of activity, acts, plays, and properties, ranging from UoLs with one only act to UoLs
with several acts and different activity structures:

• AutomatonClass is an adaptative UoL about Automata Theory and Formal Languages.

• TALF is another UoL on the topic of Automata Theory and Formal Languages.

• Boeing is an UoL about the safety regulations when removing certain parts of a Boeing
engine (simulated).

• Cam specifies the activities and exercises needed to complete a lecture (simulated).

• Driving specifies the process of a driving school (simulated).

• Programming is about learning imperative programming.

6http://dspace.ou.nl/handle/1820/16/
7Logs and Petri nets available at http://tec.citius.usc.es/SoftLearn/Compiling.html

http://dspace.ou.nl/handle/1820/16/
http://tec.citius.usc.es/SoftLearn/Compiling.html


4.9. Results 127

Table 4.1: Structural features of the UoLs that have been used in the experiment.

Activity structures
UoL #LA #ST #AC #PL #RU #PR Sequence Choice Parallelism Loop

PeerReview 14 7 2 1 10 15 X X X
Cam 10 2 3 1 7 13 X X X
POO 9 3 6 1 6 12 X X X X
Driving 7 3 5 1 3 5 X X
Boeing 10 5 4 1 9 12 X X X
AddWork 7 2 3 1 3 8 X X
Automaton 9 2 5 1 7 9 X X X
TALF 11 5 7 1 8 9 X X X
Programming 4 1 2 1 2 4 X X X

#LA, #ST, #AC, #PL, #RU, and #PR stands for the number of activities, structures of activity, acts, plays, rules and
properties, respectively.

• POO is a UoL about learning object oriented programming.

• PeerReview explains the interaction in a peer review process (simulated).

• AddWork represents a quiz with different outcomes depending on the results (simu-
lated).

Summarizing, four of the UoLs belong to courses of the Computer Science degree, while the
remaining UoLs were taken from tutorials, seminars, and workshops previously recorded in
OPENET4LD.

4.9.1 Process mining results

In order to check the efficiency of ProDiGen for learning flows discovery, we have con-
ducted an experiment with the nine UoLs shown in Table 4.1 that have been undertaken in
the OPENET4LD environment. OPENET4LD collects all the events generated by the learners
when they perform the learning activities of an UoL, and then, with the OPENET4LD Adapter,
we transform this behavior into a XES log. Although some of these UoLs are designed to be
undertaken by several roles collaborating among them, ProDiGen discovers the learning flow
related to each role. Table 4.2 shows the number of instances —traces— of each example. As
we can see, only Drive and Programming UoL have less than 100 instances, i.e students that
have participated in the courses. The remaining units are in between 120 and 190 instances,



128 Chapter 4. Recompiling Learning Processes from Event Logs

Table 4.2: Number of instances of each UoL.

PeerReview Cam POO Driving Boeing AddWork Automaton TALF Programming
# instances 186 186 190 97 134 120 120 144 42

Table 4.3: Performance of the genetic algorithm for learning flow discovery.

UoLs

PeerReview Cam POO Driving Boeing AddWork Automaton TALF Programming
Fr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P 0.85 0.85 0.90 1.00 0.95 0.82 0.90 1.00 0.86

(#A,#P,#T ) (15,7,6) (38,13,13) (36,12,18) (26,10,11) (24,10,10) (36,15,16) (34,12,17) (34,12,17) (37,13,16)

which is enough to perform with a high degree of confidence the mining process —for both
the models and the rules (Section 4.9.2).

The performance of ProDiGen over the UoLs has been measured taking into account
completeness —fitness replay—, precision and simplicity with two metrics of the state of the
art. For completeness, we use the proper completion measure [105], which is the fraction of
properly completed process instances. Proper completion (C) takes a value of 1 if the mined
model can process all the traces without having missing tokens or tokens left behind. On the
other hand, to measure the simplicity, we used the alignment precision (P) defined in [124].
For the simplicity, we show the number of arcs (#A), places (#P) and transitions (#T) of the
retrieved Petri net.

Table 4.3 shows the results of ProDiGen over the 8 UoLs. As can be seen, ProDiGen is
able to retrieve, for all the cases, a model that perfectly fits the behavior of the recorded event
logs, i.e the fitness replay is equal to one in all the UoLs. Moreover the precision of the mined
models is high, which indicates that the models do not underfit the log, i.e., they do not show
much more behavior than the actually observed in the logs. Related to these precision levels,
in none of the cases the retrieved model is the overfitted trace model, a solution that creates a
path for each trace of the log, which can be seen with the simplicity measure —the number of
actual transitions and arcs.

4.9.2 Rules mining results

A ten fold cross-validation has been performed for each one of the rules of each UoL detailed
in Table 4.1. Table 4.4 details the results of the adaptive rules mining. We can see that, in



4.9. Results 129

Table 4.4: Performance of the adaptive rules mining, where the percentage shows the instances that have been
correctly classified by the rule learned by the decision tree.

Rule id Correctly

PeerReview

1 100%
2 86.02%
3 100%
4 98.39%
5 88.07%
6 95.70%
7 100%
8 53.22%
9 100%
10 95.70%

Driving

1 97.93%
2 90.72%
3 86.60%

Rule id Correctly

Cam

1 100%
2 100%
3 98.82%
4 97.93%

POO

1 100%
2 99.47%
3 100%
4 100%
5 100%

Programming

1 100%
2 100%

Rule id Correctly

Boeing

1 89.55%
2 74.62%
3 95.52%
4 79.10%
5 72.39%
6 88.06%

TALF

1 100%
2 100%
3 100%
4 100%
5 100%
6 100%
7 86.81%

Rule id Correctly

AddWork

1 100%
2 100%

Automaton

1 99.17%
2 100%
3 100%
4 100%
5 100%
6 100%
7 100%

54.54% of the cases, the rule did classify correctly the 100% of the instances. In fact, the
results are quite good considering that in 77.27% of the cases at least 90% of instances were
correctly categorized, percentage that even grows to 90.91% if we consider the cut level of
80%. Only four cases obtain less positive results. Specifically, three of them are in the Boeing

UoL and one in the PeerReview UoL. For instance, one of the rules of the Boeing UoL in this
situation is defined as follows:

visible_Test_components = false: false

visible_Test_components = true

| visible_Test_hazard = false: true

| visible_Test_hazard = true

| | Lessons_components_counter <= 1

| | | visible_Extra_Lessons_hazards = false

| | | visible_Extra_Lessons_hazards = true

| | Lessons_components_counter > 1: false

As we can see, this rule uses four different variables to correctly classify 72.39% of the in-
stances. In this and the other cases in which the learning process obtained weaker results, the
number of examples were clearly insufficient to get the convergence of the algorithm. How-



130 Chapter 4. Recompiling Learning Processes from Event Logs

Table 4.5: Results of the reengineering process.

PeerReview Cam POO Driving Boeing AddWork Automaton TALF Programming
# solutions 2 12 9 90 2 394 44 55 2
Time (ms) 184531 10960 29476 603 1162 2273 7003 65335 144

ever, it would be misleading to point out that the number of variables is the unique factor,
since most of the other units have rules with a similar number of variables. In these cases,
we concluded that the complexity of the rule has more influence and would require a greater
number of examples to obtain better results.

Finally, it should be mentioned that learning these rules is usually a difficult task, since the
criteria used for the adaptation are not always clear. For instance, in many cases the instructor
does manually the adaptation and not always with a uniform criteria. However, in these cases
rules mining may achieve a secondary objective since it will precisely clarify these criteria
from the event logs.

4.9.3 Reenginering results

Table 4.5 shows the results of the reengineering part of our proposal. As we can see, the
processes were recompiled successfully for all UoLs. It should be noted the huge number
of solutions that can be derived from the causal matrix in some of the cases. For instance,
there are 394 different possibilities to structure a valid UoL from AddWork logs. There is a
simple explanation: IMS LD is mainly structured with parallels and sequences. Plays and
role-parts are parallel structures, while acts and sequences of activities are an ordered list of
elements. Therefore, the number of possible combinations grows as the number of parallels
and sequences increases. Notice that there would be even more solutions if we did not limit
the concatenation of selections between a father and a child node.

The time required to obtain all the results depends on two factors. On the one hand, the
net complexity, i.e the greater is the number of structures, the more combinations. On the
other hand, the structures of activities play an important role in computational time since they
increase the depth of the search tree. Therefore, it is not surprising that PeerReview and TALF

UoLs need more time since the have more structural elements and activities.

It should be noted that, from a practical viewpoint, it does not make sense to show all the



4.10. Conclusions and Future Work 131

reengineering results to an instructor. For instance, the selection of the most suitable structure
from the 394 solutions returned for the AddWork UoL would be unmanageable for an instruc-
tor without a proper way to filter the results. For this reason, solutions are ordered according
to criteria identified in [37]. In this study, participants were asked to transform a given tex-
tual design description into an IMS LD UoL. The analyses identified a number of conceptual
structures which presented challenges to teachers’ understanding, e.g., the management of
role-parts. Specifically, in our proposal we use the following ordering criterion:

• Simplicity. UoLs with fewer structural elements take precedence.

• Plays precedence. Plays and role-parts are used to define parallel structures within a
UoL, but plays have precedence over role-parts.

• Acts precedence. Acts and activity-structures are used to define sequences of activities
within a UoL, but acts have precedence over activity-structures.

4.10 Conclusions and Future Work

In this paper we have proposed a global approach that facilitates the reuse of UoLs defined in
legacy systems or VLEs. Our solution has been implemented to support the mining of event
log files (i) to obtain the learning flow, formalized as a Petri net, and performed by students
and instructors, and (ii) to identify the adaptation rules, represented as decision trees, used
to adapt the learning flow to each student. An important feature of the described approach
is its independence from any target EML, although in this paper the reengineering part of
the framework is tied to IMS LD. However, it is sufficient to define the translation, from the
Petri net models to the specific process representation, and from the decision tree to the rules
grammar used by the EML, to have a compete specification of the UoL. In fact, as future work
we plan to use this framework to recompile the same event logs to a different EML, such as
ADL SCORM.

To validate this approach, we tested our framework with 9 UoLs with different degrees
of complexity. Specifically, the three parts of the reengineering approach have been analyzed
separately. Firstly, we showed that process mining is a good solution to retrieve a process
structure from a set of event log files. Specifically, ProDiGen had a precision greater than
90% in most of the cases, and where the worst precision was of 82%. These high precision
values minimize the number of UoLs obtained by the reengineering process. Secondly, the



132 Chapter 4. Recompiling Learning Processes from Event Logs

identification of the adaptive rules also obtained very good results. In fact, the exact rule was
extracted in most of the analyzed cases and at least 80% of the instances correctly classified
in nearly all the remaining cases. Finally, we must mention that the correct IMS LD structure
was retrieved for all the analyzed UoLs.

It should be remarked that a secondary objective of this paper is to facilitate the reuse of
UoLs but from the perspective of instructors. In this sense, our system only requires the par-
ticipation of instructors to select the most suitable process structure from the set of solutions
recompiled by our framework. Notice that this is still a difficult task, since instructors do
not always have a deep knowledge of how IMS LD structures a UoL. This decision is more
complex as the number of recompiled structures, that match the logs, grows. Therefore, as
future work we plan to define some criteria, in addition to those identified in [37], to order the
recompiled UoLs, making this selection easier. So far our experience makes us think that the
complexity is in the activities part of the UoL, since plays, acts, and role-parts are usually not
considered when designing a UoL in non-IMS LD environments. However, this point must
still be verified.



CHAPTER 5

CONCLUSIONS

Log

Process 
hierarchization

Process
simplification

Chapter 2 Chapter 3 Chapter 4

Role part 2
Role part 1

Act 2Act 1

Play

Chapter 1: Introduction

Process
discovery

Chapter 5: Conclusions

In this PhD dissertation we have addressed the problem of automatic discovery of process
models. Particularly, we have focused on obtaining models, in general domains, with high
levels of replay fitness, precision and simplicity, while paying special attention in retrieving
highly interpretable process models. For this purpose, we first developed ProDiGen, a genetic
algorithm tailored towards the search of process models with high levels of replay fitness, pre-
cision, and simplicity. Using the results retrieved by ProDiGen, we then focused on retrieving
high interpretable process models. To this end, we proposed two different approaches. On
the one hand, we developed SLAD, a local search algorithm to improve the readability of
an already discovered process model through the inclusion of duplicate labels. On the other
hand, we developed a framework for the hierarchization of process models, providing a well
known structure to a process model. More specifically, regarding the latter, the discovery of
hierarchical process models is enabled through the inclusion of domain knowledge.

The main conclusions can be summarized as follows:



134 Chapter 5. Conclusions

First, in Chapter 2 a novel genetic process algorithm, ProDiGen, has been described. With
this algorithm we proved that following a hierarchical search towards replay fitness, precision,
and simplicity, is a good criteria to retrieve rich(er) process models in a general manner. The
algorithm uses a hierarchical fitness function that takes into account completeness, precision
and simplicity (with new definitions for both precision and simplicity) and uses heuristics to
optimize the genetic operators: i) a crossover operator that selects the crossover point from a
Probability Density Function (PDF) generated from the errors of the mined model, and ii) a
mutation operator guided by the causal dependencies of the log. ProDiGen was validated with
39 process models and several noise levels, giving a total of 111 different logs. Results con-
clude that using a hierarchical fitness based on completeness, precision and simplicity shows
a great performance when retrieving the original model. Moreover, ProDiGen was able to
retrieve the original model in the 84% of the tested logs. Furthermore, we have compared our
approach with four state of the art algorithms; non-parametric statistical tests show that our
algorithm outperforms the other approaches, and that the difference is statistically significant.

In Chapter 3 we presented SLAD, a novel algorithm for mining duplicate activities on an
already discovery process model. Through this algorithm we show how it is possible to im-
prove the structural clarity of an already process model by extending it with duplicate labels.
Specifically, the novelties of this approach are: i) the discovering of the duplicate activities
is performed after the discovery process, in order to unfold the overly connected nodes than
may introduce extra behavior not recorded in the log; ii) new heuristics to focus the search of
the duplicated tasks on those activities that better improve the model; and iii) new heuristics
to detect potential duplicate activities involved in loops. SLAD has been validated with 18
different logs and 54 different initial solutions from four different process mining algorithms.
Results show that the algorithm was able to enhance the initial solutions in 45 of the 54 tested
scenarios. Furthermore, in none of the cases SLAD retrieved the trace-model after the label
splitting process, avoiding the overfitted models with one path per trace. Also, none of the
resulting models after applying SLAD were worse than its respective initial solution in none
of the four quality dimensions. Moreover, we have compared SLAD with the state of the art
process discovery algorithms capable to mine duplicate tasks. Statistical test have shown that
the combination between ProDiGen and SLAD outperforms the rest of the algorithms, and
that the differences are statistically significant.

Finally, in Chapter 4, we presented a novel framework for the hierarchization of process
models. More specifically, we show how it is possible to automatically translate an already



135

discovered process model using domain knowledge and, thus, retrieve a more interpretable
process model. The main components of this framework are as follows: i) a new framework
to hierarchize process models using domain knowledge regardless the target language; ii) the
automatic identification of the adaptive rules from event logs; iii) a new framework to make
process models more interpretable based on domain knowledge. We have implemented and
validated this framework within the educational domain, enabling the translation of a discov-
ered process model into a standardized learning process model more suitable for teachers, i.e.,
the standard IMS LD. Hence, the different components of the framework have been analyzed
using a set of nine real courses with different degrees of complexity. Firstly, experimental
results showed that process mining is a good solution to retrieve a process structure from a
set of event log files. Specifically, ProDiGen had a precision greater than 90% in most of the
cases, and where the worst precision was of 82%. These high precision values minimize the
number of courses obtained by the reengineering process. Secondly, the identification of the
adaptive rules also obtained very good results. In fact, the exact rule was extracted in most
of the analyzed cases and at least 80% of the instances correctly classified in nearly all the
remaining cases. Finally, we must mention that the correct IMS LD structure was retrieved
for all the analyzed courses.

The research accomplished in this thesis leads to a number of interesting applications in
different fields and new developments that could be taken into consideration to continue as a
future work:

- Improvement of the replay fitness metric in the evolutionary algorithm. The runtimes
of ProDiGen are currently mostly limited by the fitness calculation. For evolutionary
algorithms, fitness estimations might be sufficient during successive iterations.

- Better genetic operators. Although the current genetic operators of ProDiGen have
already been largely optimized with different heuristics, the specific operators might
be further improved. Currently, the repairing step after changing an individual is per-
formed in a random way. This could be greatly improved by introducing heuristics to
decide which kind of change should be performed, and what kind of operator should
be applied. Additionally, through experimentation, the performance of the crossover
operator is adequate in the first generations of the evolutionary cycle. Thereby, it would
be interesting to introduce a trade-off between mutation and crossover depending on
the iteration of the algorithm.



136 Chapter 5. Conclusions

- Improve the search space of SLAD. Currently, SLAD only takes into account the already
mined relations in a model. A extension of this algorithm would be the possibility to
not only redistribute the already mined dependencies of the model, but to introduce
new relations based on the combinations of the potential duplicate activities, in order to
enhance those models with a lower fitness.

- Extension of the semantics in the automatic reconstruction of courses. The automatic
reconstruction of courses does not support all the operators defined in IMS LD. In order
to give support to the complete grammar of IMS LD, the number of operators used by
the decision tree algorithm might be extended.

- Hierarchization of process models in other domains. An important feature of the de-
scribed approach for hierarchization of process models is its independence from any
target modelling language, although in this PhD Thesis the reengineering part of the
framework is tied to IMS LD. However, it is sufficient to define the translation, from
the Petri net models to the specific process representation, and from the decision tree
to the rules grammar used by the target modelling language, to automate the hierar-
chization of a process model. Hence, as future work it might be possible to use this
framework to recompile the same event logs to, for instance, a different educational
modelling language, such as ADL SCORM.



Bibliography

[1] M. Abdous. Towards a framework for business process reengineering in higher educa-
tion. Journal of Higher Education Policy and Management, 33(4):427–433, 2011.

[2] M. Abdous and W. He. A framework for process reengineering in higher education:
A case study of distance learning exam scheduling and distribution. The International

Review of Research in Open and Distributed Learning, 9(3):1–12, 2008.

[3] R. Accorsi and T. Stocker. On the exploitation of process mining for security audits:
the conformance checking case. In S.Y. Shin and J.C. Maldonado, editors, Proceedings

of the 28th Annual ACM Symposium on Applied Computing, SAC, pages 1709–1716,
Coimbra, Portugal, 2013. ACM.

[4] R. Accorsi, T. Stocker, and G. Müller. On the exploitation of process mining for se-
curity audits: the process discovery case. In S.Y. Shin and J.C. Maldonado, editors,
Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC, pages
1462–1468, Coimbra, Portugal, 2013. ACM.

[5] A. Adriansyah. Aligning observed and modeled behavior. PhD thesis, Technische
Universiteit Eindhoven, 2014.

[6] A. Adriansyah, J. Munoz-Gama, J. Carmona, B.F. van Dongen, and W.M.P. van der
Aalst. Alignment based precision checking. In M. La Rosa and P. Soffer, editors,
Proceedings of the 10th International Workshops on Business Process Management,

BPM, volume 132 of Lecture Notes in Business Information Processing, pages 137–
149, Tallinn, Estonia, 2012. Springer.

[7] R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow
logs. In H. Schek, F. Saltor, I. Ramos, and G. Alonso, editors, Proceedings of the in 6th



138 Bibliography

International Conference on Extending Database Technology, EDBT, volume 1377 of
Lecture Notes in Computer Science, pages 469–483, Valencia, Spain, 1998. Springer.

[8] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolu-

tionary Programming, Genetic Algorithms. Oxford university press, 1st edition, 1996.

[9] E. Badouel and P. Darondeau. Theory of regions. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Com-

puter Science, pages 529–586, Dagstuhl, 1998. Springer.

[10] T. Baier, J. Mendling, and M. Weske. Bridging abstraction layers in process mining.
Information Systems, 46:123–139, 2014.

[11] R. Bergenthum, J. Desel, A. Harrer, and S. Mauser. Modeling and mining of learnflows.
Trans. Petri Nets and Other Models of Concurrency, 5:22–50, 2012.

[12] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process mining based on re-
gions of languages. In G. Alonso, P. Dadam, and M. Rosemann, editors, Proceedings

of the 5th International Conference on Business Process Management, BPM, volume
4714 of Lecture Notes in Computer Science, pages 375–383, Brisbane, Australia, 2007.
Springer.

[13] R.P.J.C. Bose and W.M.P. van der Aalst. Abstractions in process mining: A taxonomy
of patterns. In U. Dayal, J. Eder, J. Koehler, and H.A. Reijers, editors, Proceedings

of the 7th International Conference on Business Process Management, BPM, volume
5701 of Lecture Notes in Computer Science, pages 159–175, Ulm, Germany, 2009.
Springer.

[14] R.P.J.C. Bose, H.M.W. Verbeek, and W.M.P. van der Aalst. Discovering Hierarchical
Process Models Using ProM. In S. Nurcan, editor, Proceedings of the CAiSE Forum

2011, volume 107 of Lecture Notes in Business Information Processing, pages 33–40,
London, UK, 2012. Springer.

[15] S.K.L.M. vanden Broucke. Advances in Process Mining: Artificial Negative Events

and Other Techniques. PhD thesis, Katholieke Universiteit Leuven, 2014.

[16] S.K.L.M. vanden Broucke, J. Vanthienen, and B. Baesens. Declarative process discov-
ery with evolutionary computing. In Proceedings of the IEEE Congress on Evolution-

ary Computation, CEC, pages 2412–2419, Beijing, China, 2014. IEEE.



Bibliography 139

[17] S.K.L.M. vanden Broucke, J. De Weerdt, J. Vanthienen, and B. Baesens. A compre-
hensive benchmarking framework (CoBeFra) for conformance analysis between proce-
dural process models and event logs in ProM. In Proceedings of the IEEE Symposium

on Computational Intelligence and Data Mining, CIDM, pages 254–261, Singapore,
Singapore, 2013. IEEE.

[18] J.C.A.M. Buijs. Flexible Evolutionary Algorithms for Mining Structured Process Mod-

els. PhD thesis, Technische Universiteit Eindhoven, 2014.

[19] J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. On the role of fitness, pre-
cision, generalization and simplicity in process discovery. In R. Meersman, H. Panetto,
T.S. Dillon, S. Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Berga-
maschi, and I.F. Cruz, editors, OTM Federated Conferences, Proceedings of the 20th

International Conference on Cooperative Information systems, CoopIS, volume 7565
of Lecture Notes in Computer Science, pages 305–322, Rome, Italy, 2012. Springer.

[20] J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Quality dimensions in
process discovery: The importance of fitness, precision, generalization and simplicity.
International Journal of Cooperative Information Systems, 23(1):1–39, 2014.

[21] A. Burattin and A. Sperduti. Heuristics Miner for Time Intervals. In Proceedings of the

18th European Symposium on Artificial Neural Networks, ESANN, Bruges, Belgium,
2010.

[22] A. Burattin, A. Sperduti, and W.M.P. van der Aalst. Heuristics miners for streaming
event data. CoRR, abs/1212.6383, 2012.

[23] J. Carmona. The label splitting problem. Transactions on Petri Nets and Other Models

of Concurrency, 6:1–23, 2012.

[24] J. Carmona, J. Cortadella, and M. Kishinevsky. A region-based algorithm for discov-
ering petri nets from event logs. In M. Dumas, M. Reichert, and M.C. Shan, editors,
Proceedings of the 6th International Conference on Business Process Management,

BPM, volume 5240 of Lecture Notes in Computer Science, pages 358–373, Milan,
Italy, 2008. Springer.

[25] J. Carmona, J. Cortadella, and M. Kishinevsky. New region-based algorithms for de-
riving bounded petri nets. IEEE Transactions on Computers, 59(3):371–384, 2010.



140 Bibliography

[26] R. Conforti, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa. BPMN miner: Auto-
mated discovery of BPMN process models with hierarchical structure. Information

Systems, 56:284–303, 2016.

[27] J.E. Cook and A.L. Wolf. Discovering models of software processes from event-based
data. ACM Transactions on Software Engineering and Methodology, 7(3):215–249,
1998.

[28] J. Dalziel. Implementing learning design. the learning activity management system
(LAMS). In G. Crisp, D. Thiele, I. Scholten, S. Barker, and J. Baron, editors, Pro-

ceedings of the 20th Annual Conference of the Australasian Society for Computers in

Learning in Tertiary Education, ASCILITE, pages 51–58, Adelaide, Australia, 2003.
IADIS Press.

[29] M. de Leoni, W.M.P. van der Aalst, and M. Dees. A general framework for correlat-
ing business process characteristics. In S.W. Sadiq, P. Soffer, and H. Völzer, editors,
Proceedings of the 12th International Conference on Business Process Management,

BPM, volume 8659 of Lecture Notes in Computer Science, pages 250–266, Eindhoven,
The Netherlands, 2014. Springer.

[30] A.K.A. de Medeiros. Genetic Process Mining. PhD thesis, Technische Universiteit
Eindhoven, 2006.

[31] A.K.A. de Medeiros, A. Guzzo, G. Greco, W.M.P. van der Aalst, A.J.M.M. Weijters,
B.F. van Dongen, and D. Saccà. Process mining based on clustering: A quest for
precision. In A.H.M. Ter Hofstede, B. Benatallah, and H.Y. Paik, editors, Proceedings

of the 5th International Workshops on Business Process Management, BPM, volume
4928 of Lecture Notes in Computer Science, pages 17–29, Brisbane, Australia, 2007.
Springer.

[32] A.K.A. de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M. Weijters.
Process mining: Extending the α-algorithm to mine short loops. BETA Working Paper
Series WP 113, Eindhoven University of Technology, 2004.

[33] A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic pro-
cess mining: an experimental evaluation. Data Mining and Knowledge Discovery,
14(2):245–304, 2007.



Bibliography 141

[34] J. de San Pedro, J. Carmona, and J. Cortadella. Log-Based Simplification of Process
Models. In H.R. Motahari-Nezhad, J. Recker, and M. Weidlich, editors, Proceedings

of the 13th International Conference on Business Process Management, BPM, volume
9253 of Lecture Notes in Computer Science, pages 457–474, Innsbruck, Austria, 2015.
Springer.

[35] K. Deb, A. Pratap, S. Agarwal, and T.A.M.T. Meyarivan. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE transactions on Evolutionary Computation,
6(2):182–197, 2002.

[36] P. Delias, M. Doumpos, E. Grigoroudis, P. Manolitzas, and N.F. Matsatsinis. Support-
ing healthcare management decisions via robust clustering of event logs. Knowledge-

Based Systems, 84:203–213, 2015.

[37] M. Derntl, S. Neumann, D. Griffiths, and P. Oberhuemer. The conceptual structure
of IMS learning design does not impede its use for authoring. IEEE Transactions on

Learning Technologies, 5(1):74–86, 2012.

[38] P. Dixit, J.C.A.M. Buijs, W.M.P. van der Aalst, B. Hompes, and H. Buurman. Enhanc-
ing process mining results using domain knowledge. In P. Ceravolo and S. Rinderle-
Ma, editors, Proceedings of the 5th International Symposium on Data-driven Pro-

cess Discovery and Analysis, SIMPDA, volume 1527 of CEUR Workshop Proceedings,
pages 79–94, Vienna, Austria, 2015. CEUR-WS.org.

[39] J.M. Dodero, Á.M. del Val, and J. Torres. An extensible approach to visually editing
adaptive learning activities and designs based on services. Journal of Visual Languages

& Computing, 21(6):332–346, 2010.

[40] M. Dumas, M. La Rosa, J. Mendling, and H.A. Reijers. Fundamentals of Business

Process Management. Springer, 2013 edition, 2013.

[41] M. Dumas, W.M.P. van der Aalst, and A. Ter Hofstede. Process-aware information sys-

tems: bridging people and software through process technology. Wiley-Interscience,
1st edition, 2007.

[42] A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part II: State Spaces of
Concurrent Systems. Acta Informatica, 27(4):343–368, 1990.



142 Bibliography

[43] A.E. Eiben and J.E. Smith. Introduction to evolutionary computing. Springer, 2nd
edition, 2010.

[44] D. Fahland and W.M.P. van der Aalst. Simplifying discovered process models in a
controlled manner. Information Systems, 38(4):585–605, 2013.

[45] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, 32(200):675–
701, 1937.

[46] IMS Global Learning Consortium. IMS Learning Design Information Model, 2003.
Version 1.0 Final Specification.

[47] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust process discovery
with artificial negative events. The Journal of Machine Learning Research, 10:1305–
1340, 2009.

[48] G. Greco, A. Guzzo, F. Lupia, and L. Pontieri. Process discovery under precedence
constraints. ACM Transactions on Knowledge Discovery from Data (TKDD), 9(4):32,
2015.

[49] G. Greco, A. Guzzo, L. Ponieri, and D. Sacca. Discovering expressive process models
by clustering log traces. IEEE Transactions on Knowledge and Data Engineering,
18(8):1010–1027, 2006.

[50] G. Greco, A. Guzzo, and L. Pontieri. Mining hierarchies of models: From abstract
views to concrete specifications. In W.M.P. van der Aalst, B. Benatallah, F. Casati,
and F. Curbera, editors, Proceedings of the 3rd International Conference on Business

Process Management, BPM, volume 3649 of Lecture Notes in Computer Science, pages
32–47, Nancy, France, 2005.

[51] G. Greco, A. Guzzo, and L. Pontieri. Mining taxonomies of process models. Data &

Knowledge Engineering, 67(1):74–102, 2008.

[52] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. Mining expressive process models by
clustering workflow traces. In H. Dai, R. Srikant, and C. Zhang, editors, Proceedings

of the 8th Pacific-Asia Conference on Advances in Knowledge Discovery and Data

Mining, PAKDD, volume 3056 of Lecture Notes in Computer Science, pages 52–62,
Sydney, Australia, 2004. Springer.



Bibliography 143

[53] D. Griffiths, P. Beauvoir, and P. Sharples. Advances in editors for IMS LD in the ten-
competence project. In Proceedings of the 8th IEEE International Conference on Ad-

vanced Learning Technologies, ICALT, pages 1045–1047, Santander, Cantabria, Spain,
2008. IEEE Computer Society.

[54] C.W. Günther. Process mining in flexible environments. PhD thesis, Technische Uni-
versiteit Eindhoven, 2009.

[55] C.W. Günther and W.M.P. van der Aalst. Fuzzy mining–adaptive process simplifica-
tion based on multi-perspective metrics. In G. Alonso, P. Dadam, and M. Rosemann,
editors, Proceedings of the in 5th International Conference on Business Process Man-

agement, BPM, volume 4714 of Lecture Notes in Computer Science, pages 328–343,
Brisbane, Australia, 2007. Springer.

[56] Q. Guo, L. Wen, J. Wang, Z. Yan, and S.Y. Philip. Mining invisible tasks in non-
free-choice constructs. In H.R. Motahari-Nezhad, J. Recker, and M. Weidlich, editors,
Proceedings of the 13th International Conference on Business Process Management,

BPM, volume 9253 of Lecture Notes in Computer Science, pages 109–125, Innsbruck,
Austria, 2015. Springer.

[57] J. Herbst. A machine learning approach to workflow management. In R. López
de Mántaras and E. Plaza, editors, Proceedings of the 11th European Conference on

Machine Learning, ECML, volume 1810 of Lecture Notes in Computer Science, pages
183–194, Barcelona, Spain, 2000. Springer.

[58] J. Herbst and D. Karagiannis. Workflow mining with InWoLvE. Computers in Industry,
53(3):245–264, 2004.

[59] D. Hernández-Leo, E.D. Villasclaras-Fernández, J.I. Asensio-Pérez, Y. Dimitriadis,
I.M. Jorrı́n-Abellán, I. Ruiz-Requies, and B. Rubia-Avi. COLLAGE: A collabora-
tive Learning Design editor based on patterns. Educational Technology & Society,
1(9):58–71, 2006.

[60] S. Heyer, P. Oberhuemer, S. Zander, and P. Prenner. Making sense of IMS learn-
ing design level B: from specification to intuitive modeling software. In E. Duval,
R. Klamma, and M. Wolpers, editors, Proceedings of the 2nd European Conference



144 Bibliography

on Technology Enhanced Learning, (EC-TEL), volume 4753 of Lecture Notes in Com-

puter Science, pages 86–100, Crete, Greece, 2007. Springer.

[61] J.L. Hodges and E.L. Lehmann. Rank methods for combination of independent exper-
iments in analysis of variance. The Annals of Mathematical Statistics, 33(2):482–497,
1962.

[62] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal

of statistics, pages 65–70, 1979.

[63] L. Howard, J. Johnson, and C. Neitzel. Examining learner control in a structured in-
quiry cycle using process mining. In R.S.J. de Baker, A. Merceron, and P.I. Pavlik Jr.,
editors, Proceedings of the 3rd International Conference on Educational Data Mining,

(EDM), pages 71–80, Pittsburgh, PA, USA, 2010. www.educationaldatamining.org.

[64] A. Kalenkova, M. de Leoni, and W.M.P. van der Aalst. Discovering, Analyzing and
Enhancing BPMN Models Using ProM. In Lior Limonad and Barbara Weber, edi-
tors, Proceedings of the BPM Demo Sessions co-located with the 12th International

Conference on Business Process Management BPM, volume 1295 of CEUR Workshop

Proceedings, page 36, Eindhoven, The Netherlands, 2014. CEUR-WS.org.

[65] Y. Karagiorgi and L. Symeou. Translating constructivism into instructional design:
Potential and limitations. Educational Technology & Society, 8(1):17–27, 2005.

[66] P. Karampiperis and D. Sampson. A flexible authoring tool supporting adaptive learn-
ing activities. In Kinshuk, D.G. Sampson, and P. T. Isaı́as, editors, Proceedings of

the IADIS International Conference on Cognition and Exploratory Learning in Digital

Age, CELDA, pages 51–58, Lisbon, Portugal, 2004. IADIS Press.

[67] M.H. Karray, B. Chebel-Morello, and N. Zerhouni. PETRA: process evolution using a
trace-based system on a maintenance platform. Knowledge-Based Systems, 68:21–39,
2014.

[68] R. Kimball and M. Ross. The data warehouse toolkit: the complete guide to dimen-

sional modeling. John Wiley & Sons, 3rd edition, 2011.

[69] M. Leemans and W.M.P. van der Aalst. Discovery of frequent episodes in event logs.
In R. Accorsi, P. Ceravolo, and B. Russo, editors, Proceedings of the 4th International



Bibliography 145

Symposium on Data-driven Process Discovery and Analysis, SIMPDA, volume 1293
of CEUR Workshop Proceedings, pages 31–45, Milan, Italy, 2014. CEUR-WS.org.

[70] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering block-structured
process models from event logs-a constructive approach. In J.M. Colom and J. Desel,
editors, Proceedings of the 34th International Conference on Application and Theory of

Petri Nets and Concurrency PETRI NETS, volume 7927 of Lecture Notes in Computer

Science, pages 311–329, Milan, Italy, 2013. Springer.

[71] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering block-structured
process models from event logs containing infrequent behaviour. In N. Lohmann,
M. Song, and P. Wohed, editors, Proceedings of the 12th International Workshops on

Business Process Management, BPM, volume 171 of Lecture Notes in Business Infor-

mation Processing, pages 66–78, Beijing, China, 2013. Springer.

[72] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Scalable process discovery with
guarantees. In K. Gaaloul, R. Schmidt, S. Nurcan, S. Guerreiro, and Q. Ma, editors,
Proceedings of the 16th International Conference on Enterprise, Business-Process and

Information Systems Modeling, BPMDS, volume 214 of Lecture Notes in Business In-

formation Processing, pages 85–101, Stockholm, Sweden, 2015. Springer.

[73] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Using life cycle information
in process discovery. In H.R. Motahari-Nezhad, J. Recker, and M. Weidlich, editors,
Proceedings of the 13th International Workshops on Business Process Management,

BPM, Lecture Notes in Computer Science, Innsbruck, Austria, 2015. Springer.

[74] M. de Leoni, J. Munoz-Gama, J. Carmona, and W.M.P. van der Aalst. Decompos-
ing Alignment-Based Conformance Checking of Data-Aware Process Models. In
R. Meersman, H. Panetto, T.S. Dillon, M. Missikoff, L. Liu, O. Pastor, A. Cuzzocrea,
and T.K. Sellis, editors, OTM Federated Conferences, Proceedings of the 2014 Inter-

national Conference on Cooperative Information systems, CoopIS and On the Move to

Meaningful Internet Systems, ODBASE, volume 8841 of Lecture Notes in Computer

Science, Amantea, Italy, 2014. Springer.

[75] J. Li, D. Liu, and B. Yang. Process mining: Extending α-algorithm to mine duplicate
tasks in process logs. In K.C.C. Chang, W. Wang, L. Chen, C.A. Ellis, C.H. Hsu,



146 Bibliography

A. Chung Tsoi, and H. Wang, editors, Advances in Web and Network Technologies,

and Information Management, volume 4537 of Lecture Notes in Computer Science,
pages 396–407, Huang Shan, China, 2007. Springer.

[76] V. Liesaputra, S. Yongchareon, and S. Chaisiri. Efficient process model discovery us-
ing maximal pattern mining. In H.R. Motahari-Nezhad, J. Recker, and M. Weidlich,
editors, Proceedings of the 13th International Conference on Business Process Man-

agement, BPM, volume 9253 of Lecture Notes in Computer Science, pages 441–456.
Springer, Innsbruck, Austria, 2015.

[77] T. Liu, Y. Cheng, and Z. Ni. Mining event logs to support workflow resource allocation.
Knowledge-Based Systems, 35:320–331, 2012.

[78] R. Lorenz, S. Mauser, and G. Juhás. How to synthesize nets from languages: a survey.
In S.G. Henderson, B. Biller, M.H. Hsieh, J. Shortle, J.D. Tew, and R.R. Barton, edi-
tors, Proceedings of the 39th Conference on Winter Simulation, WSC, pages 637–647,
Washington DC, USA, 2007. IEEE Press, WSC.

[79] F.M. Maggi, T. Slaats, and H.A. Reijers. The automated discovery of hybrid processes.
In S.W. Sadiq, P. Soffer, and H. Völzer, editors, Proceedings of the 12th International

Conference on Business Process Management, BPM, volume 8659 of Lecture Notes in

Computer Science, pages 392–399, Eindhoven, The Netherlands, 2014. Springer.

[80] R.S. Mans, W.M.P. van der Aalst, and R.J.B. Vanwersch. Process Mining in Health-

care: Evaluating and Exploiting Operational Healthcare Processes. Springer Briefs in
Business Process Management. Springer, 2015 edition, 2015.

[81] H. Martens and H. Vogten. CopperCore 3.3, 2009.

[82] I. Martinez-Ortiz, J.L. Sierra, and B. Fernandez-Manjon. Authoring and reengineering
of ims learning design units of learning. IEEE Transactions on Learning Technologies,
2(3):189–202, 2009.

[83] L. Maruster. A machine learning approach to understand business processes. PhD
thesis, Technische Universiteit Eindhoven, 2003.

[84] S. Mertens, F. Gailly, and G. Poels. Enhancing declarative process models with DMN
decision logic. In K. Gaaloul, R. Schmidt, S. Nurcan, S. Guerreiro, and Q. Ma, editors,



Bibliography 147

Enterprise, Business-Process and Information Systems Modeling, volume 214 of Lec-

ture Notes in Business Information Processing, pages 151–165. Springer, Stockholm,
Sweden, 2015.

[85] T. Molka, D. Redlich, W. Gilani, X.J. Zeng, and M. Drobek. Evolutionary computation
based discovery of hierarchical business process models. In W. Abramowicz, editor,
Proceedings of the 18th International Conference on Business Information Systems,

BIS, volume 208 of Lecture Notes in Business Information Processing, pages 191–204,
Poznań, Poland, 2015. Springer.

[86] J. Munoz-Gama. Conformance checking and diagnosis in process mining. PhD thesis,
Universitat Politècnica de Catalunya, 2014.

[87] J. Munoz-Gama, J. Carmona, and W.M.P. van der Aalst. Single-Entry Single-Exit
Decomposed Conformance Checking. Information Systems, 46:102–122, 2014.

[88] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989.

[89] G. Paquette and M. Léonard. The educational modeling of a collaborative game using
MOT+LD. In Proceedings of the 6th IEEE International Conference on Advanced

Learning Technologies, ICALT, pages 1156–1157, Kerkrade, The Netherlands, 2006.
IEEE Computer Society.

[90] M. Pechenizkiy, N. Trcka, E. Vasilyeva, W.M.P. van der Aalst, and P. De
Bra. Process mining online assessment data. In T. Barnes, M.C. Desmarais,
C. Romero, and S. Ventura, editors, Proceedings of the 2nd International Confer-

ence on Educational Data Mining, EDM, pages 279–288, Cordoba, Spain, 2009.
www.educationaldatamining.org.

[91] H. Ponce-de León, C. Rodrı́guez, J. Carmona, K. Heljanko, and S. Haar. Unfolding-
based process discovery. In B. Finkbeiner, G. Pu, and L. Zhang, editors, Proceedings of

the - 13th International Symposium on Technology for Verification and Analysis, ATVA,
volume 9364, pages 31–47, Shanghai, China, 2015. Springer.

[92] W. Poncin, A. Serebrenik, and M. van den Brand. Mining student capstone projects
with FRASR and ProM. In C.V. Lopes and K. Fisher, editors, Proceedings of the



148 Bibliography

26th Annual international conference companion on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA, pages 87–96, Portland, OR, USA,
2011. ACM.

[93] W. Poncin, A. Serebrenik, and M. van den Brand. Process mining software repositories.
In T. Mens, Y. Kanellopoulos, and A. Winter, editors, Proceedings of the 15th Euro-

pean Conference on Software Maintenance and Reengineering, CSMR, pages 5–14,
Oldenburg, Germany, 2011. IEEE Computer Society.

[94] I.R. Pulshashi, H. Bae, R.A. Sutrisnowati, B. Nugroho Y., and S. Park. Slice and
connect: Tri-dimensional process discovery with case study of port logistics process.
Procedia Computer Science, 72:461–468, 2015.

[95] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 1993.

[96] D. Redlich, T. Molka, W. Gilani, G.S. Blair, and A. Rashid. Constructs competition
miner: Process control-flow discovery of bp-domain constructs. In S.W. Sadiq, P. Sof-
fer, and H. Völzer, editors, Proceedings of the 12th International Conference on Busi-

ness Process Management, BPM, volume 8659 of Lecture Notes in Computer Science,
pages 134–150, Eindhoven, The Netherlands, 2014. Springer.

[97] A.J. Rembert, A. Omokpo, P. Mazzoleni, and R. Goodwin. Process discovery using
prior knowledge. In S. Basu, C. Pautasso, L. Zhang, and X. Fu, editors, Proceedings

of the 11th International Conference on Service-Oriented Computing , ICSOC, volume
8274 of Lecture Notes in Computer Science, pages 328–342, Berlin, Germany, 2013.
Springer.

[98] M.C. Rodrı́guez, M. Derntl, and L. Botturi. Visual instructional design languages.
Journal of Visual Languages and Computing, 21(6):311–312, 2010.

[99] I. Rodrı́guez-Fdez, A. Canosa, M. Mucientes, and A. Bugarı́n. STAC: A web platform
for the comparison of algorithms using statistical tests. In A. Yazici, N.R. Pal, U. Kay-
mak, T. Martin, H. Ishibuchi, C.T. Lin, J.M.C. Sousa, and B. Tütmez, editors, Proceed-

ings of the IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, pages 1–8,
Istanbul, Turkey, 2015. IEEE.



Bibliography 149

[100] A. Rodrı́guez Groba, B. Vázquez-Barreiros, M. Lama, A. Gewerc, and M. Mucientes.
Using a learning analytics tool for evaluation in self-regulated learning. In E. Tovar
M. Castro, editor, Proceedings of the 44th International Conference on Frontiers in

Education, FIE, pages 2484–2491, Madrid, Spain, 2014. IEEE.

[101] C. Romero, S. Ventura, and E. Garcı́a. Data mining in course management systems:
Moodle case study and tutorial. Computers & Education, 51(1):368–384, 2008.

[102] A. Rozinat, A.K.A. de Medeiros, C.W. Günther, A.J.M.M. Weijters, and W.M.P.
van der Aalst. Towards an evaluation framework for process mining algorithms. BETA
Working Paper Series WP 224, Eindhoven University of Technology, 2007.

[103] A. Rozinat, A.K.A de Medeiros, C.W. Günther, A.J.M.M. Weijters, and W.M.P. van der
Aalst. The need for a process mining evaluation framework in research and practice.
In A.H.M. Ter Hofstede, B. Benatallah, and H.Y. Paik, editors, Proceedings of the 5th

International Conference on Business Process Management, BPM, volume 4928 of
Lecture Notes in Computer Science, pages 84–89, Brisbane, Australia, 2008. Springer.

[104] A. Rozinat and W.M.P. van der Aalst. Decision mining in ProM. In S. Dustdar, J.L.
Fiadeiro, and A.P. Sheth, editors, Proceedings of the 4th International Conference on

Business Process Management, BPM, volume 4102 of Lecture Notes in Computer Sci-

ence, pages 420–425, Vienna, Austria, 2006. Springer.

[105] A. Rozinat and W.M.P. van der Aalst. Conformance checking of processes based on
monitoring real behavior. Information Systems, 33(1):64–95, 2008.

[106] N. Russell, A.H.M. Ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
resource patterns. BETA Working Paper Series WP 127, Eindhoven University of
Technology, 2004.

[107] N. Russell, A.H.M. Ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
data patterns. Technical Report FIT-TR-2004-01, Queensland University of Technol-
ogy, 2004.

[108] N. Russell, A.H.M. Ter Hofstede, and N. Mulyar. Workflow control-flow patterns: A
revised view. Technical Report BPM-06-22, BPMcenter.org, 2006.



150 Bibliography

[109] N. Russell and W.M.P. van der Aalst. Exception handling patterns in process-aware
information systems. Technical Report BPM-06-04, BPMcenter.org, 2006.

[110] N. Russell, W.M.P. van der Aalst, and A.H.M. Ter Hofstede. Workflow Patterns: The

Definitive Guide. MIT Press, 2016.

[111] L. Sánchez-González, F. Garcı́a, J. Mendling, F. Ruiz, and M. Piattini. Prediction of
business process model quality based on structural metrics. In J. Parsons, M. Saeki,
P. Shoval, C.C. Woo, and Y. Wand, editors, Proceedings of the 29th International Con-

ference on Conceptual Modeling, (ER), volume 6412 of Lecture Notes in Computer

Science, pages 458–463, Vancouver, BC, Canada, 2010. Springer.

[112] R. Sarno, W.A. Wibowo, and A. Solichah. Time based discovery of parallel business
processes. In E. Kurniawan, editor, Proceedings of the 2015 International Conference

on Computer, Control, Informatics and its Applications, IC3INA, pages 28–33, Ban-
dung, Indonesia, 2015. IEEE.

[113] M. Solé and J. Carmona. Process mining from a basis of state regions. In J. Lilius and
W. Penczek, editors, Proceedings of the 31st International Conference on Applications

and Theory of Petri Nets, PETRI NETS, volume 6128 of Lecture Notes in Computer

Science, pages 226–245, Braga, Portugal, 2010. Springer.

[114] M. Solé and J. Carmona. An smt-based discovery algorithm for c-nets. In S. Haddad
and L. Pomello, editors, Proceedings of the 33rd International Conference on Applica-

tion and Theory of Petri Nets, PETRI NETS, volume 7347 of Lecture Notes in Computer

Science, pages 51–71, Hamburg, Germany, 2012. Springer.

[115] G. O. Spagnolo, E. Marchetti, A. Coco, P. Scarpellini, A. Querci, F. Fabbrini, and
S. Gnesi. An experience on applying process mining techniques to the tuscan port
community system. In D. Winkler, S. Biffl, and J. Bergsmann, editors, Proceedings

of the 8th International Conference on Software Quality. The Future of Systems-and

Software Development, SWQD, volume 238 of LNBIP, pages 49–60, Vienna, Austria,
2016. Springer.

[116] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. In P.M.G. Apers, M. Bouzeghoub, and G. Gardarin, editors,



Bibliography 151

Proceedings of the 5th International Conference on Advances in Database Technol-

ogy, EDBT, volume 1057 of Lecture Notes in Computer Science, pages 3–17, Avignon,
France, 1996. Springer.

[117] T. Sztyler, J. Völker, J. Carmona, O. Meier, and H. Stuckenschmidt. Discovery of per-
sonal processes from labeled sensor data–an application of process mining to person-
alized health care. In W.M.P. van der Aalst, R. Bergenthum, and J. Carmona, editors,
Proceedings of the International Workshop on Algorithms & Theories for the Analysis

of Event Data, ATAED, volume 1371 of CEUR Workshop Proceedings, pages 22–23,
Brussels, Belgium, 2015. CEUR-WS.org.

[118] N. Tax, N. Sidorova, R. Haakma, and W.M.P. van der Aalst. Log-based evaluation of
label splits for process models. Procedia Computer Science, 96:63–72, 2016.

[119] W.M.P. van der Aalst. Business process simulation revisited. In J. Barjis, editor, Pro-

ceedings of the 6th International Workshop on Enterprise and Organizational Mod-

eling and Simulation, EOMAS, volume 63 of Lecture Notes in Business Information

Processing, pages 1–14, Hammamet, Tunisia, 2010. Springer.

[120] W.M.P. van der Aalst. On the representational bias in process mining. In S. Reddy and
S. Tata, editors, Proceedings of the 20th International Workshops on Enabling Tech-

nologies: Infrastructures for Collaborative Enterprises, WETICE, pages 2–7, Paris,
France, 2011. IEEE Computer Society.

[121] W.M.P. van der Aalst. Decomposing Petri Nets for Process Mining: A Generic Ap-
proach. Distributed and Parallel Databases, 31(4):471–507, 2013.

[122] W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer Publishing
Company, Incorporated, 2nd edition, 2016.

[123] W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. Causal nets: a modeling
language tailored towards process discovery. In J.P. Katoen and B. König, editors,
Proceedings of the 22nd International Conference on Concurrency Theory CONCUR,
volume 6901 of Lecture Notes in Computer Science, pages 28–42, Aachen, Germany,
2011. Springer.



152 Bibliography

[124] W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. Replaying history on
process models for conformance checking and performance analysis. Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery, 2(2):182–192, 2012.

[125] W.M.P. van der Aalst and C.W. Günther. Finding structure in unstructured processes:
The case for process mining. In T. Basten, G. Juhás, and S.K. Shukla, editors, Pro-

ceedings of the 7th International Conference on Application of Concurrency to System

Design, ACSD, pages 3–12, Bratislava, Slovak Republic, 2007. IEEE Computer Soci-
ety.

[126] W.M.P. van der Aalst, A. Kalenkova, V. Rubin, and H.M.W. Verbeek. Process discov-
ery using localized events. In R.R. Devillers and A. Valmari, editors, Proceedings of

the 36th International Conference on Application and Theory of Petri Nets and Con-

currency, PETRI NETS, volume 9115 of Lecture Notes in Computer Science, pages
287–308. Springer, Brussels, Belgium, 2015.

[127] W.M.P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows: Balanc-
ing between flexibility and support. Computer Science - R&D, 23(2):99–113, 2009.

[128] W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering social networks from
event logs. Computer Supported Cooperative Work (CSCW), 14(6):549–593, 2005.

[129] W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. Günther. Pro-
cess mining: A two-step approach using transition systems and regions. Technical
Report BPM-06-30, BPMcenter.org, 2006.

[130] W.M.P. van der Aalst, M.H. Schonenberg, and M. Song. Time prediction based on
process mining. Information Systems, 36(2):450–475, 2011.

[131] W.M.P. van der Aalst and M. Song. Mining social networks: Uncovering interac-
tion patterns in business processes. In J. Desel, B. Pernici, and M. Weske, editors,
Proceedings of the 2th International Conference on Business Process Management,

BPM, Lecture Notes in Computer Science, pages 244–260, Potsdam, Germany, 2004.
Springer.

[132] W.M.P. van der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski, and A.P. Barros. Work-
flow patterns. Distributed and parallel databases, 14(1):5–51, 2003.



Bibliography 153

[133] W.M.P. van der Aalst and B.F. van Dongen. Discovering workflow performance models
from timed logs. In Y. Han, S. Tai, and D. Wikarski, editors, Proceedings of the 1st

International Conference onEngineering and Deployment of Cooperative Information

Systems, EDCIS, volume 2480 of Lecture Notes in Computer Science, pages 45–63,
Beijing, China, 2002. Springer.

[134] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow mining: a survey of issues and approaches. Data &

Knowledge Engineering, 47(2):237–267, 2003.

[135] W.M.P. van der Aalst and A.J.M.M. Weijters. Process mining: a research agenda.
Computers in Industry, 53(3):231–244, 2004.

[136] W.M.P. van der Aalst and A.J.M.M. Weijters. Process mining: a research agenda.
Computers in Industry, 53(3):231–244, 2004.

[137] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining: Dis-
covering process models from event logs. IEEE Transactions on Knowledge and Data

Engineering, 16(9):1128–1142, 2004.

[138] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process
discovery using integer linear programming. Fundamenta Informaticae, 94(3-4):387–
412, 2009.

[139] B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM Framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Proceedings of the 26th International

Conference Applications and Theory of Petri Nets, ICATPN, volume 3536 of Lecture

Notes in Computer Science, pages 444–454, Miami, USA, 2005. Springer.

[140] B.F. van Dongen, A.K.A. de Medeiros, and L. Wen. Process mining: Overview and
outlook of petri net discovery algorithms. Transactions on Petri Nets and Other Models

of Concurrency II, 5460:225–242, 2009.

[141] M.L. van Eck, J.C.A.M Buijs, and B.F. van Dongen. Genetic Process Mining:
Alignment-Based Process Model Mutation. In F. Fournier and J. Mendling, editors,
Proceedings of the 12th International Workshop on Business Process Management,



154 Bibliography

BPM, volume 202 of Lecture Notes in Business Information Processing, pages 291–
303, Eindhoven, The Netherlands, 2014. Springer.

[142] M.L. van Eck, X. Lu, S.J.J. Leemans, and W.M.P. van der Aalst. PM2: A process min-
ing project methodology. In J. Zdravkovic, M. Kirikova, and P. Johannesson, editors,
Proceedings of the 27th International Conference on Advanced Information Systems

Engineering, CAiSE, volume 9097 of Lecture Notes in Computer Science, pages 297–
313, Stockholm, Sweden, 2015. Springer.

[143] S.J. van Zelst, A. Burattin, B.F. van Dongen, and H.M.W. Verbeek. Data Streams in
ProM 6: A Single-node Architecture. In L. Limonad and B. Weber, editors, Proceed-

ings of the BPM Demo Sessions co-located with the 12th International Conference on

Business Process Management BPM, volume 1295 of CEUR Workshop Proceedings,
page 81, Eindhoven, The Netherlands, 2014. CEUR-WS.org.

[144] S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst. Avoiding Over-Fitting
in ILP-Based Process Discovery. In H.R. Motahari-Nezhad, J.R., and M. Weidlich,
editors, Proceedings of the 13th International Conference on Business Process Man-

agement, BPM, volume 9253 of Lecture Notes in Computer Science, pages 163–171,
Innsbruck, Austria, 2015. Springer.

[145] B. Vázquez-Barreiros, D. Chapela, M. Mucientes, and M. Lama. Process Mining in
IT Service Management: A Case Study. In W.M.P. van der Aalst, R. Bergenthum, and
J. Carmona, editors, Proceedings of the 2016 International Workshop on Algorithms

& Theories for the Analysis of Event Data, ATAED, CEUR Workshop Proceedings,
pages –, Toruń, Poland, 2016. CEUR-WS.org.

[146] B. Vázquez Barreiros, M. Lama, M. Mucientes, and J.C. Vidal. Softlearn: A process
mining platform for the discovery of learning paths. In D.G. Sampson, J.M. Spector,
N.S. Chen, R. Huang, and Kinshuk, editors, Proceedings of the 14th International

Conference on Learning Technologies ICALT, pages 373–375, Athens, Greece, 2014.
IEEE Computer Society.

[147] B. Vázquez-Barreiros, M. Mucientes, and M. Lama. ProDiGen: Mining complete,
precise and minimal structure process models with a genetic algorithm. Information

Sciences, 294:315–333, 2015.



Bibliography 155

[148] B. Vázquez-Barreiros, A. Ramos-Soto, M. Lama, M. Mucientes, A. Bugarı́n, and
S. Barro. Soft computing for learner’s assessment in softlearn. In Proceedings of

the 17th International Conference on Artificial Intelligence in Education, AIED, pages
925–926, Madrid, Spain, 2015. Springer.

[149] B. Vázquez-Barreiros, S.J. van Zelst, J.C.A.M. Buijs, M. Lama, and M. Mucientes. Re-
pairing alignments: Striking the right nerve. In Proceedings of the 17th International

Conference on Business Process Modeling, Development, and Support BPMDS, vol-
ume 248 of Lecture Notes in Business Information Processing, pages 266–281, Toruń,
Poland, 2016.

[150] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van Der Aalst. XES,
XESame, and ProM 6. In P. Soffer and E. Proper, editors, Information Systems Evo-

lution, volume 72 of Lecture Notes in Business Information Processing, pages 60–75,
Hammamet, Tunisia, 2011. Springer.

[151] J.C. Vidal, M. Lama, and A. Bugarı́n. Petri net-based engine for adaptive learning.
Expert Systems With Applications, 39(17):12799–12813, 2012.

[152] H. Vogten, H. Martens, R. Nadolski, C. Tattersall, P. van Rosmalen, and R. Koper.
Coppercore service integration. Interactive Learning Environments, 15(2):171–180,
2007.

[153] A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible heuristics miner (FHM). BETA Work-
ing Paper Series WP 334, Eindhoven University of Technology, 2010.

[154] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering workflow models
from event-based data using little thumb. Integrated Computer-Aided Engineering,
10(2):151–162, 2003.

[155] A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K.A de Medeiros. Process mining
with the heuristics miner-algorithm. BETA Working Paper Series WP 166, Eindhoven
University of Technology, 2006.

[156] L. Wen, W.M.P. van der Aalst, J. Wang, and J. Sun. Mining process models with non-
free-choice constructs. Data Mining and Knowledge Discovery, 15(2):145–180, 2007.



156 Bibliography

[157] L. Wen, J. Wang, and J. Sun. Mining invisible tasks from event logs. In G. Dong,
X. Lin, W. Wang, Y. Yang, and J.X. Yu, editors, Proceedings of the Joint Conference of

the 9th Asia-Pacific Web Conference, APWeb, and the 8th International Conference on

Web-Age Information Management, WAIM, volume 4505 of Lecture Notes in Computer

Science, pages 358–365, Huang Shan, China, 2007. Springer.

[158] L. Wen, J. Wang, W.M.P van der Aalst, B. Huang, and J. Sun. Mining process models
with prime invisible tasks. Data & Knowledge Engineering, 69(10):999–1021, 2010.

[159] M. Westergaard, C. Stahl, and H.A. Reijers. Unconstrainedminer: efficient discovery of
generalized declarative process models. Technical Report BPM-13-28, BPMcenter.org,
2013.

[160] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin 1, pages
80–83, 1945.



List of Figures

Fig. 1.1 Process mining framework (Adapted from [122]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Fig. 1.2 Types of tasks in process mining (Adapted from [16]). . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Fig. 1.3 A log and a process model for the production of a mobile phone. (a = Start
Production, b = Produce Cover, c = Produce Keyboard, d = Produce Frame,
e = Paint Black, f = Paint White, g = Assemble Phone, h = Check Phone, i =
End Production). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Fig. 1.4 Solutions retrieved with different algorithms using the log shown in Fig-
ure 1.3(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Fig. 1.5 A log and two process models (Petri nets) exemplifying a lecture of Au-
tomata Theory and Formal Languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Fig. 1.6 Dissertation structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Fig. 2.1 Discovery of a process model prioritizing different objectives. The models
are represented as Petri nets. The name of the activities are: Introductory

class (a), Finite Automaton (b), Regular Grammar (c), Context-free grammar

(d), Pushdown automaton (e) and Exam (f)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Fig. 2.2 Main steps of ProDiGen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Fig. 2.3 Mapping of a petri net into a causal matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



158 List of Figures

Fig. 2.4 Two possible solutions with the same completeness and precision. . . . . . . . . . . . . . 44
Fig. 2.5 Four different models prioritizing the different search criteria. . . . . . . . . . . . . . . . . . 45
Fig. 2.6 Heuristics nets of the mined models for the unbalanced logs: g4, g8, g24 and

g25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Fig. 3.1 A log and two process models —Petri nets— exemplifying a lecture of Au-
tomata Theory and Formal Languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Fig. 3.2 An example on how SLAD works.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Fig. 3.3 A Petri net mined for the log Fig6p31 before and after SLAD. . . . . . . . . . . . . . . . . . 89
Fig. 3.4 Two models depicting the same behavior for the log Alpha, but with and

without duplicate tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Fig. 3.5 Two models from the log Fig6p39 with and without duplicate tasks. . . . . . . . . . . . 94
Fig. 3.6 Process models mined for a real event log before and after SLAD. . . . . . . . . . . . . . 97

Fig. 4.1 Framework for IMS LD UoLs reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Fig. 4.2 Event log infrastructure. Each VLE accesses the event log system through a

specific adapter to transform its log format to XES, the standard format for
process mining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Fig. 4.3 Simplification of the main steps of ProDiGen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Fig. 4.4 Mapping of a Petri net into a causal matrix. This Petri net represents the

learning flow of an UoL about polymorphism. The name of the activities
are: Read about polymorphism (A), Exercise 1 (B), Exercise 2 (C), Answer
test (D) and Exam (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Fig. 4.5 Example of a text-based log file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Fig. 4.6 Transformation of a decision tree to a DNF rule base. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Fig. 4.7 Example of the search space for a UoL composed of three activities. . . . . . . . . . . 119
Fig. 4.8 Petri net with three activities and its causal matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Fig. 4.9 Three different ways of representing a selection. Transitions colored in gray

represent the activities of the UoL.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



List of Tables

Tab. 1.1 A fragment of an event log loosely based on a fictional loan application
process [40], where each individual line corresponds to an event. . . . . . . . . . . . . . . 4

Tab. 2.1 Differences between ProDiGen and Genetic Miner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Tab. 2.2 Process models used in the experimentation. Balanced logs. . . . . . . . . . . . . . . . . . . . 52

Tab. 2.3 Process models used in the experimentation. Unbalanced logs. . . . . . . . . . . . . . . . . 53

Tab. 2.4 Results on the balanced logs with a 0% and 1% of noise. . . . . . . . . . . . . . . . . . . . . . . . 57

Tab. 2.5 Results on the balanced logs with a 5% and 10% of noise. . . . . . . . . . . . . . . . . . . . . . 58

Tab. 2.6 Results on the balanced logs with a 20% of noise.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Tab. 2.7 Non-parametric test for the balanced logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Tab. 2.8 Results on the unbalanced logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Tab. 2.9 Non-parametric test for the unbalanced logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Tab. 2.10 Average runtimes of the algorithms on the 21 unbalanced logs. . . . . . . . . . . . . . . . . 64

Tab. 3.1 Process models used in the experimentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Tab. 3.2 Results for the 18 logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Tab. 3.3 Wilcoxon test for each algorithm with and without SLAD. . . . . . . . . . . . . . . . . . . . . . 90

Tab. 3.4 Friedman ranking for all the algorithms with SLAD.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



160 List of Tables

Tab. 3.5 Non-parametric test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Tab. 3.6 Generalization values for 18 logs before and after SLAD. . . . . . . . . . . . . . . . . . . . . . . 95

Tab. 4.1 Structural features of the UoLs that have been used in the experiment. . . . . . . . . 127
Tab. 4.2 Number of instances of each UoL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Tab. 4.3 Performance of the genetic algorithm for learning flow discovery. . . . . . . . . . . . . . 128
Tab. 4.4 Performance of the adaptive rules mining, where the percentage shows the

instances that have been correctly classified by the rule learned by the deci-
sion tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Tab. 4.5 Results of the reengineering process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



List of Algorithms

Alg. 2.1 Genetic algorithm for process discovery.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Alg. 2.2 Crossover operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Alg. 2.3 Mutation operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Alg. 3.1 Local Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Alg. 3.2 Compute the combinations of a task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Alg. 4.1 Depth-first search procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Alg. 4.2 Consistency of plays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Alg. 4.3 Consistency of acts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Alg. 4.4 Consistency of activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Alg. 4.5 Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125


	Portada
	Resumen
	Introduction
	Motivation
	Process discovery
	Enhancing process models
	Process hierarchization
	Objectives
	Research Contributions
	Publications
	Thesis Outline

	ProDiGen: Mining complete, precise and minimal structure process models
	Abstract
	Introduction
	Process Discovery
	Related Work 
	ProDiGen: Process Discovery through a Genetic algorithm 
	Experimentation 
	Conclusions 

	Enhancing Discovered Processes with Duplicate Tasks
	Abstract
	Introduction 
	State of the art
	Splitting Labels After Discovery
	Experimentation 
	Conclusions 

	Recompiling Learning Processes from Event Logs
	Abstract
	Introduction
	IMS Learning Design
	State of the Art
	Framework
	Mining the learning flow from event logs
	Mining adaptive rules from event logs
	IMS LD reengineering
	Results
	Conclusions and Future Work

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

