Indoor Positioning and Guiding for Drivers

Título Indoor Positioning and Guiding for Drivers

Autores Germán Rodríguez, Adrián Canedo-Rodríguez, Roberto Iglesias, Adrián Nieto

Tipo Artículo de revista

Rank Provisionally ranked Q1 in Electrical and Electronic Engineering by SJR 2017

ISSN 1530-437X

DOI 10.1109/JSEN.2019.2907473

Abstract In this paper we present an indoor positioning and guiding system for drivers which is able to operate robustly in indoor car parks. Our proposal is able to estimate with a reasonable accuracy the position of a vehicle as well as determining the best route and providing guiding instructions (visual, textual and auditory) to the driver. To approximate the position of the vehicle it uses Bayesian estimation able to combine three sources of information: a) the inertial sensors of a mobile phone placed inside the vehicle. b) Bluetooth low energy beacons — radiofrequency fingerprinting— and c) an occupancy map. Our system was successfully tested in a real two-floor underground car park, where the system exhibit a good performance, and a robust and reliable behavior, being able to locate the vehicle and provide instructions to different drivers.

Palavras chave Guiding, indoor positioning for vehicles, inertial navigation, BLE positioning, particle filter