Signal processing guided by physiology: Making the most of cardiorespiratory signals Pablo Laguna ciber-bbn Universidad Zaragoza Centro Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina

Santiago 2013. Master en Tecnologías de la Información y las Comunicaciones

Bioelectrical signals convey info from biological systems: • Muscle Neuronal Heart

The Power of Life

Bioelectricity of Living Tissue

Bioelectric signal
 contain relevant
 information about
 the underlying
 biological system

 Their decoding has allow to identify and clarify a large number of pathological conditions

Info within the biomedical signal

- May not be apparent in the signal
 - Measurement noise
 - Other interacting signals
 - Not visible to the human eye
- <u>Signal processing</u> usually required
 - Extract the useful info
 - Covert to meaningful and interpretable data
 - Not optimum to deep into the system/organ,
 - but, usually inexpensive and suitable for massive scrutiny making still wise to **go for the most**

bioelectric signal origin

(a)

➡ Chemical gradient (b) Electrical gradient Extracellular K⁺_{CI⁻} K⁺_{CI⁻} K⁺_{Cl} Membrane K⁺CI⁻ K⁺ K⁺CI⁻ K⁺Cl⁻ ĸ_{Cl} K[⁺]CI 'K⁺_{Cl}₋ K[⁺]Cl[−] K[⁺]Cľ K^tCI Intracellular No channels opened Opening of K^* channels Equilibration

electrical impulse passing through the AV node, (d)-(g) ventricular depolarization, (h) ventricular repolarization, and (i) all cardiac cells again at rest.

Left atrium

His bundle

Left bundle

Left ventricle

Purkinje fibers

Septum

ECG Recording

EGM signal origin

ECG signal Characteristics

- •Pseudo periodic
- •Transitory
- •Non stationary

Clinically relevant information Static

Biomedical signal processing: Objectives

- Reduce the subjectivity of manual measures
- Noise Reduction
- Extract new information
- Equipment and new functionalities
- Signal modeling
- Event visualization

Bioelectrical Signal Processing Cardiac and Neurologisal Applicatio Leif Sörnmo & Pablo Laguna Elsevier/Academic Press, 2005 Libro de texto cuyo objetivo es unir la Ingenie -tratamiento de las señales bioeléctricas- con fisiologia

BIOELECTR SIGNAL PROCESSING CARDIAC AN NEUROLOGIC APPLICATIONS

Leif Sörnmo Pablo Laguna

Biomedical signal processing difficulties

As opposite to other signal processing application:

- Biomedical signal originate at the inner human body
 →
 Their informative content is known just partially.
- The "truth" is rarely at our disposal to validate the tools.

Reducing subjectivity at manual measures

Waves of the ECG: P-QRS-T

Large differences, even, between manual marks form different cardiologist...

Waves delineation

Where is the real onset and end of waves? Multilead ECG delineation

step 1 D_(k)

3000

E_n(k)

Single lead

Group 1:Well detected
end of T- waveme < 40 ms</th>SD < 50 ms</td>

Automatic annotations:

Manual annotations:

Delineación de ECG: Validación

Bias (in ms) between automatic and manual anotations												
Detector	Pon	P	Poff	QRSon	QRSoff	Ton	T	Toff				
WT	1.3	-7.8	0.3	-6.6	-0.4	2.3	-6.1	0.7				
LPD	-9.4	-0.1	5.4	3.5	1.3	-3.3	-24.0	-19.7				

Mean Standard Deviation (in <i>ms</i>)												
Detector	Pon	P	Poff	QRSon	QRSoff	Ton	T	Toff				
WT	10.7	8.2	9.9	8.9	9.5	26.6	20.3	22.9				
LPD	11.2	9.3	12.7	9.5	9.3	24.7	25.6	26.9				
Tolerance	10.2	-	12.7	6.5	11.6	-	-	30.6				

Noise reduction

Noise

• External origin, as 50/60 Hz, other equipment, etc.

Physiological origin, as EMG in ECG analysis.

Basics with noise

- Every noise context should be address with a specific strategy, no generalization
 - Rarely one algorithm can be extrapolated without mayor considerations.
 - Their adaptation is very important NOT to destroy signal characteristics.

Ruido electrocardiográfico

Filtering 50/60 Hz Solution: non-lineal filter •Substract a sinusoid

$$v(n) = w_0 \sin(\omega_0 n)$$

$$H(z) = \frac{V(z)}{U(z)} = \frac{1}{1 - 2\cos\omega_0 z^{-1} + z^{-2}}$$

•Error function

$$e(n) = x(n) - v(n)$$

$$e'(n) = e(n) - e(n-1)$$

= $x(n) - x(n-1) - (v(n) - v(n-1))$

•Non-linear sinusoid update

$$\hat{v}(n) = v(n) + \alpha \operatorname{sgn}(e'(n))$$

Noise subtraction

$$y(n) = x(n) - \hat{v}(n)$$

Warning: artifacts interpreted as late potentials.

Late potentials as arrhythmia risk markers in post MI patients

Baseline variations at the ECG

Baseline filtering

Atrial fibrillation

Atrial fibrillation: Multi-lead

Ionic modulation of Atrial Fibrillation dynamics

Regularity

Coupling

Atrial fibrillation: Where to Ablate? Guiding

Organization, synchronization and Coherence in EGM

Ventricular arrhythmic risk indexes

Time-invariant analysis of the QT / RR relationship

Hypothesis: QT is affected by a history of RR intervals that can be expressed as an RR weighted average (\overline{RR})

Time-invariant analysis of the QT / RR relationship

Repolarization Analysis and modelling

Beat-to-beat response of QT to abrupt changes

Rate Adaptation of Repolarization

1. Ionic mechanisms of APD rate adaptation:

- > Fast phase: I_{CaL} and I_{Ks} dynamics in ventricle and maximal conductances of I_{CaL} and I_{NaCa} in atria
- Slow phase: intracellular Na⁺ dynamics in both cavities

2. Abnormally slow APD rate adaptation \rightarrow higher arrhythmic risk

Repolarization variability and arrhythmic risk

Stochastic differential equation

Arrhythmic risk

Repolarization alternans

Detección de Alternancias

Deteccion de alternancias

Detección de alternnacias

$$x(i) = A + a(-1)^i + v(i), i = 1, ..., M$$

$$y(i) = x(i) - \bar{x}$$

Detector Gausiano

$$T_G = \left(\sum_{i=1}^M y(i)(-1)^i\right)^2$$

Repo a una

muestra dada

para latido i

Detector Laplaciano

$$T_L = \sum_{i=1}^{M} (|y(i)(-1)^i| - |y(i)(-1)^i - \hat{a}|)$$

Estimación de la alternancia

 $\hat{a} = \text{median}(y(1) \cdot (-1), y(2) \cdot 1, \dots, y(M) \cdot (-1)^M)$

Tratamiento de señales biomédicas

Indices de riesgo cardiaco: <u>Alternancias</u>

Alternancias de onda T en isquemia

Does a multilead approach improve the clinical utility of TWA?

presence / absence of TWA TWA amplitude at each instant distribution of TWA among leads

Evaluation of the PCA-based scheme

PCA converts the input signal into a set of uncorrelated components sorted in descending order of variance

51

3. Evaluation of the π CA-based scheme

The component with 2-beat period is projected onto the first transformed lead

3.2. Results: detection performance

In synthetic signals, the multi- πCA scheme presents the best P_D for V_{alt} between 20 and 105 dB

Results: association of TWA indices and mortality risk

The rate of deaths was significantly higher in TWA+ group for all end points

	Total Population	TWA-	TWA+	
	(n = 650)	(n = 493)	(n = 157)	p
Total mortality	146~(22.5%)	99~(20.1%)	47~(30.0%)	0.012
CD	119~(18.3%)	81~(16.4%)	38~(24.2%)	0.033
SCD	52~(8.0%)	30~(6.1%)	22~(14.0%)	0.003

CD

Artefacted alternans from pedaling or stride cadence

RR

0

Dispersion of APD restitution from ECG

- APD restitution curves → APD vs RR (steady-state conditions)

Dispersion of APD restitution from ECG

Increased restitution dispersion associated to ventricular tachyarrhythmia

Dispersion of APD restitution from ECG

Agreement between simulated APDR slope dispersion and estimates from clinical ECG data

APPLICATION: Drug Cardiotoxicity

Database

APDR dispersion ($\Delta \alpha$) has been shown to provide better risk stratification after sotalol administration than standard ECG-biomarkers such as QTc.

Depolarization Analysis. Ischemia monitoring and quantification

QRS slopes

- $\mathcal{I}_{\rm US}$: up-slopes of the R wave
- $\mathcal{I}_{\rm DS}$: down-slope of the R wave
- \mathcal{I}_{TS} : terminal slopes of the S wave

Methods PCI

Quantification of the dynamic changes during ischemia

: absolute change during PCI

$$\mathcal{R}_{\mathcal{I}}(t_j) = \frac{\Delta_{\mathcal{I}}(t_j)}{\sigma^{\mathcal{I}}}$$

 \sim : standard deviation (SD) of \mathcal{I} at control

Results in PCI

QRS slopes measured in a control and PCI recording for a particular patient

CinC' 2010 Belfast

September 26-29th, 2010

Results PCI

Temporal analysis

Averaged relative factor of change for the QRS slopes in leads V2 and V3 during the occlusion.

Leads that presented the greatest changes.

$\mathcal{R}_\mathcal{I}$

Results PCI

Comparison between standard and derived leads

Averaged relative factor of change for the lead V3 and those leads obtained from the spatial QRS loops.

Results PCI

Multiple linear regression (also including R wave changes)

Predictor variables	Dependent variable Extent (% of LV), R^2 (p)	Dependent variable Severity (% of LV), R^2 (p)
ST ST, US ST, DS ST, DS, US ST, Ra sum neg ST, Ra sum pos ST, Ra sum tot	0.593 (<.0001) $0.722 (<.0001), \uparrow 12.9\%$ $0.715 (<.0001), \uparrow 12.2\%$ $0.738 (<.0001), \uparrow 14.5\%$ $0.688 (<.0001), \uparrow 9.5\%$ $0.593 (<.0001), \uparrow 0.0\%$ $0.644 (<.0001), \uparrow 5.1\%$	$\begin{array}{c} 0.665 \ (<.0001) \\ 0.705 \ (<.0001), \ \uparrow 4.0\% \\ 0.736 \ (<.0001), \ \uparrow 7.1\% \\ 0.736 \ (<.0001), \ \uparrow 7.1\% \\ 0.693 \ (<.0001), \ \uparrow 2.8\% \\ 0.669 \ (<.0001), \ \uparrow 0.4\% \\ 0.673 \ (<.0001), \ \uparrow 0.8\% \end{array}$

Animal Models

13 Healthy pigs weighing 40-50 kg

Balloon Angioplasty in the mid LAD

12 lead ECG monitoring:

control

- occlusion (40 min) reperfusion (4 hours)

Time course evolution during occlusion (for one pig)

Correlation analysis between Mar/IS and the quantified ECG changes

MaR vs $\Delta \mathcal{Y}$	$\Delta \mathcal{Y}_{max}$	$\Delta \mathcal{Y}_{pos}$	$\Delta \mathcal{Y}_{abs}$	$\Delta \mathcal{Y}_{real}$
	r(p)	r(p)	r(p)	r(p)
$\mathcal{I}_{\mathrm{US}} \ 1^{st} \ \mathrm{peak}$	0.54(0.0850)	0.52(0.0971)	$0.69 \ (0.0167)^*$	0.26(0.4312)
$\mathcal{I}_{\text{US}} 2^{nd}$ peak	0.42(0.1929)	0.44(0.1774)	$0.41 \ (0.2092)$	$0.36 \ (0.2692)$
$R_a \ 1^{st}$ peak	$0.21 \ (0.5353)$	$0.43 \ (0.1825)$	$0.51 \ (0.1115)$	$0.44 \ (0.1724)$
$R_a \ 2^{nd}$ peak	0.28(0.4230)	$0.34 \ (0.3025)$	$0.32 \ (0.3307)$	$0.20 \ (0.5628)$
$\mathcal{I}_{\mathrm{DS}} \ 1^{st}$ peak	-0.75 (0.0045)*	-0.65 (0.0220)*	-0.63 (0.0265)*	-0.66 (0.0184)*
$\mathcal{I}_{\mathrm{DS}} 2^{nd}$ peak	-0.67 (0.0237)*	-0.71 (0.0345)*	-0.08 (0.8101)	-0.77 (0.0054)*
ST_{40} peak	-0.25(0.4351)	-0.34(0.2814)	-0.34 (0.2805)	-0.34 (0.2828)
	•			

IS vs $\Delta \mathcal{Y}$	$\Delta \mathcal{Y}_{max}$	$\Delta \mathcal{Y}_{nos/nos}$	$\Delta \mathcal{Y}_{abs}$	$\Delta \mathcal{Y}_{real}$
Ū.	r(p)	r(p)	r(p)	r(p)
$\mathcal{I}_{\rm US} \ 1^{st}$ peak	$0.51 \ (0.1099)$	0.46(0.1543)	$0.61 \ (0.1518)$	0.25(0.4512)
$\mathcal{I}_{\rm US} \ 2^{nd} \ {\rm peak}$	0.20(0.5573)	0.18(0.5952)	0.24(0.4854)	0.07(0.8388)
-				`
$R_a 1^{st}$ peak	0.30(0.3710)	0.17(0.6144)	0.25(0.4512)	0.18(0.5952)
$R_a 2^{nd}$ peak	0.26(0.4345)	0.26(0.4345)	0.20(0.5575)	0.12(0.7342)
u 1	~ /	(/	· /	()
$\mathcal{I}_{\mathrm{DS}} \ 1^{st}$ peak	-0.65 (0.0217)*	-0.51(0.0923)	-0.49(0.1085)	$-0.53 (0.0265)^*$
$\mathcal{I}_{DS} 2^{nd}$ peak	-0.42(0.2695)	-0.13 (0.7435)	-0.13 (0.7435)	-0.13(0.7435)
-D5 - F	((411-1-)	(111-1-)	()
ST_{40} peak	-0.59 (0.0431)*	-0.67 (0.0162)*	-0.68 (0.0157)*	-0.67 (0.0168)*

ANS evaluation by HRV analysis in non stationary conditions

Reset **ANS** t_k 1 + m(t)+T(t) $d_{ ext{hr}}(t) pprox rac{1+m(t)}{T(t)}.$ $d_{\rm HRM}(t)\approx \frac{1}{T(t)}$ $d_{\rm hrv}(t) = d_{\rm hr}(t) - d_{\rm hrm}(t) \approx \frac{m(t)}{T(t)}$

TVIPFM model

 $m(t)\approx d_{\rm HRV}(t)T(t)\approx \frac{d_{\rm HRV}(t)}{d_{\rm HRM}(t)}$

ANS evaluation by HRV analysis at non stationary conditions

Stress test

VI Jornadas de la REDINBIO - Cádiz

18,19 y 20 de Noviembre

Cardiolocomotor coupling and Band re-definition

Frequency bands of interest

Multimodal analysis of cardiovascular variability in non stationary conditions

VI Jornadas de la REDINBIO - Cádiz

18,19 y 20 de Noviembre

Dynamic iteration between RR and SBP

Heart Rate Turbulence

- Heart Rate Turbulence (HRT) is a pattern of response to a VPB in the instantaneous heart rate.
- Early heart rate acceleration phase followed by heart rate deceleration.

Averaged tachogram (RR series)

- Heart Rate Turbulence (HRT) is a pattern of response to a VPB in the instantaneous heart rate.
- Early heart rate acceleration phase followed by Individual tachograms heart rate deceleration.

Introducción

- Baroreflex phenomenon triggered by the BP decrease due to the VPB.
- Main role played by parasympathetic branch of ANS

Heart Rate Turbulence

Respiratory information derived from ECG (rhythm)

Respiratory information derived from ECG (Amplitude/Slopes)

Respiratory information derived from VCG (loop)

EDR signal: QRS-VCG loop alignment

QRS-VCG loop rotation

$$\varepsilon_{min} = \min_{\varrho, \tau, \mathbf{Q}} \frac{\|\mathbf{Y}_{\mathbf{R}} - \varrho \mathbf{J}_{\tau} \mathbf{Y} \mathbf{Q}\|_{F}^{2}}{\|\varrho \mathbf{J}_{\tau} \mathbf{Y} \mathbf{Q}\|_{F}^{2}}$$

$$\mathbf{Z}_{\tau} = \mathbf{Y}_{\mathbf{R}}^T \mathbf{J}_{\tau} \mathbf{Y}$$

selection of τ for minimum ε rotation matrix

Respiratory information derived from ECG

Rotation angles are the basis for respiratory signal estimation.

ECG derived respiratory frequency

Beat substitution in low SNR leads

EDR Results

ECG derived respiratory frequency

• Simulation study

	QRS-VCG loop		Multi-lead QRS area	
	μ	σ	μ	σ
Hz	0.002 ± 0.001	0.003 ± 0.004	0.005 ± 0.004	0.009 ± 0.012
%	0.5 ± 0.2	0.7 ± 0.8	1.0 ± 0.7	1.7 ± 2.0
$T_{\%}$	96±2		95±3	

Deriving Respiration from the Pulse PPG Signal

Deriving Respiration from the Pulse PPG Signal

Deriving Respiration from the PPG Signal

Conclusions

- **Physiology-oriented** processing allows **better extracting the information** hidden in the biomedical signal
- Multimodal, Multiscale, Multidisciplinary signal processing may add in diagnosis, therapy and follow-up of diseases
- No general solutions, contextualization is always required
- Biosignal analysis, usually not optimum, but still suitable for massive scrutiny and monitoring so making sense go for the most

Acknowledges

- Ana Mincholé
- Daniel Romero
- Esther Pueyo
- Eduardo Gil
- Jesus Lazaro
- Juan Pablo Martinez
- Leif Sörnmo
- Michele Orini
- Raquel Bailón
- Rute Almeida
- Violeta Monasterio

Thanks for your attention!

