Variability studies in advanced digital semiconductor devices

Natalia Seoane natalia.seoane@usc.es

Centro Singular de Investigación en Tecnoloxías da Información UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Centro Singular de Investigación en **Tecnoloxías** da **Información**

citius.usc.es

- Motivation
- Simulation methodology
- Results

Conclusion

Motivation

Why is our research relevant ?

- Simulation methodology
- Results

Conclusion

4

Motivation

- What is a transistor?
- The scale of things
- Technology roadmap
- Collaborators and competitors

Picture a water tap

How small are we talking about?

Picture an ant

How small are we talking about?

~ 5 mm

How small are we talking about?

~ 5 mm

Grab a strand of your hair

Last **40 years**: more than **one-million fold increase** in the **device count** leading to almost the same increase in **processor performance**.

This explains the enormous development of electronics and information technology

Example: Intel's 10-core Core i7 Broadwell-E processor has 3,200,000,000 **transistors** (**2016**, using 14 **nm** technology)

Example: Intel's 10-core Core i7 Broadwell-E processor has 3,200,000,000 transistors (2016, using 14 nm technology)

Example: Intel's 10-core Core i7 Broadwell-E processor has 3,200,000,000 **transistors** (**2016**, using 14 **nm** technology)

Technology roadmap Evolution

What is the consumer demand?

What is the consumer demand?

- Faster devices
- Reduced power consumption (mobile)
- Ultra low power consumption (IOT)

Technology roadmap Evolution

Scaling has driven device performance New technologies inserted frequently in the last 10 years Devices will continue to evolve through further innovation

Technology roadmap Evolution

Ci

Technology roadmap Evolution

Scaling has driven device performance New technologies inserted frequently in the last 10 years Devices will continue to evolve through further innovation

Apple iPhone 6s Smartphone What's inside?

Example of Low Power and High Performance application.

Apple iPhone 6s Smartphone What's inside?

APL1022 TSMC 16 nm FinFET

APL0898 Samsung 14 nm FinFET

Apple has dual sourced its **Processor** from **Samsung** (14 nm FinFET) and **TSMC** (16 nm FinFET).

Example of Low Power and High Performance application.

TSMC 16 nm FinFET

Collaborators and competitors Who is who?

Collaborators and competitors Who is who?

Gold Standard Simulations

SYNOPSYS[®]

Silicon to Software

SILVACO

Outline

- Motivation
- Simulation methodology
- Results

Conclusion

Simulation methodology

Device selection

• Device creation

- Pre-processing stage
- Simulation of the device

• Analysis of the results

Simulation pipeline

Simulation pipeline

Device selection

Device selection Sources of information

• Experimental data

 ITRS (International Technology Roadmap for Semiconductors)

• Scientific papers

Device selection

50 nm gate length MOSFET

Device selection 10.7 nm gate length Si FinFET

Device selection

Ci

22 nm gate length Si GAA NW FET

(b) S Bangsaruntip, et al. Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond. IEDM Tech.
Dig. pp.526-9, 2013. (IBM Research Division)

Simulation pipeline

GMSH: 3D finite element mesh generator Screenshot

GMSH: 3D finite element mesh generator Screenshot

GMSH: 3D finite element mesh generator Screenshot

Simulation pipeline

Pre-processing stage

- Asign properties to the mesh nodes (eg. Material, mobility, afinitity, permitivity..)
- Identify contacts of the device
- Divide the mesh into subdomains

- Asign properties to the mesh nodes (eg. Material, mobility, afinitity, permitivity...)
- Identify contacts of the device
- Divide the mesh into subdomains

Triangular FinFET

- Asign properties to the mesh nodes (eg. Material, mobility, afinitity, permitivity...)
- · Identify contacts of the device
- Divide the mesh into subdomains

- Asign properties to the mesh nodes (eg. Material, mobility, afinitity, permitivity...)
- Identify contacts of the device
- Divide the mesh into subdomains

- Asign properties to the mesh nodes (eg. Material, mobility, afinitity, permitivity...)
- Identify contacts of the device
- Divide the mesh into subdomains

Mesh divided into 4 subdomains

Triangular FinFET

Simulation pipeline

1. What is the **correct simulation method** for the device?

- 2. What are the main **limitations** of the chosen **model**?
- 3. What kind of study we want to perform?

Simulation of the device

Simulation of the device Example: Drift-difussion method

Equations solved for each node of the mesh

Simulation of the device Example: Drift-difussion method

Limitations:

- Calibration required
 - Experimental data if available
 - More complex and accurate simulation methods
- Not valid for on-region studies

Calibration

10.4 nm gate length In0.53Ga0.47As FinFETs

Mesh too **coarse**: no convergence Mesh too **fine**: increases the computational cost

Mesh too **coarse**: no convergence Mesh too **fine**: increases the computational cost

MOSFET devices

Outline

- Motivation
- Simulation methodology
- Results

Conclusion

Results

- Why do we care about variability?
- Variability pipeline
- Variability sources
- How can we know more?

Picture a ladybird

Picture a ladybird

Or a **ladybug** if you think in American English

Picture a ladybird

Picture a ladybird

IDEAL

Picture a ladybird

IDEAL

Why do we care about variability? Importance

- Variability sources appear during transistor fabrication and have a negative impact on the final device performance and reliability (chip failure)
- This effect is becoming more pronounced for the state-ofthe-art devices
- The effect of intrinsic sources of variability is inherent to the devices and cannot be eliminated

Data sources

Variability introduced in the work-flow

Profile: file that specifies the differences from the ideal device configuration

Variabililty introduced in the work-flow

Variability introduced in the work-flow

Variabililty introduced in the work-flow

Variability pipeline

Variability sources

- Line edge roughness (LER)
- Metal grain granularity (MGG)
- Random dopants (RD)
- Defects in high-k dielectrics

Variability sources

- Line edge roughness (LER)
- Metal grain granularity (MGG)
- Random dopants (RD)
- Defects in high-k dielectrics

Line-edge roughness (LER) Motivation

- It is impossible to create straight lines with lithography techniques
- There are only a few atoms of separation from the ideal device, but they make an impact.
 Fin 1

Bullet-shaped FinFET

Variability sources

- Line edge roughness (LER)
- Metal grain granularity (MGG)
- Random dopants (RD)
- Defects in high-k dielectrics

Metal grain granularity (MGG) Motivation

- Metals used as gate contacts present crystallographic domains (grains)
- Lithography processes can create even bigger grains, increasing the effect of the variability source
- These grains have different work-function values and orientations

Metal grain granularity (MGG) Motivation

- Metals used as gate contacts present crystallographic domains (grains)
- Lithography processes can create even bigger grains, increasing the effect of the variability source
- These grains have different work-function values and orientations

Key to control the gate of the device

Metal grain granularity (MGG) Motivation

- Metals used as gate contacts present crystallographic domains (grains)
- Lithography processes can create even bigger grains, increasing the effect of the variability source
- These grains have different work-function values and orientations

Key to control the gate of the device

The grain size can also change

MGG: What's happening inside the device? 10.4 nm gate length InGaAs FinFET devices

We apply a MGG profile Cut in the middle of the gate (X=0 nm)

Variability sources

- Line edge roughness (LER)
- Metal grain granularity (MGG)
- Random dopants (RD)
- Defects in high-k dielectrics

Random dopants (RD) Motivation

- It is impossible to predict how the atomic dopants' atoms will be arranged within the transistors
- This leads to variations in the current flow and disruptions
 In the current flow and disrupting
 In the current flow and disruptions
 In the current

Random dopants (RD) Modelling

Individual impurity atoms

Random dopants (RD) Modelling

Variability sources

- Line edge roughness (LER)
- Metal grain granularity (MGG)
- Random dopants (RD)
- Defects in high-k dielectrics

Defects in high-k dielectrics Motivation

- Under high temperatures annealings, high-k materials become polycrystalline
- Variations of the oxide thickness and charge trapping can affect the properties of the scaled devices

Defects in high-k dielectrics Motivation

- Under high temperatures annealings, high-k materials become polycrystalline
- Variations of the oxide thickness and charge trapping can affect the properties of the scaled devices

Experimental data measured in the Universitat Autónoma de Barcelona

Defects in high-k dielectrics Motivation

Topography map obtained at V_{g} =6.5V on a HfO₂/SiO ₂/p-Si structure (250 nm x 300 nm)

Defects in high-k dielectrics Motivation

Defects in high-k dielectrics Motivation

Defects in high-k dielectrics Motivation

Defects in high-k dielectrics Modelling

Modelling

Si MOSFET device with a 50 nm gate length

Modelling

Modelling

Ref.= uniform HfO₂ thickness (5.3 nm) and trapped charge density (10^{20} cm⁻³)

Modelling

Difference of 29.3 mV between the threshold voltages of the two simulated cases

- Line edge roughness (LER)
- Metal grain granularity (MGG)
- Random dopants (RD)
- Defects in high-k dielectrics

- Line edge roughness (LER)
- Metal grain granularity (MGG)
- Random dopants (RD)
- Defects in high-k dielectrics

Which is the dominant source of variability? How do they compare?

- Line edge roughness (LER)
- Metal grain granularity (MGG)
- Random dopants (RD)
- Defects in high-k dielectrics

Preliminar data Results not available for FinFETs or nanowires yet

Which is the dominant source of variability? How do they compare?

Histograms showing the V_{τ}

Ci

- Line edge roughness (LER)
- Metal grain granularity (MGG)
- Random dopants (RD)
- Defects in high-k dielectrics

Which is the dominant source of variability? How do they compare?

What is the computational cost?

Cluster attack!!

173

Numerical results

- Why do we care about variability?
- Variability pipeline
- Variability sources
- How can we know more?

How can we know more? Motivation

One of the main burdens of a TCAD **variability** study of semiconductor devices is its **high computational cost**.

How can we know more? Motivation

One of the main burdens of a TCAD **variability** study of semiconductor devices is its **high computational cost**.

How can we know more? Motivation

One of the main burdens of a TCAD **variability** study of semiconductor devices is its **high computational cost**.

We developed a **new approach**, based on the creation of **fluctuation sensitivity maps**, that provides:

1.- **spatial information** about the effect of the variability on the device performance

2.- a **prediction** of the magnitude of the variability

This technique allow us to obtain simulation results at a reduced time

Objective:

- \rightarrow obtain valuable **spatial information** about the effect of the MGG
- → useful in the development of **fluctuation-resistant** device architectures

180

Fluctuation Sensitivity Map

Ci

Four FinFET devices with the same dimensions but different shapes

Outline

- Motivation
- Simulation methodology
- Results
- Conclusion

Conclusion

- We have two **in-house built 3D finite-element simulation tools** based on the **drift-diffusion** and the **Monte Carlo** methods
- Using our simulation tools we can **introduce** new **materials**, device **structures**, **physical phenomena**...
- We have studied **promising candidates** for **future generation** transistor nodes, progressively scaling them in order to keep up with the **industry requirements**

Conclusion

- We have **modelled** (with mathematical models), **implemented** (via simulations) and **analysed** (through statistical analysis) the **variability effects** that limit the **performance** and **reliability** of semiconductor devices
- We have **introduced** the variability sources as soon as they appear in the **new technological nodes**
- We have improved the previously existing method to model the **metal grain granularity** (Voronoi approach)
- We have tackled the **large computational cost** of variability studies (via the FSM and the GWM)

Thank you for your attention

Centro Singular de Investigación en Tecnoloxías da Información

Congratulations for surviving

my presentation