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How small are we talking about?

Picture an ant
~ 5 mm

Grab a strand 
of your hair

~ 60-120 μm wide

Red Blood cell ~ 7-8 μm 

FinFET device
(state of the art) ~ 10 nm gate length 
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How many?

Last 40 years: more than one-million fold increase in the device count 
 leading to almost the same increase in processor performance. 
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How many?

This explains the enormous development of electronics and information technology
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How many?

Example: Intel's 10-core Core i7 Broadwell-E processor
 has 3,200,000,000 transistors  (2016, using 14 nm technology)

Possible thanks to the 
scaling of the devices

Nanometre 
regime
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Evolution
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Evolution

What is the consumer demand?

●  Faster devices

●  Reduced power consumption (mobile)

● Ultra low power consumption (IOT)
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Evolution

Scaling has driven device performance
New technologies inserted frequently in the last 10 years
Devices will continue to evolve through further innovation

file:///home/remoto/natalia.seoane/TRABAJO/Presentacion_CITIUS/VIDEO_HAFNIUM/hafnium_VIDEO.htm
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Evolution

Scaling has driven device performance
New technologies inserted frequently in the last 10 years
Devices will continue to evolve through further innovation

AMD, NASDAQ evolution 2007-2010

80% loss
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Evolution

Scaling has driven device performance
New technologies inserted frequently in the last 10 years
Devices will continue to evolve through further innovation

PLANAR DEVICES NON-PLANAR DEVICES
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Future predictions

What's coming next? 

New architectures

Quantum devices Spintronics

Graphene

Carbon
nanotubes

Material change
III-V
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What's inside?

Example of Low Power and High Performance application.
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What's inside?

Apple has dual sourced its Processor from Samsung
 (14 nm FinFET) and TSMC (16 nm FinFET).

Example of Low Power and High Performance application.
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● Device selection

● Device creation

● Pre-processing stage 

● Simulation of the device

● Analysis of the results
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● Experimental data

● ITRS (International Technology Roadmap for 
Semiconductors)

 

● Scientific papers

 Sources of information
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50 nm gate length MOSFET

Si substrate

High-k dielectric

p-type GaAs substrate

InGaAs channel

Source

Source Drain

Si substrate

SiO2

Gate

Source Drain High-k dielectric Drain
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 10.7 nm gate length Si FinFET

Metal
(TiN, TaN, WN)

Oxide (high-k)

Semiconductor
(Si or InGaAs)



Device selection

58

22 nm gate length Si GAA NW FET

(b) S Bangsaruntip, et al. Density scaling with gate-all-around silicon 
nanowire MOSFETs for the 10 nm node and beyond. IEDM Tech. 
Dig. pp.526-9, 2013. (IBM Research Division)

Metal
Oxide

Semiconductor
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Device creation



GMSH: 3D  finite element mesh generator
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Screenshot
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Screenshot

GMSH is open source



GMSH: 3D  finite element mesh generator

62

Screenshot

Tetrahedral elements
Accurate modelling of rounded 
corners

GMSH is open source
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Pre-processing stage
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● Asign properties to the mesh nodes (eg. Material, 
mobility, afinitity, permitivity..)

● Identify contacts of the device

● Divide the mesh into subdomains
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● Asign properties to the mesh nodes (eg. Material, 
mobility, afinitity, permitivity...)

● Identify contacts of the device

● Divide the mesh into subdomains

Semiconductor

Oxide

Triangular FinFET
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● Asign properties to the mesh nodes (eg. Material, 
mobility, afinitity, permitivity...)

● Identify contacts of the device

● Divide the mesh into subdomains

Gate

Triangular FinFET

Source

Drain
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Mesh divided into 4 subdomains

Triangular FinFET

● Asign properties to the mesh nodes (eg. Material, 
mobility, afinitity, permitivity...)

● Identify contacts of the device

● Divide the mesh into subdomains
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Simulation of the device
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1.What is the correct simulation method for the 
device?

2.What are the main limitations of the chosen 
model?

3.What kind of study we want to perform?
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Sim. time ~ secs



Simulation of the device
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Sim. time ~ secs

Numerical methods
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Sim. time ~ secs

Sim. time ~ hours

Sim. time ~ days

Sim. time ~ weeks
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Example: Drift-difussion method

Electrostatic 
potential

Electron
concentration

Current 
density

Equations solved for each node of the mesh



Simulation of the device
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Example: Drift-difussion method

Limitations:

 
● Calibration required

– Experimental data if available

– More complex and accurate simulation methods

● Not valid for on-region studies
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10.4 nm gate length In0.53Ga0.47As FinFETs

Drift-diffusion simulator used 
in the sub-threshold region: 
calibrated against NEGF 
simulations 

Monte Carlo simulator used in 
the on region

→ Experimental data not available yet
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Mesh too coarse: no convergence 
Mesh too fine: increases the computational cost
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Selective refinement: special attention to transition 
areas and highly doped ones

Mesh too coarse: no convergence 
Mesh too fine: increases the computational cost
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Analysis of the results
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 MOSFET devices

Electron concentration 

Calculated at every point of the device
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Gate

Source

Drain
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Gate

Source

Drain
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OFF-CURRENT

Water leaking
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SUB-THRESHOLD 
SLOPE

Limit 60 mV/dec 
conventional 
devices 
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SUB-THRESHOLD 
SLOPE
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ON-CURRENT
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I
ON

/I
OFF

 ratio 
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● Why do we care about variability?

● Variability pipeline

● Variability sources

● How can we know more?
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Example in the natural world 

Picture a ladybird
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Example in the natural world 

Picture a ladybird

Or a ladybug if you think 
in American English
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Example in the natural world 

Picture a ladybird

IDEAL
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Example in the natural world 

Picture a ladybird

IDEAL

REALITY
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✔ Variability sources appear during transistor fabrication 
and have a negative impact on the final device 
performance and reliability (chip failure)

✔ This effect is becoming more pronounced for the state-of-
the-art devices

✔ The effect of intrinsic sources of variability is inherent to the 
devices and cannot be eliminated

 MGG

  LER
 RD

Importance
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We have simulated the ideal device
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Variabililty introduced in the work-flow
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Data sources

Variabililty introduced in the work-flow
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Generate profiles

Variabililty introduced in the work-flow

Profile: file that specifies the differences 
from the ideal device configuration
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Apply profiles to the device

Variabililty introduced in the work-flow
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Apply profiles to the device

Variabililty introduced in the work-flow

Each profile → a new device needs to be simulated

Hundreds of devices

Statistical analysis

Large computational cost !!!
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Line-edge roughness (LER)  
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Motivation

✔ It is impossible to create straight lines with lithography 
techniques

✔ There are only a few atoms of separation from the ideal 
device, but they make an impact.
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Modelling

Bullet-shaped FinFET
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Modelling

Uncorrelated LER
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Modelling

Uncorrelated LER

Comparison of extreme cases
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Modelling

Uncorrelated LER

Large deformation in the middle of the gate:
          Obstruction of the electron flow

Comparison of extreme cases
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Modelling

Uncorrelated LER

Large deformation in the middle of the gate:
          Obstruction of the electron flow

Comparison of extreme cases

Lowest I
OFF

large gate voltage 
to turn on the device
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Modelling

Uncorrelated LER

Small deformation in the drain end:
          Little influence 

Comparison of extreme cases
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Modelling

Uncorrelated LER

Small deformation in the drain end:
          Little influence 

Comparison of extreme cases

Highest I
OFF

low gate voltage 
to turn on the device
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Modelling
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Modelling

Measurement of the 
sensitivity of a device 
to LER variations



Variability sources 

123

● Line edge roughness (LER)
 

● Metal grain granularity (MGG) 

● Random dopants (RD)

● Defects in high-k dielectrics 
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Motivation

✔ Metals used as gate contacts present crystallographic 
domains (grains)

✔ Lithography processes can create even bigger grains, 
increasing the effect of the variability source

✔ These grains have different work-function values and 
orientations
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Motivation

✔ Metals used as gate contacts present crystallographic 
domains (grains)

✔ Lithography processes can create even bigger grains, 
increasing the effect of the variability source

✔ These grains have different work-function values and 
orientations

Key to control the gate of the device
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Motivation

✔ Metals used as gate contacts present crystallographic 
domains (grains)

✔ Lithography processes can create even bigger grains, 
increasing the effect of the variability source

✔ These grains have different work-function values and 
orientations

Key to control the gate of the device

The grain size can also change
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Modelling

Voronoi approach to create the MGG
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Modelling
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Modelling
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Modelling
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10.4 nm gate length InGaAs FinFET devices

Rectangular (REC) Bullet-shaped (BUL) Triangular (TRI)

We apply a MGG profile
Cut in the middle of the gate (X=0 nm)
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Electron density cross-section in the middle of the gate
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Electron density cross-section in the middle of the gate

Example of a MGG 
profile applied to the 
TiN metal gate
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Electron density cross-section in the middle of the gate

Example of a MGG 
profile applied to the 
TiN metal gate

TiN has two possible 
grain orientations 
with work functions 
(WF) spanning 0.2 eV
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Electron density cross-section in the middle of the gate

Example of a MGG 
profile applied to the 
TiN metal gate

TiN has two possible 
grain orientations 
with work functions 
(WF) spanning 0.2 eV

TRI: density 
distributed toward the 
bottom of the cross-
section and is low at 
the top due to stronger 
quantum confinement.
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Electron density cross-section in the middle of the gate

Example of a MGG 
profile applied to the 
TiN metal gate

TiN has two possible 
grain orientations 
with work functions 
(WF) spanning 0.2 eV

TRI: density 
distributed toward the 
bottom of the cross-
section and is low at 
the top due to stronger 
quantum confinement.

REC and BUL: density  
distributed along the 
entire channel, but the
larger values are found 
at the top of the cross-
section.
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Electron density cross-section in the middle of the gate

 which is pushing the 
electron density to 
the opposite side of 
the device

Grains with a larger WF 
value are occupying a 
significant part of the 
gate profile's right-hand 
side 
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● Line edge roughness (LER)
 

● Metal grain granularity (MGG) 

● Random dopants (RD)

● Defects in high-k dielectrics 



Random dopants (RD) 

139

Motivation

✔ It is impossible to predict how the atomic dopants' atoms 
will be arranged within the transistors

✔ This leads to variations in the current flow and disruptions
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Modelling

Continuous doping values

Individual impurity atoms
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Modelling
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● Line edge roughness (LER)
 

● Metal grain granularity (MGG) 

● Random dopants (RD)

● Defects in high-k dielectrics 
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Motivation

✔ Under high temperatures annealings, high-k materials 
become polycrystalline

✔ Variations of the oxide thickness and charge trapping can 
affect the properties of the scaled devices
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Motivation

✔ Under high temperatures annealings, high-k materials 
become polycrystalline

✔ Variations of the oxide thickness and charge trapping can 
affect the properties of the scaled devices

Experimental data measured in the 
Universitat Autónoma de Barcelona
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Motivation

Topography map obtained at V
G
=6.5V 

on a HfO
2
/SiO

 2
/p-Si structure

             (250 nm x 300 nm)
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Motivation

Grain

Topography map obtained at V
G
=6.5V 

on a HfO
2
/SiO

 2
/p-Si structure

             (250 nm x 300 nm)
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Motivation

Grain

Grain Boundary

Topography map obtained at V
G
=6.5V 

on a HfO
2
/SiO

 2
/p-Si structure

             (250 nm x 300 nm)
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Motivation

Grain

Grain Boundary

Topography map obtained at V
G
=6.5V 

on a HfO
2
/SiO

 2
/p-Si structure

             (250 nm x 300 nm)

We consider 50 nm x 50 nm samples
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Modelling

Topography map obtained at V
G
=6.5V 

on a HfO
2
/SiO

 2
/p-Si structure

             (250 nm x 300 nm)
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Modelling

Si MOSFET device with a 50 nm gate length
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Modelling

Experimental charge 
density map 



Defects in high-k dielectrics 

152

Modelling

Ref.= uniform HfO
2
 thickness (5.3 nm) and trapped charge density (1020cm-3)

Experimental charge 
density map 
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Modelling

Difference of 29.3 mV between the threshold voltages 
 of the two simulated cases

Experimental charge 
density map 
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● Line edge roughness (LER) 

● Metal grain granularity (MGG) 

● Random dopants (RD)

● Defects in high-k dielectrics 
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● Line edge roughness (LER) 

● Metal grain granularity (MGG) 

● Random dopants (RD)

● Defects in high-k dielectrics 

Which is the dominant source of variability?
How do they compare? 
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● Line edge roughness (LER) 

● Metal grain granularity (MGG) 

● Random dopants (RD)

● Defects in high-k dielectrics 

Which is the dominant source of variability?
How do they compare? 

Preliminar data
Results not available for 
FinFETs or nanowires yet
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Histograms showing the VT 
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Histograms showing the VT 

Combined simulation 
of  MGG+LER+RD
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Histograms showing the VT 

300 different devices
per variability source 
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Histograms showing the VT 

10.4 nm gate 
length InGaAs 
FinFET

300 different devices
per variability source 
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Histograms showing the VT 

Standard deviation
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Histograms showing the VT 

Standard deviation

V
T
 if no variability 

sources are included
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Histograms showing the VT 

Standard deviation

Distribution's mean value 

V
T
 if no variability 

sources are included
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Histograms showing the VT 

Standard deviation

Distribution's mean value 

V
T
 shift

    =<V
T
>-V

T-ideal

V
T
 if no variability 

sources are included
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Histograms showing the VT 

MGG dominant
5 times larger than LER
2.3 times larger than RD 
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Histograms showing the VT 

MGG ΔV
T
 minimal

 4 times lower than LER
15 times lower than RD

MGG dominant
5 times larger than LER
2.3 times larger than RD 
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Histograms showing the VT 

MGG ΔV
T
 minimal

 4 times lower than LER
15 times lower than RD

MGG dominant
5 times larger than LER
2.3 times larger than RD 

A more realistic 
scenario
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● Line edge roughness (LER) 

● Metal grain granularity (MGG) 

● Random dopants (RD)

● Defects in high-k dielectrics 

Which is the dominant source of variability?
How do they compare? 

What is the computational cost? 
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Cluster attack!! 

300 different devices
per variability source 
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Cluster attack!! 

300 different devices
per variability source 

MOSFET 35 nm gate length (Univ. Glasgow)
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Cluster attack!! 

300 different devices
per variability source 
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Cluster attack!! 

24 hr/sim 1 core 
(cluster ctcomp2)

300 different devices
per variability source 

36 hr/sim 1 core 
(cluster ctcomp2)
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Cluster attack!! 

24 hr/sim 1 core 
(cluster ctcomp2)

300 different devices
per variability source 

36 hr/sim 1 core 
(cluster ctcomp2)

TOTAL SIMULATION TIME:

36,000 hours

Conservative estimation !!
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● Why do we care about variability?

● Variability pipeline

● Variability sources

● How can we know more?
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Motivation 

One  of  the  main  burdens  of  a  TCAD  variability  study  of 
semiconductor devices is its high computational cost.
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One  of  the  main  burdens  of  a  TCAD  variability  study  of 
semiconductor devices is its high computational cost.
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One of the main burdens of a TCAD variability study of 
semiconductor devices is its high computational cost.

We developed a new approach, based on the creation of 
fluctuation sensitivity maps, that provides:

1.- spatial information about the effect of the variability 
on the device performance
 

2.- a prediction of the magnitude of the variability 

This technique allow us to obtain simulation results at a 
reduced time

Motivation 
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Fluctuation Sensitivity Map (FSM) 

300 simulations

Gate profiles

FoM values (V
T
, I

OFF
, I

ON
, etc.)

MGG variability 
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Fluctuation Sensitivity Map (FSM)

300 simulations

Gate profiles

FoM values (V
T
, I

OFF
, I

ON
, etc.)

Objective:
→  obtain valuable spatial information about the effect of the MGG

 
→ useful in the development of fluctuation-resistant device architectures
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Fluctuation Sensitivity Map (FSM) 

300 simulations

Gate profiles

FoM values

Fluctuation Sensitivity Map

The value of an element FSM
i,j
 represents how 

sensitive a certain figure of merit is to the grain 
orientation at the position in the gate.
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Fluctuation Sensitivity Map (FSM) 

Bottom gate left

Fluctuation Sensitivity Map
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Fluctuation Sensitivity Map (FSM) 

Bottom gate left

Fluctuation Sensitivity Map
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Fluctuation Sensitivity Map (FSM)

Bottom gate left

Top gate 

Fluctuation Sensitivity Map
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Fluctuation Sensitivity Map (FSM) 

Bottom gate left

Bottom gate right

Top gate 

Fluctuation Sensitivity Map
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Fluctuation Sensitivity Map (FSM)

Light colour → High Sensitivity

Dark colour → Low  Sensitivity

Fluctuation Sensitivity Map
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Fluctuation Sensitivity Map (FSM)

Bottom gate left

Bottom gate right

Top gate

Four FinFET devices with the same dimensions but different shapes
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Fluctuation Sensitivity Map (FSM)

Bottom gate feft

Bottom gate right

Top gate

 High Sensitivity → Top of the gate

 Low  Sensitivity → Bottom of the gate
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Fluctuation Sensitivity Map (FSM)

Bottom gate feft

Bottom gate right

Top gate

11 nm
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Fluctuation Sensitivity Map (FSM)

Bottom gate left

Bottom gate right

Top gate

 High Sensitivity → Sidewalls of the gate

 Low  Sensitivity → Top of the gate

11 nm

High 
Sensitivity



Outline 
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● Motivation

● Simulation methodology

● Results

● Conclusion
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● We have two in-house built 3D finite-element 
simulation tools based on the drift-diffusion and the 
Monte Carlo methods

● Using our simulation tools we can introduce new 
materials, device structures, physical phenomena...

● We have studied promising candidates for future 
generation transistor nodes, progressively scaling them 
in order to keep up with the industry requirements
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● We have modelled (with mathematical models), 
implemented (via simulations) and analysed (through 
statistical analysis) the variability effects that limit the 
performance and reliability of semiconductor devices

● We have introduced the variability sources as soon as 
they appear in the new technological nodes

● We have improved the previously existing method to 
model the metal grain granularity (Voronoi approach)

● We have tackled the large computational cost of 
variability studies (via the FSM and the GWM)



citius.usc.es

Centro Singular de Investigación en Tecnoloxías da Información
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Thank you for your attention

No lemons were harmed in the making of 
this work
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