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What is simulation?

The imitation of a real world process or system using mathematical
models and computational resources.

SIMULATION
Real system Output

Conclusions

Math. model Comp. power
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What is simulation?

The imitation of a real world process or system using mathematical
models and computational resources

Natural sample: set of observations from the population obtained
through field work.

Artificial sample (lab sample): set of observations from the
population NOT obtained through field work.

To obtain artificial samples we need to know the
population.
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What is simulation?

Advantages

The only tool if mathematical methods are not available.

Existing mathematical models are too complex.

Allows comparison of alternative designs.

Drawbacks

Computational power.

For stochastic models, simulation estimates the output, while the
analytical method, if available, produces exact solutions.

Not appropriate models may result in wrong conclusions.
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Applications of simulation

Approximation of the distribution (or characteristic) of a certain
statistic (bias and variability) with Monte Carlo methods.

Comparison of two confidence intervals approximating with Monte
Carlo their coverage.

Comparison of two hypothesis tests approximating with Monte Carlo
their power functions.

There exist a wider variety of applications based on
these ones.
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What is bootstrap?

“Pull yourself up by your own bootstraps”
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What is bootstrap?

Bradley Efron (Stanford University, 1979). He defined the method by
mixing Monte Carlo with problem resolution in a very general way.

Peter Hall (1951-2016). He was one of the most prolific nowadays
statisticians and he devoted a huge part of his work to bootstrap
from the 80’s.

Hypothesis on the population distribution are
not required.

Intro R
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Part I: Simulation
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Part I: Simulation

Module I: Simulation of univariate
distributions
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Univariate simulation

Continuos variables Salto linea
The inverse transform method.
Acceptance-rejection methods.
. . .

Discrete variables Salto linea
The generalized inverse method or quantile
transformation method.
Truncation methods.
. . .

Cao, R. (2002) Introducción a la simulación y a la teoŕıa de colas. NetBiblio.
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Continuous univariate simulation

The inverse transform method

Probability Integral Transform
Any random variable can be transformed into a uniform random
variable and, more importantly, vice versa.

That is, if a random variable X has density f and cumulative distri-
bution function F , then it follows that

F (x) =
∫ x

−∞
f (t)dt,

and if we set U = F (X ), then U is a random variable distributed
from a uniform U(0, 1).

Random Numbers Generation
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Continuous univariate simulation

The inverse transform method

Probability Integral Transform
Any random variable can be transformed into a uniform random
variable and, more importantly, vice versa.

That is, if a random variable X has density f and cumulative distri-
bution function F , then it follows that

F (x) =
∫ x

−∞
f (t)dt,

and if we set U = F (X ), then U is a random variable distributed
from a uniform U(0, 1).

Random Numbers Generation

X = F−1(U)
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Continuous univariate simulation

The inverse transform method

Example: Let us consider a random variable that follows a Maxwell
distribution which density is given by

f (x) = xe−x2/2 if x > 0,

and as a consequence

F (x) =
∫ x

−∞
f (t)dt =

∫ x

0
te−t2/2dt = 1− e−x2/2 con x > 0.

In this case, it is easy to compute the inverse of this distribution
function as

y = F (x)⇔ y = 1− e−x2/2 ⇔ x =
√
−2 ln(1− y).
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Continuous univariate simulation

> n=10000
> u<-runif(n)
> maxw<-sqrt(-2*log(u))

> fmaxw<-function(x){
+ x*exp(-xˆ2/2)
}

> sec=seq(0,4,by=0.05)
> fsec=fmaxw(sec)

> plot(density(maxw),lwd=2)
> lines(sec,fsec,col=2,lwd=2)
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Continuous univariate simulation

Acceptance-rejection methods

Assumptions: The functional form of the density f of interest (ca-
lled the target density) up to a multiplicative constant is known.

Idea: We use a simpler (to simulate) density g , called the instru-
mental or candidate density, to generate the random variable for
which the simulation is actually done.

Constraints:
f and g have compatible supports, i.e., g(x) > 0 when
f (x) > 0.
There is a constant M with f (x)

g(x) ≤ M for all x .
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Continuous univariate simulation

Acceptance-rejection methods

Algorithm
1. Generate Y ∼ g and U ∼ U(0, 1).
2. Accept X = Y if U ≤ f (Y )

Mg(Y ) .
3. Return to Step 1 otherwise.

> u=runif(1)*M
> while (u>f(y)/g(y)){
+ u=runif(1)*M
+ y=randg(1)
}
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Continuous univariate simulation

Acceptance-rejection methods

Algorithm
1. Generate Y ∼ g and U ∼ U(0, 1).
2. Accept X = Y if U ≤ f (Y )

Mg(Y ) .
3. Return to Step 1 otherwise.

> u=runif(1)*M
> y=randg(1)
> while (u>f(y)/g(y)){
+ u=runif(1)*M
+ y=randg(1)
}

randg is a function
that delivers gene-
rations from the
density g .
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Discrete univariate simulation

Generalized inverse method
Idea: Given a random variable with distribution function F and
quantile function Q(u) = inf{xj/

∑j
i=1 pi ≥ u}. If we consider a

random variable U ∼ U(0, 1) then the variable Q(U) has the same
distribution as X . This method is also called quantile transforma-
tion.

Problem: Compute the quantile function Q is not a easy problem
in some cases. It is needed to use a sequential search.

Algorithm:
1. Generate U ∼ U(0, 1).
2. Put I = 1 and S = p1.
3. While U > S compute I = I + 1 and S = S + pI .
4. Return X = xI .

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 16



Discrete univariate simulation

Generalized inverse method

Example: Let us consider a discrete variable that takes values x1, . . . , xn
with the same probability 1/n.

> gdv<-function(x, prob) {
+ i <- 1
+ Fx <- prob[1]
+ U <- runif(1)
+ while (Fx < U) {
+ i <- i + 1
+ Fx <- Fx + prob[i]
+ }
+ return(x[i])
+ }
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Discrete univariate simulation

Truncation methods
Use a continuous distribution similar to the discrete one

X x1 x2 x3 · · · xn
p1 p2 p3 · · · pn

F (x) =
∑
xi≤x

pi .

We define Y ∼ G and values −∞ = a0 < a1 < a2 < · · · < an−1 <
an =∞ such that

F (xi )− F (x−i ) = pi = G(ai )− G(ai−1) i = 1, . . . , n.

Then P(Y ∈ [ai−1, ai )) = pi . If the continuous r.v. Y is easy to
simulate, we can generate values from it and transform them into
values of X .

Cao, R. (2002) Introducción a la simulación y a la teoŕıa de colas. NetBiblio.
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Discrete univariate simulation

Truncation methods

Algorithm
1. Generate Y ∼ G .
2. Find i/ai−1 < Y < ai .
3. Return xi .

Cao, R. (2002) Introducción a la simulación y a la teoŕıa de colas. NetBiblio.
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Part I: Simulation

Module II: Simulation of
Multidimensional Distributions

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 20



Introduction

Given a pair of variables (X ,Y ), let us define the distribution function as

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)

Discrete case
FX ,Y (x , y) =

∑
xi≤x

∑
yj≤y

P(X = xi ,Y = yj) =
∑
xi≤x

∑
yj≤y

pij .

Continuous case

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y) =
∫ x

−∞

∫ y

−∞
fX ,Y (u, v)dudv .
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Introduction

Definition
Given a pair of variables X and
Y of continuous variables, if X
and Y are independent then it
follows that

fX ,Y (x , y) = fX (x) · fY (y)

for all x , y ∈ R.

Y

Z
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Introduction

Definition
Given a pair of continuous varia-
bles X and Y , it follows that

fX ,Y (x , y) = fX (x) · fY |X (y |x)
= fY (y) · fX |Y (x |y)

where

fY |X (y | X = x) = fX ,Y (x , y)
fX (x)

z

Y

Z
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Conditional distribution methods

Idea: this method is based on the following decomposition of the density
function

f (x1, x2, . . . , xd ) = f1(x1) · f2(x2|x1) · . . . · fd (xd |x1, x2, . . . , xd−1),

where the conditional densities can be obtained as a function of the mar-
ginal densities

fi (xi |x1, x2, . . . , xi−1) = f1,...,i (x1, x2, . . . , xi )
f1,...,i−1(x1, x2, . . . , xi−1) .

Algorithm:

1. Generate X1 ∼ f1.

2. From i = 2 to d , generate Xi ∼ fi (·|X1,X2, . . . ,Xi−1).

3. Return X = (X1,X2, . . . ,Xd ).
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Conditional distribution methods

Example: Generate 1000 values from a bivariate Gaussian distribution with
the following covariance matrix

Σ =
(

4 1
1 9

)
using conditional distribution method.

Theoretical ideas
Given (

X1
X2

)
∼ N2

((
0
0

)(
σ2

1 σ12
σ12 σ2

2

))
then X1 ∼ N(0, σ1) and X2|X1 ∼ N

(
σ12
σ2

1
X1,

√
σ2

1σ
2
2−σ

2
12

σ2
1

)
.

If X ∼ N(0, σ) then X + µ ∼ N(µ, σ).
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Conditional distribution methods

> library(ks); library(mvtnorm); library(lattice)
> set.seed(1234)
> n=1000; sigma1=2; mu1=3; sigma2=3; mu2=5; sigma12=1
> sigma=matrix(c(sigma1ˆ2,sigma12,sigma12,sigma2ˆ2),ncol=2)
> z1=rnorm(n); z2=rnorm(n)
> y1=sigma1*z1
> y2=sigma12/sigma1ˆ2*y1+z2*sqrt((sigma1ˆ2+sigma2ˆ2
+ -sigma12ˆ2)/sigma1ˆ2)
> x1=y1+mu1; x2=y2+mu2
>
> d <- expand.grid(’x3’=seq(0,6,.05),’x4’=seq(0,10,.05))
> fhat <- kde(cbind(x1,x2), eval.points= d)
> levelplot(fhat$estimate ∼ d$x3*d$x4,main=’Estimated
+ density’,xlab=expression(X[1]),ylab=expression(X[2]))
>
> d$dens<-dmvnorm(as.matrix(d), mean=c(mu1,mu2), sigma=sigma)
> levelplot(dens ∼ x3*x4, data=d, xlab=expression(X[1]),
+ ylab=expression(X[2]), main=’Real density’)
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Conditional distribution methods

Estimated density
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Acceptance-rejection methods

Idea: Simulate random variable X from distribution with density f and
distribution function F .
We start with a random variable Y with the density g such that f (x) ≤
Mg(x), M < ∞ for all x . Them, given Y = x , one accepts Y and lets
X = Y with probability f (x)/Mg(x). Otherwise, a new Y is generated and
one continues until eventual acceptance.

Algorithm:

1. Generate Y ∼ g and U ∼ U(0, 1).

2. Accept X = Y if U ≤ f (Y )
Mg(Y ) .

3. Return to Step 1 otherwise.

Example: In Cao (2002), we can find an example that show how to gene-
rate points uniformly distributed on a d-dimensional sphere.

Cao, R. (2002) Introducción a la simulación y a la teoŕıa de colas. NetBiblio.
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Factorization of the covariance matrix

It is well know that if cov(X ) = Σ entonces cov(AX ) = AΣAt .

Idea: simulate independent data and then transform them linearly in order
to obtain the wanted covariance.

This method is used to simulate data from a multidimensional Gaussian
or t-Student distribution. If X ∼ Nd (µ,Σ) and A is a matrix of dimension
p × d , then AX ∼ Np(Aµ,AΣAt) .

If Z ∼ Nd (0, Id ) and Σ = HAHt = HA1/2(HA1/2)t , then

Y = µ+ HA1/2Z ∼ Nd (µ,Σ).

If Z ∼ Nd (0, Id ) and Σ = LLt using a Cholesky factorization, then

Y = µ+ LZ ∼ Nd (µ,Σ).
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Factorization of the covariance matrix

Algorithm:

1. Obtain the Cholesky factorization Σ = LLt .

2. Simulate Z = (Z1,Z2, . . . ,Zd ) a random sample of a standard Gaus-
sian distribution.

3. Compute X = µ+ LZ .

4. Repeat Step 2 and Step 3 several times.

Remark! Note that the algorithm depends on the Cholesky factorization.
For example, if using a Cholesky factorization we obtain Σ = U tU then
we have to use L = U t .
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Factorization of the covariance matrix
Example: Let us consider the functional variable

Y (x) = sin(2πx) + ε(x),

where 0 ≤ x ≤ 1 and Cov(ε(x), ε(y)) = e−‖x−y‖. Obtain a sample of this
variable (sample size n = 100) using 50 discretization points.

> n <- 100; p <- 50
> x <- seq(0, 1, length = p)
> mu <- sin(2*pi*x)
> x.dist<-as.matrix(dist(x))
> x.cov <- exp(-x.dist)
> # Cholesky factorization
> U <- chol(x.cov)
> L <- t(U)
> set.seed(1234) # Simulation
> z <- matrix(rnorm(n*p), nrow=p)
> y <- mu + L %*% z
> matplot(x, y, type = "l")
> lines(x, mu, lwd=2)
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Simulation based on copulas

Definition
A copula is a multidimensional distribution function that verifies that each
marginal distribution follows a uniform distribution.

This kind of functions is used to build multivariate distributions based on
marginal distributions.

Sklar Theorem (1959)
Given (X ,Y ) a random variable with distribution F (·, ·), and F1(·) and
F2(·) represent the corresponding marginal distributions. Then, there exists
a copula for which

F (x , y) = C(F1(x),F2(y)), ∀x , y ∈ R.

Moreover, if F1(·) and F2(·) are continuous, then C(·, ·) is unique. The
reciprocal is true.

Nelsen, R.B.(2006). An introduction to copulas, 2a ed., Springer.
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Nelsen, R.B.(2006). An introduction to copulas, 2a ed., Springer.
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Simulation based on copulas

Idea: If (U,V ) ∼ C(·, ·) (uniform marginal distributions):(
F−1

1 (U) , F−1
2 (V )

)
∼ F (·, ·).

In most cases, we know explicit expression of Cu(v) = C2(v |u) and of
its inverse C−1

u (w). As a consequence, it is easy to generate values from
(U,V ) using the conditional distributions methods.

Algorithm
1. Generate U,W ∼ U(0, 1).

2. Obtain V = C−1
u (W ).

3. Return (F−1
1 (U),F−1

2 (V )).
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Simulation based on copulas

Example: Let us consider a random bidimensional variable with marginal
distributions that follows an Exp(1) and an Exp(2), respectively. Moreover
the joint distribution is determined by a Clayton copula

Cα(u, v) = max
{(

u−α + v−α − 1
)−1/α

, 0
}
,

where α ∈ [−1,+∞] \ {0}. In this case, it follows that

C−1
u (w) =

(
u−α

(
w− α

α+1 − 1
)

+ 1
)− 1

α .

Taking α = 2, design an R code to genera samples from this distribution.
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Simulation based on copulas

Generate values from the copula.

> set.seed(1234)
> rcclayton <- function(alpha, n) {
+ val <- cbind(runif(n), runif(n))
+ val[, 2] <- (val[, 1]ˆ(-alpha)
+ * (val[, 2]ˆ(-alpha/(alpha
+ + 1)) - 1) + 1)ˆ(-1/alpha)
+ return(val)
+ }
> rcunif <- rcclayton(2,10000)
> plot(rcunif, xlab = ’u’, ylab = ’v’)
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Simulation based on copulas

Generate values from the copula: other way.

> library(copula)
> clayton.cop<-claytonCopula(2, dim=2)
> y <- rCopula(10000, clayton.cop)
> plot(y,xlab=’u’,ylab=’v’)
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Simulation based on copulas

Generate the bidimensional distribution.

> rcexp <- cbind(qexp(rcunif[,1], 1), qexp(rcunif[,2], 2))
> plot(rcexp, xlab = ’Exp(1)’, ylab = ’Exp(2)’)
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Simulation based on copulas

Estimated density.

> library(sm)
> sm.density(rcexp)
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Simulation based on copulas

Marginal distributions.

> hist(rcexp[,1], freq = FALSE,main=’’, xlab=’Variable Exp(1)’, col=4)
> curve(dexp(x,1), add = TRUE,lwd=3,col=2)
>
> hist(rcexp[,2], freq = FALSE,main=’’, xlab=’Variable Exp(2)’,col=4)
> curve(dexp(x,2), add = TRUE,lwd=3,col=2)
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Discrete multivariate simulation

Idea: reduce the problem to simulate several one-dimensional discrete ran-
dom variable.

Without dependence structure.

With a certain dependence structure.
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dom variable.
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Discrete multivariate simulation

Conditional distributions

Let X a discrete d-dimensional random vector with joint probability
function p(x1, . . . , xd ), we can write

p(x1, . . . , xd ) = p1(x1)p2(x2|x1) . . . pn(xd |x1, . . . , xd−1).

1. Generate X1 from p1.
2. From i = 2...d generate Xi from pi (·|X1, . . . ,Xi−1).
3. Return (X1, . . . ,Xd ).

Remark! It is useful to note that pi (xi |x1, . . . , xi−1) = pi (x1,...,xi )
pi−1(x1,...,xi−1) .
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Discrete multivariate simulation

Code-labelling methods

Build a function h (bijective) codifying all the possible d-plas of
the range of the random vector, making a correspondence with a
different natural number for each of them.

Example

X = (X1,X2) ∈ Z+ × Z+

h(i , j) = (i + j)(i + j + 1)
2 +i

Remark!
Computational cost of
h−1.
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Part I: Simulation

Module III: Applications of
Simulation
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Application to the statistical inference

Distribution of statistics or point estimators.
Distribution approximations.

Approximation of characteristics of the distribution.
Validity of the asymptotic distribution.

Comparison of estimators.

Estimation base on confidence intervals.
Obtain confidence intervals.
Analysis of an estimator using confidence intervals.

Hypothesis contrasts.
Approximation of the p-value.
Analysis of the hypothesis contrast.

Bootstrap methods.
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Application to the statistical inference
Example: Given {X1, . . . ,Xn} a random sample of a variable X ∼ N(µ, σ),
then the sampling distribution of the sample mean is

µ̂ = X = 1
n

n∑
i=1

Xi ∼ N
(
µ,

σ√
n

)
.

Check this result using a simulation study.

Sample mean distribution
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Application to the statistical inference
Example: Given {X1, . . . ,Xn} a random sample of a variable X ∼ N(µ, σ),
then the sampling distribution of the sample mean is

µ̂ = X = 1
n

n∑
i=1

Xi ∼ N
(
µ,

σ√
n

)
.

Check this result using a simulation study.

> set.seed(1234); nsim <- 500 ; nx <- 10; mux <- 1; sdx <- 2
> samples <- as.data.frame(matrix(rnorm(nsim*nx, mean=mux,
+ sd=sdx), ncol=nx))
> rownames(samples) <- paste(’sample’, 1:nsim, sep=’’)
> colnames(samples) <- paste(’obs’, 1:nx, sep=’’)
> samples$mean <- rowMeans(samples[,1:nx])
> samples$sd <- apply(samples[,1:nx], 1, sd)
> hist(samples$mean, freq=FALSE, breaks=’FD’, main=’Sample mean
+ distribution’, xlab=’Mean values’, ylab=’Density’, col=4))
> lines(density(samples$mean),lwd=3,col=2)
> curve(dnorm(x,mux,sdx/sqrt(nx)), lwd=3, col=’green’, add=TRUE)
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Monte Carlo Integration

Monte Carlo integration is design in order to compute multidimensional
integrals as

I =
∫
· · ·
∫

h(x1, . . . , xn)dx1 . . . dxn.

Example: We are interested in computing

I =
∫ b

a
h(x)dx = (b − a)

∫ b

a
h(x) 1

b − a dx .

If x1, x2, . . . , xn represents a random sample that follows an U(a, b) then

I = E (h(U(a, b))) · (b − a) ' 1
n

n∑
i=1

h(xi ) · (b − a).
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Monte Carlo Integration

Example: Estimate the integral
∫ 1

0 4x3dx = 1.
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Monte Carlo Integration

Example: Estimate the integral
∫ 1

0 4x3dx = 1.

> mc.integral <- function(fun, a, b, n) {
+ x <- runif(n, a, b)
+ fx <- sapply(x, fun)
+ return(mean(fx) * (b - a))
+ }
> fun<-function(x) ifelse((x > 0)& (x < 1), 4*xˆ3, 0)
> set.seed(1234)
> mc.integral(fun, 0, 1, 100)
[1] 0.760426
> mc.integral(fun, 0, 1, 1000)
[1] 1.057621
> mc.integral(fun, 0, 1, 10000)
[1] 0.9964717
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Importance sampling

Given X ∼ f , we are interested in computing

θ = E (h(X )) =
∫

h(x)f (x)dx .

Then, if x1, x2, . . . , xn represents a random sample of X

θ̂ ' 1
n

n∑
i=1

h(xi ).

Idea
In order to approximate the integral θ = E (h(X )), sometimes, it could be
simpler to generate observations from a density g that is similar to the
product hf . That is, if Y ∼ g

θ =
∫

h(x)f (x)dx =
∫ h(x)f (x)

g(x) g(x)dx = E (q(Y )),

where q(x) = h(x)f (x)
g(x) .
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Importance sampling

Procedure
Given Y1,Y2, . . . ,Yn a random sample of Y ∼ g then

θ ' 1
n

n∑
i=1

q(Yi ) = 1
n

n∑
i=1

w(Yi ) h(Yi ) = θ̂g

where w(x) = f (x)
g(x) .

In this case Var(θ̂g ) = Var(q(Y ))/n, and this variance can be reduced
significantly with respect to the classical method if

g(x) ∝
approx.

h(x) f (x).
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How to select the density g?

Condition 1: The variance of the estimator θ̂g should be finite to apply
the central limit theorem, that is,

E (q2(Y )) =
∫ h2(x) f 2(x)

g(x) dx =
∫

h2(x) f 2(x)
g(x) dx <∞.

Condition 2: The density g should be more heavy-tails than the density
f , because this could lead to estimators with finite variance.

Condition 3: The distribution of the weights w(Yi ) should be homoge-
neous in order to avoid influential observations.
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How to select the density g?

Condition 4: If f and/or g are quasi-densities, then the following appro-
ximation is used

θ '
∑

i=1 w(Yi ) h(Yi )∑
i=1 w(Yi )

,

in order to avoid the normalized constants.

Condition 5: If we simulated samples of {Y1,Y2, . . . ,Yn} weighted by
w(Yi ), then we will obtain an approximation of the density f .

Rubin, D. B. (1987).The calculation of posterior distributions by data augmentation: Comment: A noni-
terative sampling/importance resampling alternative to the data augmentation algorithm for creating a few
imputations when fractions of missing information are modest: The SIR algorithm. Journal of the American
Statistical Association, 82(398), 543-546.

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 51



How to select the density g?

Example: Generate 1000 values from a standard Gaussian distribution
using importance sampling methods based on 105 values from a Cauchy(0, 1)
distribution.

Histogram of the simulated data
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How to select the density g?

Example: Generate 1000 values from a standard Gaussian distribution
using importance sampling methods based on 105 values from a Cauchy(0, 1)
distribution.

> nsim <- 10ˆ3
> nsim2 <- 10ˆ5
> set.seed(1234)
> y <- rcauchy(nsim2)
> w <- dnorm(y)/dcauchy(y)
>
> rx <- sample(y, nsim, prob = w/sum(w))
>
> hist(rx, freq = FALSE,col=’gray’, xlab=’’,
+ main=’Histogram of the simulated data’)
> curve(dnorm, add = TRUE,lwd=3,col=2)

Histogram of the simulated data
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How to select the density g?

Example: Generate 1000 values from a standard Gaussian distribution
using importance sampling methods based on 105 values from a Cauchy(0, 1)
distribution.

> nsim <- 10ˆ3
> nsim2 <- 10ˆ5
> set.seed(1234)
> y <- rcauchy(nsim2)
> w <- dnorm(y)/dcauchy(y)
>
> rx <- sample(y, nsim, prob = w/sum(w))
>
> hist(rx, freq = FALSE,col=’gray’, xlab=’’,
+ main=’Histogram of the simulated data’)
> curve(dnorm, add = TRUE,lwd=3,col=2)

nsim2 should be big-
ger than nsim.
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distribution.
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Monte Carlo Optimization

Goal: we are interested in the following optimization problem

min
x∈D

f (x).

There exists several methods in the literature to solve this kind of problems
like Newton-Raphson methods.

Original idea: We focus on looking for zeros of the first derivative of f
using an iterative approximation

xi+1 = xi − [Hf (xi)]−1∇f (xi),

where Hf (xi ) represents the Hessian matrix (second derivatives) and∇f (xi)
the gradient vector (first derivatives).
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Monte Carlo Optimization

Problem: These methods works really well when the objective function do
not have local minimums (i.e. maximum likelihood estimator, where the
objective function can be multimodal). In other cases, the election of the
initial point is crucial.

Alternative idea: we can try to generate random values in the following
way: the regions where the objective function is lower were high probability
and low probability the regions where the objective function is higher.

Methods using random gradient.

Simulated annealing.

Genetic algorithms.

. . .
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Simulated annealing (SA)

SA is based on physical/chemical processes referred to as tempering certain
alloys of metal, glass, or crystal by heating above its melting point, holding
its temperature, and then cooling it very slowly until it solidifies into a
perfect crystalline structure.

SA is basically composed of two stochastic processes: one process for the
generation of solutions and the other for the acceptance of solutions. The
generation temperature is responsible for the correlation between generated
probing solutions and the original solution.

SA is a descent algorithm modified by random ascent moves in order to
escape local minima which are not global minima. The annealing algorithm
simulates a nonstationary finite state Markov chain whose state space is
the domain of the cost function to be minimized. Importance sampling is
the main principle that underlies SA.
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Simulated annealing (SA)

Algorithm
1. temp = init-temp;
2. place = init-placement;
3. while (temp > final-temp) do
4. while (inne loop criterion = FALSE) do
5. new place = PERTURB(place,temp);
6. ∇C = COST(new place) - COST(place);
7. if (∇C < 0) then
8. place = new place;
9. else if (RANDOM(0,1)> e-(∇C/temp)) then

10. place = new place;
11. temp = SCHEDULE(temp);

Robert, C. P., and Casella, G. (1999). The Metropolis-Hastings Algorithm. In Monte Carlo Statistical
Methods (pp. 231-283). Springer, New York, NY.
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Simulated annealing (SA)

http://www.ecs.umass.edu/ece/labs/vlsicad/ece665/slides/SimulatedAnnealing.ppt
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Simulated annealing (SA)
Example: Find the minimum of the function

f (x) = 10 sin(0.3x) sin(1.3x2) + 0.00001x4 + 0.2x + 80.

> fw <- function (x){
+ 10*sin(0.3*x)*sin(1.3*xˆ2)
+ + 0.00001*xˆ4 + 0.2*x+80
+ }

> optim(50, fw, method = "SANN",
+ control = list(maxit = 20000,
+ temp = 20, parscale = 20))
$par $value
[1] -15.81429 [1] 67.47401

$counts $convergence
function gradient [1] 0
20000 NA

$message
NULL
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Simulated annealing (SA)
Example: Find the minimum of the function

f (x) = 10 sin(0.3x) sin(1.3x2) + 0.00001x4 + 0.2x + 80.
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> fw <- function (x){
+ 10*sin(0.3*x)*sin(1.3*xˆ2)
+ + 0.00001*xˆ4 + 0.2*x+80
+ }
> optim(50, fw, method = "SANN",
+ control = list(maxit = 20000,
+ temp = 20, parscale = 20))
$par $value
[1] -15.81429 [1] 67.47401

$counts $convergence
function gradient [1] 0
20000 NA

$message
NULL
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Simulated annealing (SA)
Example: Find the minimum of the function

f (x) = 10 sin(0.3x) sin(1.3x2) + 0.00001x4 + 0.2x + 80.
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> fw <- function (x){
+ 10*sin(0.3*x)*sin(1.3*xˆ2)
+ + 0.00001*xˆ4 + 0.2*x+80
+ }
> optim(50, fw, method = "SANN",
+ control = list(maxit = 20000,
+ temp = 20, parscale = 20))
$par $value
[1] -15.81429 [1] 67.47401

$counts $convergence
function gradient [1] 0
20000 NA

$message
NULL
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Genetic algorithms

This algorithm reflects the process of natural selection where the fittest
individuals are selected for reproduction in order to produce offspring of
the next generation.

The population is {x1, . . . , xn}. An individual is characterized by a
set of parameters (variables) known as Genes. Genes are joined into
a string to form a Chromosome (solution).

The fitness function determines how fit an individual is (the ability
of an individual to compete with other individuals). It gives a fitness
score to each individual. The probability that an individual will be
selected for reproduction is based on its fitness score.

The idea of selection phase is to select the fittest individuals and let
them pass their genes to the next generation. Two pairs of individuals
(parents) are selected based on their fitness scores. Individuals with
high fitness have more chance to be selected for reproduction.
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Genetic algorithms

Crossover is the most significant phase in a genetic algorithm. For
each pair of parents to be mated, a crossover point is chosen at
random from within the genes.

In certain new offspring formed, some of their genes can be subjected
to a mutation with a low random probability. This implies that some
of the bits in the bit string can be flipped.

The algorithm terminates if the population has converged (does not
produce offspring which are significantly different from the previous
generation). Then it is said that the genetic algorithm has provided
a set of solutions to our problem.

Remark! The R packages DEOptim and gafit implement this kind of
methods.
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Genetic algorithms
Algorithm:

1. START.

2. Generate the initial population.

3. Compute fitness.

4. REPEAT.

5. Selection.

6. Crossover.

7. Mutation.

8. Compute fitness.

9. UNTIL population has converged.

10. STOP.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. The MIT Press. ISBN 0262631857.
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Genetic algorithms

Example: Find the mimimum of the function f (x) = cos(x) + sin(x) on
the interval [0, 6].
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(3.90 , −1.41)

library(gafit)
> e<-expression(cos(theta)
+ +sin(theta))
> guess.1 <- list( theta=3 )
> guess.2 <- gafit( e, guess.1,
+ step=1e-3 )
> guess.2
$theta
[1] 3.927359
> gafit( e, guess.2, step=1e-5)
$theta
[1] 3.926993
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Genetic algorithms

Example: Find the mimimum of the function f (x) = cos(x) + sin(x) on
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Genetic algorithms

Example: Find the mimimum of the function f (x) = cos(x) + sin(x) on
the interval [0, 6].
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Part I: Simulation

Module IV: Variance reduction
techniques
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Variance reduction

These techniques are used when we want to offer the most precise
answers possible with low computational cost.

Never use these techniques if we are trying to estimate the
variability.

There are a lot of different procedures, we will detail the following:

Common random numbers.

Antithetic variables.

Stratified sampling.

Control variables.

Conditioning.
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Var reduction - Common random numbers

Idea: we have two different procedures to perform the same tasks and we
want to compare them, for example, in terms of mean time.
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Var reduction - Common random numbers

Obective: we have changed the production system at a certain point and
we want to compare the new method with the old one, for example, in
terms of mean time.

TNM time for processing one product with the new method.

TOM time for processing one product with the old method.

Both are random variables depending on several elements.

For simplification: imagine the final time depends on the arriving
times of the products to process.

θ = E [TOM]− E [TNM]⇒ θ̂ = T OM − T NM
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Var reduction - Common random numbers

Shall we generate the two vectors of arriving times of
the products independently or not?

Let compute the variance of the statistic of interest:

Var(θ̂) = Var(T OM) + Var(T NM)− 2Cov(T OM,T NM).

If we generate the sequences independently, then Cov(T OM,T NM) = 0,
and

Var(T OM − T NM) = Var(T OM) + Var(T NM).

If we generate the sequences with Cov(T OM,T NM) > 0, then

Var(θ̂)dependence ≤ Var(θ̂)independence
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Var reduction - Common random numbers
> nsim<-1000 #number of simulations
> N<-10 #number of products to be processed
> #New method: the processing times are exponential with rate=1
> u<-runif(N);t1<-qexp(u,rate=1)
> #Old method: the processing times are exponential with rate=0.8
> v<-runif(N);t2<-qexp(v,rate=0.8);theta<-mean(t2)-mean(t1)
> #Simulate NOT using common random numbers
> theta.not<-numeric(nsim)
> for(i in 1:nsim){
+ u<-runif(N);t1<-qexp(u,rate=1)
+ v<-runif(N);t2<-qexp(v,rate=0.8)
+ theta.not[i]<-mean(t2)-mean(t1)}
> #Simulate using common random numbers
> theta.yes<-numeric(nsim)
> for(i in 1:nsim){
+ u<-runif(N)
+ t1<-qexp(u,rate=1);t2<-qexp(u,rate=0.8)
+ theta.yes[i]<-mean(t2)-mean(t1)}
> #Summary of the results
> m<-c(mean(theta.not),mean(theta.yes))
> d<-c(sd(theta.not),sd(theta.yes))
> res<-cbind(m,d);colnames(res)<-c(’Mean’,’Std Dev’)
> rownames(res)<-c(’Not CRN’,’CRN’)
> res
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Mean Std Dev
Not CRN 0.2447 0.5150
CRN 0.2479 0.0774
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Var reduction - Common random numbers

Histogram of theta
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Variance reduction - Antithetic variables
Problem: we want study a quantity θ = h(X1, . . . ,Xn) of our population
distributed following F .

Initial idea: we simulate a sample from our population (needs to be known)
using one of the methods for simulation previously explained, for example,
inverse method:

1. Generate U1 ∼ U(0, 1).
2. Compute X1 = F−1(U1).
3. Return X1.
4. Repeat Step 1-3 M times.

Introduction of antithetic variables: to reduce the variance we can ge-
nerate a sample with double size of the previous one in the following way:

1. Generate U1 ∼ U(0, 1).
2. Compute X1 = F−1(U1).
3. Compute X2 = F−1(1− U1) instead of using a new U2 ∼ U(0, 1).
4. Return X1 and X2.
5. Repeat Step 1-4 M/2 times.
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Variance reduction - Antithetic variables

Justification: we want to estimate by simulation a quantity θ = h(X1, . . . ,Xn),
for example, the sample mean.

We generate n pairs (X1,Y1), . . . , (Xn,Yn) from X ∼ F and Y ∼ F .

The combined estimator θ̂ = X+Y
2 is our proposal of statistic where

Var(θ̂) = 1
4
(
Var(X ) + Var(Y ) + 2Cov(X ,Y )

)
= σ2

2n (1 + ρ(X ,Y )),

with ρ denoting the correlation.

Then, with a negative correlation or covariance between X and Y , we ob-
tain a reduction of −100ρ(X ,Y )% using a 2n size sample with antithetic
variables instead of a 2n size sample in the classical way.
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Variance reduction - Antithetic variables

Example: dice toss
> nsim<-5000 #number of simulations
#Naive calculation
> toss <- runif(nsim) < 1/6
> mu=mean(toss);SE=sd(toss)
> print(c(Mean=mu,SE=SE))

Mean SE
0.1660000 0.3721179
#Antithetic variates
> unif.vec<-runif(nsim/2)
#Normal process
> x 1<- unif.vec<1/6
#Antithetic process
> x 2<- (1-unif.vec)<1/6
> toss.av <- (x 1 + x 2)/2
> mu=mean(toss.av);SE=sd(toss.av)
> print(c(Mean=mu,SE=SE))

Mean SE
0.1730000 0.2378942
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Variance reduction - Antithetic variables

Exercise
Use this technique to approximate with MC I =

∫ b
a g(x)dx and apply it

to approximate for example E (eU(0,2)) =
∫ 2

0
1
2 ex dx .
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Variance reduction - Stratifying sampling

Idea: divide the population in strata and obtain our sample with a number
of observations in each stratum (proportional to their probability). We need
to assure that the domain is covered.

Problem: we want to estimate by simulation a quantity θ = E (X ) and
suppose there is a discrete r.v. Y with values yi and probabilities pi where
i = 1, . . . , k such that

- pi = P(Y = yi ) with i = 1, . . . , k are known.

- for each i we can simulate X |Y = yi .
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Variance reduction - Stratifying sampling

Simple random sampling

E (X ).

X = 1
n
∑n

i=1 Xi .

Var(X ) = 1
n Var(X ).

Stratifying sampling

E (X ) =
∑k

i=1 E (X |Y = yi )pi .

εX =
∑k

i=1 X ipi
with X i is the average of npi values of
X generated conditional on Y = yi .

Var(εX ) =
∑k

i=1 p2
i Var(X i )) =

1
n E (Var(X |Y )).

Var(X ) = E (Var(X |Y )) + Var(E (X |Y ))

⇓

Var(X )− Var(εX ) = 1
nVar(E (X |Y )
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Variance reduction - Stratifying sampling

Example
We want to approximate the theoretical mean of X ∼ Exp(1) with a
sample of size n = 10 using 3 strata: 40% of the smaller values, 50% of
the intermediate and 10% highest.
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Variance reduction - Stratifying sampling

Example
We want to approximate the theoretical mean of X ∼ Exp(1) with a
sample of size n = 10 using 3 strata: 40% of the smaller values, 50% of
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Variance reduction - Stratifying sampling

Example
We want to approximate the theoretical mean of X ∼ Exp(1) with a
sample of size n = 10 using 3 strata: 40% of the smaller values, 50% of
the intermediate and 10% highest.

Recall: how to simulate Exp(1)

1. U ∼ U(0, 1).

2. X = − ln(U).
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Variance reduction - Stratifying sampling

Example
We want to approximate the theoretical mean of X ∼ Exp(1) with a
sample of size n = 10 using 3 strata: 40% of the smaller values, 50% of
the intermediate and 10% highest.

Step 1: use stratifying sampling

1. Simulate 4 values U[0.6, 1) for the first stratum.

2. Simulate 5 values U[0.1, 0.6) for the second stratum.

3. Simulate 1 value U[0, 0.1) for the third stratum.

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 76



Variance reduction - Stratifying sampling

Example
We want to approximate the theoretical mean of X ∼ Exp(1) with a
sample of size n = 10 using 3 strata: 40% of the smaller values, 50% of
the intermediate and 10% highest.

Step 2: algorithm
For i = 1, . . . , 10

1. Generate Ui

1a. U ∼ U(0, 1).
1b. If i ≤ 4 compute Ui = 0.4U + 0.6.
1c. If 4 < i ≤ 9 compute Ui = 0.5U + 0.1.
1d. If i = 10 compute Ui = 0.1U.

2. Xi = − ln(Ui )

Var(X ) = 1
102

∑10
i=1 Var(Xi ) = 0.022338
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Variance reduction - Stratifying sampling

Example
We want to approximate the theoretical mean of X ∼ Exp(1) with a
sample of size n = 10 using 3 strata: 40% of the smaller values, 50% of
the intermediate and 10% highest.

Step 2: algorithm
For i = 1, . . . , 10

1. Generate Ui

1a. U ∼ U(0, 1).
1b. If i ≤ 4 compute Ui = 0.4U + 0.6.
1c. If 4 < i ≤ 9 compute Ui = 0.5U + 0.1.
1d. If i = 10 compute Ui = 0.1U.

2. Xi = − ln(Ui )

Var(X ) = 1
102

∑10
i=1 Var(Xi ) = 0.022338 ≤ 1

Variance in simple
random sampling
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Variance reduction - Control variables

We want to estimate by simulation a quantity θ = E (X ). Suppose we have
another variable Y which mean µY is known.

T = X + c(Y − µY ) is an unbiased estimator of θ.

c? minc Var(X +c(Y−µY )) = minc Var(X )+c2Var(Y )+2cCov(X ,Y ),

c∗ = −Cov(X ,Y )
Var(Y ) ⇒ Var(T ) = Var(X )

(
1− ρ2(X ,Y )

)
.

Y is called a control variable and the use of it provides with a reduction
in the variance of the 100ρ2(X ,Y )%.

(not known in advance, computed through simulation)
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Variance reduction - Control variables

How do we compute c in practice?
Adjust a linear regression model of X over Y with the simulated data
(Xi ,Yi ), we get x̂ = β̂0 + β̂1y , and then

β̂0 = −c∗µY and β̂1 = −c∗.

Hence,

c∗ = −β̂1.

Additionally, to approximate θ we can proceed as follows

θ̂ = T = X − β̂1(Y − µY ) = β̂0 + β̂1µY .
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Variance reduction - Control variables

Approximate the mean of eU(0,2) using control variables
> a <- 0; b <- 2; mean.theo <- (exp(b)-exp(a))/(b-a)
> mean.theo
[1] 3.194528 #Theoretical mean
#Classical Monte Carlo simulation approximation
> set.seed(54321);nunif<- 10000; u <- runif(nunif, a, b)
> expu <- exp(u)
> theta1<-mean(expu);theta1
[1] 3.200529
#With control variable
> mod <- lm(expu ∼ u)
> mod.coef=mod$coef
> theta2<-mod.coef[1]+mod.coef[2]*1;theta2
[1] 3.193739
#estimation of the variance reduction
> expuc <- expu - mod.coef[2]*(u-1)
> 100*(var(expu)-var(expuc))/var(expu)
[1] 93.8147
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Variance reduction - Control variables

Approximate the mean of eU(0,2) using control variables
#simulation proof of the variance reduction
> nsim<-1000
> theta1<-numeric(nsim);theta2<-numeric(nsim)
> for(i in 1:nsim){
+ u <- runif(nunif, a, b);expu <- exp(u)
+ theta1[i]<-mean(expu)
+ mod <- lm(expu ∼ u);mod.coef=mod$coef
+ theta2[i]<-mod.coef[1]+mod.coef[2]*1}
#std dev approximation without control variable
> sd(theta1)
[1] 0.01683754
> sd(theta2)
#std dev approximation with control variable
[1] 0.00438511
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Variance reduction - Conditioning

We want to estimate by simulation a quantity θ = E (X ).

We select Y r.v. such that E (X |Y ) takes on a value that can be determine
by simulation.

Justification:

Var(X ) = E (Var(X |Y )) + Var(E (X |Y ))
⇓

Var(X ) ≥ Var(E (X |Y )).

E (X |Y ) is an unbiased estimator of θ with less variance.
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Variance reduction - Conditioning

Example

Approximate the value of π using the variable X =
{

1 V 2
1 + V 2

2 ≤ 1
0 otherwise

where V1 and V2 follow a U(−1, 1).

First of all we need to realise that E (X ) = π/4, so we are interested on
estimating the mean of X .

Option 1: traditional Monte Carlo approximation

1. Generate Xi ∼ X .

2. Repeat Step 1 M times.

3. Approximate the mean of our variable by X1+...+XM
M .
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Variance reduction - Conditioning

Option 2: Monte Carlo approximation with conditioning

We can derive that E (X |V1) = (1− V 2
1 )1/2.

This estimator verifies that E ((1− V 2
1 )1/2) = π/4. Moreover,

Var(X ) = π

4

(
1− π

4

)
' 0.1686,

Var((1− V1
2)1/2) = 2

3 −
(π

4

)2
' 0.0498.

1. Generate Vi ∼ V1.

2. Compute Ti = (1− V 2
i )1/2.

3. Repeat Step 1 and Step 2 M times.

4. Approximate the mean of I by T1+...+TM
M .
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Variance reduction - Conditioning

Example of π approximation
#Traditional MC approximation
> M=10000
> v1=runif(M,-1,1)
> v2=runif(M,-1,1)
> aux=v1ˆ2+v2ˆ2
> aux[aux<=1]=1
> aux[aux>1]=0
> X=mean(aux)*4
[1] 3.1348

#MC approximation with conditioning
> T=(1-v1ˆ2)ˆ0.5
> mean(T)*4
[1] 3.132865
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Variance reduction - Conditioning

Example of π approximation
#proof through simulation of the variance reduction
> nsim<-10000
> X<-numeric(nsim);T<-numeric(nsim)
> for (i in 1:nsim){
+ v1=runif(M,-1,1);v2=runif(M,-1,1)
+ aux=v1ˆ2+v2ˆ2
+ aux[aux<=1]=1;aux[aux>1]=0
+ X[i]=mean(aux)*4
+ T[i]=mean((1-v1ˆ2)ˆ0.5)*4}
#estimation of the variance classical MC
> sd(X)
[1] 0.01655588
#estimation of the variance conditioning
> sd(T)
[1] 0.008933938
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Summary of R functions for simulation

Discrete distributions

rbinom(n,size,prob) #Ber(prob) or Bi(size,prob)
rnbinom(n,size,prob) #NB(size,prob) or Ge(prob)
rpois(n,lambda) #Pois(λ)
rmultinom(n,size,prob) #Multinom(size,prob)

Continuous distributions
runif(n,min,max) #U(min,max)
rnorm(n,mu,sigma) #N(µ,σ)
rexp(n,rate) #Exp

( 1
rate
)

rgamma(n,shape,rate=1,scale=1/rate) #Gamma(shape,scale)
rbeta(n,shape1,shape2) #Be(shape1,shape2)
rweibull(n,shape,scale) #We(shape,scale)
library(mvtnorm); rmvnorm(n,mu,sigma) #Nd (µ,Σ)
library(mnormt); rmt(n,mean,S=df Σ/(df − 2) #Multiv T-Stud
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Part II: Resampling
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Part II: Resampling

Module I: Introduction to the
bootstrap. Uniform bootstrap
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Introduction to the bootstrap

Definition
Statistical procedure that try to model a population through resampling
on just one available sample.

Scenario
(X1, . . . ,Xn) a sample, we want to analyse different characteristics of a
statistic T ≡ T (X1, . . . ,Xn).
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Introduction to the bootstrap

Real world

X = (X1, . . . ,Xn) independent
random sample with distribution F .

We are interested on making
inference on θ = θ(F ).

We want to know the distribution
T (X).

Sometimes this distribution can be
computed exactly.

Others, we can only approximate it
when n→∞.

Bootstrap world

Theoretical distribution (unknown) is
replaced by an estimation F̂ .

We obtain, conditional on the original
sample, resamples X∗ = (X∗1 , . . . ,X∗n ).

We consider the distribution of
T ∗ = T (X∗).

We approximate the distribution of T
by the distribution of T ∗.

Rarely, the bootstrap distribution is
directly computed, but it used to be
approximated using Monte Carlo
methods.
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Introduction to the bootstrap

General algorithm
1. Select a sample X = (X1, . . . ,Xn).

2. Construct an estimator of the distribution function F̂ (many
possibilities).

3. Draw a sample from F̂ , X∗ = (X ∗1 , . . . ,X ∗n ) (resample).

4. Calculate the statistic of interest T̂ ∗ = T̂ (X ∗1 , . . . ,X ∗n ).

5. Compute the exact distribution of the statistic in the bootstrap
world.

5.? Repeat Step 3 and Step 4 B times, where B is as large as
possible, B = 500, 1000, . . .

6. Analyse the distribution of the statistic of interest in the boots-
trap world T̂ ∗1 , . . . , T̂ ∗n .
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Introduction to the bootstrap

Advantages

No hypothesis on the unknown distribution (unknown population).

Simplicity.

Adaptability.

Reduction of the field work and costs.

Drawbacks

Based on independent samples.

Computational cost.

Computers have built-in error.

Large sample sizes are generated.
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Introduction to the bootstrap

A precedent to the bootstrap: the Jackknife
First introduced by Quenouille in 1949 and named by Tukey in
1958.

Is was used not to approximate the distribution of a certain
statistic but some of its characteristics; mainly bias and
variance.

The resamples are obtained from the original one by taking
out one value.

In the Jackknife framework there are n different resamples
while in the bootstrap there are

(2n−1
n
)
.

Tukey, J. (1958) Bias and confidence in not quite large samples. Annals of Mathematical Statistics, 29,
614

Quenouille, M. (1949) Approximate test of correlation in time series. Journal of the Royal Statistical
Society: Series B, 11, 18-84.

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 93



Uniform bootstrap (näıve bootstrap)

F̂ is done by the empirical distribution function

Fn = 1
n

n∑
i=1

1{Xi≤x}.

Algorithm
1. For every i=1,. . . ,n draw X∗i from Fn, i.e., P(X∗i = Xj) = 1

n ,
j = 1, . . . , n.

2. Obtain the resample X∗ = (X∗1 , . . . ,X∗n ).

3. Compute the statistic of interest in the bootstrap world
T ∗ = T (X∗1 , . . . ,X∗n ).

Remark! In Step 1, we need to simulate a univariate discrete distribution. There
are many possibilities, an efficient one (due to the equiprobability of the values)
is the quantile transformation with direct search. In this case, the step will be
rewritten as

1. For every i=1,. . . ,n draw Ui ∼ U(0, 1) and compute X∗i = XdnUie.
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Uniform bootstrap (näıve bootstrap)

Example 1 (part I): Inference on the mean with known variance.

> sample.orig<-c(0.52, 0.61, -0.07, -1.23, 0.55, -1.34,
-0.10, 1.33, 1.52, 0.79, 1.14, 0.06, -0.74, 0.42, 1.08)
> n=length(sample.orig)
> sigma=0.5 #assumed to be known
> x.bar=mean(sample.orig) #statistic in the original
sample
> B=10000 #number of Bootstrap replicates
> resample<-numeric(n)
> stat.boot.unif<-numeric(B) #T*
>for (k in 1:B) {
+ resample<-sample(sample.orig,n,replace=T) #resamples
+ stat.boot.unif[k]=mean(resample)}
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Uniform bootstrap (näıve bootstrap)

Example 1 (part I): Inference on the mean with known variance.
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Uniform bootstrap (näıve bootstrap)

Example 1 (part II): Inference on the mean with known variance.

> sample.orig<-c(0.52, 0.61, -0.07, -1.23, 0.55, -1.34,
-0.10, 1.33, 1.52, 0.79, 1.14, 0.06, -0.74, 0.42, 1.08)
> n=length(sample.orig)
> sigma=1 #assumed to be known
>stat<-sqrt(length(sample.orig))*(mean(sample.orig)-0)/sigma
> B=10000 #number of Bootstrap replicates
> resample<-numeric(n)
> stat.boot.unif<-numeric(B) #T*
>for (k in 1:B) {
+ resample<-sample(sample.orig,n,replace=T) #resamples
+ stat.boot.unif[k]=sqrt(n)*(x.bar.boot-stat)/sigma}
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Exact bootstrap distribution

In principle, it is always possible to compute the exact distribution of the
bootstrap statistic in the bootstrap world, at least for uniform bootstrap
that is the most popular.

Reason: In the bootstrap world, the distribution of the original sample is
discrete and take values X1,X2, . . . ,Xn. Then, each bootstrap observation
X∗i will take one of these n values and as a consequence the number of
possible bootstrap samples X∗ = (X∗1 ,X∗2 , . . . ,X∗n ) is nn (it allows repeated
values).

Remark! The number of possible bootstrap sample is finite, but it is really
big even for small sample sizes. For instance, for n = 10 we will have 1010

possible bootstrap samples and for n = 20, this number will increase up to
2020 = 10.4857× 1025. That means, that computing the exact bootstrap
distribution is an intractable problem.

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 97



Exact bootstrap distribution

In principle, it is always possible to compute the exact distribution of the
bootstrap statistic in the bootstrap world, at least for uniform bootstrap
that is the most popular.

Reason: In the bootstrap world, the distribution of the original sample is
discrete and take values X1,X2, . . . ,Xn. Then, each bootstrap observation
X∗i will take one of these n values and as a consequence the number of
possible bootstrap samples X∗ = (X∗1 ,X∗2 , . . . ,X∗n ) is nn (it allows repeated
values).

Remark! The number of possible bootstrap sample is finite, but it is really
big even for small sample sizes. For instance, for n = 10 we will have 1010

possible bootstrap samples and for n = 20, this number will increase up to
2020 = 10.4857× 1025. That means, that computing the exact bootstrap
distribution is an intractable problem.

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 97



Exact bootstrap distribution

In principle, it is always possible to compute the exact distribution of the
bootstrap statistic in the bootstrap world, at least for uniform bootstrap
that is the most popular.

Reason: In the bootstrap world, the distribution of the original sample is
discrete and take values X1,X2, . . . ,Xn. Then, each bootstrap observation
X∗i will take one of these n values and as a consequence the number of
possible bootstrap samples X∗ = (X∗1 ,X∗2 , . . . ,X∗n ) is nn (it allows repeated
values).

Remark! The number of possible bootstrap sample is finite, but it is really
big even for small sample sizes. For instance, for n = 10 we will have 1010

possible bootstrap samples and for n = 20, this number will increase up to
2020 = 10.4857× 1025. That means, that computing the exact bootstrap
distribution is an intractable problem.

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 97



Exact bootstrap distribution

Example: Let us consider a random sample of a population with distribu-
tion F . If the sample size is n = 3, the parameter of interest if θ(F ) = µ
and the statistic if T = T (X1, . . . ,Xn) = X . Then the distribution of the
bootstrap statistic T ∗ = T (X∗1 , . . . ,X∗n ) = X∗ can be computed as follows

X∗ (+permutations) (m1, m2, m3) (p1, p2, p3) 3!
m1! m2! m3! 33 X∗

(X1, X1, X1) (3, 0, 0) (1, 0, 0) 1/27 X1
(X2, X2, X2) (0, 3, 0) (0, 1, 0) 1/27 X2
(X3, X3, X3) (0, 0, 3) (0, 0, 1) 1/27 X3
(X1, X1, X2) (2, 1, 0) (2/3, 1/3, 0) 1/9 (2X1 + X2)/3
(X1, X1, X3) (2, 0, 1) (2/3, 0, 1/3) 1/9 (2X1 + X3)/3
(X1, X2, X2) (1, 2, 0) (1/3, 2/3, 0) 1/9 (2X2 + X3)/3
(X2, X2, X3) (0, 2, 1) (0, 2/3, 1/3) 1/9 (2X2 + X3)/3
(X1, X3, X3) (1, 0, 2) (1/3, 0, 2/3) 1/9 (X1 + 2X3)/3
(X2, X3, X3) (0, 1, 2) (0, 1/3, 2/3) 1/9 (X2 + 2X3)/3
(X1, X2, X3) (1, 1, 1) (1/3, 1/3, 1/3) 2/9 (X1 + X2 + X3)/3
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(X1, X3, X3) (1, 0, 2) (1/3, 0, 2/3) 1/9 (X1 + 2X3)/3
(X2, X3, X3) (0, 1, 2) (0, 1/3, 2/3) 1/9 (X2 + 2X3)/3
(X1, X2, X3) (1, 1, 1) (1/3, 1/3, 1/3) 2/9 (X1 + X2 + X3)/3

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 98



Approximated bootstrap distribution

Idea: In a bootstrap scenario, the mechanism to generate the data is known and
as a result it can be simulated using Monte Carlo methods.

Algorithm: general structure for a uniform bootstrap
1. For each i = 1, . . . , n generate X?

i from Fn.
2. Obtain X∗ = (X∗1 , . . . , X∗n ).
3. Compute T ∗ = T (X∗1 , . . . , X∗n ).
4. Repeat Step 1-3 B times in order to obtain the bootstrap replications

T ∗(1), . . . , T ∗(B).
5. Use the bootstrap replications to approximate the distribution of T .

Remark 1! In order to complete Step 1, we can use the algorithms seen to
generate discrete random variables. In R can be solved thanks to the function
sample.

Remark 2! The number B should be big in order to obtain a good approximation.
Example: B = 100, 200, 500 to estimate bias or variance and B = 500, 1000, 5000
for build confidence intervals or testing hypothesis.
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Approximated bootstrap distribution
The distribution function of the estimator of interest

ψ(u) = P(T ≤ u)

can be estimated using the empirical distribution of the bootstrap replica-
tions,

ψ̂B(u) = 1
n

n∑
i=1

1{T∗(i)≤u}.

The empirical distribution ψ̂B(u) is an estimator of the exact bootstrap
distribution ψ̂B(u) = P∗(T ∗ ≤ u).

EMC
(
ψ̂B(u)

)
= ψ̂(u)

VarMC (ψ̂B(u)
)

= 1
B ψ̂(u) (1− ψ̂(u))

Remark! The Monte Carlo error, that is given by the Monte Carlo variance,
can be constrained by 1

2
√

B .
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Approximated bootstrap distribution

Example: Let us consider a random sample of a variable X with distribu-
tion F . The distribution of the parameter θ = median(X ) can be estimated
using a bootstrap approximation.

In a simple simulation example, let us consider the random sample

X =(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, 1.4, 1.5)

and a uniform bootstrap procedure.
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Approximated bootstrap distribution

> set.seed(1234)
> ori.sample<-seq(0.1,1.5,length=15);
> B=1000000 ; boot.median<-numeric(B)
> for (k in 1:B){
+ boot.sample<-sample(ori.sample,n,replace=T)
+ sort.boot.sample=sort(boot.sample)
+ boot.median[k]=sort.boot.sample[8]
+ }
> var.boot.median=(1/B)*sum((boot.median-
+ mean(boot.median))ˆ2);
> var.boot.median
[1] 0.03395916
> bias.boot.median=mean(boot.median)-mean(ori.sample)
> bias.boot.median
[1] -9.63e-05
> ECM.median=(bias.boot.median)ˆ2+var.boot.median
> ECM.median
[1] 0.03395917
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Part II: Resampling

Module II: Bootstrap variations
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Bootstrap variations

Uniform bootstrap uses the empirical distribution.

We may have some information on the population.

Modifications of the bootstrap: take profit of this information to
improve the results.
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Parametric bootstrap

F ∈ {Fθ/θ ∈ Θ ⊂ Rd}, we estimate θ from the sample, θ̂ (using
for example max likelihood) and we obtain resamples from F

θ̂
.

Algorithm

1. Given the sample X = (X1, . . . ,Xn), estimate θ̂.

2. For every i=1,. . . ,n draw X∗i from F
θ̂
.

3. Obtain the resample X∗ = (X∗1 , . . . ,X∗n ).

4. Compute the statistic of interest in the bootstrap world
T ∗ = T (X∗1 , . . . ,X∗n ).

Remark! In Step 2, we need to simulate values from F
θ̂
. We may use inversion

method (if possible) and in this case, the step will be rewritten as
2. For every i=1,. . . ,n draw Ui ∼ U(0, 1) and compute X∗i = F−1

θ̂
(Ui ).

When the inverse function can not be computed (Gaussian distribution for exam-
ple) statistical software used to have specific generating functions or we can use
other methods.
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Parametric bootstrap

Example 1 (part III): Inference on the mean with known variance.
> sample.orig<-c(-1.21,0.28,1.08,-2.35,0.43,0.51,-0.57,
+ -0.55,-0.56,-0.89,-0.48,-1.00,-0.78,0.06,0.96)
> n=length(sample.orig)
> sigma=1 #assumed to be known
> x.bar=mean(sample.orig)
> B=10000 #number of Bootstrap replicates
> resample<-numeric(n)
> stat.boot<-numeric(B) #T*
> for (k in 1:B) {
+ u=rnorm(n)
+ resample=u*sigma+x.bar
#equivalent: resample=rnorm(n,x.bar,sigma)
+ stat.boot[k]=mean(resample)
#stat.boot[k]=sqrt(n)*(x.bar.boot-x.bar)/sigma}
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Symmetrised bootstrap

We know that the distribution function of the population is
symmetric.

There is a value c such that F (c − h) = F (c + h) ∀h > 0, and it can
be proved that c = µ the mean of the distribution (whenever it exists).
Equivalently, this symmetric property can be expressed as F (x) = 1 −
F (2µ− x) ∀x ∈ R.

The distribution in the bootstrap world is then done with a sym-
metrised version of the empirical distribution function

F̂ = F sim
n .
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Symmetrised bootstrap

How can we define this estimator?
We first build a new sample by symmetrising the original one around
the sample mean:

Yi =
{

Xi i = 1, . . . , n,
2X − Xi−n i = n + 1, . . . , 2n.

And then F sim
n is the empirical distribution of this new sample, i.e,

it asigns an equal probability of 1/2n to each data Yi .

F sim
n (x) = 1

2n

2n∑
i=1

1{Yi≤x} ⇐⇒ F sim
n (x) = 1

2
(
Fn(x) + 1− Fn(2X − x)

)
.
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Symmetrised bootstrap

Algorithm
1. For every i=1,. . . ,n draw X∗i from F sim

n , i.e., P(X∗i = Yj) = 1
2n ,

j = 1, . . . , 2n.

2. Obtain the resample X∗ = (X∗1 , . . . ,X∗n ).

3. Compute the statistic of interest in the bootstrap world
T ∗ = T (X∗1 , . . . ,X∗n ).

Remark! In Step 1, we may proceed in two different ways: compute the symmetri-
sed version of the original sample and draw values from there with equiprobability,
and then it would be rewritten as

1. For every i=1,. . . ,n draw Ui ∼ U(0, 1) and compute X∗i = Xd2nUie.
or use the fact that F sim

n is the distribution of a random variable built in two steps,
in the first one sampling from Fn and in the second decide with equiprobability
if we remain with that value or its symmetric around the sample mean. In this
case it may be rewritten as

1. For every i=1,. . . ,n draw Ui , Vi ∼ U(0, 1). If Vi ≤ 0.5 then X∗i = XdnUie

and if not, X∗i = 2X − XdnUie.
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Symmetrised bootstrap
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or use the fact that F sim

n is the distribution of a random variable built in two steps,
in the first one sampling from Fn and in the second decide with equiprobability
if we remain with that value or its symmetric around the sample mean. In this
case it may be rewritten as

1. For every i=1,. . . ,n draw Ui , Vi ∼ U(0, 1). If Vi ≤ 0.5 then X∗i = XdnUie

and if not, X∗i = 2X − XdnUie.
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Symmetrised bootstrap

Example 1 (part IV): Inference on the mean with known variance.

> sample.orig<-c(0.52, 0.61, -0.07, -1.23, 0.55, -1.34,
-0.10, 1.33, 1.52, 0.79, 1.14, 0.06, -0.74, 0.42, 1.08)
> n=length(sample.orig)
> sigma=0.5 #assumed to be known
> x.bar=mean(sample.orig)
> sample.symm<-c(sample.orig,2*x.bar-sample.orig)
> B=10000 #number of Bootstrap replicates
> resample<-numeric(n)
> stat.boot.symm<-numeric(B) #T*
>for (k in 1:B) {
+ resample<-sample(sample.symm,n,replace=T) #resamples
+ stat.boot.symm[k]=mean(resample)
}
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Smooth bootstrap

We know that the distribution function of the population is
continuous.

This means that the distribution has an associated density function, f (x) =
F ′(x). So we need to use a bootstrap resampling from a continuous fra-
mework, for which we will use kernel estimators.

The estimator of the distribution function is based on the well
known kernel density estimator

Fh(x) =
∫ x

−∞
f̂h(t)dt =

∫ x

−∞

1
nh

n∑
i=1

K
(

x − Xi
h

)
dt

= 1
nh

n∑
i=1

∫ x−Xi
h

−∞
K (u)du = 1

n

n∑
i=1

K
(

x − Xi
h

)
,

where h is the bandwidth parameter and K(t) =
∫ t
−∞ K(u)du.

KDE
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Smooth bootstrap
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Smooth bootstrap

Algorithm

1. From the original sample (X1, . . . ,Xn) using a value h > 0 compute
KDE f̂h.

2. Obtain the resample X∗ = (X∗1 , . . . ,X∗n ) from f̂h.

3. Compute the statistic of interest in the bootstrap world
T ∗ = T (X∗1 , . . . ,X∗n ).

Remark! To draw values from f̂h we may think it as a linear combination of
density functions Kh(x−Xi ) with coefficients 1/n, and then do the simulation in
two steps: first select randomly and equiprobably i ∈ {1, . . . , n} and then draw
a value from Kh(· − Xi ) which is equivalent to draw V from K and Xi + hV .
Step 2 may be rewritten as

2. For every i=1,. . . ,n draw Ui ∼ U(0, 1), Vi ∼ K and compute
X∗i = XdnUie + hVi .
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Smooth bootstrap

Example 1 (part V): Inference on the mean with known variance.

> sample.orig<-c(0.52, 0.61, -0.07, -1.23, 0.55, -1.34,
-0.10, 1.33, 1.52, 0.79, 1.14, 0.06, -0.74, 0.42, 1.08)
> n=length(sample.orig)
> sigma=0.5 #assumed to be known
> x.bar=mean(sample.orig)
> sample.symm<-c(sample.orig,2*x.bar-sample.orig)
> B=10000 # number of Bootstrap replicates
> h=0.0001 #bandwidth value
> resample<-numeric(n)
> stat.bootsmooth<-numeric(B) #T*
> for (k in 1:B) {
+ resample<-sample(sample.orig,n,replace=T) #resamples
from the empirical distribution
+ resample=resample+h*rnorm(n,0,1)
+ stat.boot.smooth[k]=mean(resample)
}
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Smooth bootstrap
Example 1 (part V): Inference on the mean with known variance.

> sample.orig<-c(0.52, 0.61, -0.07, -1.23, 0.55, -1.34,
-0.10, 1.33, 1.52, 0.79, 1.14, 0.06, -0.74, 0.42, 1.08)
> n=length(sample.orig)
> sigma=0.5 #assumed to be known
> x.bar=mean(sample.orig)
> sample.symm<-c(sample.orig,2*x.bar-sample.orig)
> B=10000 # number of Bootstrap replicates
> h=0.0001 #bandwidth value
> resample<-numeric(n)
> stat.bootsmooth<-numeric(B) #T*
> for (k in 1:B) {
+ resample<-sample(sample.orig,n,replace=T) #resamples
from the empirical distribution
+ resample=resample+h*rnorm(n,0,1)
+ stat.boot.smooth[k]=mean(resample)
}

rnorm is a function
that draw values
from a Gaussian dis-
tribution (K is Gaus-
sian).
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Weighted and biased bootstrap

The distribution used in the resampling procedure is discrete and
assign probabilities only to the data of the sample

F̂ (Xi )− F̂ (X−i ) = pi , i = 1, . . . , n
with pi ≥ 0 and

∑n
i=1 pi = 1.

Particularly when pi = 1
n ∀i ∈ {i , . . . , n} we get uniform bootstrap.

Applications: censored data and also dependent data.

Weighted bootstrap derives in biased bootstrap when the vector
of weights p = (p1, . . . , pn) minimises the distance to the uniform
bootstrap

( 1
n , . . . ,

1
n
)

under some restrictions derived from the pro-
blem we are analysing.

Hall, P., and Presnell, B. (1999) Intentionally biased bootstrap methods. Journal of the Royal
Statistical Society: Series B, 61(1), 143-158
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Bootstrap validation

Uniform bootstrap method FAILS: “Frankfurt taxis example”

In Frankfurt taxis are presumably numbered from 1 to N. After arriving at
the train station you observe n taxi cabs numbered by (X1, . . . ,Xn). The
maximum likelihood estimate for the total number of taxis N is θ̂MLE =
θ̂ = max(X1, . . . ,Xn).

It is straightforward to show that the distribution of n(θ− θ̂) is exponential
with parameter 1/θ which implies in particular that, as for any continuous
distribution, the value 0 is assumed with zero probability.

The bootstrap distribution for this statistic n(θ − θ̂) is the distribution of
n(θ̂ − θ̂∗) where θ̂ = Xi for a certain i .

Then, we obtain a value of 0 with that probability for which the element
Xi is being resampled.

It is well known that this probability converges toward 1 − 1
e hence not

towards the value 0 provided by the exponential distribution.
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Bootstrap validation

Suppose that we want to estimate the distribution function

GF̂ ,n(q) = P[Q(Y1, . . . , Yn; F ) ≤ q|F ]

where the conditioning on F indicates that Y1, . . . , Yn is a random sample from
F . The bootstrap estimate of GF̂ ,n is

GF̂ ,n(q) = P[Q(Y ∗1 , . . . , Y ∗n ; F̂ ) ≤ q|F̂ ].

In order for GF̂ ,n to approach GF ,n as n → ∞, three conditions must hold.
Suppose that the true distribution F is surrounded by a neighbourhood N in a
suitable space of distributions, and that as n → ∞, F̂ eventually falls into N

with probability one. Then the conditions are:
1. For any A ∈ N, GA,n must converges weakly to a limit GA,∞.
2. This convergence must be uniform on N.
3. The function mapping A to GA,∞ must be continuous.

Under this conditions the bootstrap is consistent, meaning that for any q and ε
it follows that

P
(∣∣∣GF̂ ,n(q)− GF ,∞(q)

∣∣∣) −→ 0 as n→∞.
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Bootstrap validation

Consistency is a weak property, but standard normal approximation
methods are consistent in this sense.

Once consistency is established, meaning that the resampling method
is ’valid’, we need to know whether the method is ’good’ relative to
other possible methods.

This involves looking at the rate of convergence to nominal properties.

Asymptotic accuracy
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Bootstrap validation

Idea: to achieve valid conclusions, F and F̂ (in any of its forms) must be
close to each other, at least in some asymptotic sense.

There are several
theoretical procedures to prove this idea:

Proving that the bootstrap distribution converge to the same limit as
the theoretical one we are interested in.
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Bootstrap validation

Idea: to achieve valid conclusions, F and F̂ (in any of its forms) must be
close to each other, at least in some asymptotic sense. There are several
theoretical procedures to prove this idea:

Proving that the bootstrap distribution converge to the same limit as
the theoretical one we are interested in.

Bickel, P. J., and Freedman, D. A. (1981) Some asymptotic theory
for the bootstrap. The Annals of Statistics, 9(6), 1196-1217
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Bootstrap validation

Idea: to achieve valid conclusions, F and F̂ (in any of its forms) must be
close to each other, at least in some asymptotic sense. There are several
theoretical procedures to prove this idea:

Proving that the bootstrap distribution converge to the same limit as
the theoretical one we are interested in.

Proving that a functional distance between both distributions
converges to zero.

Building Edgeworth expansions of both distributions and pro-
ving that the differences between them converges to zero.
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Hall, P. (1988) Theoretical comparison of bootstrap confidence intervals.
The Annals of Statistics, 16(3), 927-953

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 119



Bootstrap validation

Idea: to achieve valid conclusions, F and F̂ (in any of its forms) must be
close to each other, at least in some asymptotic sense. There are several
theoretical procedures to prove this idea:

Proving that the bootstrap distribution converge to the same limit as
the theoretical one we are interested in.

Proving that a functional distance between both distributions
converges to zero.

Building Edgeworth expansions of both distributions and pro-
ving that the differences between them converges to zero.

Proving that analogous characteristics of both distributions ha-
ve the same structure, replacing population moments by empi-
rical ones (imitation).
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Proving that analogous characteristics of both distributions ha-
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Cao, R. and Prada, J.M. (1993) Bootstrapping the mean of a
symmetric population. Statistics and Probabililty Letters, 17, 43-48
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Bootstrap validation

We illustrate the Edgeworth expansions method with the statistic

T =
√

n X − µ
σ

,

where X = (X1, . . . ,Xn) is a random sample from a distribution F with
mean µ and standard deviation σ.

Applying the Central Limit Theorem we may obtain the asymptotic distri-
bution (so when n→∞) of T

lim
n→∞

P(T ≤ u) = Φ(u), ∀u ∈ R,

with Φ the distribution function of a standard Gaussian and its density will
be denoted bu φ.
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Bootstrap validation

Cramer’s theorem
Let consider the random variables X1, . . . ,Xn, . . . independent identically
distributed from a distribution F with mean µ and standard deviation σ. Let
assume there is j ∈ N such that E (|X |j+2) < ∞ and lim|t|→∞ |α(t)| < 1
where α(t) = E (e itX ) the characteristic function of the population. Then

P(T ≤ u) = P
(√

nX − µ
σ

≤ u
)

= Φ(u) + n−1/2p1(u)φ(u) + · · ·+ n−(j−1)/2pj−1(u)φ(u) + O
(

n−j/2
)
,

where pi (u) are the polynomials of degree 3i−1 with coefficients depending
on the moments of order less than i + 2 of X .

CLT approximation Uniform bootstrap
Order of convergence O

(
n−1/2) O

(
n−1)

Notation
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Bootstrap validation

The results above, based on Edgeworth expansions, can be applied to many
common statistics:

Smooth functions of sample moments, such as means, variances, and
higher moments.

Smooth functions of solutions to smooth estimating equations, such
as most maximum likelihood estimators, estimators in linear and ge-
neralized linear models.

Some robust estimators.

Many statistics calculated from time series.

Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Applications, Cambridge
University Press.
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Part II: Resampling

Module III: Bootstrap applications to
build confidence intervals
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Idea

Definition
A confidence interval of a parameter θ will be defined by limits θ̂α1 and
θ̂1−α2 , such that for any α

P(θ < θ̂α) = α.

The coverage of the interval (θ̂α1 , θ̂1−α2 ) is 1− (α1 + α2), and α1 and α2
are respectively the left- and right-tail error probabilities.

In principle we can choose α1 and α2, so long as they sum to the overall
error probability α. The simplest way to do this, which we adopt for
general discussion, is to set α1 = α2 = α/2. Then the interval is
equi-tailed with coverage probability 1− α.
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Classical method

Scenario: Let us consider a random variable X with mean µ and variance
σ2. We want to build a two sided confidence interval for µ when σ2 is
known.

Statistic: The statistic used in this case is

T1 =
√

n X − µ
σ

−→ N(0, 1),

when n→∞.

Confidence interval
The confidence interval for µ of level (1 − α) based on asymptotic gaus-
sianity is given by

I1 =
(

X − zα/2
σ√
n
, X + zα/2

σ√
n

)
,

where zα/2 represents the quantile 1− α/2 of a standard Gaussian distri-
bution.
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when n→∞.

Confidence interval
The confidence interval for µ of level (1 − α) based on asymptotic gaus-
sianity is given by

I1 =
(

X − zα/2
σ√
n
, X + zα/2

σ√
n

)
,

where zα/2 represents the quantile 1− α/2 of a standard Gaussian distri-
bution.

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 125



Classical method

Generalization
Given a random variable X with distribution function F , a confidence in-
terval for a parameter θ = θ(F ) of level (1− α) is given by

I1 =
(
θ̂ − zα/2

σ̂θ√
n
, θ̂ + zα/2

σ̂θ√
n

)
,

where zα/2 represents the quantile 1− α/2 of a standard Gaussian distri-
bution.
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Percentile method

This method is based on the statistic

T2 =
√

n
(
θ̂ − θ

)
.

Once we have performed a bootstrap procedure, given F̂ an estimator of
F , the distribution of T2 can be approximated by

T ∗2 =
√

n
(
θ̂∗ − θ(F̂ )

)
.

Then, if us denote by qβ the β-quantile of T ∗2 , that is, P∗(T ∗2 ≤ qβ) = β,
it follows that

1− α = P∗
(
qα/2 < T ∗2 < q1−α/2

)
' P

(
qα/2 < T2 < q1−α/2

)
.

Confidence interval of level (1− α)

Î2 =
(
θ̂ −

q1−α/2√
n

, θ̂ −
qα/2√

n

)
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Î2 =
(
θ̂ −

q1−α/2√
n

, θ̂ −
qα/2√

n

)

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 127



Percentile method

This method is based on the statistic

T2 =
√

n
(
θ̂ − θ

)
.

Once we have performed a bootstrap procedure, given F̂ an estimator of
F , the distribution of T2 can be approximated by

T ∗2 =
√

n
(
θ̂∗ − θ(F̂ )

)
.

Then, if us denote by qβ the β-quantile of T ∗2 , that is, P∗(T ∗2 ≤ qβ) = β,
it follows that

1− α = P∗
(
qα/2 < T ∗2 < q1−α/2

)
' P

(
qα/2 < T2 < q1−α/2

)
.

Confidence interval of level (1− α)
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Percentile-t methods
This method is based on the statistic

T3 =
√

n
(
θ̂ − θ
σ̂θ

)
.

Once we have performed a bootstrap procedure, given F̂ an estimator of
F , the distribution of T3 can be approximated by

T ∗3 =
√

n
(
θ̂∗ − θ(F̂ )

σ̂∗θ

)
.

Then, if us denote by qβ the β-quantile of T ∗3 , it follows that

1− α = P∗
(
qα/2 < T ∗3 < q1−α/2

)
' P

(
qα/2 < T3 < q1−α/2

)
.

Confidence interval of level (1− α)

Î3 =
(
θ̂ − σ̂θ√

n
q1−α/2 , θ̂ −

σ̂θ√
n

qα/2

)
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Percentile-t methods
This method is based on the statistic

T3 =
√

n
(
θ̂ − θ
σ̂θ

)
.

Once we have performed a bootstrap procedure, given F̂ an estimator of
F , the distribution of T3 can be approximated by

T ∗3 =
√

n
(
θ̂∗ − θ(F̂ )

σ̂∗θ

)
.

Then, if us denote by qβ the β-quantile of T ∗3 , it follows that

1− α = P∗
(
qα/2 < T ∗3 < q1−α/2

)
' P

(
qα/2 < T3 < q1−α/2

)
.

Confidence interval of level (1− α)

Î3 =
(
θ̂ − σ̂θ√

n
q1−α/2 , θ̂ −

σ̂θ√
n

qα/2

)
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Adjusted Percentile-t methods

This method is quite similar to the previous one, but in this case the
choice of the quantiles is different because now the quantiles have to be
symmetric. Given the statistic T3 and its bootstrap version T ∗3 , let us
consider the quantile q1−α that verifies

1− α = P∗(|T ∗3 | ≤ q1−α) = P∗(−q1−α ≤ T ∗3 ≤ q1−α)

= P∗
(
−q1−α ≤

√
n
(
θ̂∗ − θ(F̂ )

σ̂∗θ

)
≤ q1−α

)
' P∗(−q1−α ≤ T3 ≤ q1−α).

Confidence interval of level (1− α)

Î4 =
(
θ̂ − σ̂θ√

n
q1−α , θ̂ + σ̂θ√

n
q1−α

)
.
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Comparison

Coverage error

Bootstrap
Classical Percentile Percentile-t Adj. Percentile-t

Two sided O
(
n−1) Op

(
n−1/2) Op

(
n−1) Op

(
n−3/2)

One sided O
(
n−1/2) Op

(
n−1/2) Op

(
n−1) Op

(
n−1)

Bhattacharya-Ghosh’s theorem.
Edgeworth expansions.

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman and Hall.
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Example

Simulation study
Design a Monte Carlo simulation study in order to check the coverage error
associated with the percentile-t method supposing that the original variable
follows an exponential distribution with rate 0.01. Fix the confidence level
equal to 0.90.
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Example

> set.seed(1234)
> alpha=0.1 ; n=100 ; N=100 ; B=100
> percentilet<-numeric(B) ; coverageI3=numeric(N)
> for (z in 1:N){
+ ori.sample<-rexp(n,rate=0.01)
+ bar.x=mean(ori.sample) ; hat.sd=sd(ori.sample)
+ for (k in 1:B){
+ boot.sample<-sample(ori.sample,n,replace=T)
+ percentilet[k]=sqrt(n)*(mean(boot.sample)-bar.x)
+ /sd(boot.sample)
+ }
+ percentiletord=sort(percentilet)
+ quantile1=percentiletord[floor(B*(1-(alpha/2)))]
+ quantile2=percentiletord[floor(B*(alpha/2))]
+ I3=c(bar.x-hat.sd*quantile1/sqrt(n),
+ bar.x-hat.sd*quantile2/sqrt(n))
+ if((I3[1]<100)&(100<I3[2])){coverageI3[z]=1}
+ }
> mean(coverageI3)

Empirical coverage: 0.88
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Bootstrap in R

library(bootstrap)

bootstrap(x,nboot,theta,func=NULL)

boott(x,theta,sdfun=sdfunb,nbootsd=25,
nboott=200,...)

jackknife(x,theta)

Efron, B., and Tibshirani, R. J. (1993) An introduction to the bootstrap, CRC Press.
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Bootstrap in R

library(boot)

boot(data,statistic,sim,strata,weights,...)

boot.ci(boot.out,conf=0.95,type=‘‘all’’,...)

censboot(data,statistic,R,F.surv,G.surv,...)

envelope(boot.out,level=0.95,...)

norm.ci(boot.out,conf=0.95,...)

plot.boot(boo.object); print.boot(boot.object)

print.bootci(bootci.object)

Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Applications, Cambridge
University Press.
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Bootstrap in R

Example
#Bootstrap 95 CI for regression coefficients
#function to obtain regression weights
> bs <- function(formula, data, indices) {
+ d <- data[indices,]
+ fit <- lm(formula, data=d)
+ return(coef(fit))}
#bootstrapping with 1000 replications
> results<-boot(data=mtcars,statistic=bs,R=1000,
+ formula=mpg∼wt+disp)
#view results
> plot(results, index=1) #intercept
> plot(results, index=2) #wt
> plot(results, index=3) #disp
#get 95% confidence intervals
> boot.ci(results, type=‘‘all’’, index=1) #intercept
> boot.ci(results, type=‘‘all’’, index=2) #wt
> boot.ci(results, type=‘‘all’’, index=3) #disp
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A brief introduction to

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 136



What is ?

R is a free software environment for statistical
computing and graphics.

Main webpage: www.r-project.org.

For almost any operative system.

Collaborative program.

Has a base package with simple statistical functionalities.

Extra implementations: packages (free to be downloaded).

Last released version 3.4.4.

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 137

www.r-project.org


Main characteristics of

Object oriented programming language.

Distinguish small and capital letters.

<- asign operator.

# for comments.

; separates commands in one line.

+ let continue the command in next line.

? or help(function.name) or heal.start().
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Some curiosities to work with

Aritmetic/logic operations: element by element except %*%.

Loops: for and while.

Functions:
function.name<-function(arg1,arg2,...){
expr
return(argument.name.to.be.returned)}.
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variations

R Commander
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variations

R Studio
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variations

Notepad++
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Some ideas on
Random Variables

Maribel Borrajo and Mercedes Conde (Modestya) Simulation and Resampling 143



Random variables

Qualitative variables:

Ordinal variables
Level of education.
Social economic class.

Nominal variables
Gender.
Eye color.

Quantitative variables:

Discrete variables
Result of flipping a coin.
The number of patients in a doctor’s surgery.

Continuous variables
Height of students in class.
Time it takes a computer to complete a task.
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Discrete random variables

A discrete random variable (denoted by X ) is one which may take on
only a countable number of distinct values.

Support:
Sup(X ) = {x1, . . . , xn}.

Probability mass function:

pi = P(X = xi ).

Cumulative distribution function:

F (x) =
∑
xi≤x

P(X = x) =
∑
xi≤x

pi .
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Discrete random variables: examples

Be(p): Bernoulli distribution with success probability p.
Bi(n, p): binomial distribution with parameters n and p.
Ge(p): geometric distribution with success probability p.
Pois(λ): Poisson distribution with parameter λ.
. . .

Probability mass function

x

P
(X

=
x)

0 1 2 3 4 5

0.030.03

0.160.16

0.310.31

Distribution function

x

F
(x

)

0.03

0.19

0.5

0.81

0.97
1

0 1 2 3 4 5
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Continuous random variables

A continuous random variable (denoted by X ) is one which takes an
infinite number of possible values.

Support:

Sup(X ) = (a, b) or (a, b) ∪ (c, d) or R.

Cumulative distribution function:

F (x) = P(X ≤ x)

Density function:

f (x) = F ′(x) or F (x) =
∫ x

−∞
f (z)dz .

Remark! P(X = x0) = 0 for all x0 ∈ R.
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Continuous random variables
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Continuous random variables: examples

U(a, b): uniform distribution on interval (a, b).
N(µ, σ): Gaussian distribution with mean µ and variance σ.
Exp(λ): exponential distribution with mean 1

λ .
Γ(k, λ): gamma distribution with parameters k and λ.
. . .
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Back
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Some ideas on
Kernel Density Estimation
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Kernel density estimation

Parametric vs Nonparametric estimation

Let start with an example...

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Parametric estimation

Histogram

Kernel estimation
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Kernel density estimation

f̂nh(x) = 1
nh

n∑
i=1

K
(

x − Xi
h

)

Fixed kernel function, K .

Bandwidth parameter, h.

Silverman (1986).

Bowman (1984).

Sheather & Jones (1991).

Back
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Generate random numbers

Random numbers are numbers that occur in a sequence such that two
conditions are met:

1. the values are uniformly distributed over a defined interval or set.

2. it is impossible to predict future values based on past or present ones.

Different methods

Lehmer generator.

Mid square method.

Combined generators.

Shuffled generators.

Gentle J. E. (2003). Random Number Generation and Monte Carlo Methods. Springer.
Back
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Convergence notation

An = O(an) if there exists constants C and n0 such that |an| ≤ Can
for n ≥ n0. Equivalently,

lim sup
n→∞

|An|
an

<∞

An = o(an) if for every ε > 0 there exists nε such that
|An| ≤ εan

for n ≥ nε.
Xn = Op(an) if for every ε > 0 there exists constants Cε and nε such
that

P(|Xn| ≤ Cεan) > 1− ε
for every n ≥ nε.
Xn = op(an) if for every ε > 0 there exists nε such that

P(|Xn| ≤ εan) > 1− ε
for every n ≥ nε.

Back
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