Londres, 1854
NOTICE.

PREVENTIVES OF

CHOLERA!

Published by order of the Sanitary Committee, under the sanction of the Medical Counsel.

BE TEMPERATE IN EATING & DRINKING!

Avoid Raw Vegetables and Unripe Fruit!

Abstain from COLD WATER, when heated, and above all from Ardent Spirits, and if habit have rendered them indispensable, take much less than usual.

SLEEP AND CLOTHE WARM!

Do not sleep or sit in a draught of air.

Avoid getting wet!

Attend immediately to all disorders of the Bowels.

TAKE NO MEDICINE WITHOUT ADVICE.

Medicine and Medical Advice can be had by the poor, at all hours of the day and night, by applying at the Station House in each Ward.

CALEB S. WOODHULL, Mayor.

JAMES KELLY, Chairman of Sanitary Committee.
Los gráficos son instrumentos para razonar sobre los datos

Edward Tufte
Hewlett-Packard's new personal computer is up to 5 times faster than IBM's. And half the size.

Take two personal computers: Hewlett-Packard's new Series 200 Model 16 and the IBM PC. Run the same software — Context/MBA™ — and solve the same problem.

You'll see one big difference. It takes the IBM minutes to do what the HP 200 can do in seconds. And that's just the beginning.

With Context/MBA™ integrated software, the HP 200 can do word processing, spreadsheet projections, indexing, filing and graphics all at one time. Change one number in a projection...and the graphs change, automatically.

One time. (Twice as much as the IBM.) And it's got the memory to handle big, complicated problems. (You can have as much as 768K.) But for all its power, the HP 200 is surprisingly small. The whole computer, not including the keyboard, measures just 12” across by 13” deep. So, putting a personal computer on your desk doesn't mean taking everything else off.

If you'd like to see how the HP 200 measures up, call (800) 547-3400. (In Alaska, Hawaii and Oregon call (503) 758-1010 or TTY (503) 758-5566.) Ask operator #411 for more information and the name of the HP dealer or sales office nearest you.

<table>
<thead>
<tr>
<th>Year</th>
<th>Pineapples</th>
<th>Slimes</th>
<th>Bananas</th>
<th>Sugar Cane</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>$15</td>
<td>5</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>1982</td>
<td>$18</td>
<td>10</td>
<td>22</td>
<td>42</td>
</tr>
<tr>
<td>1983</td>
<td>$20</td>
<td>15</td>
<td>20</td>
<td>41</td>
</tr>
<tr>
<td>1984</td>
<td>$23</td>
<td>20</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>1985</td>
<td>$26</td>
<td>25</td>
<td>10</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>$95</td>
<td>$91</td>
<td>$94</td>
<td>$102</td>
</tr>
</tbody>
</table>
Galileo Galilei
B. Flushing of a toilet

The second example presents the flushing of a toilet using a complex real geometry with different lengths, from an approximately 400mm for the size of the whole toilet, in order to treat such geometry unstructured mesh with tetrahedral, prism elements is used. It is shown in Figure 6. In order to simplify the simulation for the moment slip boundary conditions have been applied at the walls. A constant inflow velocity is applied at the inlet so that the flushing time corresponds to a portion of the initial part of the inlet tube is filled with water. When the simulation starts the water starts moving through the internal upper part of the toilet until it reaches the discharge outlets where it comes out as a jet. Finally it collides with the toilet walls to form a thin film of water.

C. DTMB 5512

In order to benchmark our numerical results the flow around the bare hull David Taylor Model Basin (DTMB) model 5512, a 1:46.6 model scale of a modern surface combatant, is used. It has been tested in the towing tanks at DTMB, IJmuiden (The Netherlands) [18] and INSEAN (Italy) [20]. It has a sonar dome, which provides additional geometric complexity. The DTMB 5512 model is L = 3.048m long with a draft of 0.122 m depth. Results at Re = 4.85 × 10^6 and Fr = 0.25 will be shown.

Three different finite element meshes have been used. The first one, that we shall call Mesh A, is formed by 5 Million and 1.5 MNodes. The second one, Mesh B, is a slightly improved version of the previous one that takes into account symmetry and therefore simulates only half of the whole domain. It is formed by 8 MElements. Finally Mesh C is obtained by dividing mesh B into elements with half the size arriving to a total of 60 MElements. This has been done automatically using the strategy presented in [13]. All three meshes are formed mainly by tetrahedra and include an anisotropic layer of prisms close to the hull. Mesh B is an anisotropic layer of prisms close to the hull and Mesh C to the region where the free surface is formed.

As we have said, the other two meshes are quite similar. The computational domain extends L = 3.048 m ahead of the ship hull and 2L behind. The distance from the undisturbed free surface to the bottom of the domain is L and the height of the initial air region is 0.22L. The lateral extent of the domain is 2L in the symmetric case and 4L in the non symmetric one. The velocity is prescribed at the inlet, lateral, bottom and top walls. The turbulence intensity is prescribed so that the turbulence intensity is 0.0065 and the ratio between the turbulent and laminar viscosities is 10.0 at the inlet. On the ship hull the wall law is again used to apply the boundary conditions for the turbulent variables. On the remaining boundaries the boundary condition for the turbulent variables corresponds to a zero normal gradient.
Alya red
Per capita rate of passenger vehicle crash involvements by driver age, 2011

- All crashes per 1,000 people
- Fatal crashes per 100,000 people
Rate of passenger vehicle crash involvements per mile traveled by driver age, 2008

- All crashes per million miles traveled
- Fatal crashes per 100 million miles traveled

Driver age:
- 16-20
- 21-25
- 26-30
- 31-35
- 36-40
- 41-45
- 46-50
- 51-55
- 56-60
- 61-65
- 66-70
- 71-75
- 76-80
- 81-85
- 86+ miles traveled

Copyright http://www.iihs.org
No muestres los datos, muestra la verdad.

Moritz Stefaner
Flavor Network

Yong-Yeol Ahn, Sebastian Ahnert, James P. Bagrow, and A.-L. Barabási
Three important patterns stand out from the data. The clustering of narratives refers to the different ways a user can manipulate the visualization, such as selecting, searching, navigating, and also how the user learns. Referring to the different ways a user can manipulate the visualization, some visualizations may suggest only a loose order to its images, while a comic may have many frames. A multi-view visualization embedded in a page of text, such as a magazine style, may have only a single frame, and by the ordering of their visual elements. For example, an image shown in Figure 8. Genres of Narrative Visualization.

Edward Segel and Jeffrey Heer
Control del autor

Control del lector
Explicativo

Exploratorio
Técnicas de narrativa
Mapping the World's Friendships

Learn which countries share the closest friendship connections on Facebook.

Methodology

A Closer Look: Spain & Romania

Romania is the biggest source of immigrants in Spain, although Spain recently decided to close its borders to Romanian immigrants through the end of 2012.
Steroids or Not, the Pursuit Is On

Barry Bonds is aiming at the career home run record. He needs only six more to tie Babe Ruth and 47 to equal Hank Aaron.

Lines are cumulative home runs.

Hank Aaron
755 home runs
23 seasons

Babe Ruth
714 home runs
22 seasons

Barry Bonds
708 home runs
20 seasons

Bonds takes lead
Home runs after 16 seasons
Bonds 567
Aaron 554
Ruth 516

According to allegations in a book about Bonds, he began taking steroids before the 1999 season, his 14th in the league. Two seasons later, he hit 73 home runs, surpassing Aaron's career pace.

Differing Paths to the Top of the Charts

The top seven players on the career home run list, along with a look at Griffey (12th), Rodriguez (37th) and Pujols (tied 257th).

Hank Aaron
39 years
755 HR
600-700 HR
600 HR
700 HR
800 HR

Hit only 20 over first five seasons.
Averaged 52 from 2000 to 2004.
No one hit more from 1950-69.
Three 60-home run seasons is record.
Triple Crown in '66 (49, 122, 316).
First to hit 70 in a season.
Only McGwire had more in the 90's.
Youngest to reach 400 home runs.
Second most ever in first five seasons.

Babe Ruth
34 years
714 HR
600-700 HR
600 HR
700 HR
800 HR

Averaged 46.4 home runs a season from age 30 to 34. Averaged 42.5 for next four seasons.

Barry Bonds
20 years
708 HR
600-700 HR
600 HR
700 HR
800 HR

From age 35 to 39, he averaged 14 more homers a season than projected.

Homer Pace After Age 34

If the accusations are correct, Bonds was 34 in his first season on steroids. Here are projected home run paces for each player after age 34:

Aaron
Actual home runs slightly outpace projected homers for five seasons.

Ruth
Averaged 46.4 home runs a season from age 30 to 34. Averaged 42.5 for next four seasons.

Bonds
From age 35 to 39, he averaged 14 more home runs a season than projected.

Note: Ages as of July 1 of each season.
Nacemos comunicadores visuales

Nancy Duarte
Nacemos comunicadores visuales
Nancy Duarte
Points
The height of this shape indicates the total number of goals and assists by the Canucks each year.

Each segment shows a player's contribution to that total each year.

Offensive players shown in blue:
Showing 3,339 US and Coalition casualties

3,325 casualties
2,429 hometowns

Age

Location: (Countries & U.S. states)

Date

Totals: 3,345 deaths | 18,957 wounded | Last updated 7/17/2013
Showing 3,339 US and Coalition casualties

Badghis province
7 casualties

- Sgt. Justin Michael Hansen
- Staff Sgt. David Pirie Day
- Gurney Sgt. Robert Lee Gilbert II
- Gurney Sgt. Jonathan William Gifford
- Pfc. Billy Gene Anderson
- Gurney Sgt. Daniel Joseph Price
- Sgt. Juan Antonio Abril Sanchez

2 casualties
Zaragoza, Spain

Age
Location: (Countries & U.S. states)
Date

Totals: 3,345 deaths | 18,957 wounded | Last updated 7/17/2013
Extra gentle for the most sensitive skin.

Soft and kind to sensitive skin, add the chemicals and moisture enhancers you need without irritation.

BabyCare’s unique high-absorbency natural-blend cotton with natural latex provides cotton-soft, extra thick, gel-free protection for your baby’s sensitive skin. The chlorine-free materials and absorbent polymers is non-toxic and non-irritating. Clinically tested and pediatrician recommended for babies with allergies and sensitive skin.

If you are not satisfied with the baby leakage protection, you will get your money back. Read more about our leakfree guarantee at www.baby.com
luego

primero aqui

abajo

termina aqui
Miramos a donde mira la gente
Continuamos
Alya red
Para ver el video pulse aquí
Electrophysiology potential model propagation equation through macroscopic continuous media
Ten years ago, Science and the National Science Foundation (NSF) launched a unique competition; an international competition to recognize the best examples of projects that bring scientific information to life. The goal was to encourage new ways to visualize data—efforts that are increasingly important for conveying scientific principles and ideas across disciplines and to the general public, and for revealing the hidden beauty of structures on scales from nanometers to the cosmos. The following pages showcase the winners of the 10th in what has become the annual International Science and Engineering Visualization Challenge.

The 10th anniversary winners merge biology and physical science in interesting ways. They include a “wiring diagram” of the macaque brain (featured on the cover of this issue), which inspired a new type of computer chip; a scanning electron micrograph that reveals the crystal structure of a sea urchin’s tooth; a poster showing how the owl manages to swivel its head without shutting off blood to its brain; and a video of a computer model of the heart that marries imaging techniques with high-powered computing.

We received 215 entries from 18 countries. A committee of staff members from Science and NSF screened the entries. Those selected as finalists were posted on NSF’s Web site, and visitors were invited to vote for their top choice in each category. A total of 3155 votes came in; entries that received the most votes were named the “People’s Choice.” Independently, an outside panel of experts in scientific visualization reviewed the finalists and selected the winners.

We encourage you to submit applications for next year’s challenge, details of which will be available on NSF’s Web site, and to join us in celebrating this year’s winners.

JUDGES

Michael K. Reddy
National Institutes of General Medical Sciences
Bethesda, Maryland

Corinne Sandone
Johns Hopkins University School of Medicine
Baltimore, Maryland

Tierney Thys
National Geographic Explorer
Carmel, California

Thomas Wagner
NASA
Washington, D.C.

Text by Emily Underwood
Design by Kay Engman

FIRST PLACE WINNER AND PEOPLE’S CHOICE

Alya Red: A Computational Heart
Guillermo Marin, Fernando M. Cucchietti, Mariano Vázquez, and Carlos Tripiana, Barcelona Supercomputing Center

From this tangled swirl of fibers, scientists hope to divine the deepest secrets of the human heart. Based on MRI data, each colored strand represents linked cardiac muscle cells that transmit electrical current and trigger a model human heartbeat. The image is an artistic rendering of Alya Red, a new computer model of the heart at the Barcelona Supercomputing Center that marries modern medical imaging techniques with high-powered computing.

Despite centuries of study, scientists are still largely baffled by the heart’s complex electrical choreography, says physicist Fernando Cucchietti, who helped produce the video. When faced with the challenge of presenting Alya Red to a general audience through video, he says, “It took a lot of work to get a script that was engaging, but still scientifically deep enough for an expert eye to see interesting details.” The most challenging part was to get the heart fibers in the image above to move in a realistic way, Cucchietti says. At one point, he says, the animation showed the electrical currents moving backwards. “We had to keep going back to the scientists—did we mess something up?”

“We wanted to create a sense of wonder at the complexity” of the heart itself, he says. Thevote wasn’t lost on the judges. “I was literally blown away,” says Michael Reddy. “After the first time I watched the video, I thought, ‘I’ve just changed the way I thought about a heart.’”

HONORABLE MENTION

Observing the Coral Symbiome: Scanning Confocal Microscopy
Christine E. Farrar, Zac H. Forsman, Russell Leong, and Robert J. Toonen, University of Hawai‘i

No dyes or digital software were used; the vibrant color of these corals—innately yellow, orange, red, and green—emerged from their fluorescent patterns. Prior to applying this technique, she says, “that was not even a facet in our thinking about coral biology.”

When she saw the corals under the lens for the first time, “my jaw just dropped,” says Ruth Gates, a coral biologist at the University of Hawai‘i and the narrator of the video. “My mouth is now stuffed with Big Macs.” In the video, which compiled three-dimensional, time-lapse animations, corals extend and retract their glowing tentacles. Tiny creatures crawl over the corals, all part of a complex and threatened ecosystem. In the future, Gates says, it might be possible to use confocal microscopy to classify different coral species or diagnose coral disease.

“Most people think corals are inanimate rocks,” she says. “We show—through the lens and the narrator of the video—how beautiful and dynamic they are as animals. If we could save the corals, how beautiful and dynamic they would be.”

JUDITH GAN, DIRECTOR, OFFICE OF LEGISLATIVE AND PUBLIC AFFAIRS, NSF COLIN NORMAN, NEWS EDITOR, SCIENCE
Computational Physics

Focused Experts

but with Comprehensive Multidisciplinary View
Proyectos 2013
Supercomputers
Simulpast
Exploración geofísica
Big data visualization
Posición abierta:

Human Interface Designer

fernando.cucchietti@bsc.es