ProDiGen: a genetic algorithm for process discovery guided by completeness, precision and simplicity

Borja Vázquez Barreiros

Supervisors : Manuel Mucientes, Manuel Lama

Centro Singular de Investigación en Tecnoloxías da Información

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

citius.usc.es

Centro Singular de Investigación en **Tecnoloxías** da **Información**

WHAT IS A PROCESS?

"[...] a collection of tasks ---or activities--- with coordination requirements among them." - Wil van der Aalst

EXAMPLE

- 1. A teacher uploads an exercise
- 2. A learner makes the exercise
- 3. The teacher grades it

Workflow

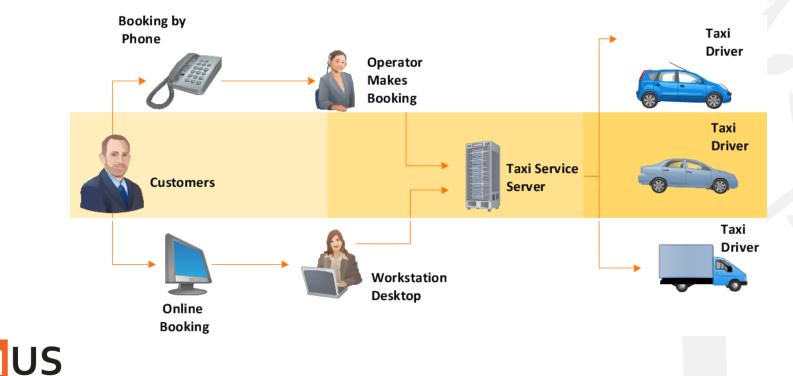
AND WHAT IS A WORKFLOW?

"The automation of a business **process**, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules."

-Workflow Management Coalition

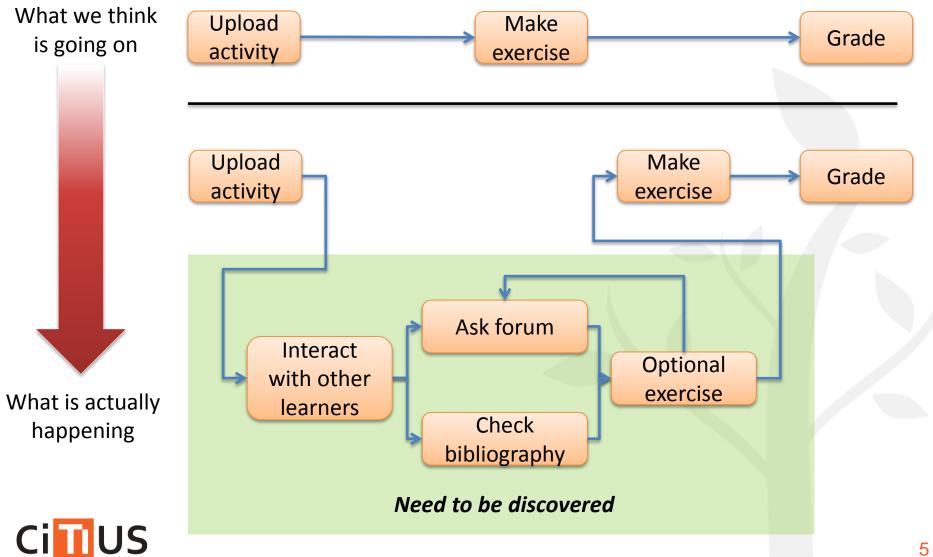
EXAMPLE

- 1. A teacher uploads an exercise
- 2. A learner makes the exercise
- 3. The teacher grades it



Workflow

Ci


Provides useful information:

- What is happening on a process.
- **How** is that process being executed.
- Who is involved in the execution of the process.

Workflow

Issues

DEFINITION

The goal of **process mining** is to automatically discover the models that better fit the process, *taking as a starting point the logs*.

case ID	task	
Saul	Intro	Finite Automaton
Walter	Intro	
Saul	Finite Automaton	Intro + Context-Free + Context-Free + Pushdown Automaton + Exam + Context-Free + Context-Free + Automaton + Exam + Context-Free
Saul	Regular Grammar	
Walter	Finite Automaton	Finite Automaton
Walter	Regular Grammar	
Saul	Context-Free Grammar	
Walter	Pushdown Automaton	\bigcap
Saul	Pushdown Automaton	
Walter	Context-Free Grammar	Finite Context-Free
Saul	Exam	
Walter	Exam	
		Regular Grammar

What is actually happening, and not what the people think it is

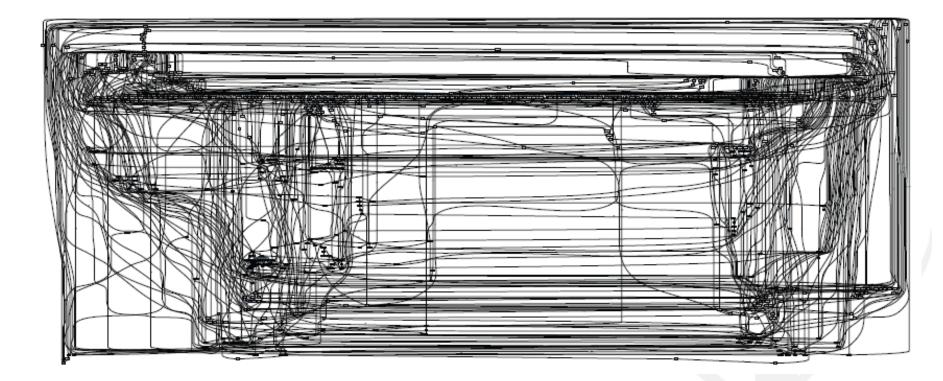
WE WANT MODELS WITH SOME CHARACTERISTICS...

- Completeness: model all the behavior shown in the log.
- Precision: avoid overly general models.
- Generalization: avoid overly precise models.
- **Simplicity:** Occam's razor.

WE WANT MODELS WITH SOME CHARACTERISTICS...

- Completeness: model all the behavior shown in the log.
- Precision: avoid overly general models.
- Generalization: avoid overly precise models.

Simplicity: Occam's razor.


WE WANT MODELS WITH SOME CHARACTERISTICS...

- Completeness: model all the behavior shown in the log.
- Precision: avoid overly general models.
- Generalization: avoid overly precise models.
- Simplicity: Occam's razor.

Bias-variance tradeoff

Spaghetti models

WE WANT MODELS WITH SOME CHARACTERISTICS...

- **Completeness:** model all the behavior shown in the log.
- Precision: avoid overly general models.
- Generalization: avoid overly precise models.
- **Simplicity:** Occam's razor.
- Robust to noise

Bias-variance tradeoff

State of the art

Abstraction based : Poor completeness

 \triangleright *a*-algorithm (and extensions)

Heuristics based: Cannot handle all the constructs at once
 Heuristics Miner

- **Search based**: Do not consider simplicity
 - Genetic Miner
- Based theory of regions: Cannot handle noise and infrequent behavior
 ILP

Objectives

1. An algorithm that retrieves *complete, precise* and *simple* models.

2. Robust to noise

3. Application in different domains

1. An algorithm that retrieves *complete, precise* and *simple* models.

2. Robust to noise

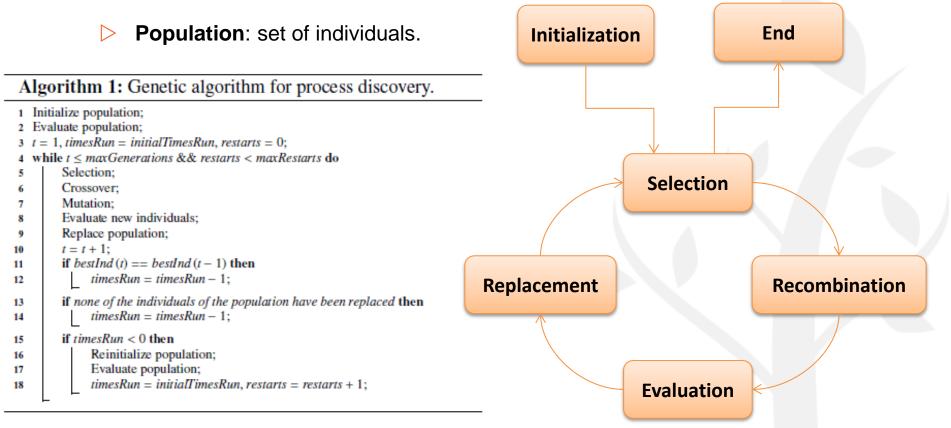
3. Application in different domains

1. An algorithm that retrieves *complete, precise* and *simple* models.

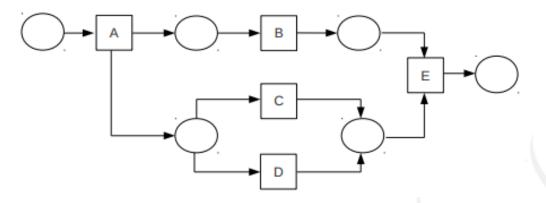
2. Robust to noise

3. Applicable in different domains

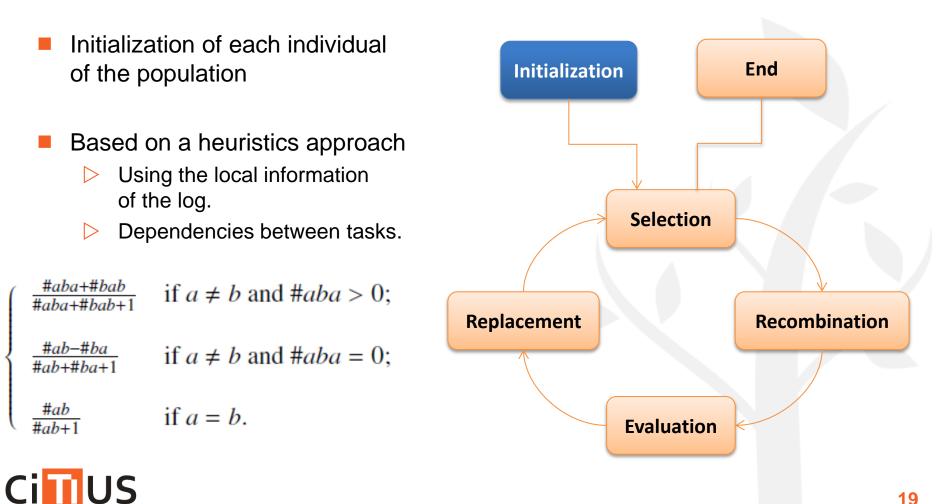
Index


- 1. ProDiGen
- 2. SoftLearn
- 3. Future work
- 4. Publications

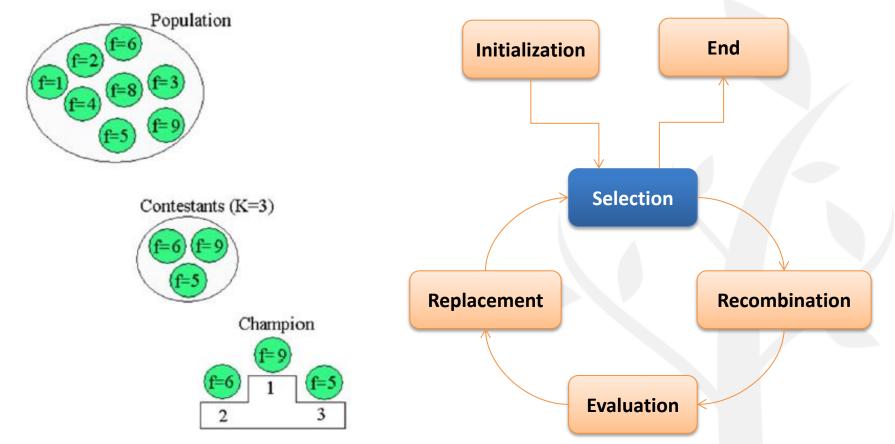
Genetic algorithm


- Components:
 - Individuals: solutions.

Evolutionary cycle

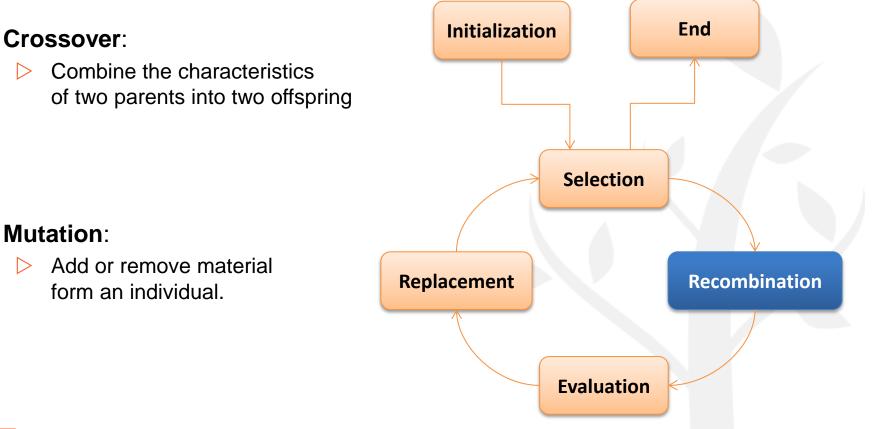

Ci

Causal matrix: maps the input and output dependencies of each task.


Tarea	I(Tarea)	O(Tarea)
A	{}	$\{\{B\}, \{C,D\}\}$
В	{A}	{E}
С	{A}	{E}
D	{A}	{E}
Е	$\{\{B\}, \{C, D\}\}$	{}

Genetic algorithm

Binary tournament

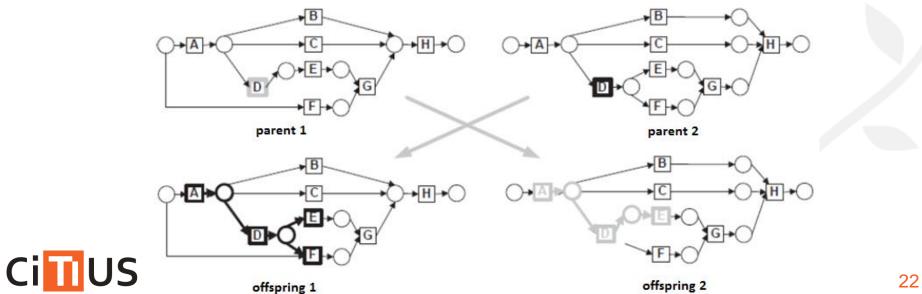


Genetic algorithm

Generate new individuals.

Mutation:

 \triangleright

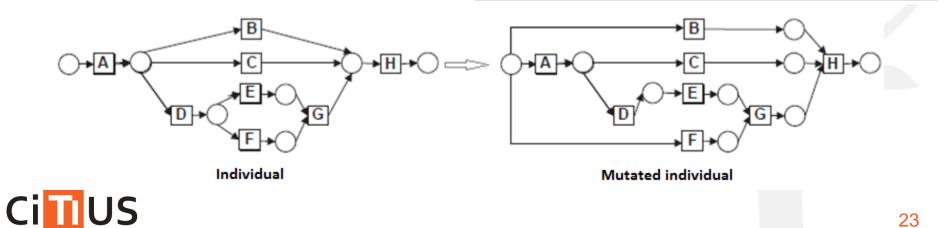

Add or remove material \triangleright form an individual.

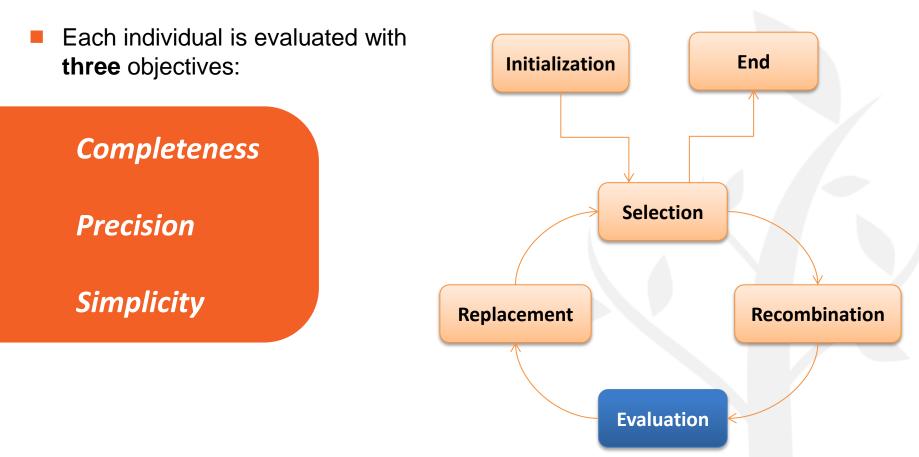
Crossover

Guided by a Probability Density Function generated from the errors.

Algorithm 2: Pseudo-code for the crossover operator.

	<pre></pre>
2 if	r < crossoverRate then
3	incorrectlyFiredActivities $\leftarrow 0$;
4	if $fitness(parent_1) \ge fitness(parent_2)$ then
5	incorrectlyFiredActivities \leftarrow set of incorrectly fired activities of parent ₁ ;
6	else
7	incorrectlyFiredActivities \leftarrow set of incorrectly fired activities of parent ₂ ;
8	if incorrectlyFiredActivities $\neq 0$ then
9	crossoverPoint \leftarrow randomly select an activity t from incorrectlyFiredActivities;
10	else
11	crossoverPoint \leftarrow randomly select an activity t from the bag of all possible tasks in the log;
12	offspring ₁ , offspring ₂ \leftarrow doCrossover(parent ₁ , parent ₂ , crossoverPoint);
13	Repair offspring ₁ and offspring ₂ ;




Mutation

Guided by the causal dependencies of the log.

Algorithm 3: Pseudo-code for the mutation operator.

	-
1	while the individual does not change do
2	Randomly choose one task t in the individual;
3	mutationType ← getRandomNumber() // returns a random number
	between [0,1);
4	if $mutationType < 1/3$ then
5	Randomly add a new task t' to $I(t)$, being t' a task from
	inputDependencies(t);
6	if $getRandomNumber() < 1/2$ then
7	Randomly choose one subset $X \in I(t)$ and add the task t' to X;
8	else
9	Create a new subset X, add the task t' to X, and add X to I(t);
10	else if mutationType < 2/3 then
11	Randomly choose one subset $X \in I(t)$ and remove a task t' from X,
	where $t' \in X$. If X is empty after this operation, exclude X from $I(t)$;
12	else
13	Randomly redistribute the elements from $I(t)$;
14	Repeat from line 3, but using O(t) instead of I(t) and outputDependencies(t) instead of inputDependencies(t);
15	Repair the individual;

ProDiGen Evaluation (i) – Completeness

Completeness

$$C_{f}(L, CM) = \frac{allParsedActivities(L, CM) - punishment}{numActivitiesLog(L)}$$

where

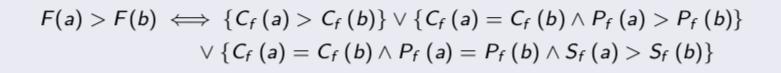
 $punishment = \frac{allMissingTokens(L,CM)}{numTracesLog(L) - numTracesMissingTokens(L,CM) + 1}$

allExtraTokensLeftBehind(L,CM)

numTracesLog(L) - numTracesExtraTokensLeftBehind(L,CM) + 1

ProDiGen Evaluation (ii) – Precision and simplicity

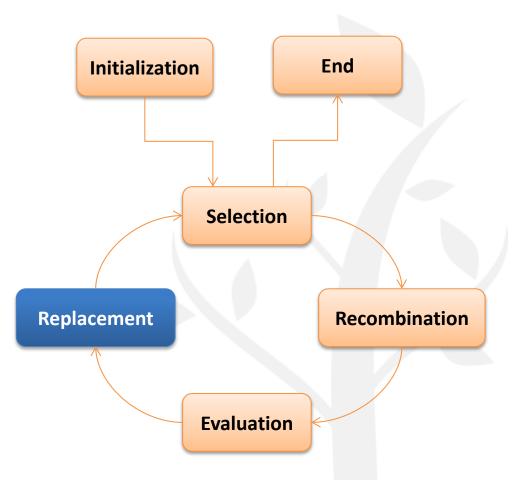
Precision:


$$P_{f}(L, CM) = rac{1}{allEnabledActivities(L, CM)}$$

Simplicity:

$$S_{f}(CM) = \frac{1}{\sum_{t \in CM} \left(\sum_{\Phi \in I(t)} |\Phi| + \sum_{\Psi \in O(t)} |\Psi| \right)}$$

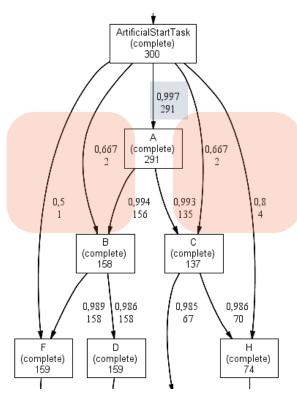
Hierarchical fitness function

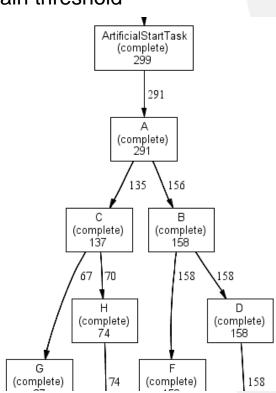


Update of the population

- **Steady-state** process...
 - Combine and sort parents and offspring (2N)
 - The N best survive to the next cycle.

...with **reinitialization**:


- If the best solution does not change
- If there are not new individuals in the population



Noise – post-process

WAIT..., AND WHAT ABOUT NOISE?

- Post-processing of the best individual: arc-pruning
 - Remove those arcs used fewer than a certain threshold

Experimentation - Balanced logs

18 different models

- Different degrees of complexity
- Logs with several levels of noise:
 - 0% of noise
 - 1% of noise
 - 5% of noise
 - 10% of noise.
 - 20% of noise.

▷ In total: 90 different logs

	A	ctivity struct	ures	Log	content
Model	Assequence	allelismone L Lengtronthon	poppon No Loop on Succure local M Succure local M Succure local M	iC iCe ta sible ta #trac	sks tevents
Caminatas	2 🗸 🗸 🗸			700	4,200
A8	1 < < <			300	1,200
D2	5 🗸 🗸			300	1,200
Ml11Skip [11]	5 < < <	\checkmark		500	4,757
Ma5 [11]	1 < < <	\checkmark		300	2,178
Ml2l [11]	5 🗸 🗸	\checkmark		300	4,668
MDriverLL [11]	1 🗸 🗸 🗸	~	$(\checkmark \checkmark)$	700	13,303
allLoops	$5 \checkmark \checkmark$	< < <		300	1,035
121a	5 < < <	\checkmark		300	2,264
Ma7 [11]	$\rightarrow \checkmark \checkmark \checkmark$			500	2,427
Herbst6p37 [11]	6√ √			700	12,600
MexampleL [11]	3 < < <			300	1,645
Ma6nfc [11]	3 🗸 🗸		\checkmark	300	2,006
MParallel5 [11]	0√ √			700	12,600
NC	1 < < <		\checkmark	300	1,704
L2LP	1 < < <	< < <		300	5,476
NCB	1 < < <	\checkmark	\checkmark	300	2,950
DWS [23]	2 🗸 🗸 🗸		\checkmark	500	4,033

(a) Balanced logs.

Experimentation - Unbalanced logs

21 different models

- Models with many interleaving situations.
- Models with many different traces and frequencies

In total: 21 different logs

		Activit		Log content					
	Staquer	eccente paratte	iism neth	one	100 100	200	200 Color	alance httac	Revents
Model 👋	÷ 0	X*V	\mathbf{v}	5	÷.	W	V .	8~	8~
g2 [11] 22	~ ~	~	~	✓		✓		300	4,501
g3 [11] 29	< <	~		✓	√_	✓		300	14,599
g4 [11] 29	< <	~	~				\checkmark	300	5,975
g5[11] 20	< <	~			✓	✓		300	6,172
g6 [11] 23	< <	~	~			✓		300	5,419
g7 [11] 29	11	1		✓		✓		300	14,451
g8 [11] 30	< <	~	1	✓		✓	~	300	5,133
g9[11] 26		~	1	\checkmark		✓		300	5,679
g10 [11] 23	< <	~			✓	✓		300	4,117
g12 [11] 26	< <	√	1		✓	✓		300	4,841
g13 [11] 22	< <	11	1			✓	~	300	5,007
g14 [11] 24	11	~		~		✓	~	300	11,340
g15 [11] 25	11	~	1			✓		300	3,978
g19 [11] 23	11	√	1			~	~	300	4,107
g20 [11] 21	11	~	~		✓	<		300	6,193
g21 [11] 22	11				1	1		300	3,882
g22 [11] 24	11	~		~		<	~	300	3,095
g23 [11] 25	11	1	1				1	300	9,654
g24 [11] 21	11	1	-		1	<	1	300	4,130
g25 [11] 20	11	11			-	1	-	300	6,312
EMT[9] 7	11	1				1	✓	100	790

Experimentation - Unbalanced logs

21 different models

- Models with many interleaving situations.
- Models with many different traces and frequencies

In total: 21 different logs

	A	ctivity		Log content				
Model 🕷	ste geogene	e Paralleli Parallen	sin One sin one sin one	LOOPO NºO LO MIRANO SEUCO	P POR C Load Le Load Le	alance alance HTag	es Revents	
g2 [11] 22	11	<i>s</i>	11	1		300	4,501	
g3 [11] 29	11	1	· ·	11		300	14,599	
g4 [11] 29	11	1	< ¹		~	300	5,975	
g5 [11] 20	11	1		11		300	6,172	
g6 [11] 23	11	~		~		300	5,419	
87 [11] 29	11	~	~	~		300	14,451	
g8 [11] 30	11	1	11	1	~	300	5,133	
g9[11] 26	11	~	11	~		300	5,679	
	11	~		11		300	4,117	
g12 [11] 26	11	 Image: A second s		11		300	4,841	
g13 [11] 22		11		~	~	300	5,007	
g14 [11] 24		 Image: A second s	~	~	~	300	11,340	
g15 [11] 25	11	1		~		300	3,978	
	11	 Image: A second s	 Image: A second s	~	~	300	4,107	
g20 [11] 21	11	~	< <p><</p>	11		300	6,193	
g21 [11] 22	11			11		300	3,882	
g22 [11] 24	11		~	~	~	300	3,095	
g23 [11] 25	11	~			~	300	9,654	
g24 [11] 21	11	 Image: A second s		11	\checkmark	300	4,130	
g25 [11] 20	11	11		~		300	6,312	
EMT[9] 7	< <	✓			\checkmark	100	790	

PRODIGEN HAS BEEN TESTED WITH 111 DIFFERENT LOGS

Experimentation - Metrics (i)

Based on the original model:

Behavior similarity:

$$B_{p}(L, CM_{o}, CM_{m}) = \frac{\sum\limits_{\sigma \in L} \left(\frac{L(\sigma)}{|\sigma|} \times \sum\limits_{i=1}^{|\sigma|} \frac{|Enabled(CM_{o}, \sigma, i) \cap Enabled(CM_{m}, \sigma, i)|}{|Enabled(CM_{m}, \sigma, i)|} \right)}{\sum\limits_{\sigma \in L} L(\sigma)}$$
$$B_{r}(L, CM_{o}, CM_{m}) = \frac{\sum\limits_{\sigma \in L} \left(\frac{L(\sigma)}{|\sigma|} \times \sum\limits_{i=1}^{|\sigma|} \frac{|Enabled(CM_{o}, \sigma, i) \cap Enabled(CM_{m}, \sigma, i)|}{|Enabled(CM_{o}, \sigma, i)|} \right)}{\sum\limits_{\sigma \in L} L(\sigma)}$$

Similarity from the structural point of view:

$$S_{p}(CM_{o}, CM_{m}) = \frac{|C_{o} \cap C_{m}|}{|C_{m}|}$$
$$S_{r}(CM_{o}, CM_{m}) = \frac{|C_{o} \cap C_{m}|}{|C_{o}|}$$

- Based on the log:
 - **Proper completion**: percentage of correctly parsed traces.
 - **Precision**: how much behavior of the log is allowed by the model

$$precision(L, M) = \frac{1}{|\mathcal{E}|} \sum_{e \in \mathcal{E}} \frac{|en_L(e)|}{|en_M(e)|}$$

Simplicity: Weighted place/transition node arc degree

Results on balanced logs (i)

		Logs with 0% of noise		Logs with 1% of noise	
	Caning D2 WILLING WILL W	Drived L and the starship to show the starship of the starship	1718 NOB DWS Commans D.	BUISER BEI BUISERIT	northe states are alled with the set of the
ProDiGen B Model B metrics S Log F metrics S	1.0 1.0 <th1.0< th=""> <th1.0< th=""> <th1.0< th=""></th1.0<></th1.0<></th1.0<>	the second se	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.56 0.87 0.78 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0) 1.0 1.0 1.0 1.0 1.0 1.0 1.0) 1.0 1.0 1.0 1.0 1.0 1.0 1.0) 1.0 1.0 1.0 1.0 1.0 1.0 1.0) 1.0 1.0 1.0 1.0 1.0 1.0 1.0) 0.82 0.91 0.85 0.9 0.86 1.0 0.96 0.96	1.0 1.0 1.0 1.0 1.0 1.0 1.0
GM Log F metrics SJ Log F metrics S	0.98 1.0 <th1.0< th=""> <th1.0< th=""></th1.0<></th1.0<>	9 0.99 0.95 1.0 0.94 1.0 0.98 0.74 1.0 0 0.99 0.99 1.0 0.97 1.0 0.97 1.0 3 0.98 0.94 1.0 0.97 1.0 0.97 1.0 4 0.96 0.94 1.0 0.88 1.0 0.99 0.98 1.0 4 0.96 0.97 1.0 0.88 1.0 0.99 0.98 1.0 4 0.68 0.68 0.94 0.91 0.95 0.81 0.89 1.0 10 0.48 0.15 1.0 0.52 1.0 0.81 0.89 1.0 10 0.48 0.15 1.0 0.52 1.0 0.81 0.81 1.0 3 0.28 0.29 0.31 0.34 0.31 0.29 0.29	1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0 1.0 0.79 0.8 1.0 1.0 1.0 1.0 0.67 1.0 0.8 0.56 0.87 0.78 0.0 1.0 0.6 1.0 1.0 1.0 0.23 1.0 1.0	5 0.99 0.97 1.0 0.92 0.99 0.82 1.0 1.0 0.96 0.99 0.99 1.0 1.0 0.99 1.0 1.0 1.0 0.91 0.88 0.94 1.0 0.95 1.0 1.0 7 0.92 0.91 1.0 0.85 0.96 1.0 1.0 1.0 4 0.78 0.89 0.73 0.78 0.68 0.77 0.96 0.96 1.0 1.0 1.0 0.49 0.49 1.0 1.0 1.0 4 0.78 0.89 0.73 0.78 0.68 0.77 0.96 0.96 1.0 1.0 1.0 0.49 0.49 1.0 1.0 1.0 9 0.29 0.32 0.32 0.33 0.29 0.29 0.3 0.3	0.99 1.0 0.98 1.0 1.0 0.81 0.95 0.96 0.85 1.0 1.0 1.0 0.83 1.0 0.99 0.93 1.0 1.0 1.0 0.83 0.9 0.93 0.75 1.0 0.56 0.87 0.71 1.0 1.0 0.14 1.0 1.0 0.82
HM Log F metrics S	1.0 1.0 0.0 0.95 1.0 <th>0 0.96 1.0 1.0 1.0 1.0 0.91 1.0 0.44 0 0.92 1.0 1.0 1.0 1.0 1.0 1.0 0.82 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.82 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.82 0 0.83 1.0</th> <th>0.93 1.0 0.94 1.0 1.0 1.0 0.9 1.0 0.83 1.0 1.0 1.0 0.9 0.88 1.0 1.0 1.0 1.0 0.9 0.88 1.0 1.0 1.0 1.0 0.65 0.0 0.82 1.0 1.0 1.0 0.24 0.0 0.51 1.0 1.0 1.0</th> <th>0.97 1.0 1.0 0.93 0.96 1.0 1.0 1.0 0.92 1.0 1.0 1.0 0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.76 1.0 1.0 1.0 0.9 0.83 1.0 1.0 1.0 0.71 0.91 0.85 0.81 0.87 1.0 0.96 0.96 0.84 1.0 1.0 1.0 0.73 0.10 1.0 1.0 0.32 0.31 0.34 0.3 0.28 0.29 0.3 0.3</th> <th>1.0 1.0 1.0 0.93 1.0 0.94 1.0 1.0 1.0 0.9 1.0 0.81 1.0 0.91 1.0 0.91 0.9 0.88 1.0 0.96 0.91 1.0 0.88 0.65 0.0 0.82 1.0 0.69 1.0 0.84 0.24 0.51 0.51</th>	0 0.96 1.0 1.0 1.0 1.0 0.91 1.0 0.44 0 0.92 1.0 1.0 1.0 1.0 1.0 1.0 0.82 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.82 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.82 0 0.83 1.0	0.93 1.0 0.94 1.0 1.0 1.0 0.9 1.0 0.83 1.0 1.0 1.0 0.9 0.88 1.0 1.0 1.0 1.0 0.9 0.88 1.0 1.0 1.0 1.0 0.65 0.0 0.82 1.0 1.0 1.0 0.24 0.0 0.51 1.0 1.0 1.0	0.97 1.0 1.0 0.93 0.96 1.0 1.0 1.0 0.92 1.0 1.0 1.0 0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.76 1.0 1.0 1.0 0.9 0.83 1.0 1.0 1.0 0.71 0.91 0.85 0.81 0.87 1.0 0.96 0.96 0.84 1.0 1.0 1.0 0.73 0.10 1.0 1.0 0.32 0.31 0.34 0.3 0.28 0.29 0.3 0.3	1.0 1.0 1.0 0.93 1.0 0.94 1.0 1.0 1.0 0.9 1.0 0.81 1.0 0.91 1.0 0.91 0.9 0.88 1.0 0.96 0.91 1.0 0.88 0.65 0.0 0.82 1.0 0.69 1.0 0.84 0.24 0.51 0.51
α^{++} Model B_B metrics S_I S_J Log F metrics S	1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0	9 0.83 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.72 1.0 0.63 0.87 0.87 1.0 0.72 1.0 0.81 0.93 0.77 1.0 1.0 0.88 1.0 1.0 0.87 1.0 0.0 0.0 0.0 1.0 0.87 1.0 0.0 0.0 0.0 1.0 0.87 1.0	0.73 0.84 0.76 0.77 0.94 0.83 0.73 0.44 0.63 0.82 0.69 0.75 0.83 0.85 0.6 0.7 0.81 0.83 1.0 0.79 0.81 0.83 0.69 0.69 0.69 0.83 1.0 0.79 0.81 0.83 0.69 0.69 0.69 0.83 0.75 0.9 0.75 0.83 0.81 0.75 0.0 0.87 0.68 0.0 0.82 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.25 1.0 0.0 0.0 0.29 0.26 0.35 0.13 0.27 0.3 0.28 0.28	0.52 0.78 0.99 0.86 0.56 1.0 0.45 0.46 0.68 0.68 0.84 1.0 1.0 0.74 0.61 0.91 0.86 0.91 0.6 0.88 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
ILP Model B metrics S Log metrics S S S S S S S S S S S S S S S S S S S	1.0 1.0 <th1.0< th=""> <th1.0< th=""> <th1.0< th=""></th1.0<></th1.0<></th1.0<>	31 0.77 1.0 0.94 0.94 0.95 1.0 1.0 1.0	0.9 1.0 0.97 0.68 0.56 0.83 0.66 1.0 0.66 0.28 0.53 0.63 1.0 1.0 1.0 1.0 0.83 1.0 0.48 0.87 0.72 0.48 0.51 0.73 1.0 1.0 1.0 1.0 0.5 1.0	3 0.75 0.89 0.9 0.68 0.53 0.69 0.7 0.75 3 0.69 0.75 0.76 0.32 0.53 0.43 0.34 0.41 1 1.0 0.87 1.0 1.0 1.0 0.95 0.92 0.88 3 0.64 0.87 0.55 0.54 0.65 0.58 0.0 0.75 1.0 1.0 1.0 1.0 0.0 0.0 0.49	0.89 0.78 0.74 0.84 0.9 0.99 0.56 0.87 0.49 0.45 0.45 0.66 0.66 0.29 0.96 1.0 0.98 1.0 1.0 1.0 1.0 0.56 0.63 0.74 0.64 0.48 0.54 0.52 1.0 1.0 1.0 1.0 1.0 0.82
Ci🔟US					35

Experimentation - Results on balanced logs (i)

	Logs with 5% of noise	Logs with 10% of noise							
	Caning to B. WILLING M. BUILDING TO MA UN ACCOUNT AND ACCOUNT	Continues Dr WILLIGHT WILL WOND THE WEST STRATTS TO DWS							
ProDiGen Model B metrics S Log F metrics S	1.0 1.0 <th>0.78 1.0</th>	0.78 1.0							
GM Model B metrics S Log H metrics S	n 0.99 0.	3 0.84 0.6 0.75 0.92 0.9 0.88 0.9 0.98 0.57 0.75 0.92 0.95 0.83 0.66 0.91 0.9 0.72 0.79 0.78 0.75 0.75 1.0 0.83 0.66 0.91 1.0 0.88 0.95							
Log	p 1.0 <th1.0< th=""> <th1.0< th=""> <th1.0< th=""></th1.0<></th1.0<></th1.0<>	1.0 1.0 1.0 0.89 0.79 0.99 0.95 0.91 1.0 0.0 0.83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0							
Model B metrics S	r 0.69 0.99 0.83 0.32 0.88 0.68 0.49 0.67 0.97 0.65 0.6 0.47 0.88 0.54 0.99 0.56 0.24 0.66 p 0.62 0.41 0.57 0.31 0.46 0.3 0.41 0.5 0.47 0.43 0.36 0.4 0.55 0.37 0.5 0.6 0.5 0.48 r 0.82 0.62 0.5 0.38 0.5 0.37 0.57 0.58 0.66 0.63 0.66 0.40 0.55 0.37 0.5 0.66 0.67 0.72 0.82 0.62 0.5 0.38 0.5 0.37 0.58 0.66 0.63 0.66 0.56 0.91 0.6 0.83 0.6 0.66 0.72 0.0 0.69 0.95 0.0 0.75 0.0 0.0 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	8 0.61 0.46 0.71 0.46 0.3 0.35 0.41 0.44 0.58 0.37 0.36 0.31 0.29 0.25 0.45 0.66 0.31 2 0.75 0.75 0.62 0.53 0.5 0.62 0.61 0.41 0.66 0.63 0.75 0.45 0.58 0.66 0.33 0.5 0.44 0.42 0.0 0.85 0.85 0.0 0.0 0.0 0.77 0.71 0.0 0.0 0.76 0.77 0.0 <t< th=""></t<>							
ILP Model B metrics S Log F metrics S	r 0.3 0.48 0.33 0.33 0.62 0.42 0.21 0.81 0.17 0.44 0.36 0.45 0.59 0.64 0.4 0.69 0.75 0.49 p 0.23 0.23 0.23 0.23 0.26 0.26 0.17 0.16 0.33 0.23 0.21 0.13 0.09 0.16 0.16 0.23 0.3 0.27 0.13 r 1.0 1.0 0.8 0.95 0.93 1.0 1.0 1.0 0.92 0.92 0.94 1.0 0.78 1.0 0.91 0.96 o 0.32 0.41 0.42 0.31 0.0 0.27 0.18 0.45 0.58 0.3 0.39 0.0 0.42 0.48 0.33 0.31 0.36 o 0.32 0.41 0.42 0.31 0.0 0.27 0.18 0.45 0.58 0.3 0.39 0.0 0.42 0.48 0.33 0.31 0.36 o 1.0 1.0 0.0 1.0 0.63 <th< th=""><th>0.25 0.72 0.58 0.47 0.64 0.5 0.19 0.64 0.38 0.42 0.29 0.15 0.43 0.29 0.32 0.72 0.47 0.24 3 0.24 0.19 0.34 0.27 0.18 0.15 0.36 0.19 0.25 0.16 0.16 0.13 0.18 0.28 0.28</th></th<>	0.25 0.72 0.58 0.47 0.64 0.5 0.19 0.64 0.38 0.42 0.29 0.15 0.43 0.29 0.32 0.72 0.47 0.24 3 0.24 0.19 0.34 0.27 0.18 0.15 0.36 0.19 0.25 0.16 0.16 0.13 0.18 0.28 0.28							

Experimentation - Results on balanced logs (iii)

			Logs with 20% of noise																	
			Camir	N8	22	MILE	kip Ma5	MI	MDF	allo	Mal	1210	Mexa	nplet Herbs	Mabo	MPar	allel5 NC	121P	NCB	DW5-2
ProDiGen	Model metrics Log metrics	B _p B _r S _p P C	0.57 0.99 0.75 0.85 0.62 0.34	1.0 1.0 1.0 1.0 1.0 1.0	0.91 1.0 0.87 0.87 0.95 1.0	10 10 10 10 0.81 10	1.0 1.0 1.0 1.0 0.91 1.0	1.0 1.0 1.0 1.0 0.85 1.0	0.62 0.99 0.77 0.89 0.89 1.0	1.0 1.0 1.0 0.35 1.0	0.78 0.99 0.79 1.0 1.0 1.0	0.8 0.99 0.81 1.0 0.95 1.0	0.75 0.99 0.76 0.83 0.9 0.52	1.0 1.0 1.0 0.95 1.0	0.76 0.83 0.68 0.69	0.99 0.78 0.84 0.79 0.72	0.72 0.99 0.76 0.75 0.7 0.62	1.0 1.0 1.0 1.0 0.55 1.0	1.0 1.0 1.0 0.86 1.0	0.5 0.99 0.47 0.95 0.75 0.37
GM	Model metrics Log metrics	S Bp Sp Sr P C S	0.99 0.56 0.6 0.39 0.0	0.31 0.67 0.99 0.46 0.75 0.42 1.0 0.26	0.31 0.66 0.99 0.6 0.75 0.45 1.0 0.28	0.31 0.85 0.99 0.69 0.69 0.65 1.0 0.29	0.72 0.66	1.0 0.99 0.88	0.28 0.44 0.98 0.52 0.52 0.0 0.0 0.0	0.29 0.98 0.88 0.95 0.46 1.0 0.24	0.28 0.67 0.99 0.47 0.66 0.42 0.0 0.26	0.29 0.77 0.99 0.69 0.81 0.42 1.0 0.27	0.99	0.97	0.3 0.65 0.99 0.61 0.66 0.38 0.3 0.27	0.99 0.52 0.66 0.59	0.29 0.57 0.99 0.5 0.66 0.37 0.16 0.27	0.3 0.95 0.9 0.9 0.9 0.31 1.0 0.26	0.3 0.88 0.99 0.8 0.88 0.51 1.0 0.29	0.28 0.78 0.81 0.6 0.95 0.53 0.54 0.27
НМ	Model metrics Log metrics	B _p B _r S _p S _r P C S	0.97 1.0 1.0 0.95 0.89 0.34 0.28	0.7 0.85 0.77 0.87 0.0 0.0 0.0 0.3	0.95 1.0 1.0 0.87 0.95 1.0 0.31	0.9 0.8 1.0 0.76 0.0 0.0 0.28	0.9 0.89 1.0 0.83 0.85 0.65 0.31	0.67 0.91 0.6 0.75 0.0 0.0 0.3	0.9 0.92 1.0 0.9 0.0 0.63 0.3	0.93 0.89 1.0 0.83 0.89 0.58 0.28	1.0 1.0 1.0 1.0 1.0 1.0 0.28	0.94 1.0 1.0 0.9 0.88 0.3 0.31	1.0 1.0 1.0 0.95 1.0 0.29	1.0 1.0 1.0 0.95 1.0 0.33	0.89 1.0 1.0 0.91 0.9 0.69 0.32	1.0 1.0 1.0 0.99 1.0 0.3	0.75 1.0 1.0 0.83 0.0 0.0 0.32	0.77 0.95 0.8 0.8 0.0 0.0 0.0 0.3	0.88 1.0 1.0 0.88 0.0 0.0 0.0 0.32	0.7 0.6 0.76 0.95 0.0 0.0 0.28
a ⁺⁺	Model metrics Log metrics	Bp Br Sp Sr P C S	0.83 0.91 0.59 0.67 0.0 0.0 0.2	0.88 0.99 0.46 0.75 0.72 0.49 0.25	0.62 0.62 0.84	0.39 0.55 0.23 0.23 0.0 0.0 0.15	0.61 0.56 0.26 0.5 0.0 0.0 0.0 0.17	0.4 0.49 0.26 0.5 0.54 1.0 0.31	0.29 0.4 0.18 0.28 0.0 0.0 0.0	0.82 0.2 0.16 0.6 0.24	0.76 0.87 0.27 0.41 0.65 1.0 0.24	0.42 0.57 0.25 0.27 0.0 0.0 0.15	0.4 0.75 0.17 0.33 0.59 0.52 0.2	0.29 0.42 0.21 0.3 0.95 1.0 0.33	0.44 0.76 0.23 0.41 0.0 0.0 0.21	0.75 0.99 0.22 0.46 0.75 1.0 0.21	0.53 0.89 0.26 0.33 0.0 0.83 0.24	0.62 0.54 0.15 0.2 0.0 0.0 0.16	0.29 0.4 0.27 0.33 0.0 0.0 0.19	0.26 0.24 0.29 0.42 0.0 0.0 0.14
ILP	Model metrics Log metrics	B _p B _r S _p S _r P C S	0.1 0.19 0.23 1.0 0.31 0.24 0.08	0.09 0.23 0.23 0.64 0.4 1.0 0.13	0.27 0.83 0.45 0.8 0.0 0.0 0.0 0.26	0.35 0.46 0.28 1.0 0.3 1.0 0.14	0.31 0.57 0.21 1.0 0.28 0.0 0.12	0.27 0.17 1.0 0.2 1.0	0.24 0.19 0.19 0.93 0.16 1.0 0.08	0.63 0.26 0.7 0.44 0.39	0.17 0.34 0.2 0.97 0.38 1.0 0.14	0.1 0.33 0.22 1.0 0.27 1.0 0.12	0.2 0.31 0.14 1.0 0.3 0.52 0.11	0.05 0.06 0.05 1.0 0.13 0.0 0.04	0.07 0.31 0.14 0.77 0.28 0.0 0.12	0.2 0.35 0.1 0.76 0.26 0.0 0.1	0.17 0.49 0.19 1.0 0.31 1.0 0.16	0.35 0.75 0.29 1.0 0.26 1.0 0.18	0.41 0.84 0.25 1.0 0.22 1.0 0.16	0.14 0.21 0.12 0.96 0.22 0.25 0.07

Results on unbalanced logs

												Logs												
			Ŷ	Ş	Ş	Ş	Ş	Ş	÷	Ş	e10	812	es??	d'a	85	2 ⁹	² P	Ŷ,	Ŷ2	Ŷ	Ŷ	ŝ	BA	
ProDiGen	Model metrics Log metrics	B _P B _r S _p S _r P C S	10 10 10 09 10 03	1.0 1.0 1.0 0.82 1.0 0.3	1.0	1.0 1.0 1.0 0.98 1.0 0.31	1.0 1.0 1.0 0.95 1.0 0.31	1.0 1.0 1.0 0.88 1.0	1.0 1.0 0.94 0.86 0.52 0.28	1.0	1.0 1.0 1.0 0.89 1.0 0.3	1.0 1.0 1.0 0.97 1.0 0.31	1.0 1.0 1.0 0.93 1.0 0.3	1.0	1.0 1.0 1.0 0.86 1.0 0.25	1.0	1.0 1.0 1.0 0.78 1.0 0.29	1.0	1.0 1.0 1.0 0.9 1.0 0.3	0.58 1.0	0.98 0.89	0.74 0.98	1.0	
GM	Model metrics Log metrics	B _p B _r S _p S _r P C S	10 10 10 09 10 03	0.97 0.81 0.81 0.42 0.31	0.78 0.97 0.81 0.81 0.98 0.59 0.3	1.0 1.0 1.0 0.98 1.0	1.0 1.0 1.0 0.95 1.0 0.31	1.0 1.0 1.0 0.88 1.0	0.94 0.0 0.26	1.0 0.97 0.98 0.94 0.48	0.99 0.97 0.9 0.92 0.91 0.48 0.29	1.0 1.0 1.0 0.97 1.0	0.99 0.95 0.94 0.96 0.75	1.0 0.95 0.94 0.74 1.0	0.8 0.97 0.88 0.87 0.0 0.15 0.24	0.9 0.95 0.89 0.0 0.2	1.0	1.0 1.0 1.0 0.91 1.0	1.0 0.85 0.85 0.86 0.43	0.57 0.88 0.76 0.74 0.0 0.2 0.28	0.88 0.75 0.75 0.88 0.72	0.96 0.76 0.74 0.49 0.41	0.83 0.85 0.85 0.81 0.3	
НМ	Model metrics Log metrics	B _p B _r S _p S _r P C S	1.0 1.0 1.0 0.9 1.0	0.98 0.97 0.97 0.83 1.0	0.92 0.96 0.86 0.0 1.0	1.0 1.0 1.0 0.98 1.0	0.9 0.98 0.93 0.97 0.93 0.66 0.31	0.97 0.97 1.0 0.9 1.0	0.99 0.95 0.86 0.86 0.52	0.98 1.0 1.0 0.93 0.74	0.96 0.95 0.96 0.96 0.9 0.78 0.78	1.0	1.0 1.0 1.0 0.93 1.0	0.97 0.96 0.92 0.92 0.91		1.0 1.0 0.9 0.93 0.85	1.0 1.0 1.0 0.78 1.0	1.0 1.0 1.0 0.91 1.0	0.99 0.97 0.91 0.9 0.9 0.9	0.6 1.0 0.91 0.94 0.0 0.0 0.29	0.88 0.89 0.81 0.86 0.93	0.94 0.85 0.85 0.71 0.23	0.96 0.76 0.74 0.85 0.37	
a ⁺⁺	Model metrics Log metrics	B _p B _r S _p S _r P C S	0.85 0.89 1.0 0.86 0.33	0.91 0.94 0.98 0.0 0.0	0.94 0.98 0.97 0.95 1.0	1.0 1.0 1.0 0.98 1.0	0.99 0.79 1.0 0.94	0.9 0.98 1.0 0.0 0.0	0.94 0.83 0.94 0.85 0.35	0.98 1.0 0.94 0.48	0.94 0.9 0.81 1.0 0.91 0.563 0.28	0.96 1.0 0.94 1.0	0.94 0.88 0.97 0.95 0.48	0.92 0.86 1.0 0.75 0.0	0.85 0.9 0.97	0.94 0.9 1.0 0.9 0.25	0.94 0.92 0.87 0.64 0.46	0.89 0.93 1.0 0.0 0.68	0.85 0.82 0.97 1.0 0.43	0.67 0.66 1.0 0.0 0.0	0.7	0.92 0.91 0.98 0.0 0.97	0.93	
ILP	Model metrics Log metrics	B _p B _r S _p S _r P C S	1.0 0.83 1.0 0.87 1.0	0.89 0.98 0.85 0.98 0.79 1.0 0.29	0.99 0.98 0.97 0.99 1.0	1.0 1.0 1.0 0.98 1.0	0.96 0.99 0.78 1.0 0.93 1.0 0.28	0.99 0.94 1.0 0.89 1.0	0.99 0.76 0.96 0.83 1.0	0.99 0.89 1.0 0.9 1.0	0.92 0.97 0.73 1.0 0.84 1.0 0.26	0.96 1.0 0.94 1.0	0.99 0.78 1.0 0.9 1.0	0.99 0.78 1.0 0.88 1.0	1.0 0.67 1.0 0.82	0.99 0.85 1.0 0.9 1.0	0.95 0.85 1.0 0.83 0.52	1.0 0.92 1.0 0.87 1.0	0.99 0.72 0.97 0.88 0.98	0.88 0.5 1.0 0.41 1.0	0.94 0.77 1.0 0.78 1.0	0.96 0.64 0.98 0.54 1.0	1.0 0.91 1.0 0.87 1.0	

Experimentation – Non-parametric tests

Balanced Logs

Friedman test and Holm post hoc test:

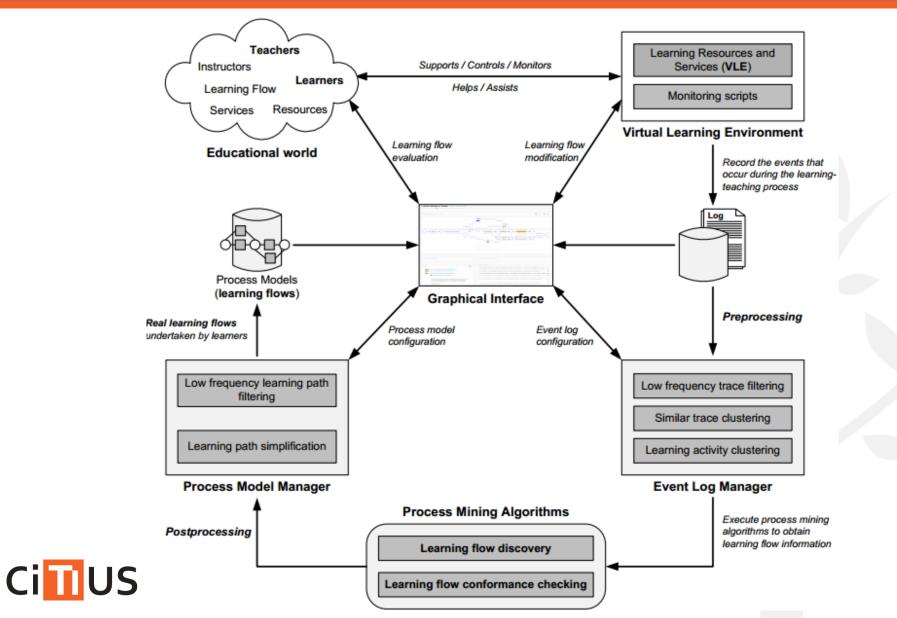
Algorithm	Ranking					
ProDiGen	1.52					
HM	2.74					
GM	2.89					
ILP	3.74					
α^{++}	4.10					
Friedman p-value: 5.34E-11						

i	Comp.	Z,	р	α/i	Hypothesis
4	α^{++}	10.9	7.70E-28	0.012	Rejected
3	ILP	9.43	4.17E-21	0.016	Rejected
2	GM	5.80	6.70E-9	0.025	Rejected
1	HM	5.19	2.15E-7	0.05	Rejected

Unbalance Logs									
	Alg	orith	m l	Ranking					
	Pro	DiGe	n	1.55					
		HM		2.62					
		ILP		2.95					
		GM		3.62					
		α^{++}		4.26					
	Friedman p-value: 3.58E-7								
i	Comp.	z	р	α/i	Hypothesis				
4	α^{++}	5.56	2.65E-8	0.012	Rejected				
3	GM	4.25	2.18E-5	0.016	Rejected				
2	ILP	2.88	0.003	0.025	Rejected				
1	HM	2.20	0.03	0.05	Rejected				

SoftLearn

EDUCATION		
Complete Precise Simple	Grade	


- Evaluate learning paths from a virtual learning environment
- Intuitive GUI to visualize:
 - ▷ The real learning path of the course
 - The learning content generated in the VLE

SoftLearn

Framework

Integrated in the virtual learning environment Elgg.

- Used as evaluation software in the present course 13/14.
- Tecnología Educativa, Departamento de Didáctica y Organización Escolar USC
 - 72 enrolled students.

Future work

SO, WHAT'S NEXT?

1. Multi-objective algorithm.

2. Generalization

3. Conformance

4. Other domains: Medicine (QUIRAV)

Publications

JOURNALS

- 1. Borja Vazquez-Barreiros, Manuel Mucientes, Manuel Lama: *ProDiGen: Mining complete, precise, and minimal structure process models with a genetic algorithm*. Information Sciences. (Under review)
 - JCR 3.64; Ranking 6/131 (Q1) in Computer Science, Information Systems

CONFERENCES

- 1. Borja Vazquez-Barreiros, Manuel Lama, Manuel Mucientes, Juan C. Vidal: **SoftLearn, a process mining platform for the discovery of learning paths**. IEEE International Conference on Advanced Learning Technologies (ICALT 2014). (Accepted)
 - Ranking 8/58 in Computer Education
- A. Rodriguez, A. Gewerc, M. Lama, B. Vazquez-Barreiros, M. Mucientes: Using a learning analytics tool for evaluation in self-regulated learning. Frontiers in Education (FIE 2014) (Abstract accepted)
 - Ranking 7/58 in Computer Education

ProDiGen: a genetic algorithm for process discovery guided by completeness, precision and simplicity

Borja Vázquez Barreiros

Supervisors : Manuel Mucientes, Manuel Lama

Centro Singular de Investigación en Tecnoloxías da Información

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

citius.usc.es

Centro Singular de Investigación en **Tecnoloxías** da **Información**