Context-based adaptive QRS clustering in real-time

Doctoral Meeting initiative (CITIUS)

Daniel Castro

Centro Singular de Investigación en Tecnoloxías da Información

Universidade de Santiago de Compostela

Doctoral Meeting - November 15, 2013

Centro Singular de Investigación en Tecnoloxías da Información

citius.usc.es

Cardiovascular diseases

Key facts (from WHO, March 2013)

- CVDs are the number one cause of death globally: more people die annually from CVDs than from any other cause
- An estimated 17.3 million people died from CVDs in 2008.
- An estimated 80 % of these deaths were due coronary heart disease or due to stroke.
- These kind of diseases affect the normal heart function, so monitoring the heart condition is a key tool for its diagnosis.

Arhythmias

Cardiac arrhythmias are relevant signs present in a almost all CVDs.

Arrhythmia

"Arrhythmia" refers to any change from the normal sequence of activation and conduction of electrical impulse of a heartbeat.

There are two main sources of arrhythmias:

- Automatism disorder.
- Conduction disorder.

Electrocardiogram

- The electrocardiogram (ECG) is invaluable tool for arrhythmia detection.
- ECG is a widespread, inexpensive and non-invasive test that can be performed in an ambulatory context.

Electrocardiogram

The ECG is the recording of the electrical activity of the heart as detected by electrodes attached to the surface of the skin.

- Each electrode provides a signal lead with different projections of the electric field generated inside the heart.
- The beat morphology in the ECG depends on:
 - Observed lead.
 - Body position.
 - Activation point.
 - Propagation pathway.

Achivements & Current re

Future work

Electrocardiogram

Beat morphologies with different activation points.

Doctoral Meeting

Achivements & Current resu

Electrocardiogram

Beat morphologies with atrial activation and conduction disorder.

Doctoral Meeting

Electrocardiogram

- The normal cardiac cycle comprises a set of stages with a correspondence in the ECG:
 - Atrial depolarization

P wave

- AV node delay
 - PQ segment
- Atrial repolarization + Ventricular depolarization
 - QRS complex
- Ventricular repolarization
 - T wave

Definition of the problem

- Arrhythmias have effect on the ECG, affecting the beat morphology and/or beat rhythm.
- ECG review is a time consuming and error prone task.
- Specially in case of long ambulatory ECG recordings.
 - Intermitent arrhythmias.
 - Patients at risk.
- Ambulatory ECG recordings have a high noise level.
- Response time may be critical but offline processing is performed.

Definition of the problem

How can we help?

We will focus on arrhythmias that alter QRS morphology.

- Providing the beat morphologies present in a recording greatly reduce the revision time and also reduce the time to diagnosis.
- Showing the morphology evolution can also help in diagnosis.
- The real-time availability of beat morphologies can help to a timely detection of relevant events and reduce the response time.
- Promediated beats greatly reduce the noise making the identification of beat types easier for the cardiologist.

Context & motivation	Research Hypotheses & Objectives	Methodology	Achivements & Current results	Future work
Outline				

Research Hypotheses & Objectives

- 3 Methodology
- 4 Achivements & Current results
- 5 Future work

Doctoral Meeting

Research Hypotheses

- There is a low number of conduction pathways for the heartbeat.
- Ambulatory ECG has a high level of noise.
 - The parameters measured from individual beats are inaccurate.
 - P wave is often hidden by noise.
- QRS morphologies can evolve over time.
- QRS morphologies suffers from a high variability.
 - Intra-person and inter-person variability.
- The relevance of the differences between QRS morphologies depends not only on its magnitud but also on its location in the QRS waves.

Research Objectives

Objectives

Desing and develop a real-time method to group the QRS morphologies present in a recording up to any given time. This method should:

- obtain the set of different morphologies present in a recording.
- minimize the number of duplicated morphologies.
- allow a dynamic number of different QRS morphologies.
- not limit the number of morphologies to be detected.
- be robust to noise.
- capture the temporal evolution of QRS morphologies.

State-of-the-art

- Nowadays, much effort concentrated on supervised classification.
- All clustering approaches shared the same characteristics.
 - Offline clustering
 - Static clustering
 - ▷ Number of clusters is limited apriori.
- Limitations of existent approaches:
 - Do not capture the temporal evolution of morphologies.
 - Do not analyze the morphologies in their temporal context.
 - Rare morphologies can be ignored.

	Methodology	
Outline		

1 Context & motivation

2 Research Hypotheses & Objectives

Methodology

- 4 Achivements & Current results
- 5 Future work

Doctoral Meeting

- Our main objective is to develop an algorithm to cluster QRS of **detected** beats. \Rightarrow Premise: Beat detection is already solved.
- Signal conditioning:
 - ECG signal is contaminated by noise from several sources:
 - Baseline wandering.
 - FMG noise.
 - Motion artifacts.
 - Powerline interference.
 - We focused on baseline wandering as the main source of distortion of QRS morphology.

Baseline wandering

- The frecuency spectra of ECG and noise are usually overlaped.
 - Frequency domain filters require very low cutoff frequency
- We use the Discrete Wavelet Transform (DWT)
 - Time-frequency transform
 - Better spatial localization in high frequencies than Fourier transform.
 - Good frequency localization in low frequency components.
- Calculation:

$$approx[n] = (x * g)[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-k]$$

$$detail[n] = (x * h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Iterative application of DWT

Frequency spectrum for each DWT decomposition level.

Baseline wandering

- Remove the first band below 0.70Hz.
- Implementation using Quadrature mirror filters.
 - Non causal symmetric filters.
 - Finite delay (21 samples per level).
 - Allows online execution.

Context & motivation Research Hypotheses & Objectives Methodology Achivements & Current results Future work Baseline wandering

Sample ECG segment with baseline wandering (*Fs* = 360*Hz*)

Baseline removed using DWT (8 level decomposition).

- We propose a dynamic clustering method.
 - Clusters can be created, merged or modified during the recording.
- Let C denote a time series $C = \{C_1, C_2, ..., C_n, ...\}$
 - $\triangleright C_n = \{C_n^c \mid 1 \le c \le N_n\}: \text{ set of clusters at beat } n.$
 - Represent those QRS morphologies appeared from the begining of the recording up to beat *n*.
 - $\triangleright C_n^c$ is the set of beats assigned to the cluster c at beat n
 - \triangleright N_n number of clusters at beat n

QRS characterization

- Let $S = \{ s_t | s_t \in \mathbb{R}^L \}$ denote a time series which represents the multilead ECG signal, where *L* is the number of leads and $s_t = (s_t^1, ..., s_t^L)$ is the vector of samples at time *t* for all leads.
- The *n*th beat (with fiducial mark at time *t*) is represented by a fixed-length subsequence of *w* samples (*w*⁻ before and *w*⁺ after *t*)

$$\triangleright \ \boldsymbol{q}_n^{\prime} = \{q_1^{\prime}, \ldots, q_j^{\prime}, \ldots, q_w^{\prime}\}$$

Let \mathcal{K} denote the **curvature** at $q_j \in \mathbf{q}_n$ where $2 \le j \le w-1$:

$$\triangleright \ \mathcal{K}(q_j, \boldsymbol{q}_n) = \max_{i \in I_j^-, k \in I_j^+} \cos \widehat{q_i q_j q_k}$$

• We define the **support region** of q_j as $support(q_j) = [r^-, r^+]$ $r^- = min(\arg \max_{i \in I_j^-} \cos \widehat{q_i q_j q_k})$ for any fixed $k \in I_j^+$

▷
$$r^+ = \max(\arg\max_{k \in I_j^+} \cos\widehat{q_i q_j q_k})$$
 for any fixed $i \in I_j^-$

QRS characterization

We define the set of **dominant points** of **q**_n as:

$$D_n = \{ p_j | p_j = q_j \land q_j \in \boldsymbol{q}_n \land j = \arg \max_{a \in support(q_j)} \mathcal{K}(q_a, \boldsymbol{q}_n) \}$$

Methodology

And the set of relevant points as:

$$R_n = \{ p_j \mid p_j \in D_n \land \Delta q_j > \rho_{QRS} \}$$

where $\Delta q_j = \min(|q_j - q_{r^-}|, |q_j - q_{r^+})$

The support region for the p_j is redefined as: support(p_j) = [j[−], j⁺].
 j[−] < r[−] and j⁺ > r⁺ are the sample number nearest to r[−] and r⁺ where slope sign changes.

Achivements & Current re

Future work

QRS characterization

Relevant points detection.

QRS characterization

- The *n*th beat is represented by: $B_n = < \boldsymbol{q}_n$, $P_n >$
 - ▷ where $P_n = \{(p_j, support(p_j)) | p_j \in R_n\}$.
- Each cluster C_{n-1}^{c} is represented by: $T_{n-1}^{c} = < \boldsymbol{q}_{n-1}^{c}, P_{n-1}^{c} >$
 - $\triangleright \mathbf{q}_{n-1}^{c} = \{q_{1}^{c}, \dots, q_{w}^{c}\}$ is derived from the QRS of its assigned beats.
 - $\triangleright P_{n-1}^{c}$ is the set of dominant points and support regions of q_{n-1}^{c} .

QRS alignment

- Before comparing a beat B_n and a template T_{n-1}^c , they must be temporally aligned.
- We use derivative Dynamic Time Warping (dDTW)
 - Nonlinear alignment technique.
 - Corrects misplaced fiducial marks
 - Reduces the differences caused by the height and width variability of the QRS.
- DTW provides a relation $\boldsymbol{m} = (m_1, ..., m_K)$ between \boldsymbol{q}_n and \boldsymbol{q}_{n-1}^c .
- **m** is called a **warping path**.

>
$$m_k = (x_k, y_k) \in [1, w] \times [1, w], k \in [1, K]$$
 and $K \ge w$

$$\triangleright x_k \in \boldsymbol{q}$$
 and $y_k \in \boldsymbol{q}_{n-1}^c$

Context & motivation Research Hypotheses & Objectives Methodology Achivements & Current results F QRS alignment

- The warping path must fulfill three conditions:
 - \triangleright $m_1 = (1,1)$ and $m_K = (w, w)$
 - $\triangleright x_i \leq x_k \text{ and } y_i \leq y_k \forall i < k$
 - $\triangleright m_{k+1} m_k \in \{(1,1), (1,0), (0,1)\}$
- A cost function is defined: $\mathcal{G}(\boldsymbol{m}) = \sum_{k=1}^{K} \mathcal{G}_l(\boldsymbol{x}_k, \boldsymbol{y}_k)$
 - ▷ $G_l(x, y) = |\dot{q}_x \dot{q}_y^c|$ is the local cost function associated to each element of **m**
- The derivative is approximated by the first difference.

$$\begin{array}{l} \triangleright \;\; \dot{\pmb{q}}_n \!=\! (\dot{q}_1, ..., \dot{q}_{w-1}) \; \text{and} \; \dot{\pmb{q}}_{n-1}^c \!=\! (\dot{q}_1^c, ..., \dot{q}_{w-1}^c) \\ \triangleright \;\; \dot{q}_x \!=\! q_{x+1} \!-\! q_x \; \text{and} \; \dot{q}_y^c \!=\! q_{y+1}^c \!-\! q_y^c. \end{array}$$

- The optimal warping path is the one that minimizes G.
- We obtain a new aligned signals $\widehat{\boldsymbol{q}}_n$ and $\widehat{\boldsymbol{q}}_{n-1}^c$.

QRS alignment

QRS alignment

ontext & motivation

Research Hypotheses & Objectives

Methodology

Achivements & Current re

Similarity

- The comparison between B_n and C_{n-1} is bounded to the support regions of each relevant point.
- The segment \boldsymbol{q}_{n-1}^c is said to **concord with** \boldsymbol{q}_n **at** p_j ($\boldsymbol{q}_{n-1}^c \approx_{p_j} \boldsymbol{q}_n$) if \boldsymbol{q}_{n-1}^c contains a deflection with height $\Delta p_j^c > \rho_{min}$ in $[\tilde{j}^-, \tilde{j}^+]$ likely to be considered a significant waveform.
- We define the **concordance ratio** of \boldsymbol{q}_{n-1}^c with respect to \boldsymbol{q}_n at p_j

$$\mathcal{C}_{p_{j}}(\boldsymbol{q}_{n-1}^{c},\boldsymbol{q}_{n}) = \frac{\min(\Delta p_{j},\Delta p_{j}^{c})}{\max(\Delta p_{j},\Delta p_{j}^{c})} \quad \text{if} \ (\boldsymbol{q}_{n-1}^{c} \approx_{p_{j}} \boldsymbol{q}_{n})$$

We define the local similarity of q^c_{n-1} with respect to q_n at p_j

$$\mathcal{D}_{p_j}(oldsymbol{q}^c_{n-1},oldsymbol{q}_n) = \left(rac{(\Delta A_j^-)^2}{A_j^-} \!+\! rac{(\Delta A_j^+)^2}{A_j^+}
ight) imes rac{1}{A_j^- \!+\! A_j^+}$$

27/40

Context & motivation Research Hypotheses & Objectives Methodology Achivements & Current results Future work
Similarity

We define the **piecewise similarity** of **q**^c_{n-1} with respect to **q**_n

$$\mathcal{PS}(\boldsymbol{q}_{n-1}^{c},\boldsymbol{q}_{n}) = \sum_{p_{j} \in R_{n}} \mathcal{C}_{p_{j}}(\boldsymbol{q}_{n-1}^{c},\boldsymbol{q}_{n}) \operatorname{sig}(\mathcal{D}_{p_{j}}(\boldsymbol{q}_{n-1}^{c},\boldsymbol{q}_{n})) - \operatorname{max}_{p_{j}|\boldsymbol{q}_{n-1}^{c} \not\approx_{p_{j}} \boldsymbol{q}_{n}} \mathcal{D}_{p_{j}}(\boldsymbol{q}_{n-1}^{c},\boldsymbol{q}_{n})$$

$$\triangleright \operatorname{sig}(x) = 1 - \alpha x / \sqrt{1 + (\alpha x)^{2}}$$

Finally, we define the **similarity** between B_n and T_{n-1}^c as:

$$\mathcal{S}(\boldsymbol{q}_n, \boldsymbol{q}_{n-1}^c) = \mathcal{PS}(\boldsymbol{q}_{n-1}^c, \boldsymbol{q}_n) + \mathcal{PS}(\boldsymbol{q}_n, \boldsymbol{q}_{n-1}^c)$$

Cluster selection

- For a beat B_n , the best matching cluster C_{n-1}^{win} is searched:
 - \triangleright The search is first performed within the temporal context of B_n .
 - The most similar template for each lead is obtained: $sim^{l} = \arg \max_{c} S(\mathbf{q}_{n}^{l}, \mathbf{q}_{n-1}^{c,l})$
 - The most similar cluster C_{n-1}^{sim} is obtained as: $sim = mode\{sim^l | l \in [1, L]\}$
 - If multiple clusters are selected, the **normalized similarity** is used: $\mathcal{S}(\mathbf{q}_n^{\prime}, \mathbf{q}_{n-1}^{c,l}) = \mathcal{S}(\mathbf{q}_n^{\prime}, \mathbf{q}_{n-1}^{c,l}) / (|\mathbf{R}_n^{\prime}| + |\mathbf{R}_{n-1}^{c,l}|)$
 - \triangleright B_n is assigned to C_{n-1}^{sim} if $\bar{S}(q'_n, q_{n-1}^{sim,l}) > \gamma$ must is fulfilled in all leads.
 - Otherwise, a search is first performed whithin the remaining clusters.
 - The most similar cluster C_{n-1}^{sim*} is obtained.
 - if $\bar{S}(\mathbf{q}_n^l, \mathbf{q}_{n-1}^{sim*,l}) > \gamma$ is fulfilled in all leads, B_n is assigned to C_{n-1}^{sim*} .
 - ▷ If B_n is not assigned neither to C_{n-1}^{sim} nor to C_{n-1}^{sim*} , C_{n-1}^{win} is selected between them and a new cluster is created for B_n .

Cluster set updating

• Updating: If B_n is assigned to C_{n-1}^{win} , this cluster is updated.

$$C_n^{win} = C_{n-1}^{win} \bigcup B_n$$

$$\mathbf{q}_n^{win,l} \text{ is obtained from } \mathbf{q}_n^l \text{ and } \mathbf{q}_{n-1}^{win,l}$$

$$T_n^{win,l} = <\mathbf{q}_n^{win,l}, P_n^{win,l} >$$

Creation: If B_n is not assigned, a new cluster C^{new}_n is created.

$$C_n = C_{n-1} \bigcup \{C_n^{new}\}$$

$$T_n^{new,l} = B_n^l$$

• Merging: two clusters C_{n-1}^c and C_{n-1}^{win} can be merged if $\bar{S}(\mathbf{q}_n^{c,l}, \mathbf{q}_n^{win,l}) > \gamma'$ and one of the following condition is fulfilled: $\triangleright \ S(\mathbf{q}_n^l, \mathbf{q}_n^{c,l}) > \gamma$ and $c = \arg \max_{x \neq win} (\sum_{l=1}^L S(\mathbf{q}_n^l, \mathbf{q}_{n-1}^{x,l})/L)$ $\triangleright \ |C_n^{win}| < \mu$

Cluster set updating

- When C^c_{n-1} and C^{win}_{n-1} are merged, the cluster set and the cluster templates are updated acordingly:
 - \triangleright C_n^c is updated to $C_n^c = C_n^c \bigcup C_n^{win}$.
 - \triangleright $\boldsymbol{q}_n^{c,l}$ is recalculated from $\boldsymbol{q}_n^{c,l}$ and $\boldsymbol{q}_n^{win,l}$
 - ▷ $T_n^{c,l}$ is updated to $T_n^{c,l} = \langle \mathbf{q}_n^{c,l}, P_n^{c,l} \rangle$, where $P_n^{c,l}$ is the set of relevant points and support regions obtained from $\mathbf{q}_n^{c,l}$ after the update.

Cluster proliferation

- Adaptive clustering has a main issue:
 - How to discern between noise and rare morphologies avoiding the proliferation of clusters?

Our approach

- Detect noise at two level:
 - At beat level by setting a limit for the number of waves in noise-free QRS complexes.
 - noise¹_n = true if $W'_n > \eta$ where $W_n = |\{p_j | p_j \in D_n \land \Delta s_j > \rho_{min}\}|$
 - At segment level by evaluating an interval of N=10 beats each time a new cluster is created.

Cluster proliferation

- Whean a new cluster is created, the clustering analisys forksinto two branches.
 - Noise branch: all beats wich are not assigned to a cluster are considered as noisy.
 - New clusters branch: all beats wich are not assigned to a cluster are considered as new morphologies.
- After an interval of 10 beats, the beats that created a new cluster are evaluated.
 - ▷ Those beats that would be assigned to its most similar cluster if the similarity where defined as $S(\boldsymbol{q}_n, \boldsymbol{q}_{n-1}^c) = \mathcal{PS}(\boldsymbol{q}_n, \boldsymbol{q}_{n-1}^c)$ are labeled as noisy.
 - If all the evaluated beats are noisy, the noise branch is selected.
 - Otherwise, the new clusters branch is selected, but the cluster corresponding to noisy beats are removed.

Rhythm analysis

QRS clustering is insufficient to discriminate some kind of beat arrhythmias.

We need rhythm information.

We model the dinamic component of the cardiac rhythm:

- Stochastic and trend component.
- Only beat with normal rhythm is used in the analysis.
- Trend estimation: exponential smoothing.
- Dispersion of the stochastic component: standard deviation of the detrended series.

Achivements & Current res

Future work

Rhythm analysis

Context & motivation	Research Hypotheses & Objectives	Methodology	Achivements & Current results	Future work
Outline				

1 Context & motivation

2 Research Hypotheses & Objectives

3 Methodology

Achivements & Current results

5 Future work

Doctoral Meeting

We validated our algorithm with two annotated databases:

- MIT-BIH Arrhythmia database.
 - ▷ 48 records of 2-lead ambulatory ECG.
 - 30 minutes long.
 - Manually annotated beat types.
 - Accuracy: 98.71 %
- AHA Database.
 - ▷ 155 records of 2-lead ambulatory ECG.
 - 30 minutes long (annotated records).
 - Manually annotated beat types.
 - Accuracy: 99.59 %

Future work

Results

• Number of clusters disclosed by record (MIT-BIH Arrhyth. database).

Record	Ν	N _{RR}	Record	Ν	N _{RR}	Record	Ν	N _{RR}
100	5	8	117	3	4	212	4	7
101	3	6	118	3	8	213	18	29
102	12	16	119	5	9	214	21	39
103	11	13	121	5	7	215	14	32
104	18	30	122	1	1	217	27	49
105	10	16	123	3	5	219	13	21
106	27	47	124	12	17	220	2	5
107	9	18	200	20	48	221	11	18
108	18	40	201	13	31	222	4	12
109	11	17	202	6	13	223	26	50
111	7	9	203	28	76	228	11	21
112	3	6	205	14	21	230	3	5
113	3	7	207	58	95	231	6	7
114	7	14	208	22	53	232	2	6
115	5	7	209	5	14	233	22	41
116	7	11	210	26	67	234	5	7

Achivements & Current resu

Future work

Results

Global confusion matrix for MIT-BIH Arrhythmia database.

	Ν	L	R	a	v	F	J	A	s	E	j	/	e	f	Q	!
Ν	74576	0	7	22	77	90	11	178	2	0	58	0	15	26	11	0
L	3	8059	0	0	1	0	0	0	0	0	0	0	0	0	1	0
R	40	0	7239	0	0	3	29	8	0	0	6	0	0	0	0	0
а	1	0	0	113	5	0	0	4	0	0	0	0	0	0	0	0
v	143	2	0	11	6887	33	0	14	0	0	0	0	0	0	1	5
F	38	4	0	0	138	676	0	0	0	0	0	0	0	0	1	0
J	1	0	0	0	0	0	42	0	0	0	0	0	0	0	0	0
A	58	3	3	4	7	0	1	2339	0	0	0	0	1	0	0	0
s	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Е	0	0	1	0	0	0	0	0	0	106	0	0	0	0	0	0
j	149	0	0	0	0	0	0	0	0	0	165	0	0	0	0	0
1	7	0	0	0	0	0	0	0	0	0	0	7006	0	138	0	0
е	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f	17	0	0	0	0	0	0	0	0	0	0	14	0	818	14	0
Q	1	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
!	0	1	0	0	12	0	0	0	0	0	0	0	0	0	0	467
Se	99.39	99.88	99.85	75.33	96.63	84.29	50.60	91.98	0	100.00	72.05	99.80	0.00	83.30	15.15	98.94
+P	99.34	99.94	98.83	91.87	97.05	78.88	97.67	96.81	-	99.07	52.55	97.97	-	94.79	83.33	97.29

Ci

Results

Global confusion matrix for AHA database.

	Ν	V	F	E	/	Q
Ν	318629	262	158	6	10	74
v	289	32263	202	0	5	61
F	73	170	822	0	4	0
Е	0	0	0	6	0	0
/	5	5	83	0	3150	3
Q	55	16	0	0	0	434
Se	99.87	98.63	64.98	50.00	99.40	75.87
+P	99.84	98.30	78.21	100.00	97.01	85.94

Context	& motivation	Research Hypotheses & Objectives	Methodology	Achivements & Current results	Future work
Out	line				
1	Context	& motivation			
2	Researc	h Hypotheses & Objec	tives		
3	Methodo	blogy			
4	Achivem	ients & Current results	5		

Future work

Ci

Doctoral Meeting

Some ideas for future work

- Use the clustering results as the base for a beat classification algorithm.
- Develop a detection mechanism for arrhythmias where QRS is not present.
- Improve the QRS alignment procedure for large misalignments.
- Optimize the algorithm for mobile devices.

That's all

Thanks for your patience.

Doctoral Meeting