Development, deployment and validation of an oceanographic virtual laboratory based on Grid computing

David Mera Pérez Santiago de Compostela, Feb. 15th 2013

citius.usc.es

Context	Objectives	Virtual laboratory	Results and conclusions
Index			

- 1 Context and Motivation
- 2 Objectives
- 3 Virtual laboratory development
- 4 Virtual laboratory validation
- 5 Results and conclusions

Context	Objectives	Virtual laboratory	Validation	Results and conclusions
Index				

- 1 Context and Motivation
- 2 Objectives
- 3 Virtual laboratory development
- 4 Virtual laboratory validation
- **5** Results and conclusions

ContextObjectivesVirtual laboratoryValidationResults and conclusionsContextandMotivation

- ▷ Satellite missions for Earth observation increase every year.
- $\,\triangleright\,$ The study of the ocean requires multidisciplinary teams
- ▷ Distributed computing paradigm.

Context	Objectives	Virtual laboratory	Validation	Results and conclusions
Index				

- **1** Context and Motivation
- 2 Objectives
- 3 Virtual laboratory development
- 4 Virtual laboratory validation
- **5** Results and conclusions

- 1. To develop a user-friendly distributed computational environment based on Grid computing.
- 2. To develop an oceanographic application to test the Grid environment.
 - An oil spill automatic detection system based on the analysis of satellite Synthetic Aperture Radar imaging.

Context	Objectives	Virtual laboratory	Validation	Results and conclusions
Index				

- **1** Context and Motivation
- 2 Objectives
- 3 Virtual laboratory development
- 4 Virtual laboratory validation
- **5** Results and conclusions

- $\triangleright\,$ The access to most of the Grids is not intuitive.
 - Command line interface.
 - Digital certificates.
 - The computer knowledge is mandatory.
 - The users management is based on files.

ContextObjectivesVirtual laboratoryValidationResults and conclusionsRetelabDistributed storage system

- Based on Metadata -ISO 19115.
- Integration of visualization tools.
 - Live Access Server.
 - Integrated Data Viewer.

▷ Previous job submission systems:

- They need interaction with the users.
- The interaction decreases simplicity and transparency.
- ▷ Retelab approach:
 - Grid metascheduler.
 - > To make decisions on behalf of users.
 - > To facilitate the optimal utilization of the Grid resources.
 - > It undertakes the tasks for resource discovery, job scheduling, executing, monitoring and output retrieval.
 - It was mainly developed by a CESGA researcher.

Retelab $_{\rm Integration}$

Conte		O	ojectiv	es	Virtual laborat	ory	Validatio	n Results and conclusions
Ret	elal	O _{Int}	egrat	ion				
		RETEL			° ° ° ° °	C Logout		
- -	Welcome Adr	LABORATO hisistration Mor	ILO VIRTUAL	Comanager Portlet R	CIONAL DE TELEDETECCIÓN DOEA	NOGRÁFICA	2 B	
11	Grid Monitor			M	lonitor			
	-Job Monitor							
	GWID	Title	Status	DN proxy	Results	Action		
	4	victual19	Finished	testuser9	/testuser9/1259935615423	Delete		
					Monitor		80	

Id Job: 4						File Edi	r Diselaus	Data To	ols Hel		2		
Director	y: testuser9/1259935615423					-	- 6 G &	11 9 C	04	0.0			
Туре	Name	Size	Last Modification	Actions		- 🚰 View	Projection	s				44 4 b b b b	Leger
	stderr.4.txt	657	20100119124826	4	add DataGr	8							Default Back
	stdout.4.txt	759	20100119124826	a,	add DataGr	0004						سمسم	Plan Views
	sw_ppo_2006314_6600.14.newmedvirado.nc	4771292	20100119124826	ktv 🤷	add DataGr								6,32-3
Atribu sw_p ADC	te: Sensor V Type: string V Value: po 2006314_6_600.14	WHR			4	0 <>v>1.0							
						0				1	×		
										n_prod	- Contour Plan View		

Context	Objectives	Virtual laboratory	Validation	Results and conclusions
Index				

- **1** Context and Motivation
- 2 Objectives
- 3 Virtual laboratory development
- 4 Virtual laboratory validation
- **5** Results and conclusions

Context	Objectives	Virtual laboratory	Validation	Results and conclusions
Sentina	ZOS _{Introduc}	ction		

- ▷ The international trade is mainly supported by maritime transport.
- ▷ The intensive traffic sails along the Exclusive Economic Zones (EEZ) of the countries and generates important pollution problems.
- ▷ Only the 7 % of oil spills come from catastrophes like tanker and oil platform accidents.

$\triangleright\,$ Synthetic Aperture Radar

$\,\triangleright\,$ Synthetic Aperture Radar - Examples

Figura: Classification of detected spills in terms of their shapes.

Context	Objectives	Virtual laboratory	Validation	Results and conclusions
Sentina	$a{ m ZOS}$ $_{ m Goals}$			

Hypothesis

- 1. Is possible to use wind information to segment oil candidates from SAR images?
- 2. Is the shape analysis relevant to classify the oil candidates?

Goal

▷ To develop an oil spill automatic detection system focused on the galician coast and based on SAR images.

 $14/_{27}$

▷ Oil Spill detection system architecture

▷ Segmentation - Establishing the Adaptive Threshold.

Х	Y	Wind speed	Incidence Angle	Intensity
200	567	5.4	37,28°	0.021
203	577	3.2	36,46°	0.003
300	367	3.4	30,23°	0.0285
320	467	4.1	$20,67^{\circ}$	0.0423

▷ Segmentation - Applying the Adaptive Threshold

▷ Characterization

- The segmented areas are analyzed to get a characteristic vector:
 - > 17 shape characteristics (Ratio area perimeter, 7 Hu moments, Thickness, etc) \rightarrow PCA \rightarrow 5 main components.
 - > 2 physical characteristics related with the pixel intensity values.
 - > 2 contextual characteristics related with the wind speed and the incidence angle.

\triangleright Classification

- Clustering of oil spills and look alikes.
- Evaluation of the characteristics vector.
- Machine learning classifiers.
 - > Artificial Neural Network
 - > Decision Tree

\triangleright Classification

Context	Objectives	Virtual laboratory	Validation	Results and conclusions
Index				

- **1** Context and Motivation
- 2 Objectives
- 3 Virtual laboratory development
- 4 Virtual laboratory validation
- 5 Results and conclusions

Context Objectives Virtual laboratory Validation Results and conclusions

Results and conclusions

Base de datos de candidatos

ectives

irtual laboratory

Validation

Results and conclusions

CITIUS

Validation

Results and conclusions

irtual laboratory

Validation

Results and conclusions

bjectives

'irtual laboratory

Validatio

Results and conclusions

R	ETELAB			00	mera
Welcome Administr	ation file-manager Prima	ry Production jobsubmit-portlet	Proxymanager Portlet	sentinazos gridway-o	latagrid-portlet
Proyecto Sentinazos		Continence			
PROYECTO	SENTINAZOS	Sentinazos			
Titulo del trabajo: Acción a realizar: Clasificador utilizado: Imagen SAR: Na: Vientos: Resultados:	galiciai2-11-2012 Segmentar y Clasificar V Redes Neuronales Remoto:	Region Senso Param S SA S SA Envior	Virtual Dat	a Base 	

Context Objectives Virtual laboratory Validation Results and conclusions Results and conclusions

\triangleright Conclusions

- Processing time.
- The AT could be improved using other wind models.
- The oil spills inside of low wind areas are not discovered.
- Is the shape relevant?
- Ongoing work
 - New wind speed models.
 - New satellites (Sentinel).
 - New classifiers.
 - Add contextual data (ships, FTSS, etc).

Context	Objectives	Virtual laboratory	Results and conclusions
Collab	orations		

\triangleright Retelab

- Marine and Food Technological Centre (AZTI Tecnalia)
- The Centre of Supercomputing of Galicia (CESGA)
- Canarian Institute of Marine Sciences (ICCM)
- Sentinazos
 - University of Coruña
 - Median Engeniering Group (GIM), University of Extremadura
 - MacDonald Image Lab, Department of Earth, Ocean and Atmospheric Sciences, Florida State University
 - Spanish Maritime Safety Agency (SASEMAR)

Thank you!!

