Efficient object classification

from airborne LiDAR

Jorge Martínez Sánchez

Centro de Investigación en Tecnoloxías da Información (CiTIUS)

Universidade de Santiago de Compostela

Doctoral Meeting. CiTIUS. March 2017.

Centro Singular de Investigación en **Tecnoloxías** da **Información**

citius.usc.es

Table of c	ontents		

Introduction

Preprocessing

Segmentation

Classification

Evaluation

Introduction		

Table of contents

Introduction

- 2 Preprocessing
- 3 Segmentation
- 4 Classification
- 5 Evaluation

Segmentation

Classification

Evaluation

Problem Description

Provide updated information of the Earth's surface:

- Terrain
- Vegetation
- Buildings
- **.**...

Object classification (landinfo.com)

Fast enough to be used in emergency services

- Fire-extinguishing
- Rescue missions
- **...**

MH-60S Seahawks (aviafora.com)

Accurate classification is a studied topic but, what about performance?

LiDAR Technology

Light Detection And Ranging

Emit a beam and measure the time and intensity to return to its source

Advantages over aerial imagery:

- Records elevation (3D point cloud)
- Tolerant to atmospheric conditions
- Beam penetration on vegetation
- Reduced cost on large areas

Beam penetration (arcgis.com)

	Preprocessing		
Table of c	ontents		

1 Introduction

Preprocessing

3 Segmentation

4 Classification

5 Evaluation

Introduction

Preprocessin

Segmentation

Classification

Evaluation

Data Organization

Irregularly spaced point cloud

Expensive neighbor search

Neighbors search 2D vs 3D

\rightarrow **3D Space partitioning**: octree Split into 8 children recursively Neighbors search in $O(\log n)$ time

Octree diagram (wikipedia.org)

Partitioned point cloud

Normal Vector Estimation

Calculated directly from the point cloud with PCA

Neighborhood definition: 3D voxel with radius r

Problem: orientations given by PCA are not consistent

ightarrow Correct orientations

Airborne LiDAR is 2.5D not full 3D Artificial viewpoint = point with highest Z Each point *P* must satisfy $\overrightarrow{n_P}$. $\overrightarrow{dir_{PV}} > 0$

Normal vector orientations: Inconsistent in red (left) Corrected (right) result

What voxel radius? $r_0 = 1.5 imes \mathrm{APS}$ (Average Point Spacing)

Same for all points? Bad when density varies or at spatial boundaries

(a) Normals with fixed r (b) Normals with adaptive r (c) Segmentation with fixed r (d) Segmentation with adaptive r

Doctoral Meeting. CiTIUS. March 2017.

Introduction	Preprocessing	Segmentation	Classification	Evaluation
Table of c	ontonto			

1 Introduction

2 Preprocessing

Segmentation

4 Classification

5 Evaluation

CillUS

Two-Phase Region-Growing

Simple and relative low computational load

Segment planar and non-planar objects independently:

- 1° Phase: segment planar objects Point features: $x, y, z, I, \overrightarrow{n}$
- 2° Phase: segment non-planar objects
 Point features: x, y, z, I

Final result = combination of both partial segmentations

(a)

(b)

(c)

Results of the segmentation: (a) First phase. (b) Second phase. (a) Final result

Segmentation

Controlling expansion

 $\sigma = \mathbf{1} \rightarrow \mathbf{By}$ centroid $\sigma = \mathbf{0} \rightarrow \mathbf{By}$ last added $\sigma = \mathbf{0.5} \rightarrow \mathbf{Trade-off}$

Tunable by σ

Epicenter Point

In the growing process, when is a new point added into a region?

Epicenter: Value between centroid region and last added point

Epicenter for a feature x

$$Epicenter_{x} = R_{\overline{x}} * \sigma + p_{x} * (1 - \sigma)$$

R = Region, $R_{\overline{x}}$ = Centroid of the region, p_x = last added point, $\sigma \in [0, 1]$ = expansion value

Unsegmented (white), inside R (red), $R_{\overline{X}}$ (big red), Epi_X (blue), p_X (purple), candidate (black).

		Classification	
Table of c	ontents		

1 Introduction

2 Preprocessing

3 Segmentation

Classification

5 Evaluation

Introduction Preprocessing Segmentation Classification Evaluation

Boundary Extraction

Segmentation

Classification

Boundary Extraction

Alpha shapes (Wei, 2008)

Draw a circle using two points and a radius α , if it is empty \rightarrow boundaries

Advantages:

Avoid costly TIN creation Extracts inner boundaries Fully parallelizable

Disadvantages:

Unordered boundaries (polygon area?)

Alpha Shapes judgement

(a)

Clusters and their boundary points (a) Vaihingen building (b) Alcoy building (c) Clusters of trees

Introduction

Preprocessing

Segmentation

Height Jump Detection

Height Jump Detection

- Identify neighbors of clusters (MBB overlap)
- 2 Examine heights of **neighbors at boundaries**

Determine in which boundaries there are jumps If jump ratio is high \rightarrow cluster is tagged as elevated

(a)

(b)

(a) Comparing heights inside the boundary window (b) Boundaries that jump (green) and do not jump (red)

Building Filtering

Building Filtering

Remove false positives

- -Percent of non-first returns Low on buildings
- -Normal vector orientation Low z component on walls
- -Area estimation Minimum area of 15 m²
- 2 Refinement
 - -Merge roof planes
 - -Recover joint points

First returns (red) Second returns (green)

Merging roof planes

Road Detection

Segmentation

Classification

Evaluation

Road Detection

Road assumptions: planar, low intensity, linear, connected.

Point cloud from above colored by intensity

Road Detection: Candidates Search

			Classification	
Road Det	ection [.] Candid	dates Search		

Octree-split approach

- Divide octants until points share same plane and intensity
- 2 Map candidate points with the segmented points

- (a) Candidate road points
- (b) Previously segmented cloud

(c) Mapped segmented groups

Introduction	Preprocessing	Segmentation	Classification	Evaluation
Dood Dotoct	ion, Dood Tra	cking		

Introduction Preprocessing Segmentation Classification Evaluation
Road Detection: Road Tracking

Problem: Isolated non-road groups, road sections are scattered

Tracking: set of rectangles that follows point density inside the group

- Non-maximum suppression
- Pending paths queue
- Avoid back steps

Road Detection: Linearity Filter

Road Detection: Linearity Filter

Segmented groups must have:

- Parallel boundaries
- Constant width

Easy to examine given the group direction Width = distance from centerline to boundary line

(a) Road centerline (b) Perpendiculars to the centerline (c) Best fit lines at boundaries (d) Widths along the centerline

Road Detection: Gap Reconstruction

Introduction

Preprocessing

Segmentation

Classification

Evaluation

Road Detection: Gap Reconstruction

Problem: Vegetation occlusions create gaps

Active Contours: road reconstruction.

Contour points guided by:

- Internal force: model parameters
- External force: points intensity (high gradient on boundaries)

Introduction	Preprocessing	Segmentation	Classification	Evaluation
Table of c	ontents			

Introduction Preprocessing Segmentation Classification

Evaluation

Problems

Problem: Lack of consensus in evaluation

- Evaluation of rasterized 2D image / all 3D points
- Usage of public / non-public datasets
- Usage of same / various LiDAR lasers
- Problem: Lack of ground truth
 - 3D manual labeling
 - X00.000 points
 - Field survey?

Only one public* benchmark available for whole cloud classification

ISPRS 3D Semantic Labeling Contest (Vaihingen)

1 dataset with 2 small city blocks, 1 LiDAR laser Dataset is public, but **ground truth do not** Results must be submitted for external evaluation.

Unsolved topic!

Ci🔟US

Segmentation

Classification

Evaluation

Dataset

Urban area

Public (ISPRS). Vaihingen, Germany aprox. 4 points/m²

Rural area Private (INAER). Alcoy, Spain

aprox. 9 points/m²

Measurements

- Segmentation ratio: $\frac{100 \times \sum \text{Points in clusters with size} > 20}{\text{Total points}}$
- Building detection: Completeness $\frac{100 \times TP}{TP+FN}$ Correctness $\frac{100 \times TP}{TP+FP}$
- Execution time on an Intel[®] Core[™]i7-4790 at 3.60 GHz

Ci🔟US

Segmentation

Classification

Evaluation

Results I: Vaihingen

Segmentation ratio	91.46%
Overall time	42.05 s

Labeled buildings	227
Completeness	96.46%
Correctness	98.68%

Ci

Segmentation

Classification

Evaluation

Results II: Alcoy

Segmentation ratio94.33%Overall time40.70 s

Labeled buildings Completeness Correctness

66 100% 84.85%

Fast object classifier for airborne LiDAR

- Low execution time
 - Manage data adequately
 - Avoid inefficient algorithms
 - Parallelization with OpenMP

2.5 million points processed in $\sim\!\!40~{\rm s}$ in a desktop computer.

Segmentation

Classificatior

Evaluation

Future Work

Add more classes: parking lots, power lines, cars...

Add a ground filter to reduce segmentation time

Processing the cloud in real-time (laser scan lines)

(a) Seesaw scanning pattern

(b) Visible scan lines on cloud

Problem: raw data recording is not open access. Handled by proprietary software of laser manufacturers.

Ci🔟US

Thank you for your attention

