
Development of GPU-efficient
visualization and segmentation
algorithms for 3D medical data

Doctoral-Meeting initiative

Julián Lamas-Rodríguez
Centro de Investigación en Tecnoloxías da Investigación
University of Santiago de Compostela
PhD advisors: Francisco Argüello and Dora B. Heras



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Contents

1 Context and motivation

2 Hypothesis, objectives and methodology

3 Achievements and results

4 Conclusion



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Contents

1 Context and motivation

2 Hypothesis, objectives and methodology

3 Achievements and results

4 Conclusion



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Processing of medical data

Typical applications with medical images:

. Manual and automatic segmentation

. Visualization of 3D volumes

1/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Processing of medical data

Main challenges
. Very computing-intensive tasks that require thousands of

computations
. Results used for diagnosis should be obtained as quick as possible
. Use a high-efficient low-cost computing platform

How general-purpose GPUs can help
1. GPUs are nowadays commodity massive parallel processors which

can efficiently execute thousands of threads in parallel
2. GPUs can be used to speedup computing-intensive algorithms

2/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

NVIDIA GTX 680 with Kepler GK104 architecture

Strengths
. Supports executing

thousands of threads in
parallel thread blocks that
work independently

. A two-level cache
hierarchy speedups
accesses to global memory

. Besides the register space,
the programmer can use
the shared memory space
and the texture cache

3/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

NVIDIA GTX 680 with Kepler GK104 architecture

Weaknesses
. The programmer must

take into account the
locality of global memory
accesses to maximize
throughput

. Accesses to shared
memory space must be
organized to avoid bank
conflicts

. Minimize the use of
registers and thread
divergence ⇒ GPU code
does not benefit from a
complex logic

3/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

How suitable is an algorithm for a GPU?

Suitable
. High level of data parallelism
. No data dependencies
. Small number of R/W

operations on memory

Unsuitable
. High level of task parallelism
. Lots of data dependencies:

between neighbors, between
stages, etc.

. Lots of R/W on memory

. Many algorithms are at an intermediate point

. Algorithms must be adapted to GPU to overcome the difficulties

4/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

How suitable is an algorithm for a GPU?

Suitable
. High level of data parallelism
. No data dependencies
. Small number of R/W

operations on memory

Unsuitable
. High level of task parallelism
. Lots of data dependencies:

between neighbors, between
stages, etc.

. Lots of R/W on memory

. Many algorithms are at an intermediate point

. Algorithms must be adapted to GPU to overcome the difficulties

4/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Contents

1 Context and motivation

2 Hypothesis, objectives and methodology

3 Achievements and results

4 Conclusion



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Hypothesis and objectives

Hypothesis
Is it possible to develop efficient schemes of segmentation and
visualization of large 3D medical datasets in commodity GPUs?

Objectives
. Develop GPU-efficient solutions for volume segmentation based

on level sets
. Develop a complete pipeline for visualization of large volumetric

datasets on the GPU

5/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Methodology: fundamental steps

1. Analyze the current state of the art, the theory behind each
algorithm, the mathematical/physical fundamentals, etc.

2. Select algorithms in the literature that are suitable for GPU

3. Evaluate results by comparing with other implementations in the
literature or implementations in CPU

Develop a GPU-efficient scheme for segmenting and visualizing large
volumes of 3D data

6/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Methodology: fundamental steps

1. Analyze the current state of the art, the theory behind each
algorithm, the mathematical/physical fundamentals, etc.

2. Select algorithms in the literature that are suitable for GPU

3. Evaluate results by comparing with other implementations in the
literature or implementations in CPU

Develop a GPU-efficient scheme for segmenting and visualizing large
volumes of 3D data

6/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Contents

1 Context and motivation

2 Hypothesis, objectives and methodology

3 Achievements and results

4 Conclusion



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

1. Implementation of segmentation
algorithms on GPU

7/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Image segmentation using level sets

Iteratively deform a surface in the direction of its normal based on
surface and image properties

8/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Level-set solutions considered in this work

Integer-based level set by Shi and Karl
Approximate level-set computations using integer operations

Implicit active contour by Weickert and Kühne
Each iteration requires the resolution of a system of linear equations
that can be decomposed into two tridiagonal systems

9/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Integer-based level set

10/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Front evolution

L
in

L
out

front

. Two lists of points are defined:
Lin and Lout

. Each step makes adds and/or
removes points from those lists to
move the front

Premises
. Minimize the number of computations
. Focus on integer operations

11/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Front evolution

forward

backward

. Two lists of points are defined:
Lin and Lout

. Each step makes adds and/or
removes points from those lists to
move the front

Premises
. Minimize the number of computations
. Focus on integer operations

11/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

GPU implementation: inconsistencies between regions

Sh
ar

ed
 m

em
or

y

Region 1 Region 2 Region 1 Region 2

Region 1 Region 2 Region 1 Region 2

L
out

L
in

Active thread

Idle threadSh
ar

ed
 m

em
or

y

. Load elements in the outer borders into shared memory

. Fix inconsistencies using at the beginning of every iteration

12/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

GPU implementation: identify active regions

. Avoid unnecessary computations

. At the end of an iteration, a thread in each block checks for:
- If its region must be active for the next iteration
- If neighboring regions must be active for the next iteration

13/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Results

Algorithm Time Speedup Dice coefficient
CPU 2.4 1.0x 0.95
GPU 0.6 3.8x 0.96

Results in seconds for an NVIDIA GTX 580

14/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Segmentation in action

Video demo

15/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Implicit active contour level set

16/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Parallel tridiagonal-system resolution

. In this method, the resolution of the level-set requires solving
tridiagonal systems:

b1 c1 0
a2 b2

. . .
. . . . . . cn−1

0 an bn




x1
x2
...

xn

 =


d1
d2
...

dn

 (1)

Thus, we must consider how to efficiently solve these systems on
GPU

. Two non-iterative parallel algorithms that have been studied:
- Cyclic reduction
- Recursive doubling

17/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Split-and-merge technique

3 421

18/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Split-and-merge technique

3 421

18/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Split-and-merge technique

1 2 1 2 3 3 4

split merge split merge

18/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Split-and-merge technique

4

shared memory

shared memory

32121 3

18/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Keys and results

. A large tridiagonal systems cannot be solved by a single thread
block

. Equations are distributed between thread blocks, and partial
results are combined to obtain the global solution

. The split-and-merge technique exploits the shared memory space

Single precision Double precision
Algorithm Time Speedup Time Speedup
OpenMP Bondeli’s alg. 27583 1.0x 43435 1.0x
Cyclic reduction 1808 15.3x 2524 17.2x
Recursive doubling 6518 4.2x 10625 4.0x

Results in µs for a one-million equation system in an NVIDIA GTX 580

19/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

2. Implementation of
visualization algorithms on GPU

20/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Large volume rendering

Keys
. Volume rendering is a compute-intensive task which has already

been successfully implemented on GPU
. In the recent years, improvements to data-acquisition methods

have increased the size of volumetric datasets

Main challenge
. Render volumetric datasets within the limited memory

restrictions of a GPU

Tasks to undertake on GPU
. Compression: wavelet transform and Ihm & Park’s encoding
. Rendering: using bricking and texture mapping

21/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Compression

Wavelet transform
Splits the volume data in low and high-frequency coefficients

. High-frequency coefficients have close-to-zero values, and can be
ignored without supposing an important loss of information

. High-frequency coefficients are stored together, which reduces
the final compressed volume size

Encoding
. It allows quick access to arbitrary voxels
. It has already been used in large volume rendering

22/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Rendering

Texture mapping

23/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Rendering

Bricking

23/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

GPU visualization pipeline for large volumetric datasets
. Decoding and inverse transform steps are parallelized in GPU
. The complete pipeline (decompression and rendering) is

executed on GPU, instead of a CPU-GPU hybrid approach

GPU

Rendering

Decompression

Compressed
volume data

Decoded
brick data

Restored brick
stored in a PBO

Decode a brick
(CUDA)

Inverse 
transform

(CUDA)

OpenGL
3D texture

Rendering
(OpenGL)

Proxy
geometry

The cycle is repeated
until the complete 
volume is rendered

Wavelet 
coefficients

Copy PBO contents
into a texture buffer

(OpenGL)Slice

24/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

GPU decompression

Decoding
. A non compute-intensive task with thread divergence and low

spatial locality
. Compressed volume is stored in texture memory to speedup read

operations

Inverse wavelet transform
. The transform can be computed in shared memory
. Shared memory is very limited, so not all coefficients are stored

on it
. Data has to be organized to achieve the maximum throughput

from the memory operations

25/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Visualization in action

Video demo

26/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Contents

1 Context and motivation

2 Hypothesis, objectives and methodology

3 Achievements and results

4 Conclusion



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Benefits
. Speeding up common tasks in the processing of medical data,

such as segmentation and visualization, can provide quicker
diagnoses from which doctors and patients can benefit

. Solutions that can be executed in commodity hardware reduce
costs and increase their accessibility to a wide range of users

27/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Future work

Segmentation
. Complete GPU implementation of active contour level-set

segmentation
. Integrate complete segmentation solution into Amira

Visualization
. Improve the efficiency of the compression+rendering pipeline
. Optimize visualization for large volumes by skipping regions that

don’t add to the final rendering

28/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Collaborations

GPU segmentation
Implemented in Amira, a visual
tool developed in the Zuse
Institute Berlin

In collaboration with Dagmar
Kainmüller, Stefan Zachow, and
the Dept. of Vis. and Data Anal.

GPU visualization
Implemented in Volv, a visual tool
developed in the ICCAS
(University of Leipzig)

In collaboration with Daniella
Wellein, Silvia Born, Matthias
Pfeiffle and Oliver Burgert

29/29



Context and motivation Hypothesis, objectives and methodology Achievements and results Conclusion

Thank you!


	Context and motivation
	Hypothesis, objectives and methodology
	Achievements and results
	Conclusion
	

