Time-of-Flight sensors in standard CMOS technologies

Julio Illade Quinteiro

Centro Singular de Investigación en Tecnoloxías da Información

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Centro Singular de Investigación en **Tecnoloxías** da **Información**

ToF sensors in standard CMOS technologies

- Context & Motivation
- Research hypotheses & Objectives
- Methodology
- Achievements & Current results
- Future Work

ToF definition

- Objective of the thesis → fabrication of a ToF camera in standard CMOS technology
 - \triangleright ToF camera \rightarrow recording of 3D scene
 - \triangleright Standard CMOS technology \rightarrow Cheap technology for integrated circuits fabrication

ToF definition

- Time-of-Flight (ToF) sensors are image sensors that capture the 3D information of a scene by measuring the time a light signal needs to travel back and forth to the target
- Range sensor applications include safety, healthcare, robotics, virtual or augmented reality, automotive,...
- 3D sensors technologies
 - ▶ Triangulation
 - Stereo vision
 - Structured-Light
 - ▷ Time-of-Flight

3D sensors technologies

Stereo vision

- Disparity of the object position in two different cameras
- Advantages
 - Low cost implementation
 - Similar to human vision \rightarrow well-suited for capturing images to humans
- Disadvantages
 - Correspondence problem \rightarrow Computational intensive

CITIUS Top figure: CALIN, G. y RODA, V. O.. Real-time disparity map extraction in a dual head stereo vision system. Lat. Am. appl. res. [online]. 2007, vol.37, n.1

3D sensors technologies

Structured light

- Projection of known pattern of light
- ▷ Advantage
 - Relatively high spatial resolution
- ▷ Disadvantage
 - Need of successive projections of patterns \rightarrow Low frame rate

Figure: J. Geng, "Structured-light 3D surface imaging: a tutorial," Adv. Opt. Photon. 3, 128-160 (2011).

3D sensors technologies

Time-of-Flight

- ▷ Time delay of a light signal reflected from the scene
- Advantages
 - Not dependent on mechanical alignment
 - Mechanically compact
- Disadvantages
 - Specific hardware cameras needed

Figure: J. Illade-Quinteiro et al., "Four-transistor pinned photodiodes in standard technologies for time-of-flight sensors", SST, Vol. 30, No. 4, 2015

3D sensors technologies

Considerations	Stereo vision	Structured light	Time-of-flight
SW complexity	HIGH	MEDIUM	LOW
Material cost	LOW	HIGH	MEDIUM
Compactness	LOW	HIGH	LOW
Response time	MEDIUM	SLOW	FAST
Depth accuracy	LOW	HIGH	MEDIUM
Low-light performance	WEAK	GOOD	GOOD
Bright-light performance	GOOD	WEAK	GOOD
Power consumption	LOW	MEDIUM	SCALABLE
Range	LIMITED	SCALABLE	SCALABLE

Data from: "Time-of-Flight Camera–An Introduction", Texas Instruments Technical White paper

Commercial examples

- Leap Motion → Triangulation
 - Up to 2 feet (0,6 m)
 - 2 IR cameras

https://learn.sparkfun.com/tutorials/leap-motion-teardown

Commercial examples

- Google Project Tango → Structured light
 - 0.5 m 4 m
 - 4 MP 2µm RGB-IR pixel sensor

Docking port

https://www.google.com/atap/projecttango/#project 10

Commercial examples

■ Intel RealSense→ Structured light

- 0.2 m 1.2 m
- 1080p RGB-IR

Commercial examples

- Microsoft Kinect → Time-of-Flight
 - 0.8 m 4,2 m
 - 512x424 pixels

- ToF measurement technique
- Conventional image sensor pixels
 - Silicon photosensors
 - ▷ 3-Transistors (3T) pixel
 - ▷ 4-Transistors (4T) pixel
- 4T pixel for ToF
- 4T pixel in standard CMOS technology

ToF measurement technique

Time-of-Flight sensors measure the time a light signal needs to travel back and forth to the target

$$L = \frac{c}{2} T_{oF}$$

- The light signal can be
 continuous modulated wave
 - ▷ discrete pulses
- We will center this presentation in the pulsed ToF
- The maximum measurable distance depends on the light pulse (T_p)

$$L_{MAX} = \frac{c}{2}T_p$$

ToF measurement technique

The maximum measurable distance depends on the light pulse (T_p)

$$L_{MAX} = \frac{c}{2}T_p$$

- For $T_p=50 \text{ ns} \rightarrow L_{max}=7.5 \text{ m}$
 - \triangleright Larger T_p reduces L_{max}
 - \triangleright Shorter T_p are difficult to sense (photosensors too slow)
- Signal light power reaching the pixel is usually very low
 - Because light source must satisfy eye safety regulations
 - ▷ Example:
 - − Light signal reflected from a distance of 1 m \rightarrow P=9 pW/µm² \rightarrow ~2 photons/µm² (in 50 ns)
 - − Room well illuminated (1000 lux) → ~9.9 photons/µm² (in 50 ns) → Shot noise ~ 3.1 photons/µm²
 - Solution: accumulation of the measurement over several pulses

ToF measurement technique

- Three parameters are unknown in the reflected signal reaching the camera → at least three measurements per pulse needed

 - Light power of the signal (A)
 - Light power of the background (B)

ToF measurement technique

ToF measurement technique

T_p=50 ns \rightarrow Pixel must have a fast response

- Received signal with low light power → Accumulation of multiple pulses
- 3 unknown parameters in the received signal → 3 measurements per pulse

Silicon photosensors

- Semiconductor materials have two different types of charge carriers
 - Negatively charged electrons
 - Positively charged holes
- Pure silicon has the same density of electrons and holes in it
- By doping the silicon with other elements it is possible to control the relation electron-hole
 - ▷ N-doped silicon has a higher density of electrons
 - P-doped silicon has a higher density of holes

Silicon photosensors

- Silicon for integrated circuits fabrication is usually lightly P-doped \rightarrow P substrate
- Photons reaching a silicon crystal can impact in an electron, liberating it from the crystal lattice → an electron-hole pair is created
- Without an electric field he electron-hole pair ends up together in a recombination process

Silicon photosensors

- For the generation of the electric field a N-doped region (N well) is added over the P substrate → PN photodiode
 - ▷ Around the PN junction an electric field is created
 - ▷ The electric field separates the electron-hole pair
 - ▷ The electrons are accumulated in the N well

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement the node is reset
- The decrease in this node (ΔV_{PD}) is proportional to the light intensity

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement the node is reset
- The decrease in this node (ΔV_{PD}) is proportional to the light intensity

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement the node is reset
- The decrease in this node (ΔV_{PD}) is proportional to the light intensity

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement the node is reset
- The decrease in this node (ΔV_{PD}) is proportional to the light intensity

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement the node is reset
- The decrease in this node (ΔV_{PD}) is proportional to the light intensity

3T pixel

Principal problems of 3T pixels

 \triangleright KTC noise \rightarrow Thermal noise generated in V_{PD}

3T pixel

Principal problems of 3T pixels

- \triangleright KTC noise \rightarrow Thermal noise generated in V_{PD}
- \triangleright Dark Current \rightarrow electron-hole pairs generated in the silicon-oxide interface

4T pixel

Improve the 3T problems:

- \triangleright KTC noise \rightarrow addition of a Transmission Gate (TG) to perform CDS
- ▷ Dark Current \rightarrow P⁺ over N well

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement V_{FD} is reset
- At the end of the measurement charges are transferred from PD to FD
- Correlated double sampling (CDS) is performed

4T pixel

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement V_{FD} is reset
- At the end of the measurement charges are transferred from PD to FD
- Correlated double sampling (CDS) is performed

31

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement V_{FD} is reset
- At the end of the measurement charges are transferred from PD to FD
- Correlated double sampling (CDS) is performed

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement V_{FD} is reset
- At the end of the measurement charges are transferred from PD to FD
- Correlated double sampling (CDS) is performed

4T pixel

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement V_{FD} is reset
- At the end of the measurement charges are transferred from PD to FD
- Correlated double sampling (CDS) is performed

34

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement V_{FD} is reset
- At the end of the measurement charges are transferred from PD to FD
- Correlated double sampling (CDS) is performed

4T pixel

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement V_{FD} is reset
- At the end of the measurement charges are transferred from PD to FD
- Correlated double sampling (CDS) is performed

36

- The photogenerated electrons are accumulated in V_{PD} node
- At the beginning of the measurement V_{FD} is reset
- At the end of the measurement charges are transferred from PD to FD
- Correlated double sampling (CDS) is performed

4T pixel for ToF

- T_p=50 ns → Pixel must have a fast response
- Received signal with low light power → Accumulation of multiple pulses
- 3 unknown parameters in the received signal → 3 measurements per pulse

- 4T pixel for ToF
- The TG control the transmission of the charges to the FD
- After several accumulations the voltage in the FD is measured

4T pixel in standard CMOS technology

- Commercial PPD need a careful control of the doping concentrations
- Standard CMOS Technologies do not provide PPD 4T structures
- Design of P⁺ over Nwell with TG can be done violating layout rules
- To ensure correct behavior → Simulations with device-level simulator (ATLAS from Silvaco)
- 2-D simulations
- Parameters needed
 - Doping profiles
 - Horizontal Parameters
 - Vertical Parameters

4T pixel in standard CMOS technology

41

- Simulation parameters estimation
- Geometrical parameters optimization
- Dark current comparison
- Reset noise analysis
- Transient response

Geometrical parameters optimization

Dark current (DC) effects:

- Thermal DC
- Surface DC
- Band-to-band Tunneling DC

Geometrical parameters optimization – X1 value

- Minimum value of 0.13 μm to ensure the correct biasing of the P⁺ layer
- Increasing X1 increases the area of the pixel but reduces the superficial DC generated in the NWell/Psub interface (red area)
- Selected optimum value: 0.3 µm

Geometrical parameters optimization – X2 value

- A minimum distance of 0.12 µm necessary to provide a path between the photodiode and the TG for the photocharges transference.
- P+/NWell junction with both sides heavily doped → Band-to-Band DC
- Decreasing X2 bring closer this junction and the NWell/Psub juntion → increase in the curvature of the energy bands → increase in the BTB-DC
- BTB-DC in this junction is the principal DC source of the NWell-aligned device
- Selected optimum value: 0.1 µm → 40% of the total DC is generated by this BTB-DC

Geometrical parameters optimization – X3 value

Ci

US

- A minimum distance of 0.11 µm necessary to provide a path between the photodiode and the TG for the photocharges transference.
- NWell under the TG with positive voltage → NWell operates in accumulation → behaves as being more doped → more BTB-DC
- The BTB-DC is 6 orders of magnitude larger than in the other case
- Commercial PPD 4T pixels probably use this structure but with a P layer under the TG to alleviate the BTB-DC:

I.Inoue et al., "Low-Leakage-CurrentandLow-Operating-VoltageBuried Photodiode for a CMOS Imager,"

Reset noise analysis

- The reset operation efects degrades the performance of the pixel
- Only depends on the capacitance of the FD node → Equal for the 3 studied structure
- Reset noise effects
 - ▷ Thermal noise (random)
 - Clock feedthrough (systematic)
 - Reset dependence with the illumination (systematic)
 - Leakage currents (systematic)
- ∆V_{FDmax}=150 mV

$$V_{swing,max} = \Delta_{VFDmax} - \Delta V_{syst,total}$$

Best case scenario

$$\Delta L = \frac{L_{\max}}{2\sqrt{2}} \frac{\Delta V_{thermal}}{V_{swing,\max}}$$
CIUS

Reset noise analysis

Thermal noise:

Random movement of the electrons through the reset transistor

$$\Delta V_{thermal} = \sqrt{\frac{kT}{C_{FD}}}$$

$$\Delta V_{thermal} \Box 7 mV \rightarrow \Delta L \Box 7.07 cm$$

Reset noise analysis

Clock feedthrough:

$$\Delta V_{syst,clk} = \Delta V_g \frac{C_{gs}}{C_{gs} + C_{FD}}$$

W (μm)	X _{FD} (μm)	$\Delta {\sf V}_{\sf syst, clk}$ (mV)	Δ L (cm)
1	1	133.1	62.76
1	2	121.5	37.22
1	4	103.4	22.76
0.5	2	69.6	13.19
0.25	2	36.15	9.32

Reset noise analysis

- Dependence of the reset voltage with the illumination:
 - Initial reset voltage depends on the photogenerated current

l _{ph} (pA)	$\Delta V_{ m syst,light}$ (mV)	∆L (cm)
200	0.5	7.09
500	1.4	7.14
2000	5.1	7.32
5000	11.2	7.64

Reset noise analysis

Leakage current:

Ci

Through the reset transistor flows \triangleright some current even being cut off

$$\Delta V_{syst,leakage} \Box 10 \, mV \quad \rightarrow \quad \Delta L \Box 7.57 \, cm$$

Transient analysis

- Square light pulses are assumed for the ToF calculation
- The transmission of the electrons from the PD to the FD needs a finite amount of time
- This generates a deviation from square pulses

Transient analysis

NWell-aligned PPD:

Transient analysis

Deviation from the square signal

$$I_{signal} = \begin{cases} I_m \begin{bmatrix} 1 - e^{-\frac{t}{\tau}} \end{bmatrix} & \text{if} \quad 0 < t < T_p \\\\ I_m e^{-\frac{t}{\tau}} & \text{if} \quad 0 < t < T_p \\\\ 0 & \text{if} \quad t < 0 \end{cases}$$

$$L_{meas} = \frac{L + L_{max} f(T_{oF})}{g(T_{oF})}$$

$$I + e^{-n} \left[1 - 2e^{n\frac{T_{oF}}{T_p}} \right]$$

$$f(T_{oF}) = \frac{n}{n}$$

$$g(T_{oF}) = 1 + e^{-n\frac{1 - e^{n\frac{T_{oF}}{T_p}}}{n}}$$

$$n = \frac{T_p}{\tau}$$

Transient analysis

Deviation from the square signal

Publications

Conferences:

- J. Illade-Quinteiro, V. Brea, P. López et al. "Comparison of Photosensing Structures in CMOS Standard Technology for Time-of-Flight Sensors", XXVIII Conference on Design of Circuits and Integrated Systems (DCIS), 2013, San Sebastián (Spain)
- J. Illade-Quinteiro, V. Brea, P. López et al. "Dark current in standard CMOS pinned photodiodes for Time-of-Flight sensors," *Microelectronics And Electron Devices (WMED), 2014 IEEE Workshop On*, pp.1,4, 18-18 April 2014
- J. Illade-Quinteiro, P. López, V. Brea et al. "Custom design of pinned photodiodes in standard CMOS technologies for time-of-flight sensors," Cellular Nanoscale Networks and their Applications (CNNA), 2014 14th International Workshop on , vol., no., pp.1,2, 29-31 July 2014
- J. Illade-Quinteiro, P. López, V. Brea et al. "Dark Current Optimization of 4-Transistor Pixel Topologies in Standard CMOS Technologies for Time-of-Flight Sensors", IEEE International Symposium on Circuits & Systems (ISCAS), 2015

Publications

- Accepted publications:
 - J. Illade-Quinteiro, P. López, V. Brea et al. "Four-Transistor Pinned Photodiodes in Standard CMOS Technologies for Time-of-Flight Sensors", Semiconductor Science and Technology Journal, 2015, Vol. 30, Num. 4, JCR (Q1)
 - J. Illade-Quinteiro, V. Brea, P. López et al. "Distance Measurement Error in Time-of-Flight Sensors Due to Shot Noise", Sensors Journal JCR (Q1)
- 7 months of internship in Fondazione Bruno Kessler (FBK), Trento, Italy
- This work has been partially funded by Spanish government projects TEC2009-12686 MICINN, TEC2012-38921-C02 MINECO (FEDER), Xunta de Galicia with EM2013/038, EM2014/012, AE CITIUS (CN2012/151, (FEDER)), GPC2013/040 (FEDER).

- Design of an appropriate pixel for ToF in CMOS standard technology
- Fabrication of the chip in 0.18 µm technology
- Test of the chip
- Defense of the thesis in the first trimester of 2016

Gracias por su atención

Unidad de Innovación: citius.idi@usc.es

citius.usc.es

