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 Objective of the thesis → fabrication of a ToF camera in standard CMOS 
technology
 ToF camera → recording of 3D scene
 Standard CMOS technology → Cheap technology for integrated circuits fabrication
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 Time-of-Flight (ToF) sensors are image sensors that capture the 3D information 
of a scene by measuring the time a light signal needs to travel back and forth to 
the target

 Range sensor applications include safety, healthcare, robotics, virtual or 
augmented reality, automotive,…

 3D sensors technologies
 Triangulation

̶ Stereo vision
̶ Structured-Light

 Time-of-Flight



3D sensors technologies
Context & Motivation

5

 Stereo vision
 Disparity of the object position in two different cameras
 Advantages

̶ Low cost implementation
̶ Similar to human vision → well-suited for capturing images to humans

 Disadvantages
̶ Correspondence problem → Computational intensive

̶ Top figure: CALIN, G.  y  RODA, V. O.. Real-time disparity map extraction in a dual head 
stereo vision system. Lat. Am. appl. res. [online]. 2007, vol.37, n.1 
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 Structured light
 Projection of known pattern of light
 Advantage

̶ Relatively high spatial resolution

 Disadvantage
̶ Need of successive projections of patterns → Low frame rate

̶ Figure: J. Geng, "Structured-light 3D surface imaging: a tutorial," Adv. Opt. Photon.  3, 128-
160 (2011). 
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 Time-of-Flight
 Time delay of a light signal reflected from the scene
 Advantages

̶ Not dependent on mechanical alignment
̶ Mechanically compact

 Disadvantages
̶ Specific hardware cameras needed

Figure: J. Illade-Quinteiro et al., “Four-transistor pinned photodiodes in standard
technologies for time-of-flight sensors”, SST, Vol. 30, No. 4, 2015 
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Considerations Stereo vision Structured light Time‐of‐flight

SW complexity HIGH MEDIUM LOW

Material cost LOW HIGH MEDIUM

Compactness LOW HIGH LOW

Response time MEDIUM SLOW FAST

Depth accuracy LOW HIGH MEDIUM

Low‐light performance WEAK GOOD GOOD

Bright‐light performance GOOD WEAK GOOD

Power consumption LOW MEDIUM SCALABLE

Range LIMITED SCALABLE SCALABLE

Data from: “Time‐of‐Flight Camera–An Introduction”,
Texas Instruments Technical White paper
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 Leap Motion → Triangulation
 Up to 2 feet (0,6 m)
 2 IR cameras

https://learn.sparkfun.com/tutorials/leap-motion-teardown
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 Google Project Tango → Structured light
 0.5 m – 4 m
 4 MP 2µm RGB-IR pixel sensor

 https://www.google.com/atap/projecttango/#project
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 Intel RealSense→ Structured light
 0.2 m – 1.2 m
 1080p RGB-IR
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 Microsoft Kinect → Time-of-Flight
 0.8 m – 4,2 m
 512x424 pixels



Research hypotheses & Objectives

13

 ToF measurement technique

 Conventional image sensor pixels

 Silicon photosensors

 3-Transistors (3T) pixel

 4-Transistors (4T) pixel

 4T pixel for ToF

 4T pixel in standard CMOS technology
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 Time-of-Flight sensors measure the time a light signal needs to travel back and 
forth to the target

 The light signal can be
 continuous modulated wave
 discrete pulses

 We will center this presentation in the pulsed ToF

 The maximum measurable distance depends on the light pulse (Tp)

2 oF
cL T

2MAX p
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 The maximum measurable distance depends on the light pulse (Tp)

 For Tp=50 ns → Lmax=7.5 m
 Larger Tp reduces Lmax

 Shorter Tp are difficult to sense (photosensors too slow)

 Signal light power reaching the pixel is usually very low
 Because light source must satisfy eye safety regulations
 Example:

̶ Light signal reflected from a distance of 1 m → P=9 pW/µm2 → ~2 photons/µm2 (in 50 ns)
̶ Room well illuminated (1000 lux) → ~9.9 photons/µm2 (in 50 ns) → Shot noise ~ 3.1 

photons/µm2

 Solution: accumulation of the measurement over several pulses

2MAX p
cL T
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 Three parameters are unknown in the reflected signal reaching the camera → at 
least three measurements per pulse needed
 Time-of-Flight (ToF)
 Light power of the signal (A)
 Light power of the background (B)
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 Tp=50 ns → Pixel must have a fast response

 Received signal with low light power → Accumulation 
of multiple pulses

 3 unknown parameters in the received signal → 3 
measurements per pulse
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 Semiconductor materials have two different types of charge carriers
 Negatively charged electrons
 Positively charged holes

 Pure silicon has the same density of electrons and holes in it
 By doping the silicon with other elements it is possible to control the relation 

electron-hole
 N-doped silicon has a higher density of electrons
 P-doped silicon has a higher density of holes
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 Silicon for integrated circuits fabrication is usually lightly P-doped → P substrate
 Photons reaching a silicon crystal can impact in an electron, liberating it from 

the crystal lattice → an electron-hole pair is created
 Without an electric field he electron-hole pair ends up together in a 

recombination process
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 For the generation of the electric field a N-doped region (N well) is added over 
the P substrate → PN photodiode
 Around the PN junction an electric field is created
 The electric field separates the electron-hole pair
 The electrons are accumulated in the  N well
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 The photogenerated electrons are accumulated in VPD node
 At the beginning of the measurement the node is reset
 The decrease in this node (ΔVPD) is proportional to the light intensity
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 Principal problems of 3T pixels
 KTC noise → Thermal noise generated in VPD
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 Principal problems of 3T pixels
 KTC noise → Thermal noise generated in VPD

 Dark Current → electron-hole pairs generated in the silicon-oxide interface 
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 Improve the 3T problems:
 KTC noise → addition of a Transmission Gate (TG) to perform CDS
 Dark Current → P+ over N well
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 The photogenerated electrons are accumulated in VPD node
 At the beginning of the measurement VFD is reset
 At the end of the measurement charges are transferred from PD to FD
 Correlated double sampling (CDS) is performed
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 Tp=50 ns → Pixel must have a 
fast response

 Received signal with low light 
power → Accumulation of 
multiple pulses

 3 unknown parameters in the 
received signal → 3 
measurements per pulse
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 The TG control the transmission of the charges to the FD
 After several accumulations the voltage in the FD is measured
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 Commercial PPD need a careful control of the doping concentrations
 Standard CMOS Technologies do not provide PPD 4T structures
 Design of P+ over Nwell with TG can be done violating layout rules
 To ensure correct behavior → Simulations with device-level simulator 

(ATLAS from Silvaco)
 2-D simulations
 Parameters needed

 Doping profiles
 Horizontal Parameters
 Vertical Parameters
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 NWell-aligned PPD:

 P+-aligned PPD:

 NWell PD:
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 Simulation parameters estimation

 Geometrical parameters optimization

 Dark current comparison

 Reset noise analysis

 Transient response
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 Dark current (DC) effects:
 Thermal DC
 Surface DC
 Band-to-band Tunneling DC
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 Minimum value of 0.13 μm to ensure the correct biasing of the P+ layer
 Increasing X1 increases the area of the pixel but reduces the superficial DC 

generated in the NWell/Psub interface (red area)
 Selected optimum value: 0.3 μm
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 A minimum distance of 0.12 μm necessary to provide a path between the 
photodiode and the TG for the photocharges transference.

 P+/NWell junction with both sides heavily doped  Band-to-Band DC
 Decreasing X2 bring closer this junction and the NWell/Psub juntion increase 

in the curvature of the energy bands increase in the BTB-DC
 BTB-DC in this junction is the principal DC source of the NWell-aligned device
 Selected optimum value: 0.1 μm 40% of the total DC is generated by this 

BTB-DC
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 A minimum distance of 0.11 μm necessary to provide a path between the 
photodiode and the TG for the photocharges transference.

 NWell under the TG with positive voltage NWell operates in accumulation
behaves as being more doped  more BTB-DC

 The BTB-DC is 6 orders of magnitude larger than in the other case
 Commercial PPD 4T pixels probably use this structure but with a P layer under 

the TG to alleviate the BTB-DC: 
I.Inoue et al.,“Low-Leakage-CurrentandLow-Operating-VoltageBuried Photodiode for a 
CMOS Imager,”
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 The reset operation efects degrades the 
performance of the pixel

 Only depends on the capacitance of the 
FD node → Equal for the 3 studied 
structure

 Reset noise effects
 Thermal noise (random)
 Clock feedthrough (systematic)
 Reset dependence with the illumination 

(systematic)
 Leakage currents (systematic)

 ΔVFDmax=150 mV
 Vswing,max=ΔVFDmax – ΔVsyst,total

 Best case scenario
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 Thermal noise:
 Random movement of the electrons 

through the reset transistor

thermal
FD

kTV
C

 

7 7.07thermalV mV L cm  
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 Clock feedthrough: 
 Coupling of the VRESET signal and the 

VFD node through the Cgs capacitance

,
gs

syst clk g
gs FD

C
V V

C C
  



W (µm) XFD (µm) ΔVsyst,clk (mV) ΔL (cm)

1 1 133.1 62.76

1 2 121.5 37.22

1 4 103.4 22.76

0.5 2 69.6 13.19

0.25 2 36.15 9.32



Reset noise analysis
Achievements & Current results

50

 Dependence of the reset voltage with 
the illumination:
 Initial reset voltage depends on the 

photogenerated current

Iph (pA) ΔVsyst,light (mV) ΔL (cm)

200 0.5 7.09

500 1.4 7.14

2000 5.1 7.32

5000 11.2 7.64
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 Leakage current:
 Through the reset transistor flows 

some current even being cut off 

, 10 7.57syst leakageV mV L cm  
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 Square light pulses are assumed for the ToF calculation
 The transmission of the electrons from the PD to the FD needs a finite 

amount of time
 This generates a deviation from square pulses 
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 NWell-aligned PPD:

 NWell PD:
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 Deviation from the square signal
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 Deviation from the square signal
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 Design of an appropriate pixel for ToF in CMOS standard 
technology

 Fabrication of the chip in 0.18 µm technology

 Test of the chip 

 Defense of the thesis in the first trimester of 2016
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