
citius.usc.es

Centro Singular de Investigación en Tecnoloxías da Información

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Improving Design Smell

Detection for Adoption in

Industry

Jose Taboada (USC), Yania Crespo (UVA)

Doctoral meeting

Khalid Alkharabsheh

Outline

2

 Introduction.

 Thesis Proposal.

 State of the Art.

 Thesis plan

Introduction

3

 Software quality is one of the main important problems for all software

engineers and researchers.

 According to Brown*, a survey of hundreds of software development projects

show that five from six projects are considered unsuccessful.

 The majority of software development cost (budget) is devoted to maintaining

processes.

 More difficulties in controlling the maintenance process than in other phases of

the software development life cycle.

 Reasons:

̶ Complexity of source code.

̶ Experience of developers.

̶ Amount and frequency of maintenance tasks (Adaptive, Corrective, Perfective).

̶ Different tools required. (adapting, correcting, documenting, etc).

Introduction

4

 Refactoring

 A set of restructuring operations that support the design and evolution of software

but preserving its observable behavior. [Opdyke1992]*

 A change made to the internal structure of software to make it easier to understand

and cheaper to modify without changing it’s observable behavior. [Fowler1999]**

 Identifying pieces of code need to be refactored making the upcoming maintenance

tasks easier.

 Refactoring is a technique used to:

̶ Make software easier to modify and increase understandability.

̶ Remove design smells (Decrease coupling & Increase cohesive).

̶ Improve the design of software.

 Well known refactoring operations (Extracting class, Extracting method, Move

method).

*[William F. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, University of Illinois at Urbana-Champaign Champaign, IL,
USA, Champaign,IL, USA, 1992. UMI Order No. GAX93-05645.]
**[Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts. Refactoring: Improving the Design of Existing Code. Addison
Wesley, 1 edition, June 1999.

Introduction

5

 Design smell

 Design smells are indicators on weak software design that can potentially decrease

software maintainability.

 Do not produce compile-time or run-time errors.

 But negatively affect system quality properties, such as understandability, testability,

extensibility, reusability and maintainability.

 These problems can appeared in several software artifacts from fine grained to coarse

grained including (variables, instructions, operations, methods, classes, packages, sub

systems, layers and their dependencies).

6

 Historical Data

 Design smells concept cover whole problems related to the software structure (code,

design).

 Design smell appear in the state of the art under different terms:

̶ Design heuristics 1996.

̶ Antipatterns 1998.

̶ Bad smell 1999.

̶ Disharmonies 2006.

̶ Design flaws 2006.

̶ Design defects 2007.

̶ Code Anomalies 2007.

̶ Design Smell 2011.

 Different terms used to describe the same type of design smell such as:

̶ Large class bad smell (class is trying to do too much).

̶ God class disharmony (class performs too much work on its own).

̶ Blob antipattern (class with responsibilities that overlap most other parts of the system).

Introduction

Introduction

7

 Design Smell Example (1)

 Bad Smell (Feature Envy):

̶ Occurs when a method in one class

uses primarily data and methods from

another class to perform its work.

̶ Fix: (Move Method Refactoring)

 Move the method with feature envy to

the class containing the most

frequently used methods and data

items.

Introduction

8

 Design Smell Example (2)

 Architectural Smell (Large Class or

God Class or Blob):

̶ Occurs when a class is trying to do

too much responsibilities or have

many methods or instance variables.

̶ Fix:

̶ (Extract Class Refactoring)

 Take a subset of the instance

variables and methods and create a

new class with them and this makes

the initial (long) class shorter.

̶ (Move Method Refactoring)

 Move one or more methods to other

classes.

Introduction

9

 What is the problem?

 Design smells detection tools are not widely adopted in industry.

 Why is it a problem?

 Currently software has huge dimensions and Manual detection is not realistic.

 The available tools can not be identified as useful design smells detection tools that

perfectly fits to different software companies/organizations.

 Why it is an important problem?

 Increasing the maintainability time and cost.

 Negatively impacts on software quality.

 As a consequence, software lifetime can be shorten.

Thesis Proposal

10

 Main Goal

 Improve the usefulness of design smell detection tools for adoption in industry to aid

in the increase of software quality and maintainability.

 Sub goals

 Study in depth the similarities and differences among smell detection techniques to

identify the efficiency factors in design smell detection.

 Organize the knowledge on design smell detection.

 Analyze the inter-rater agreement between software smell detection tools (automatic

experts), human experts and both of them in determining the expected problems in

industrial software projects.

 Make a comparison between techniques to identify the optimal algorithm.

 Improve the usefulness of algorithm (introduce subjectivity, improve adaptability, gray

scale, improve efficiency).

 Validation in industrial environment .

Thesis Proposal

11

 Activity Diagram

2013/2014

2014/2015

2015/2016

2016/2017

State of the Art

12

 State of the Art Activity.

 A comprehensive systematic mapping.

̶ Identify state of the art problems.

̶ Select a set of design smell detection

tools.

̶ Select a set of design smells.

 Analyse agreeement in detection

̶ Tools comparison.

̶ Evaluate the tools on a medium size

project.

̶ Web-based questionnaire survey.

̶ Compute inter-raters agreement

between tools, human expert and both

of them.

13

 Different design smell classifications:

 Bad Smells (Code Smells)

̶ Defined in terms of implementation level

(subsystem, package, class, fields, methods,

parameters and statements).

 Architectural Smells.

̶ Defined in terms of architecture level

abstractions (components, connectors and

styles).

 Software Product Line Smells (Variability

Smells).

̶ Design smells specific to SPLs. They can be

divided in parts, such as architectural smells

and code smells.

 Hybrid smells

̶ Combine architectural and code smells.

State of the Art

Vale, G. et al., 2014. Bad Smells in Software Product Lines: A
Systematic Review. 2014 Eighth Brazilian Symposium on
Software Components, Architectures and Reuse, pp.84-94.

Classifications Approaches Tools Conclusions

State of the Art

14

 Popular Design smells

0
5

10
15
20
25
30
35
40
45

Fe
at

u
re

 E
n

vy

B
lo

b

Lo
n

g
m

e
th

o
d

G
o

d
 c

la
ss

D
at

a
cl

as
s

La
rg

e
 c

la
ss

Sh
o

tg
u

n
 s

u
rg

e
ry

Sp
ag

h
et

ti
 c

o
d

e

Lo
n

g
p

ar
am

e
te

r
lis

t

Fu
n

ct
io

n
al

d
ec

o
m

p
o

si
ti

o
n

D
u

p
lic

at
e

 c
o

d
e

La
zy

 c
la

ss

R
e

fu
se

d
 B

eq
u

es
t

Most interested design smells

Hybrid smell

Code smells

Architectural smell

 -

 2

 4

 6

 8

 10

 12

 14

 16
Most detected design smells

Code smells

Architectural smell

Hybrid smell

Classifications Approaches Tools Conclusions

State of the Art

15

0

2

4

6

8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

Rule-based

Metric-based

Machine learning

Graph-based

UML mode-based

 Design Smell Detection Approaches

 Metric-based approach

̶ Detect design smells using existing and

new quality metrics by finding relative

thresholds values using different

techniques and strategies.

 Rule-based approach

̶ Detect smells depending on facts and

rules and relation between metrics.

 Machine learning approach

̶ detect smells using learning techniques

derived by specific classifiers.

 Graph-based approach

̶ Represent software artifact in vertices

and node to extract the important data

and to reason on this model.

 UML approach

̶ Use UML meta-model.

.

Classifications Approaches Tools Conclusions

State of the Art

16

 Design Smell Tools

 A few tools deal with:

̶ More than one programming languages and

Platform.

̶ Analyze large size software.

 Most tools deal with:

̶ Limited set of design smells.

̶ Mainstream languages(C, C++, Java, C#).

̶ Use one input source.

̶ Use one representation type.

 Some of tools generate own metrics to identify

design smells and others use metrics

generated by other tools.(Demo)

Classifications Approaches Tools Conclusions

State of the Art

17

 Conclusions

 The attention of researchers community modified from Duplicate code to Feature

envy design smells and God class is the most detected design smells in software.

 Metric-based, Rule-based and Machine learning approaches related with each others

and the majority of researchers like to detect smells using them.

 The most used tools are: JDeodorant, DÉCOR, Together, iPlasma, PMD and

SourceMiner.

 Poor inter-rater agreement between:

̶ Design Smell Detection tool.

̶ Human experts.

̶ Tools and Experts.

 All detection tools that identify design smell automatically, detect smells as binary

decision (having the smell or not).

 Lack in Empirical studies and Benchmarks availability.

Classifications Approaches Tools Conclusions

Thesis plan

Improve algorithm

18

 Activity Diagram

19

 Techniques Comparison & Identify

Optimal Algorithm Activity.

 Preparing a dataset with:

̶ Wide set of metrics.

̶ Classes classification based on UML

stereotypes.

̶ Different projects size.

̶ Different project domains.

̶ Different project status.

 Make a comparison between different

machine learning techniques.

 Develop improved techniques that are

useful for satisfying our goals.

 Validation experiment on improved

techniques.

Thesis plan

Improve algorithm

Thesis plan

Improve the usefulness

20

 Develop Algorithm Activity.

 Improve the dataset in Phase three.

 A gray scale in certain percentage,

(God class in class X 70%).

 Priorities on their impacts on

Maintainability.

 Implement the improved technique

with gray scale.

 Validation experiment on improved

algorithm.

Thesis plan

Validation

21

 Validation The Proposed Algorithm Activity.

 Experiment to evaluate the efficiency of gray

scale algorithm on detecting God Class and

Feature Envy smells.

 Produce a report were include:

̶ Detected smells with gray scale.

̶ Priorities on the highest impact on maintainability.

 The developer will compare the last report with

the actual state of software.

 Iterative process of modifying the algorithm

designed and validation until satisfy the goals.

22

Thank you for your
attention!!!

