Improving Design Smell
Detection for Adoption In
Industry

Doctoral meeting
Khalid Alkharabsheh

CigluUS e
I Informac ién

Outline

® Introduction.
® Thesis Proposal.
m State of the Art.

® Thesis plan

Cilfjus 2

Introduction

m Software quality is one of the main important problems for all software
engineers and researchers.

® According to Brown*, a survey of hundreds of software development projects
show that five from six projects are considered unsuccessful.

® The majority of software development cost (budget) is devoted to maintaining
processes.

® More difficulties in controlling the maintenance process than in other phases of
the software development life cycle.

> Reasons:
— Complexity of source code.
— Experience of developers.
— Amount and frequency of maintenance tasks (Adaptive, Corrective, Perfective).
— Different tools required. (adapting, correcting, documenting, etc).

Introduction

®m Refactoring

> A set of restructuring operations that support the design and evolution of software
but preserving its observable behavior. [Opdyke1992]*

> A change made to the internal structure of software to make it easier to understand
and cheaper to modify without changing it's observable behavior. [Fowler1999]**

> Identifying pieces of code need to be refactored making the upcoming maintenance
tasks easier.

> Refactoring is a technique used to:
— Make software easier to modify and increase understandability.
— Remove design smells (Decrease coupling & Increase cohesive).
— Improve the design of software.

> Well known refactoring operations (Extracting class, Extracting method, Move
method).

*[William F. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, University of Illinois at Urbana-Champaign Champaign, IL,

= USA, Champaign,IL, USA, 1992. UMI Order No. GAX93-05645.]
C I I I U S **[Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts. Refactoring: Improving the Design of Existing Code. Addison 4
Wesley, 1 edition, June 1999.

Introduction

® Design smell

> Design smells are indicators on weak software design that can potentially decrease
software maintainability.

> Do not produce compile-time or run-time errors.

> But negatively affect system quality properties, such as understandability, testability,
extensibility, reusability and maintainability.

> These problems can appeared in several software artifacts from fine grained to coarse
grained including (variables, instructions, operations, methods, classes, packages, sub
systems, layers and their dependencies).

Cilfjus 5

Introduction

® Historical Data

> Design smells concept cover whole problems related to the software structure (code,
design).
> Design smell appear in the state of the art under different terms:
— Design heuristics 1996.
— Antipatterns 1998.
— Bad smell 1999.
— Disharmonies 2006.
— Design flaws 2006.
— Design defects 2007.
— Code Anomalies 2007.
— Design Smell 2011.

> Different terms used to describe the same type of design smell such as:
— Large class bad smell (class is trying to do too much).
— God class disharmony (class performs too much work on its own).
— Blob antipattern (class with responsibilities that overlap most other parts of the system).

Cilfjus 6

Introduction

® Design Smell Example (1)

> Bad Smell (Feature Envy):

— Occurs when a method in one class
uses primarily data and methods from
another class to perform its work.

— Fix: (Move Method Refactoring)

Move the method with feature envy to
the class containing the most
frequently used methods and data
items.

Cifus

pubkblic class Phone {
private final String unformattedNumber:

prublic Phone (String unformattedNumber) {
this.unformattediNumber = unformattedNumber;
¥

public String getAreaCode () {
return unformattediumber.substring(0,3) 7
¥

rublic String getPrefix() {
return unformattediNumber.substring (3, &) 7
3

prublic String getNumbexr () {
return unformattediNumber.substring(&,10)
3
}

prublic class Customer
private Phone mcbilePhone;

public String getMocobilePhconeMNumber () i
etuarn (™ +
mobilePhone.getAreaCode() + ") " +
mobilePhone.getPrefix() + "—" +
mobilePhone .getNumber () -

public class Phone {

}

private final String unformattedNumber;

public Phone (String unformattedNumber) {
this.unformattedNumber = unformattedNumber;
}

private String getAreaCede() {
return unformattedNumber.substring(0,3);

}

private String getPrefix() {
return unformattedNumber.substring(3,6);

}

private String getNumber() {
return unformattedNumber.substring(§,10);

}

public String toFormattedString() {
return " (" + getAreaCode() + ") " + getPrefix() + "-" + getNumber():
}

public class Customer..

private Phone mobilePhone;

public String getMcbilePhoneNumber() {
return mobilePhone.toFormattedString() : 7
}

Introduction

® Design Smell Example (2)

> Architectural Smell (Large Class or
God Class or Blob):

— Occurs when a class is trying to do
too much responsibilities or have
many methods or instance variables.

— Fix:
— (Extract Class Refactoring)

Take a subset of the instance
variables and methods and create a
new class with them and this makes
the initial (long) class shorter.

— (Move Method Refactoring)

Move one or more methods to other
classes.

Cifus

relate o
methodfs

Eﬁ

Library_Main_C

Likrary_Main_Con

Current_Catalog
Currert _ltem
L=er I

Firne_Mm ourt

Cumrent _Catalog
Currert_Item
User_ D

Catalog

Topic
| nvert ory

Fine_Amount
Etc. i
So

Introduction

® What is the problem?
> Design smells detection tools are not widely adopted in industry.

= Why is it a problem?
> Currently software has huge dimensions and Manual detection is not realistic.

> The available tools can not be identified as useful design smells detection tools that
perfectly fits to different software companies/organizations.

= Why it is an important problem?
> Increasing the maintainability time and cost.
> Negatively impacts on software quality.
> As a consequence, software lifetime can be shorten.

Cilfjus 9

Thesis Proposal

® Main Goal

>

Improve the usefulness of design smell detection tools for adoption in industry to aid
in the increase of software quality and maintainability.

® Sub goals

>

>
>

Study in depth the similarities and differences among smell detection techniques to
identify the efficiency factors in design smell detection.

Organize the knowledge on design smell detection.

Analyze the inter-rater agreement between software smell detection tools (automatic
experts), human experts and both of them in determining the expected problems in
industrial software projects.

Make a comparison between techniques to identify the optimal algorithm.

Improve the usefulness of algorithm (introduce subjectivity, improve adaptability, gray
scale, improve efficiency).

Validation in industrial environment .

Cilfjus 10

Thesis Proposal

= Activity Diagram

Identity the actual situation Suspect The tools and expert does not resolve the actual
| ot Design Smell Detection situation of design smell detection

=)

v

2013/2014

Improve Algorithm > >Susoeccswoonmmdynobmw
Agaghm

2014/2015

Techniques Comparison & ldentfy
Optimal algonthm

Y

v
Improve usefuiness of >>«spoct The use of Gray Scale can Improve
the

2015/2016 algorithm usetulness of the algorithm

v
[Develop Algonmthm]

v
v

[Validation the proposed algorithm]

2016/2017

v
@®

Cilfjus 11

State of the Art

m State of the Art Activity.

> A comprehensive systematic mapping.
— ldentify state of the art problems.

— Select a set of design smell detection
tools.
— Select a set of design smells.

[Study the state of The Art Problem]

Iijhentif].r s e oG Suspect Mo agreement between
at detect Useful elagion oot
Smells
> Analyse agreeement in detection l ,L
— Tools comparison. y
— Evaluate the tools on a medium size Dataset —> Survey
project.
— Web-based questionnaire survey. l l
— Compute inter-raters agreement
between tools, human expert and both Tool Comparison Human Experts
of them.

- v

Cilfjus 12

State of the Art(cssifications

m Different design smell classifications:

> Bad Smells (Code Smells)

— Defined in terms of implementation level
(subsystem, package, class, fields, methods,
parameters and statements).

Design Smells

> Architectural Smells.

— Defined in terms of architecture level
abstractions (components, connectors and
styles).

> Software Product Line Smells (Variability
Smells).

— Design smells specific to SPLs. They can be
divided in parts, such as architectural smells
and code smells.

> Hybrid smells

— Combine architectural and code smells.
Vale, G. et al., 2014. Bad Smells in Software Product Lines: A

Systematic Review. 2014 Eighth Brazilian Symposium on
Software Components, Architectures and Reuse, pp.84-94.

Cilfjus 13

State of the Art (custan)

= Popular Design smells

45 +
Most interested design smells

Code smells

25 -

ig : Architectural smell
10 -

(5) I I I l Hybrid smell

> o) © A A > () = c () A +
2 o 9 8 2 5 3 5 2 -S 3 & &
] o0 S S =2 S 00 o] © 2 o] =]
o = £) o
] [Rl ©) =] = S S o) > o
= 1S o + a0 n + e 0 s k= g o
= 0 (G © © c v © = Q g O 4
© c o — =) £ (o8 = = B
o o 20 & 0o 2 9 2 &
w = ° o c 7] =3 =)
<) o © [a)] ©
(%) - o
16
14 - Most detected design smells
12 A
10 -
g Code smells
6 .
4 Architectural smell
> IEE NN
- — . Hybrid smell
5 5 5 > 0 X Q
S o o < & X G o 2 X
P §F & & & & RO & &
& & & & e > & @ Q & < o
© N & & Vg sgz & & N < L N
N N ® & <@ g s
<% Q¥ 2
N

Cilfjus 14

SIEWRORUEYNG] cisifcations

® Design Smell Detection Approaches

> Metric-based approach

— Detect design smells using existing and
new quality metrics by finding relative
thresholds values using different
techniques and strategies.

> Rule-based approach

— Detect smells depending on facts and
rules and relation between metrics.

> Machine learning approach

— detect smells using learning techniques
derived by specific classifiers.

> Graph-based approach

— Represent software artifact in vertices
and node to extract the important data
and to reason on this model.

> UML approach

. — Use UML meta-model.
Cihflus

o N B O

M Rule-based
B Metric-based
| m Machine learning
B Graph-based
= UML mode-based
o (o] < (o} 0 o (@]
o o o o o i —
o o o o o o o
(@] (@] N (@] (@] N (@]
Machine UML
Smell/ Approach Rule-based learning Metric-based Graph-based mode
Feature envy X X X
Blob X X X
Large class X X X X
Long method X X X
Spaghetticode X X X X
Data class X X X
Functional decomposition X X X
Godclass X X X
Long parameter list X X
Shotgunsurgery X X X
Duplicate code X X X X
Lazy class X X X X
Other smells X X X X X

2014

SIEWRORUEYNG] cisifcations

® Design Smell Tools

D A few tools deal with: Tool Design smell Language Platform
— More than one programming languages and [DE(OR Anfipttem + Code smel Jaa Standalons
Platform. Soucebiner ~~ Code smel Eclpse plien

— Analyze large size software. Togethe Code smel Jaa Gt (8 Standone
{Deadoran Bad smel Jaia Eckpst plugdn

> Most tools deal with: PD Code smel Java,C#+, (2 C

— Limited set of design smells. PP Ruby, Foan, ~ Siandalone

— Mainstream languages(C, C++, Java, C#). PLSQL Eclpse plugan

_ Use one input source. Piasma Dishamonies (4, Java Standalons

— Use one representation type.

Smell /Tocl Decor SourceMiner Together JDeodorant PMD iPlasma
Blob X

> Some of tools generate own metrics to identify Data class x x x

Duplicate code X X X

design smells and others use metrics Feature Bivy x x X X

generated by other tools.(Demo) fnetionsl decompeiion

X
X
Large class X
Lazy class X

Long method X X X
Long parameter list X
Shotgun surgery X
Refused Bequest X
Spaghetti code X

Cilfjus 16

Mook MM

SIEWRORUEYNG] cisifcations

® Conclusions

> The attention of researchers community modified from Duplicate code to Feature
envy design smells and God class is the most detected design smells in software.

> Metric-based, Rule-based and Machine learning approaches related with each others
and the majority of researchers like to detect smells using them.

> The most used tools are: JDeodorant, DECOR, Together, iPlasma, PMD and
SourceMiner.
> Poor inter-rater agreement between:
— Design Smell Detection tool.
— Human experts.
— Tools and Experts.

> All detection tools that identify design smell automatically, detect smells as binary
decision (having the smell or not).

Lack in Empirical studies and Benchmarks availability.

>
Cilfjus 17

Thesis plan

Improve algorithm

®m Activity Diagram

Identify the actual situation Suspect The tools and expert does not resolve the actual
> of Design Smell Detection situation of design smell detection

4
[State o The A)

v

Improve Algorithm > > Sw support contextually to obtain opSmal
agorhm

Techniques Comparison & Identify
Opftimal algorithm

v

Improve usefulness of uspect: The use of Gray Scale can Improve
algorithm the usefulness of the algorithm

[Develop Algorithm]

v
)

[Validgation the proposed algorithm]

v
v

Cilfjus ® 18

Thesis plan

Improve algorithm

® Technigues Comparison & Identify
Optimal Algorithm Activity.

> Preparing a dataset with: lmmvmmm) >Mmmwybmm,
— Wide set of metrics. dgorihm
— Classes classification based on UML v . v 5
stereotypes. [owma | [Zima
— Different projects size. \ T /
— Different project domains. > =
— Different project status. Develop Algorithm
. J
Validation |
> Make a comparison between different (e e J
machine learning techniques. !
v

> Develop improved techniques that are
useful for satisfying our goals. {Optimal]

[Not Optimal]

> Validation experiment on improved
techniques.

Cilfjus 19

Thesis plan

Improve the usefulness

® Develop Algorithm Activity.
> Improve the dataset in Phase three.

D A gray SC8.|? In certain percentage’ Improve algorithm uspect The use of Gray Scale can
(God class in class X 70%). in JSmellSensor tool mprove the usefulness of the toal
> Priorities on their impacts on
. . - Algorithm with
Maintainability. [Dataset J = [aray scale J
> Implement the improved technique l
with gray scale. Validation
Experiment
> Validation experiment on improved l
algorithm.

Cilfjus 20

Thesis plan

Validation

® Validation The Proposed Algorithm Activity.
> Experiment to evaluate the efficiency of gray

. . Y
scale algorithm on detecting God Class and T TR
Feature Envy smells evaluate the evaluate the

) efficiency of efficiency of
detecting detecting
God Class Feature Envy
> Produce a report were include: v v

— Detected smells with gray scale.
— Priorities on the highest impact on maintainability.

[Quality Improved]
> The developer will compare the last report with

the actual state of software. [Suaailotimexcred
> Iterative process of modifying the algorithm =
. : : eplicate the
designed and validation until satisfy the goals. Experment

Cilfjus 21

Thank you for your
attention!!!

Cilfjus 22

