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 Software quality is one of the main important problems for all software 

engineers and researchers. 

 

 According to Brown*, a survey of hundreds of software development projects 

show that five from six projects are considered unsuccessful. 
 

 The majority of software development cost (budget) is devoted to maintaining 

processes.  

 

 More difficulties in controlling the maintenance process than in other phases of 

the software development life cycle. 

 Reasons: 

̶ Complexity of source code. 

̶ Experience of developers. 

̶ Amount and frequency of maintenance tasks (Adaptive, Corrective, Perfective). 

̶ Different  tools required. ( adapting, correcting, documenting, etc). 
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 Refactoring  

 A set of restructuring operations that support the design and evolution of software 

but preserving its observable behavior. [Opdyke1992]* 

 A change made to the internal structure of software to make it easier to understand 

and cheaper to modify without changing it’s observable behavior. [Fowler1999]** 

 

 Identifying pieces of code need to be refactored making the upcoming maintenance 

tasks easier. 

 

  Refactoring is a technique used to: 

̶ Make software easier to modify and increase understandability.  

̶ Remove design smells (Decrease coupling & Increase cohesive). 

̶ Improve the design of software. 

 

 Well known refactoring operations (Extracting  class, Extracting method, Move 

method). 

 

 

 

 

 

 

 

*[William F. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, University of Illinois at Urbana-Champaign Champaign, IL, 
USA, Champaign,IL, USA, 1992. UMI Order No. GAX93-05645.] 
**[Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts. Refactoring: Improving the Design of Existing Code. Addison 
Wesley, 1 edition, June 1999. 
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 Design smell 

 Design smells are indicators on weak software design that can potentially decrease 

software maintainability. 

 

 Do not produce compile-time or run-time errors. 

 

 But negatively affect system quality properties, such as understandability, testability, 

extensibility, reusability and maintainability. 

 

 These problems can appeared in several software artifacts from fine grained to coarse 

grained including (variables, instructions, operations, methods, classes, packages, sub 

systems, layers and their dependencies). 
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 Historical Data 

 Design smells concept cover whole problems related to the software structure (code, 

design). 

 Design smell appear in the state of the art under different terms: 

̶ Design heuristics 1996.  

̶ Antipatterns 1998. 

̶ Bad smell 1999. 

̶ Disharmonies  2006. 

̶ Design flaws 2006. 

̶ Design defects 2007. 

̶ Code Anomalies  2007. 

̶ Design Smell 2011. 

 

 Different terms used to describe the same type of design smell such as: 

̶ Large class bad smell (class is trying to do too much). 

̶ God class disharmony (class performs too much work on its own). 

̶ Blob antipattern (class with responsibilities that overlap most other parts of the system).  

Introduction 
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 Design Smell Example (1) 

 

 Bad Smell (Feature Envy):  

̶ Occurs when a method in one class 

uses primarily data and methods from 

another class to perform its work. 

 

̶ Fix: (Move Method Refactoring) 

     Move the method with feature envy to 

the class containing  the most 

frequently used methods and data 

items.  
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 Design Smell Example (2) 

 

 Architectural Smell (Large Class or 

God Class or Blob):  

̶ Occurs when a class is trying to do 

too much responsibilities or have 

many methods or instance variables. 

 

̶ Fix: 

̶ (Extract Class Refactoring) 

    Take a subset of the instance 

variables and methods and create a 

new class with them and this makes 

the initial (long) class shorter.   

 

̶  (Move Method Refactoring) 

      Move one or more methods to other 

classes.  
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 What is the problem? 

 Design smells detection tools are not widely adopted in industry. 

 

 Why is it a problem? 

 Currently software has huge dimensions and Manual detection is not realistic. 

 The available tools can not be identified as useful design smells detection tools that 

perfectly fits to different software companies/organizations. 

 

 Why it is an important problem? 

 Increasing the maintainability time and cost.  

 Negatively impacts on software quality. 

 As a consequence, software lifetime can be shorten. 
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 Main Goal 

 Improve the usefulness of design smell detection tools for adoption in industry to aid 

in the increase of software quality and maintainability. 

 

 Sub goals 

 Study in depth the similarities and differences among smell detection techniques to 

identify the efficiency factors in design smell detection. 

 Organize the knowledge on design smell detection. 

 Analyze the inter-rater agreement between software smell detection tools (automatic 

experts), human experts and both of them in determining the expected problems in 

industrial software projects. 

 Make a comparison between techniques to identify the optimal algorithm. 

 Improve the usefulness of algorithm (introduce subjectivity, improve adaptability, gray 

scale, improve efficiency). 

 Validation in industrial environment . 
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 Activity Diagram 

 

2013/2014 

2014/2015 

2015/2016 

2016/2017 
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 State of the Art Activity. 

 A comprehensive systematic mapping. 

̶ Identify state of the art problems. 

̶ Select a set of design smell detection 

tools. 

̶ Select a set of design smells. 

 

 

 Analyse agreeement in detection 

̶ Tools comparison. 

̶ Evaluate the tools on a medium size 

project. 

̶ Web-based questionnaire survey. 

̶ Compute inter-raters agreement 

between tools, human expert and both 

of them. 
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 Different design smell classifications: 

 Bad Smells (Code Smells) 

̶ Defined in terms of implementation level 

(subsystem, package, class, fields, methods, 

parameters and statements). 

 

 Architectural Smells. 

̶ Defined in terms of architecture level 

abstractions (components, connectors and 

styles). 

 

 Software Product Line Smells (Variability 

Smells). 

̶ Design smells specific to SPLs. They can be 

divided in parts, such as architectural smells 

and code smells. 

 

 Hybrid smells 

̶ Combine architectural and code smells. 

 

 

State of the Art  

 

Vale, G. et al., 2014. Bad Smells in Software Product Lines: A 
Systematic  Review. 2014 Eighth Brazilian Symposium on 
Software Components, Architectures and Reuse, pp.84-94. 

Classifications Approaches Tools Conclusions 
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 Popular Design smells 
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 Design Smell Detection Approaches 

 Metric-based approach 

̶ Detect design smells using existing and 

new  quality metrics by finding relative 

thresholds values using different 

techniques and strategies. 

 

 Rule-based approach 

̶ Detect smells depending on facts and 

rules and relation between metrics. 

 

 Machine learning approach 

̶ detect smells using learning techniques 

derived by specific classifiers. 

 

 Graph-based approach 

̶ Represent software artifact in vertices 

and node to extract the important data 

and to reason on this model. 

 UML approach 

̶ Use UML meta-model. 

. 

 

 

Classifications Approaches Tools Conclusions 
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 Design Smell Tools 

 A few tools deal with: 

̶ More than one programming languages and 

Platform. 

̶ Analyze large size software. 

 

 Most tools deal with: 

̶ Limited set of design smells. 

̶ Mainstream languages(C, C++, Java, C#). 

̶ Use one input source. 

̶ Use one representation type. 

 

 Some of tools generate own metrics to identify 

design smells and others use metrics 

generated by other tools.(Demo) 

 

Classifications Approaches Tools Conclusions 
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 Conclusions 

 The attention of researchers community modified from Duplicate code to Feature 

envy design smells and God class is  the most detected design smells in software.  

 

 Metric-based, Rule-based and Machine learning approaches related with each others 

and the majority of researchers like to detect smells using them. 

 

 The most used tools are: JDeodorant, DÉCOR, Together, iPlasma, PMD and 

SourceMiner. 

 Poor inter-rater agreement between: 

̶  Design Smell Detection tool. 

̶  Human experts. 

̶ Tools and Experts. 

 

 All detection tools that identify design smell automatically, detect smells as binary 

decision (having the smell or not). 

 

 Lack in Empirical studies and Benchmarks availability. 
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 Activity Diagram 
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 Techniques Comparison & Identify 

Optimal Algorithm Activity. 

 Preparing a dataset with: 

̶ Wide set of metrics. 

̶ Classes classification based on UML 

stereotypes. 

̶ Different  projects size. 

̶ Different  project domains. 

̶ Different  project  status. 

 

 Make a comparison  between different 

machine learning techniques. 

 

 Develop improved techniques that are 

useful for satisfying our goals. 

 

 Validation experiment on improved 

techniques. 

 

 

Thesis plan 

Improve algorithm 
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 Develop Algorithm Activity. 

 Improve the dataset in Phase three. 

 

 A gray scale in certain percentage,      

(God class in class X 70%). 

 

 Priorities on their impacts on 

Maintainability. 

 

 Implement the improved technique  

with gray scale. 

 

 Validation experiment on improved 

algorithm. 
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 Validation The Proposed Algorithm Activity. 

 Experiment to evaluate the efficiency of gray 

scale algorithm on detecting God Class and 

Feature Envy smells. 

 

 Produce a report were include: 

̶ Detected smells with gray scale. 

̶ Priorities on the highest impact on maintainability. 

 

 The developer will compare the last report with 

the actual state of software. 

 

 Iterative process of modifying the algorithm 

designed and validation until satisfy the goals. 
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Thank you for your  
attention!!! 


