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Photoelectric effect 
Introduction 
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 The transformation of light into 
electrical energy is based on the 
photoelectric effect. 
 

 An electric field in the interior of 
the material can separate them, 
generating, as they move, 
electric current.  

 

Figure 2:  Band Diagram of a Semiconductor 

Figure 1:  Photoelectric Effect 



Cell structure 
Introduction (II) 
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 Front contact:  
 Transparent conductive oxide 

(TCO) deposited on the glass. 
 Texture. 

 PIN structure used to induce an 
electric field: 
 P-type (+) doped layer. 
 Intrinsic layer  Increases  the 

carriers’ lifetime.  
 N- type (-) doped layer.  
 PECVD (I and N in the same 

chamber). 
 A back contact: 

 Zinc oxide, aluminum and 
nickel/vanadium.  

 Reflector. 
 PVD. 

 

Figure 3: T-Solar  a-Si:H Solar Cell structure 



PV Module structure 
Introduction (III) 
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 Modules’ design: Strings of 216 
solar cells, width 1 cm connected in 
series. 
 

 In a series connection: The 
individual voltages add up while 
current remains constant. 
 

 The value of the module’s current 
will be limited by the cell generating 
the less current.  
 

 

Figure 4: Full modules (5.72 m2, 216 cells) & Quarter 
modules (1.43 m2, 106 cells) in the T-Solar facilities 

 



Importance of the uniformity of the layers 
Introduction (IV) 
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 Therefore, ↑uniformity in the 
deposition of the p-i-n layers is 
necessary to assure very uniform 
current generation. 
 

 This will be translated into a higher 
module efficiency. 
 

 In the other hand, the locally 
generated current (Jsc) can be 
calculated from the SR 
measurement of a small illuminated 
area. 
 

 

Figure 5: Typical thickness distribution of the intrinsic 
a-Si:H layer  



Spectral Response 
Introduction (V) 
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Figure 6: Scheme representing the photosensitivity as 
function of the incident wavelength 

 SR  photosensitivity (R, A/W) 
measured along the light spectrum.  

 R  intensity of the photovoltaic 
effect depending on the incoming 
wavelength. 

 External Quantum Efficiency (EQE, 
%)  number of electron/hole pairs 
generated in the cell by the incident 
photon flux. 

 Both parameters are linked by the 
following equation: 

 



 ISC → Maximum current (zero load) 
 Proportional to area→ JSC  (mA/cm2). 

 
 Open circuit voltage (Voc):  

 Maximum voltage. 
 No current (infinite resistance). 

 
 Max. power density : Pmp = Jmp Vmp . 

 
 Fill Factor 
 
 Efficiency  

 

 
 Illumination I-V characteristic 

Introduction (VI) 
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Figure 7:  Example of a typical Illumination J-V curve of a 
solar cell 



Equivalent Circuit 
Introduction (VII) 
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 Current source (photogenerated 
current) in parallel with a diode 
(pn junction). 

 Series resistance: 
 Dominant at low currents. 
 Contact-Semiconductor 

interface. 
 Shunt resistance: 

 Dominant at high currents. 
 Undesired high conductive 

paths. 
 Figure 8: Simplified  equivalent circuit of a solar cell  with 

its parasitic defects 



Effect of Rs and Rsh on  the Dark I-V characteristic 
 

Introduction (VIII) 
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Figure 9:  Schematic Dark semi-logarithmic J-V plot of a 
solar cell, showing the effect of shunt leakage and Rs 

 The smaller the shunt 
resistance, the greater the 
undesired excess current at low 
biases. 

 
 On the contrary, increasing Rs 

limits the current at high 
voltages.   



Effect of Rs and Rsh on  the Illumination I-V characteristic 
 

Introduction (IX) 
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Figure 10:  Schematic representation of the effect of 
increasing shunt leakage and Rs, on the Illumination J-V 

curve of a solar cell 

 ↑ shunt leakage (↓ Rsh)  
 ↓ currents from 0 V  to Vmpp. 
 ↓ FF. 

 
 ↑ Rs  ↓  current at biases 

higher than Vmpp. 



Staebler Wronski Effect 
 

Introduction (X) 

12 

 
 Efficiency reduction in the first hours of illumination. 

 
 Creation of new defects (in addition to the initially present dangling bonds) 

due to the breaking of weak Si–Si bonds. 
 

 The effect stabilizes at arround ≈300 kWh/m2. 
 
 The stabilized (or degraded) efficiency can be around 10–20% lower than 

the initial one. 
 

 In a-Si:H technology, the degraded efficiency is indicated as comparison 
criteria with the rest of PV devices. 
 



Objectives 
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 The pursuit of a better performance of thin film amorphous silicon solar cells. 
 
 

 Analysis of the impact of the defects present in the device upon the overall 
efficiency. 

 Development of a very fast spectral response measurement system, able to be 
placed in a production line. 
 
 

 Simulation of the quantum efficiency of our device using an electromagnetic 
model. 

 Upgrading of VFSR equipment system. 
 

 
 

 
 
 
 

 

GENERAL  

CURRENT WORK 

FULLFILLED OBJECTIVES 



Simulation tool and simulated ideal device 
Solar Cell Simulation 
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 TOOL Sentaurus TCAD. 
 

 Experimental data: 
 Optical data of the layers. 
 Idealized a periodic texture based on 

experimental AFM measurements. 
 

 Modeling of heterojunctions  buffer layers 
with gradual dopping. 
 

 Modifications to model a-Si:H: 
 Continuous density of states (DOS). 
 Model for recombination-generation rate 

involving the localized states in the 
mobility gap of a-Si:H. 
 
 

 
 

 

Figure 13: Schematic representation of the cross-section 
of the simulated pin a-Si:H solar cell 



Simulation of the parasitic elements  
Solar Cell Simulation (II) 
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 Modeling Rs  
 Ohmic resistance in the TCO/p-layer 

with the experimental value: 3.5 Ω. 
 Modeling Rsh 

 Complex experimental features: 
̶ voltage symmetry with V=0 
̶ power dependence with voltage 
̶ weak temperature dependence  
̶ large fluctuation among cells 

 Explanation in literature: 
̶ Local non-uniformities, such as AZO 

grain boundaries or areas where Al can 
diffuse, counter doping n-layer 

̶ Studies have shown that phosphorus 
accelerates the Al diffusion 

̶ Local pip-structures 10-4-10-6 smaller 
than the solar cell 

 Icell= (Jcell)(Acell)+(Jpip)(Ashunt) 
 

 
 

 

Figure 14: Schematic representation of the simulated pip 
structure 



Results under dark conditions 
Solar Cell Simulation (III) 
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 Ideal device  adjusts the 
experimental at middle voltages. 
 

 Adding Rs limits the current at 
high voltages. 
 

 Shunt leakage  a current excess 
at low biases. 
 

 Comparing ideality factor: 
 
 

 
Figure 15: Dark forward J–V curves in the initial & 

degraded states for an experimental (continuous lines)  
T-Solar solar cell (1 cm2) and the simulated (dashed lines) 

ideal solar cell 



Results under dark conditions 
Solar Cell Simulation (III) 
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 Ideal device  adjusts the 
experimental at middle voltages. 
 

 Adding Rs limits the current at 
high voltages. 
 

 Shunt leakage  a current excess 
at low biases. 
 

 Comparing ideality factor: 
 
 

 
Figure  16: Dark forward J–V curves in the initial & 

degraded states for an experimental (continuous lines)  
T-Solar solar cell (1 cm2) and the simulated (dashed lines) 

solar cell, including Rs 



Results under dark conditions 
Solar Cell Simulation (III) 
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 Ideal device  adjusts the 
experimental at middle voltages. 
 

 Adding Rs limits the current at 
high voltages. 
 

 Shunt leakage  a current excess 
at low biases. 
 

 Comparing ideality factor: 
 
 

 
Figure  17: Dark forward J–V curves in the initial & 

degraded states for an experimental (continuous lines)  
T-Solar solar cell (1 cm2) and the simulated (dashed lines) 

solar cell, including Rs and Rsh 



Results under light conditions 
 

Solar Cell Simulation (IV) 
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 Ideal pin structure more FF. 
 Rs dominant at high voltages. 

  Efficiency was reduced from 
10.14% to 9.63% (initial 
state) and from 8.94% to 
8.50% (degraded state). 

 Adding  as well shunt leakage: 
 Cell efficiency decreased 

from and 9.63% to 9.42% in 
the initial state, and from 
8.50% to 8.10% in the 
degraded state. 

 Figure 8: Typical thickness distribution of the intrinsic a-Si 
layer  

Figure  18: Illumination J–V curves in the initial & degraded 
states, for an experimental (continuous lines) 

 T-Solar solar cell (1 cm2) and the simulated (dashed lines) 
ideal solar cell 



Results under light conditions 
 

Solar Cell Simulation (IV) 
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 Ideal pin structure more FF. 
 Rs dominant at high voltages. 

  Efficiency was reduced from 
10.14% to 9.63% (initial 
state) and from 8.94% to 
8.50% (degraded state). 

 Adding  as well shunt leakage: 
 Cell efficiency decreased 

from and 9.63% to 9.42% in 
the initial state, and from 
8.50% to 8.10% in the 
degraded state. 

 Figure 8: Typical thickness distribution of the intrinsic a-Si 
layer  

Figure  19: Illumination forward J–V curves in the initial & 
degraded states for an experimental (continuous lines)  

T-Solar solar cell (1 cm2) and the simulated (dashed lines) 
solar cell, including Rs 



Results under light conditions 
 

Solar Cell Simulation (IV) 
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 Ideal pin structure more FF. 
 Rs dominant at high voltages. 

  Efficiency was reduced from 
10.14% to 9.63% (initial 
state) and from 8.94% to 
8.50% (degraded state). 

 Adding  as well shunt leakage: 
 Cell efficiency decreased 

from and 9.63% to 9.42% in 
the initial state, and from 
8.50% to 8.10% in the 
degraded state. 

 Figure 8: Typical thickness distribution of the intrinsic a-Si 
layer  

Figure  20: Illumination forward J–V curves in the initial & 
degraded states for an experimental (continuous lines)  

T-Solar solar cell (1 cm2) and the simulated (dashed lines) 
solar cell, including Rs and Rsh 



Conclusions 
 

Solar Cell Simulation (IV) 
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 With all the input models, experimental data and performed 
parameterizations, we obtained a simulation that reproduces well the 
current voltage characteristics of the studied device. 
 

 We added, an ohmic resistance in the front contact, as Rs and (assuming 
Al diffusion) we simulated a microscopic pip structure, as Rsh; obtaining 
good agreement. This type of adjustment of both curves at dark and light 
conditions was not done before.  
 

 An absolute 1% of the efficiency is lost due to the effect of Rs and shunt 
leakage, thus the importance of reducing this defect’s size.  
 

 Due to the influence of phosphorus in the Al diffusion, we suggest to 
improve chamber cleaning, or try oder n-type doppants. 

 



Traditional SR Measurement System 
 

Development of VFSR measurement system  
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 Traditional SR measurements:  
 On lab scale, monochromator light, 

lock-in amplifier to measure small 
currents. 

 Time consuming method, ≈15 min. 
→ not suitable for Jsc mappings in 
large area modules. 

 DSR: Iref vs. Icell illuminated 
simultaneously by the same light 
source. 

 Determination of the calibration 
factor (F(l)) & SR: 
 
 
 

 

Figure 21: Diagram of a traditional SR measurement 
system 



Characteristics 
Development of VFSR measurement system  (II) 
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 VFSR measurement system:  
 

 SR measurement in the range of seconds.  
 Simultaneous light generation by LEDs operating at different frequencies. 
 FFT analysis  to extract current generated by each LED. 

 
 

 
 

 
Lock-in amplifier 

LEDs 

Current meter (sensitive & fast) 

White lamp 



Applications and Objectives 
Development of VFSR measurement system  (III) 
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 Increase the number of measurements on small test solar cells and modules. 
 Combining the VFSR with an XY displacement system → SR mappings. 
 In-line diagnosis to identify possible process errors. 

 
 

 
 
 Optimization of deposition process to increase the overall module current. 

 
 
 
 

 

OBJECTIVE 

APPLICATION 



Fast Fourier Transform 
 

Development of VFSR measurement system  (IV) 
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 Fundamental tool of the VFSR 
system.  

 Using the Fourier transform a 
periodic signal f(t) can be 
expressed as a sum of 
different sinusoidal signals with 
frequencies w=nw0.  

 When n=1 we talk about the 
fundamental frequency. 

 While n=2,3,4... are the 
harmonics. 

 FFT is a fast way to calculate 
the Fourier transform of a 
sampled signal.  

 
 
 

 

Figure 22: Periodic signals after Fourier analysis is 
decompound into its fundamental and harmonics  



Fast Fourier Transform (II)  
Development of VFSR measurement system  (V) 
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 A sinusoidal signal equals, in 
the frequency domain, to a 
pulse placed at the frequency 
of the signal.  
 
 
 
 

 An square signal, in the 
frequency domain equals to a 
train of pulses placed at the 
impair multiples of the 
frequency of the original signal. 
The amplitude of this pulses is 
modulated by an exponential. 

 
 
 

 

Figure 23: Sinusoidal signal in the time domain and its equivalence in 
the frequency domain after performing FFT 

Figure 24: Periodic square signal and its harmonics both in the time and 
frequency domain (the later after FFT analysis) 



Electrical characterization of LEDs 
 

Development of VFSR measurement system  (VI) 
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 I-V curves of representative 
LEDs.  
 

 DC operating point. 
 

 AC range. 
 

 LEDs are always on, they just 
modulate the intensity of their 
light. 
 
 

 Figure 25: Experimental I-V curve and DC bias point for 4 
representative LEDs. The black lines indicate the AC 

amplitude 



Optical characterization of LEDs 
 

Development of VFSR measurement system  (VII) 

25 

 To minimize the measurement 
error: 
 

 
 Exact determination λpeak .  

 
 LEDs with narrow band width. 

 
 

 

Figure 26:  Peak wavelength (λpeak) and FWHM for a LED 
with narrow band width & for a LED with wide band width 



Optical characterization of LEDs 
 

Development of VFSR measurement system  (VIII) 
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 Individual spectra for the 16 
selected LEDs. 
 

 Optimization of illumination  with 
LEDs ongoing. 
 

 We have found LEDs for 
covering gaps. 
 

 
Figure 27: Experimental spectral irradiance of  the 16 

selected LEDs 
 



Development of VFSR measurement system  (IX) 
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Figure 28: Diagram of the VFSR measurement system 
 



Results  
Development of VFSR measurement system  (X) 
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 Current meter with very high 
sample rate. 
 

 Sampled J(t) curve of a 1cm2 
solar cell. 
 

 Measurement of the Jcell in a few 
seconds. 
 
 

 Figura 29: Time dependent current density curve presents 
repetition period of 250 ms 

 



Results (II) 
Development of VFSR measurement system  (XI) 
 

29 

 Current density distribution in the 
frequency domain. 
 

 Signal to noise ratio ≈2-4 orders 
of magnitude.  
 

 Signal to noise ratio is objective 
of further improvements. 
 

 Measurement analysis done with 
the peak current of the nfund. 
 
 

 

Figura 30: Current density curve in the frequency domain 
as resulting from FFT analysis 

 



Results (III) 
Development of VFSR measurement system  (XII) 
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 EQEtraditional vs. EQEVFSR. 
 
 For most of the points small 

deviation.  
 
 Further optimization of LEDs 

operation will improve. 
 
 Near UV wavelength range. 
 
 IR wavelength range. 
 

 
 

Figure 31: The difference between the Jsc determined with the traditional 
equipment and the VFSR is 0.26% 



Conclusions 
Development of VFSR measurement system  (XII) 
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 SR measurements of a-Si:H solar cells in about 15 s. 

 
 Careful characterization of the implemented LEDs is necessary. 

 
 Precision of the measurement better than 1% in the Jsc calculation. It will be 

still improved. 
 

 The performance of mapping experiments on modules is under 
investigation. 
 

 Further improvement of the equipment is possible in the short wavelengths 
range. 
 

 Up-grading of the equipment to ≈1000nm for tandem structures (a-Si/mc-Si), 
in progress. 
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Thank you for your attention  
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