Hardware Counters Based
Methods for the Analysis of
Shared Memory Parallel Codes

Oscar Garcia Lorenzo SC (CITIUS

José Carlos Cabaleiro Dominguez
Tomaéas Fernandez Pena

CITIUS

24/05/2013

citius.usc.es

Index

Introduction

Manycore Issues

PEBS

Memory Analysis
Performance Analysis
Automatic Optimisation

Recap and Future Work

€ anus

Introduction

Index

Introduction

€ anus

Introduction

Introduction ,,

anycore Issues

Heterogeneity Issue

Memory Issue Solutions (Not touching the code)

Heterogeneity Issue Solutions (Not touching the code)

€ amus 1/34

Introduction

Illtl‘OdU.Cthll Precise Event Based S

ampling

> Hardware Counters in Intel Processors.

> We use them to identify the issues.

> Samples the state of the core (Registers and Counters).
> Saves samples in a buffer.

> Very precise and low overhead.

€ anus 2/34

Introduction

Introduction .

Memory Analysis
Visual Memory Analysis Tool

Memory Issue

Performance Analysis

Visual Performance Analysis Tool

Memory Issue Heterogeneity Issue

Automatic Optimisation

Runtime Migration Tool

Memory Issue Solutions Heter‘ogenelty ligsie
. Solutions

(S D /34

Manycore Issues

Index

Manycore Issues

€ anus

Manycore Issues

1\’16111011y ISSUG Memory Issue

> There is affinity among
Cores and Memory:

- Memory cells are at
different distances.

- There are complex
interconnexions.
- Data can be placed
anywhere.

> Data has locality.
- Caches store data.
- Some levels are shared
among cores.
- Cores read from other
core’s caches, many hops. |

Intel Xeon Phi ring.

€ anus 434

Manycore Issues

1\’16111011y Issue Memory Issue Solutions

Memory Issue Solutions (Not touching the code)

> For the affinity among Cores and Memory:

- Place threads in cores near the Memory cells that store their

data.

- Place memory pages in cells near the cores accessing them.
> For locality.

- Place threads that access same data nearby.
> To do this we need to know:

- Which data access each thread.

- Where threads are at (core).
- Where data is (relative to core).

€ anus 5 /34

Manycore Issues

Heterogeneity ISSU€ g rogencity Tssue

Up to 4 channels
npnAn DDR3 1600 memory
per socket

Xeon £5-4600 | L0

> Cores are not equal.
- May be by design.
- Power scaling.
- Noise.
- Something else.

Up to 8 cores
Up to 20 MB cache

2 QPI Links per
socket
Xeon E5-4600 | LF)

el ToRET | EonEE

> Threads doing the same
work take different times.

| oo3

FR———— ‘I ooRs Integrated

PCI Express*3.0
Up to 40 lanes
per socket

> Linux just balances threads
among processors, if at all.

A\

Intel Xeon E5-4600.
4 processor SMP.

€ anus 6 /34

Manycore Issues

Heterogeneity

Issue Heterogeneity Issue Solutions

Heterogeneity Issue Solutions (Not touching the code)

> To help deal with heterogeneity:
- Place threads in cores adapted to their work.
- Balance the load among cores.
- Move threads in runtime.
> To do this we need to know:
- Where are all threads at (all cores).
- What is each thread doing.
- What is the performance of each thread in each core.

€ anus 734

PEBS
Index

PEBS

€ anus

PEBS

Precise Event Bases Sampling

> Hardware Counters in Intel Processors.
> PEBS:

Gets one sample each X events (most hardware events
supported).

Each sample gets the state of the whole core (Registers and
Counters).

Saves samples in a buffer.

Low overhead.

Use supported by Linux kernel, nothing else needed.

> In addition, very precise information about memory usage:

€ anus

When sampling load or store instructions.
Returns the virtual address of the data involved.
Returns the latency (in cycles) of the memory access.

/

PEBS

Precise Event B

PEBS supports only a subset of precise, non-architected events. PEBS record format
64bit/d bytes Field
/ RIEFLAGS
E/IREIP
DS Buffer RIEAX
MSR Mach specific regs Offget 64bit/d bytes Field EIEBX
1A32_| AREA —— "[0H BTS Buffer base RIECX
BH BTS index RIEDX
10H BTS absolute max RIESI
18H BTS intr threshold R/EDI
20H PEBS Buffer base ——__,|PEBS Buffer WIEBP
28H PEBS index - PEBS record 0 RIESP
30H FEBS absolute max T~ |PEBS record 1 RB
FEBS intr threshold RS
R10
R11
R12
R13
PEBS record N R14
R15
1232 _PERF_GLOBAL_STATUS
Data linear Address
Data Source
Latency (core cycles)
PEBS Buffer.

€ anus

PEBS

Information we read

Memory Issue Solutions

To do this we need to know:
> Which data access each thread.

- Sample load and store instructions.
- Virtual address of the data, ADDR (OK).

> Where threads are at (core).
- Any instruction.
- PID, TID, CPU (OK).
> Where data is (relative to core).

- Sample load and store instructions.
- Latency of the load instruction, LATENCY, plus ADDR (OK).

v

€ anus 10 /34

PEBS

Information we read (2)

Heterogeneity Issue Solutions

To do this we need to know:
> Where are all threads at (all cores).
- Sample system wide, all cores (OK).
> What is each thread doing.
- Sample Flops/sec and number of cache lines loaded.
- We know if the code is computation bound or memory bound
(OK).
> What is the performance of each thread in each core.
- Sample Flops/sec, number of cache lines loaded, instructions
for all cores.

- We know the entire system performance, we can compare
(OK).

€ anus 11 /3,

Memory Analysis

Index

Memory Analysis

€ anus

Memory Analysis

Memory Analysis p.ivtion

> The data is captured from PEBS.

> It allows us to see the captured accesses to memory.

- Diverse levels of detail available.

- Can see data per thread or whole system.
- Can see data per instruction.

- Can see data per core.

> It shows the latency of each access.
> It can cross-check data:

- It can find false sharing.
- It can simulate caches.

Memory Analysis

Visual Memory Analysis Tool

Memory Issue

€ anus 123,

Memory Analysis

Memory Analysis

eneral Occurrence histogram

@TUTA) Memory Use Results

Event Name: DATA_EAR_CACHE_LATA
Memory Range:

600000000001CD00
600000000001DCA0

Number of Threads:4.

Address: 6000000000010A08

Latency: 5
cpuz 11

Instruction: 4611686018427103760
Cache set:0A0:8

[Addr. [Late. | CPU fThre, Jnstr, JAdar. [Cac.
1110463

Boo-i~ 5 1 B
00| s 11 oasi.DAs 8
5001 5 11 olasl.pal lo
00| 44 11 olasi.|pAs [t
500 5 11 oasipa
00| S 11 0las1-|pA0 [
500 5 11 olasi ok

) 1[261-0A2 &
00 s 13 alasipAc

00| S 13 2la61.pAd [
00| 20 13 2lasi.ipac la
00| S 13 2las1.oAs [0
00 s 12 3asiipee lg
o0l s 12 3lasl-ibe 1o

Number of columns BlEvent [tatency

CIPerinstruction [Select CPU

Zoom | {Jcache Cache Line Size Cache Set
CIRemplacement 2| E

I False Sharing Matri

Show by Threads

General Occurrence histogram. In the Histogram L2 misses are shown in
red, L3 in green, and Main Memory in orange.

€ amus 13 /34

Memory Ana

Memory Analysis .,

ailed Latency his

@075 Memory Use Results
File

~Event Name: DATA_EAR CACHE LATA
Memory Range:

500000000001CD00.
5000000000015CA0

Nurmber of Threads:a

‘Address: 600000000001D4E4

Latency: 835
cpui12

Instruction: 4611686018427403760
Cache Ser:DaE:a

Number of columns. CJevents ©

ClPer instruction [Select CPU.

[risaesn |
Addresses per column Zoom I cache Cache Line Size Cache Set
129 el

I Remplacement

[IFalse Sharing

Show by Threads

Detailed Latency histogram.

€ anus 143,

Memory Analysis

Memory Analysis \, a1 Use

4

)
3
3
3 2
1
I | I I I

S000GD0000LC00 - SUUOTTDIODLTERD S0DO00TEOIOELO - S0000UGTT0IAT

STTIGEITEDND -SU0GGDIITCITT

M_IMHHH i\ ‘\H“JM_U \JHHH‘H\

Cache misses, each bar Cache misses, each bar re-
represents 400 consecutive presents 16 addresses.

addresses.

‘H\ I A

Latencies, each bar repre-
sents 16 addresses.

€ anus

Address; 600000000001CD6C

Latency: 1094

CPU: 12
Instruction: 4611686018427403760
Cache Set:CD6:C

Addr..|Late...| CPU [Threadinstr...|Addr...[Cach...
600... | 1084 12 2| 461..|CD6 |

Event table.
15 /34

Memory Analysis

Memory Analysis b, i

AN

bcsstk29

‘“I I . N

Thread 0 Thread 1

€ anus Thread 2 Thread 3 16 /5.4

Memory Analysis

Memory Analysis y;opor ¢

ells Latencies

sme3Da

Core 0 Core 1

€ anus Core 8 Core 9 17 /34

Memory Analysis

M mory AnalySlS Difference between cyclic and block distribution.

29 e 30 s 26 284 310 . 309
b = 4, Occurrences b = 4, Latencies
F
B b
23 3
Block distribution, Occu- Block distribution, Laten-
rrences cies

€ anus 18 /34

Performance Analysis

Index

Performance Analysis

€ anus

Performance Analysis

Perforlna'nce Ana‘IySlS Performance Analysis Tool Description

> The data is captured from PEBS, visualised in R.

> It allows to see the GFlops/sec, Flops/Byte and mean
MemoryLatency.

- Can see data per thread or per core.
- Can see the evolution of a code in time.
- Can detect phases in execution.

> It captures the noise in the system.
> Can capture data from many concurrent processes.

- It can find differences among cores.
- It can find differences among threads.

Performance Analysis

Visual Performance Analysis Tool

Memory Issue Heterogeneity Issue

€ ands 19 /34

P rfornla'nce Ana\l}/SlS The R Environment GUI

Performance Analy:

minGFlops———————
’! E
Molumes/O: g p lti_toof m-11111111-m0 “axGFiops
Plot newx11 ’7 El
Plot minFlopsh
’7\r\s(rucl\nns_ﬂme_hy_tpu_hy_ﬂu = ‘ ’75 g‘
CPU: maxFlopsh
012737475767 H’] ﬂ
FID M minLatercy
’741154] | 208 ’74 El
masatency
’72000 Bl
| cPu | PID | TID | M_GFLOPS | M_FLOPSB | M_LATENCY | TIME
0 4084 084 0.1481933 0.8895182 B46.8125 310816796233
14084 4085 01551502 0.9280041 653.3619 309945031110
z 564 4544
3 4084 4087 01555435 09355620 6696600 309314067524
4 4084 4084 0.0000000 0.0000000 993.0500 13751874081
44084 4086 01476702 09260544 6044056 333963577737
5 3353 3359 NA NA 0.0000 102050823386
5 4084 4089 01469846 0.8216777 6595415 333936622744
6 3327 3327 NA NA 1089.0000 237369811446
6 4084 4090 01454475 08030489 6432629 333925963624
7 4084 4091 01473392 0.9219820 B00.6977 3338685208154

The R Environment GUI.

€ anus

20

/34

Performance Analysis

Performance Analysis

stem with 8 Cores

Roofline cpu 0 Roofline cpu 1 Roofline cpu 2
34 Y 34 ® 34 »
o
I ° R O °
s 3 s 34 s 34
e 7 T T T T s Tf T T T T s Tf T T T T
o 12 3 4 o 12 3 4 o 1 2 3 4
fopsb, fopsb flopsb
Roofline cpu 3 Roofline cpu 4 Roofline cpu 5
3 ° 3 @ 3 r
s 7F T T T T S 7F T T T T S 7F T T T T
o 1 2 3 4 T2 s 4 T2 s e
fopsb fopsb fopsb
Roofline cpu 6 Roofline cpu 7 Color Scale by Time
EE ER e % # |
g 5 .7 g3 d
g o g o (S
g g 3 /
S g P
o 12 3 4 o 12 3 4 00100 des09 gew00
fopsb fopsb Time

Dynamic Roofline for system with 8 cores.

€ anus 21 /34

Performance Analysis

Performance Analysis p . ie Roofiine

Roofline cpu 0 Roofiine cpu 0
< <]
o o |
2 ol - -
@ o | F %
4 S LSk
LI Solfl
= el
o < o
S - ° S
o
3 4) =Rl
=) ° =
° T T T e T T T T T
0 10 20 30 40 0 10 20 30 40
fopsb fopsb

Roofline ua.A No Optimisa- Roofline ua.A

tions
N . *Y
o b Y
o
H B @
. ® <
T w @ @ T e & % &

€ amus 2234

Density. ua.A No Density. ua.A

Performance Analysis

Performance Analysis p . ie Roofiine

Roofline cpu 0

Roofline cpu 0

glops

glope.

flopeb fopst,

Roofline cg. A

Roofline cpu 0

glops

tlopsb,

Roofline cg.C

€ anus 23 /34

Performance Analysis

Performance Analysis z,gine 30

5%0 - Combined Roofline 0
1000, 1 Combined Roofine 2!
1500, a3
2uy9 T o W,‘Aa
025 | 3 . ¢ ememw lo.25
I .
02| 7™ ' o2
gllopsy 15 . . o ‘
+ - e ool 10.15 gflops
0.1 —,-" B
. P ot
0.05 i O} !
0.05
0
0 T Z 3 4 5 © 2000 1500 7000 00 "g’;sh
lat
lat
flopsb
Roofline 3D, GFlops/FlopB Roofline 3D,

GFlops/Latency(cycles)

Roofline 3D. GFlops/FlopsB/Latency. Processor 0 is shown in red,
Processor 1 in black

€ amus 2434

Performance Analysis

Performance Analysis z,gine 30

Combined Roofline

Q 1 2 3 2800
) 0y,
Combined Roofline 6‘
o :ﬁ - 1500
- - - ~' — p4 °
gflops P 1000
: L bo lat el)
’ - b)) 500
< ﬁ E v, D
lat éb;}?’%%g ! : ’) gflops flopsd ’
flopsb
Roofline 3D, GFlops/FlopB Roofline 3D, FlopB/Latency(cycles)

Roofline 3D of the ep.A and ft.A benchmarks. GFlops/FlopsB/Latency.
Processor 0 is shown in red, Processor 1 in black

€ amus 25 /34

Automatic Optimisation

Index

Automatic Optimisation

€ anus

Automatic Optimisation

Autonlatlc Optlllllsatlon Runtime Migration Tool

Automatic Performance Optimisation

Runtime Migration Tool

Heterogeneity Issue
Solutions

Memory Issue Solutions

€ amus 26 /34

Automatic Optimisation

Automatic Optimisation vy .. 1eeds to

be done

Memory Issue Solutions

> For the affinity among Cores and Memory:
- Place threads in cores near the Memory cells that store their
data.
- Place memory pages in cells near the cores accessing them.
> For locality.
- Place threads that access same data nearby.

Heterogeneity Issue Solutions

> To help deal with heterogeneity:
- Place threads in cores adapted to their work.
- Balance the load among cores.
- Move threads in runtime.

€ amus 27 /34

Automatic Optimisation

Automatic Optimisation vy .. 1eeds to

be done

Memory Issue Solutions

> For the affinity among Cores and Memory:

Place threads in cores near the Memory cells that store their data.

> Page Migration, Juan A. Lorenzo PhD dissertation.
> For locality.

Heterogeneity Issue Solutions

> To help deal with heterogeneity:
- Balance the load among cores.

€ anus 28 /34

Automatic Optimisation

Automatic Optimisation ¢ . resuts

>

A code with many memory accesses.
All threads do the same work.

Two processors (0 and 1), each connected to a 8GB memory
cell.

v Vv

All data is store near the procesor 0.
Threads in processor 1 take longer.

We measure memory access latency for each thread.

v VvV VvV V

Simple Strategy: The worst thread is moved.

- To an empty core if possible.
- Interchange with the best.

> Times:

- Without migration: 4:31 min

- With thread migration: 4:16 min
> Works somewhat.

€ anus 29 /34

Automatic Optimisation

Automatic Optimisation g

>

urrent Work

We can move threads between cores.

v

We can move memory pages between cells.

\

We can capture data about memory usage, per core and
thread.

We can capture data about performance, per core and thread.
The problem now is to combine
everything.

- We need strategies and algorithms.

v

v

> Then we will have to test it.

- We need access to more machines and systems.
- Software support is not ready.

€ anus 30 /34

Index

Recap and Future Work

€ anus

Recap Recap

Memory Analysis
Visual Memory Analysis Tool

Memory Issue

Performance Analysis

Visual Performance Analysis Tool

Memory Issue

Heterogeneity Issue

Automatic Optimisation

Runtime Migration Tool

Memory Issue Solutions

C.

Heterogeneity Issue

Solutions

31/

/34

Future Work g e work

> We need algorithms.
> We need to test them.

> We need to validate them in more systems.

€ anus 32 /34

Publications p jications

> Oscar G. Lorenzo, Juan A. Lorenzo, Dora B. Heras, Juan C. Pichel,
Francisco F. Rivera, "Herramientas para la Monitorizaciéon de los
Accesos a Memoria de Codigos Paralelos Mediante Contadores
Hardware", Actas XXII Jornadas de Paralelismo (JP2011), La
Laguna 2011, pages 651-656.

> Oscar G. Lorenzo, Juan A. Lorenzo, José C. Cabaleiro, Dora B.
Heras, Marcos Suarez, Juan C. Pichel “A Study of Memory Access
Patterns in Irregular Parallel Codes Using Hardware Counter-Based
Tools", Int. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA), Las Vegas (USA), 2011, pages 920-923

> Oscar G. Lorenzo; Tomés F. Pena; José C. Cabaleiro; Juan C.
Pichel; Juan A. Lorenzo; Francisco F. Rivera, "Hardware Counter
Based Analysis of Memory Accesses in SMPs" ISPA2012 Madrid
July 2012

€ anus 33 /34

Publications p jications

> Oscar G. Lorenzo; Tomés F. Pena; José C. Cabaleiro; Juan C.
Pichel; Francisco F. Rivera, “DyRM: A Dynamic Roofline Model
Based on Runtime Information”, CMMSE 2013 (Accepted)

> Oscar G. Lorenzo; Tomas F. Pena; José C. Cabaleiro; Juan C.
Pichel; Juan A. Lorenzo; Francisco F. Rivera, “A Hardware
Counters Based Toolkit for the Analysis of Memory Accesses in
SMPs”,Concurrency and Computation: Practice and Experience
(Under Review)

€ anus 34 /34

Thank you!!

€ anus

	Introduction
	Manycore Issues
	PEBS
	Memory Analysis
	Performance Analysis
	Automatic Optimisation
	Recap and Future Work

