Hardware Counters Based
Methods for the Analysis of
Shared Memory Parallel Codes

Oscar Garcia Lorenzo SC ( CITIUS

José Carlos Cabaleiro Dominguez
Tomaéas Fernandez Pena

CITIUS

24/05/2013

citius.usc.es



Index

Introduction

Manycore Issues

PEBS

Memory Analysis
Performance Analysis
Automatic Optimisation

Recap and Future Work

€ anus



Introduction

Index

Introduction

€ anus



Introduction

Introduction ,,

anycore Issues

Heterogeneity Issue

Memory Issue Solutions (Not touching the code)

Heterogeneity Issue Solutions (Not touching the code)

€ amus 1/34



Introduction

Illtl‘OdU.Cthll Precise Event Based S

ampling

> Hardware Counters in Intel Processors.

> We use them to identify the issues.

> Samples the state of the core (Registers and Counters).
> Saves samples in a buffer.

> Very precise and low overhead.
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Manycore Issues

1\’16111011y ISSUG Memory Issue

> There is affinity among
Cores and Memory:

- Memory cells are at
different distances.

- There are complex
interconnexions.
- Data can be placed
anywhere.

> Data has locality.
- Caches store data.
- Some levels are shared
among cores.
- Cores read from other
core’s caches, many hops. |

Intel Xeon Phi ring.
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Manycore Issues

1\’16111011y Issue Memory Issue Solutions

Memory Issue Solutions (Not touching the code)

> For the affinity among Cores and Memory:

- Place threads in cores near the Memory cells that store their

data.

- Place memory pages in cells near the cores accessing them.
> For locality.

- Place threads that access same data nearby.
> To do this we need to know:

- Which data access each thread.

- Where threads are at (core).
- Where data is (relative to core).
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Manycore Issues

Heterogeneity ISSU€ g rogencity Tssue

Up to 4 channels
npnAn DDR3 1600 memory
per socket

Xeon £5-4600 | L0

> Cores are not equal.
- May be by design.
- Power scaling.
- Noise.
- Something else.

Up to 8 cores
Up to 20 MB cache

2 QPI Links per
socket
Xeon E5-4600 | LF)

el ToRET | EonEE

> Threads doing the same
work take different times.

| oo3

FR———— ‘I ooRs Integrated

PCI Express*3.0
Up to 40 lanes
per socket

> Linux just balances threads
among processors, if at all.

A\

Intel Xeon E5-4600.
4 processor SMP.
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Manycore Issues

Heterogeneity

Issue Heterogeneity Issue Solutions

Heterogeneity Issue Solutions (Not touching the code)

> To help deal with heterogeneity:
- Place threads in cores adapted to their work.
- Balance the load among cores.
- Move threads in runtime.
> To do this we need to know:
- Where are all threads at (all cores).
- What is each thread doing.
- What is the performance of each thread in each core.
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PEBS

Precise Event Bases Sampling

> Hardware Counters in Intel Processors.
> PEBS:

Gets one sample each X events (most hardware events
supported).

Each sample gets the state of the whole core (Registers and
Counters).

Saves samples in a buffer.

Low overhead.

Use supported by Linux kernel, nothing else needed.

> In addition, very precise information about memory usage:

€ anus

When sampling load or store instructions.
Returns the virtual address of the data involved.
Returns the latency (in cycles) of the memory access.
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PEBS

Precise Event B

PEBS supports only a subset of precise, non-architected events. PEBS record format
64bit/d bytes Field
/ RIEFLAGS
E/IREIP
DS Buffer RIEAX
MSR Mach specific regs Offget 64bit/d bytes Field EIEBX
1A32_| AREA —— "[0H BTS Buffer base RIECX
BH BTS index RIEDX
10H BTS absolute max RIESI
18H BTS intr threshold R/EDI
20H PEBS Buffer base ——__,|PEBS Buffer WIEBP
28H PEBS index - PEBS record 0 RIESP
30H FEBS absolute max T~ |PEBS record 1 RB
FEBS intr threshold RS
R10
R11
R12
R13
PEBS record N R14
R15
1232 _PERF_GLOBAL_STATUS
Data linear Address
Data Source
Latency (core cycles)
PEBS Buffer.
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PEBS

Information we read

Memory Issue Solutions

To do this we need to know:
> Which data access each thread.

- Sample load and store instructions.
- Virtual address of the data, ADDR (OK).

> Where threads are at (core).
- Any instruction.
- PID, TID, CPU (OK).
> Where data is (relative to core).

- Sample load and store instructions.
- Latency of the load instruction, LATENCY, plus ADDR (OK).

v
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PEBS

Information we read (2)

Heterogeneity Issue Solutions

To do this we need to know:
> Where are all threads at (all cores).
- Sample system wide, all cores (OK).
> What is each thread doing.
- Sample Flops/sec and number of cache lines loaded.
- We know if the code is computation bound or memory bound
(OK).
> What is the performance of each thread in each core.
- Sample Flops/sec, number of cache lines loaded, instructions
for all cores.

- We know the entire system performance, we can compare
(OK).
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Memory Analysis

Memory Analysis p.ivtion

> The data is captured from PEBS.

> It allows us to see the captured accesses to memory.

- Diverse levels of detail available.

- Can see data per thread or whole system.
- Can see data per instruction.

- Can see data per core.

> It shows the latency of each access.
> It can cross-check data:

- It can find false sharing.
- It can simulate caches.

Memory Analysis

Visual Memory Analysis Tool

Memory Issue
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Memory Analysis

Memory Analysis

eneral Occurrence histogram

@TUTA) Memory Use Results

Event Name: DATA_EAR_CACHE_LATA
Memory Range:

600000000001CD00
600000000001DCA0

Number of Threads:4.

Address: 6000000000010A08

Latency: 5
cpuz 11

Instruction: 4611686018427103760
Cache set:0A0:8

[Addr. [Late. | CPU fThre, Jnstr, JAdar. [ Cac.
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CIPerinstruction [ Select CPU

Zoom | {Jcache Cache Line Size Cache Set
CIRemplacement 2| E

I False Sharing Matri

Show by Threads

General Occurrence histogram. In the Histogram L2 misses are shown in
red, L3 in green, and Main Memory in orange.
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Memory Ana

Memory Analysis .,

ailed Latency his

@075 Memory Use Results
File

~Event Name: DATA_EAR CACHE LATA
Memory Range:

500000000001CD00.
5000000000015CA0

Nurmber of Threads:a

‘Address: 600000000001D4E4

Latency: 835
cpui12

Instruction: 4611686018427403760
Cache Ser:DaE:a

Number of columns. CJevents ©

ClPer instruction [ Select CPU.

[ risaesn |
Addresses per column  Zoom I cache Cache Line Size Cache Set
129 el

I Remplacement

[IFalse Sharing

Show by Threads

Detailed Latency histogram.
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Memory Analysis

Memory Analysis \, a1 Use

4
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Cache misses, each bar Cache misses, each bar re-
represents 400 consecutive presents 16 addresses.

addresses.

‘H\ I A

Latencies, each bar repre-
sents 16 addresses.
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Address; 600000000001CD6C

Latency: 1094

CPU: 12
Instruction: 4611686018427403760
Cache Set:CD6:C

Addr..|Late...| CPU [Threadinstr...|Addr...[Cach...
600... | 1084 12 2| 461..|CD6 |

Event table.
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Memory Analysis b, i
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Thread 0 Thread 1
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Memory Analysis

Memory Analysis y;opor ¢

ells Latencies

sme3Da

Core 0 Core 1
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Memory Analysis

M mory AnalySlS Difference between cyclic and block distribution.

29 e 30 s 26 284 310 . 309
b = 4, Occurrences b = 4, Latencies
F
B b
23 3
Block distribution, Occu- Block distribution, Laten-
rrences cies
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Performance Analysis

Perforlna'nce Ana‘IySlS Performance Analysis Tool Description

> The data is captured from PEBS, visualised in R.

> It allows to see the GFlops/sec, Flops/Byte and mean
MemoryLatency.

- Can see data per thread or per core.
- Can see the evolution of a code in time.
- Can detect phases in execution.

> It captures the noise in the system.
> Can capture data from many concurrent processes.

- It can find differences among cores.
- It can find differences among threads.

Performance Analysis

Visual Performance Analysis Tool

Memory Issue Heterogeneity Issue
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P rfornla'nce Ana\l}/SlS The R Environment GUI

Performance Analy:

minGFlops———————
’! E
Molumes/O: g p lti_toof m-11111111-m0 “axGFiops
Plot newx11 ’7 El
Plot minFlopsh
’7\r\s(rucl\nns_ﬂme_hy_tpu_hy_ﬂu = ‘ ’75 g‘
CPU: maxFlopsh
012737475767 H’] ﬂ
FID M minLatercy
’741154 ] | 208 ’74 El
masatency
’72000 Bl
| cPu | PID | TID | M_GFLOPS | M_FLOPSB | M_LATENCY | TIME
0 4084 084 0.1481933 0.8895182 B46.8125 310816796233
14084 4085 01551502 0.9280041 653.3619 309945031110
z 564 4544
3 4084 4087 01555435 09355620 6696600 309314067524
4 4084 4084  0.0000000 0.0000000 993.0500 13751874081
44084 4086 01476702 09260544 6044056 333963577737
5 3353 3359 NA NA 0.0000 102050823386
5 4084 4089 01469846  0.8216777 6595415 333936622744
6 3327 3327 NA NA 1089.0000 237369811446
6 4084 4090 01454475 08030489 6432629 333925963624
7 4084 4091 01473392 0.9219820 B00.6977 3338685208154

The R Environment GUI.
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Performance Analysis

Performance Analysis

stem with 8 Cores
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Dynamic Roofline for system with 8 cores.
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Performance Analysis

Performance Analysis p . ie Roofiine
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Performance Analysis

Performance Analysis p . ie Roofiine

Roofline cpu 0

Roofline cpu 0
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Performance Analysis

Performance Analysis z,gine 30
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Roofline 3D. GFlops/FlopsB/Latency. Processor 0 is shown in red,
Processor 1 in black
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Performance Analysis

Performance Analysis z,gine 30

Combined Roofline
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Roofline 3D of the ep.A and ft.A benchmarks. GFlops/FlopsB/Latency.
Processor 0 is shown in red, Processor 1 in black
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Automatic Optimisation

Automatic Optimisation vy .. 1eeds to

be done

Memory Issue Solutions

> For the affinity among Cores and Memory:
- Place threads in cores near the Memory cells that store their
data.
- Place memory pages in cells near the cores accessing them.
> For locality.
- Place threads that access same data nearby.

Heterogeneity Issue Solutions

> To help deal with heterogeneity:
- Place threads in cores adapted to their work.
- Balance the load among cores.
- Move threads in runtime.
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Automatic Optimisation

Automatic Optimisation vy .. 1eeds to

be done

Memory Issue Solutions

> For the affinity among Cores and Memory:

Place threads in cores near the Memory cells that store their data.

> Page Migration, Juan A. Lorenzo PhD dissertation.
> For locality.

Heterogeneity Issue Solutions

> To help deal with heterogeneity:
- Balance the load among cores.
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Automatic Optimisation

Automatic Optimisation ¢ . resuts

>

A code with many memory accesses.
All threads do the same work.

Two processors (0 and 1), each connected to a 8GB memory
cell.

v Vv

All data is store near the procesor 0.
Threads in processor 1 take longer.

We measure memory access latency for each thread.

v VvV VvV V

Simple Strategy: The worst thread is moved.

- To an empty core if possible.
- Interchange with the best.

> Times:

- Without migration: 4:31 min

- With thread migration: 4:16 min
> Works somewhat.
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Automatic Optimisation

Automatic Optimisation g

>

urrent Work

We can move threads between cores.

v

We can move memory pages between cells.

\

We can capture data about memory usage, per core and
thread.

We can capture data about performance, per core and thread.
The problem now is to combine
everything.

- We need strategies and algorithms.

v

v

> Then we will have to test it.

- We need access to more machines and systems.
- Software support is not ready.
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Future Work g e work

> We need algorithms.
> We need to test them.

> We need to validate them in more systems.
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