Hardware Counters Based Methods for the Analysis of Shared Memory Parallel Codes

Oscar García Lorenzo José Carlos Cabaleiro Domínguez Tomás Fernández Pena CITIUS 24/05/2013



citius.usc.es

### Index

- 1 Introduction
- 2 Manycore Issues
- 3 PEBS
- 4 Memory Analysis
- 5 Performance Analysis
- 6 Automatic Optimisation
- 7 Recap and Future Work





### Index

### 1 Introduction

- 2 Manycore Issues
- 3 PEBS
- 4 Memory Analysis
- 5 Performance Analysis
- 6 Automatic Optimisation
- 7 Recap and Future Work





## Introduction Manycore Issues

### Memory Issue

Heterogeneity Issue

Memory Issue Solutions (Not touching the code)

### Heterogeneity Issue Solutions (Not touching the code)



# Introduction Precise Event Based Sampling

- ▷ Hardware Counters in Intel Processors.
- $\triangleright$  We use them to identify the issues.
- $\triangleright$  Samples the state of the core (Registers and Counters).
- $\triangleright$  Saves samples in a buffer.
- $\triangleright~$  Very precise and low overhead.



Introduction Manycore Issues PEBS Memory Analysis Performance Analysis Automatic Optimisation Re



### Index

### 1 Introduction

- 2 Manycore Issues
- 3 PEBS
- 4 Memory Analysis
- **5** Performance Analysis
- 6 Automatic Optimisation
- 7 Recap and Future Work





## Memory Issue <sub>Memory</sub> Issue

### Memory Issue

- There is affinity among Cores and Memory:
  - Memory cells are at different distances.
  - There are complex interconnexions.
  - Data can be placed anywhere.
- Data has locality.
  - Caches store data.
  - Some levels are shared among cores.
  - Cores read from other core's caches, many hops.





# Memory Issue Memory Issue Solutions

### Memory Issue Solutions (Not touching the code)

- ▷ For the affinity among Cores and Memory:
  - Place threads in cores near the Memory cells that store their data.
  - Place memory pages in cells near the cores accessing them.
- ▷ For locality.
  - Place threads that access same data nearby.
- $\triangleright$  To do this we need to know:
  - Which data access each thread.
  - Where threads are at (core).
  - Where data is (relative to core).



## Heterogeneity Issue <sub>Heterogeneity Issue</sub>

### Heterogeneity Issue

- $\triangleright$  Cores are not equal.
  - May be by design.
  - Power scaling.
  - Noise.
  - Something else.
- Threads doing the same work take different times.
- Linux just balances threads among processors, if at all.





# Heterogeneity Issue Heterogeneity Issue Solutions

### Heterogeneity Issue Solutions (Not touching the code)

- $\triangleright$  To help deal with heterogeneity:
  - Place threads in cores adapted to their work.
  - Balance the load among cores.
  - Move threads in runtime.
- $\triangleright$  To do this we need to know:
  - Where are all threads at (all cores).
  - What is each thread doing.
  - What is the performance of each thread in each core.



### Index

1 Introduction

2 Manycore Issues

3 PEBS

- 4 Memory Analysis
- 5 Performance Analysis
- 6 Automatic Optimisation
- 7 Recap and Future Work





## PEBS Precise Event Bases Sampling

- ▷ Hardware Counters in Intel Processors.
- $\triangleright$  PEBS:
  - Gets one sample each X events (most hardware events supported).
  - Each sample gets the state of the whole core (Registers and Counters).
  - Saves samples in a buffer.
  - Low overhead.
  - Use supported by Linux kernel, nothing else needed.
- ▷ In addition, very precise information about memory usage:
  - When sampling load or store instructions.
  - Returns the virtual address of the data involved.
  - Returns the latency (in cycles) of the memory access.



## PEBS Precise Event Bases Sampling





## PEBS Information we read

#### Memory Issue Solutions

To do this we need to know:

- $\triangleright~$  Which data access each thread.
  - Sample load and store instructions.
  - Virtual address of the data, ADDR (OK).
- $\triangleright$  Where threads are at (core).
  - Any instruction.
  - PID, TID, CPU (OK).
- $\triangleright$  Where data is (relative to core).
  - Sample load and store instructions.
  - Latency of the load instruction, LATENCY, plus ADDR (OK).



## PEBS Information we read (2)

### Heterogeneity Issue Solutions

To do this we need to know:

- $\triangleright$  Where are all threads at (all cores).
  - Sample system wide, all cores (OK).
- $\triangleright$  What is each thread doing.
  - Sample Flops/sec and number of cache lines loaded.
  - We know if the code is computation bound or memory bound (OK).
- $\triangleright$  What is the performance of each thread in each core.
  - Sample Flops/sec, number of cache lines loaded, instructions for all cores.
  - We know the entire system performance, we can compare (OK).



### Index

- 1 Introduction
- 2 Manycore Issues
- 3 PEBS
- 4 Memory Analysis
- **5** Performance Analysis
- 6 Automatic Optimisation
- 7 Recap and Future Work





## Memory Analysis <sub>Description</sub>

- $\triangleright~$  The data is captured from PEBS.
- $\triangleright\,$  It allows us to see the captured accesses to memory.
  - Diverse levels of detail available.
  - Can see data per thread or whole system.
  - Can see data per instruction.
  - Can see data per core.
- $\triangleright\,$  It shows the latency of each access.
- $\triangleright$  It can cross-check data:
  - It can find false sharing.
  - It can simulate caches.

### Memory Analysis

Visual Memory Analysis Tool

Memory Issue



# Memory Analysis <sub>General Occurrence histogram</sub>



General Occurrence histogram. In the Histogram L2 misses are shown in red, L3 in green, and Main Memory in orange.



# Memory Analysis <sub>Detailed Latency histogram</sub>



#### Detailed Latency histogram.



## Memory Analysis <sub>Normal Use</sub>





Cache misses, each bar Cache misses, each bar rerepresents 400 consecutive presents 16 addresses. addresses.



Latencies, each bar represents 16 addresses.

Address: 60000000001CD6C Latency: 1094 CPU: 12 Instruction: 4611686018427403760 Cache Set:CD6:C

Addr... Late... CPU ThreadInstr... Addr... Cach.. 600... 1094 12 2 461... CD6 C

Event table.



 $15_{/34}$ 

Introduction Manycore Issues PEBS Memory Analysis Performance Analysis Automatic Optimisation Re







Introduction Manycore Issues PEBS Memory Analysis Performance Analysis Automatic Optimisation Re

# Memory Analysis <sub>Memory Cells Latencies</sub>



sme3Da





# Memory Analysis <sub>Difference</sub> between cyclic and block distribution.



Block distribution, Occu- Block distribution, Latenrrences cies





### Index

- 1 Introduction
- 2 Manycore Issues
- 3 PEBS
- 4 Memory Analysis
- 5 Performance Analysis
- 6 Automatic Optimisation
- 7 Recap and Future Work





Introduction Manycore Issues PEBS Memory Analysis Performance Analysis Automatic Optimisation Re

# Performance Analysis Performance Analysis Tool Description

- $\triangleright\,$  The data is captured from PEBS, visualised in R.
- ▷ It allows to see the GFlops/sec, Flops/Byte and mean MemoryLatency.
  - Can see data per thread or per core.
  - Can see the evolution of a code in time.
  - Can detect phases in execution.
- $\triangleright$  It captures the noise in the system.
- $\triangleright~$  Can capture data from many concurrent processes.
  - It can find differences among cores.
  - It can find differences among threads.

### Performance Analysis

Visual Performance Analysis Tool

### Memory Issue

Heterogeneity Issue



# Performance Analysis The R Environment GUI

| olume                                           | es/Osca<br>ot                                                               | r3/17600/<br>newX11                                                                 | Codigos/PEBS                                                                                                    | Roofline/iprof                                                                                                                     | ile-multi_roof-m-1                                                                                                               | 1111111-m0                                                                                                                         | maxGFlops                                                                       |          |  |
|-------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------|--|
| lot                                             |                                                                             |                                                                                     |                                                                                                                 |                                                                                                                                    |                                                                                                                                  |                                                                                                                                    | minFlonsh                                                                       | -        |  |
| nstruc                                          | tions fir                                                                   | ne hv ci                                                                            | u hy tid                                                                                                        |                                                                                                                                    |                                                                                                                                  |                                                                                                                                    | 0                                                                               | -        |  |
| PLIA                                            |                                                                             |                                                                                     | .a_ay_aa                                                                                                        |                                                                                                                                    | <u>.</u>                                                                                                                         |                                                                                                                                    | P                                                                               |          |  |
| - 05-                                           |                                                                             |                                                                                     |                                                                                                                 | -                                                                                                                                  |                                                                                                                                  |                                                                                                                                    | -max+iopsb                                                                      |          |  |
| 2.0.0                                           | × 1 ♦ 2                                                                     | 0.30                                                                                | 4 🔿 5 🔿 6 🔿                                                                                                     | /                                                                                                                                  |                                                                                                                                  |                                                                                                                                    | 10                                                                              | 1        |  |
| PID                                             |                                                                             | TID                                                                                 |                                                                                                                 |                                                                                                                                    |                                                                                                                                  |                                                                                                                                    | minLatency                                                                      |          |  |
| 4084                                            | -                                                                           | 4086                                                                                | -                                                                                                               |                                                                                                                                    |                                                                                                                                  |                                                                                                                                    | -1                                                                              | 1        |  |
|                                                 |                                                                             |                                                                                     |                                                                                                                 |                                                                                                                                    |                                                                                                                                  |                                                                                                                                    |                                                                                 |          |  |
|                                                 |                                                                             |                                                                                     |                                                                                                                 |                                                                                                                                    |                                                                                                                                  |                                                                                                                                    | maxLatency                                                                      |          |  |
|                                                 |                                                                             |                                                                                     |                                                                                                                 |                                                                                                                                    |                                                                                                                                  |                                                                                                                                    | maxLatency<br>2000                                                              |          |  |
|                                                 |                                                                             |                                                                                     |                                                                                                                 |                                                                                                                                    |                                                                                                                                  |                                                                                                                                    | maxLatency<br>2000                                                              | *        |  |
| PU                                              | PID                                                                         | TID                                                                                 | M GFLOPS                                                                                                        | M FLOPSB                                                                                                                           | M LATENCY                                                                                                                        | ТІМЕ                                                                                                                               | maxLatency<br>2000                                                              | X        |  |
| 1 <b>PU</b>                                     | PID<br>4084                                                                 | <b>TID</b><br>4084                                                                  | M_GFLOPS                                                                                                        | M_FLOPSB<br>0.8895182                                                                                                              | M_LATENCY<br>846.9125                                                                                                            | TIME<br>3108167962                                                                                                                 | maxLatency<br>2000<br>33                                                        | ×        |  |
| PU  <br>0<br>1                                  | PID<br>4084<br>4084                                                         | <b>TID</b><br>4084<br>4085                                                          | M_GFLOPS<br>0.1481933<br>0.1551502                                                                              | M_FLOPSB<br>0.8895182<br>0.9280041                                                                                                 | M_LATENCY<br>846.9125<br>653.3619                                                                                                | TIME<br>3108167962<br>3099450311                                                                                                   | maxLatency<br>2000<br>33<br>10                                                  |          |  |
| <b>PU</b><br>0<br>1<br>2                        | PID<br>4084<br>4084<br>4084                                                 | TID<br>4084<br>4085<br>4086                                                         | M_GFLOPS<br>0.1481933<br>0.1551502<br>0.1550856                                                                 | M_FLOPSB<br>0.8895182<br>0.9280041<br>0.9284674                                                                                    | M_LATENCY<br>846.9125<br>653.3619<br>684.4544                                                                                    | TIME<br>3108167962<br>3099450311<br>3100617030                                                                                     | maxLatency<br>2000<br>33<br>10<br>47                                            | ÷.       |  |
| PU<br>0<br>1<br>2<br>3                          | PID<br>4084<br>4084<br>4084<br>4084                                         | TID<br>4084<br>4085<br>4086<br>4087                                                 | M_GFLOPS<br>0.1481933<br>0.1551502<br>0.1550856<br>0.1555435                                                    | M_FLOPSB<br>0.8895182<br>0.9280041<br>0.9264674<br>0.9355620                                                                       | M_LATENCY<br>846.9125<br>653.3619<br>684.4544<br>669.6800                                                                        | TIME<br>3108167962<br>3099450311<br>3100617030<br>3093140679                                                                       | maxLatency<br>2000<br>33<br>10<br>47<br>24                                      |          |  |
| PU<br>0<br>1<br>2<br>3<br>4                     | PID<br>4084<br>4084<br>4084<br>4084<br>4084                                 | TID<br>4084<br>4085<br>4086<br>4087<br>4084                                         | M_GFLOPS<br>0.1401933<br>0.1551502<br>0.1550856<br>0.1555435<br>0.0000000                                       | M_FLOPSB<br>0.8895182<br>0.9280041<br>0.9264674<br>0.9355620<br>0.0000000                                                          | M_LATENCY<br>846.9125<br>653.3619<br>884.4544<br>669.6800<br>993.0500                                                            | TIME<br>3108167962<br>3099450311<br>3100617030<br>3093140679<br>137518740                                                          | maxLatency<br>2000<br>33<br>10<br>87<br>24<br>81                                | A V      |  |
| PU<br>0<br>1<br>2<br>3<br>4<br>4                | PID<br>4084<br>4084<br>4084<br>4084<br>4084<br>4084                         | TID<br>4084<br>4085<br>4086<br>4087<br>4084<br>4088                                 | M_GFLOPS<br>0.1481933<br>0.1551502<br>0.1550856<br>0.1555435<br>0.0000000<br>0.1476702                          | M FLOPSB<br>0.8895182<br>0.9280041<br>0.9264674<br>0.9355620<br>0.0000000<br>0.9288844                                             | M_LATENCY<br>846.9125<br>853.3619<br>684.4544<br>669.6800<br>993.0500<br>804.4058                                                | TIME<br>3108167962<br>3099450311<br>3100617030<br>3093140679<br>137518740<br>3339635777                                            | maxLatency<br>2000<br>33<br>10<br>47<br>24<br>81<br>37                          | 2<br>2   |  |
| PU<br>0<br>1<br>2<br>3<br>4<br>4<br>5           | PID<br>4084<br>4084<br>4084<br>4084<br>4084<br>4084<br>3359                 | TID<br>4084<br>4085<br>4086<br>4087<br>4084<br>4088<br>3359                         | M_GFLOPS<br>0.1481933<br>0.1551502<br>0.1550856<br>0.1555435<br>0.0000000<br>0.1476702<br>NA                    | M_FLOPSB<br>0.8895182<br>0.9280041<br>0.9264874<br>0.9355620<br>0.0000000<br>0.9288844<br>NA                                       | M_LATENCY<br>846.9125<br>653.3619<br>684.4544<br>669.6800<br>993.0500<br>804.4058<br>0.0000                                      | TIME<br>3108167962<br>3099450311<br>3100617030<br>3093140679<br>137518740<br>3339635777<br>1020508233                              | maxLatency<br>2000<br>33<br>10<br>47<br>24<br>81<br>37<br>86                    | e e      |  |
| PU<br>0<br>1<br>2<br>3<br>4<br>4<br>5<br>5      | PID<br>4084<br>4084<br>4084<br>4084<br>4084<br>4084<br>3359<br>4084         | TID<br>4084<br>4085<br>4086<br>4087<br>4084<br>4088<br>3359<br>4089                 | M_GFLOPS<br>0.1481933<br>0.1551502<br>0.1550856<br>0.1555435<br>0.0000000<br>0.1476702<br>NA<br>0.1469846       | M_FLOPSB<br>0.8895182<br>0.9280041<br>0.9264674<br>0.9355620<br>0.000000<br>0.9288844<br>NA<br>0.9218777                           | M LATENCY<br>846.9125<br>653.3613<br>664.4544<br>669.6800<br>993.0500<br>804.4058<br>0.0000<br>859.6415                          | TIME<br>3108167962<br>3099450311<br>3100617030<br>3093140679<br>137518740<br>3339635777<br>1020508233<br>3339386227                | maxLatency<br>22000<br>33<br>10<br>67<br>24<br>81<br>81<br>83<br>73<br>86<br>84 | <b>A</b> |  |
| PU<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>5<br>6 | PID<br>4084<br>4084<br>4084<br>4084<br>4084<br>3359<br>4084<br>3327         | TID<br>4084<br>4085<br>4086<br>4087<br>4084<br>4088<br>3359<br>4089<br>3327         | M_GFLOPS<br>0.1481933<br>0.1551502<br>0.1555435<br>0.0000000<br>0.1476702<br>NA<br>0.1469846<br>NA              | M_FLOPSB<br>0.8995182<br>0.3280041<br>0.3284674<br>0.3355620<br>0.0000000<br>0.3288844<br>NA<br>0.9218777<br>NA                    | M LATENCY<br>846.9125<br>653.3619<br>684.4544<br>669.6800<br>993.0500<br>804.4058<br>0.0000<br>859.6415<br>1099.0000             | TIME<br>3108167962<br>3099450311<br>3100617030<br>3093140679<br>137518740<br>33393635777<br>1020508233<br>3339366227<br>2373698114 | maxLatency<br>2000<br>33<br>10<br>47<br>24<br>81<br>37<br>36<br>64<br>44        |          |  |
| PU<br>0<br>1<br>2<br>3<br>4<br>4<br>5<br>5<br>6 | PID<br>4084<br>4084<br>4084<br>4084<br>4084<br>3359<br>4084<br>3327<br>4084 | TID<br>4084<br>4085<br>4086<br>4087<br>4084<br>4088<br>3359<br>4089<br>3327<br>4090 | M_GFLOPS<br>0.1481933<br>0.1551502<br>0.1555435<br>0.0000000<br>0.1476702<br>NA<br>0.1469846<br>NA<br>0.1464475 | M_FLOPSB<br>0.8895182<br>0.9280041<br>0.9284674<br>0.9355620<br>0.0000000<br>0.9288844<br>NA<br>0.9218777<br>NA<br>0.9218777<br>NA | M_LATENCY<br>846.9125<br>653.3619<br>664.4544<br>669.6800<br>993.0500<br>804.4058<br>0.0000<br>859.6415<br>1099.0000<br>843.2629 | TIME<br>3108167962<br>3093450311<br>300314067<br>3339635777<br>1020508233<br>3339365277<br>2373898114<br>3339259636                | maxLatency<br>2000<br>33<br>10<br>27<br>24<br>37<br>38<br>44<br>46<br>24        | a y      |  |

The R Environment GUI.



# Performance Analysis System with 8 Cores



Dynamic Roofline for system with 8 cores.



# Performance Analysis Dynamic Roofline

CITIUS



# Performance Analysis Dynamic Roofline





## Performance Analysis <sub>Roofline 3D</sub>





## Performance Analysis <sub>Roofline 3D</sub>



**Combined Roofline** 

Roofline 3D, GFlops/FlopB

Roofline 3D, FlopB/Latency(cycles)

Roofline 3D of the ep.A and ft.A benchmarks. GFlops/FlopsB/Latency. Processor 0 is shown in red, Processor 1 in black



### Index

- 1 Introduction
- 2 Manycore Issues
- 3 PEBS
- 4 Memory Analysis
- 5 Performance Analysis
- 6 Automatic Optimisation
- 7 Recap and Future Work





Introduction Manycore Issues PEBS Memory Analysis Performance Analysis Automatic Optimisation Re

Automatic Optimisation Runtime Migration Tool

### Automatic Performance Optimisation

### Runtime Migration Tool

Memory Issue Solutions

Heterogeneity Issue Solutions



## Automatic Optimisation What needs to be done

### Memory Issue Solutions

- ▷ For the affinity among Cores and Memory:
  - Place threads in cores near the Memory cells that store their data.
  - Place memory pages in cells near the cores accessing them.
- ▷ For locality.
  - Place threads that access same data nearby.

### Heterogeneity Issue Solutions

- $\triangleright$  To help deal with heterogeneity:
  - Place threads in cores adapted to their work.
  - Balance the load among cores.
  - Move threads in runtime.



## Automatic Optimisation What needs to be done

### Memory Issue Solutions

- ▷ For the affinity among Cores and Memory:
  - Place threads in cores near the Memory cells that store their data.
  - Place memory pages in cells near the cores accessing them.
    - > Page Migration, Juan A. Lorenzo PhD dissertation.
- ▷ For locality.
  - Place threads that access same data nearby.

### Heterogeneity Issue Solutions

- $\triangleright$  To help deal with heterogeneity:
  - Place threads in cores adapted to their work.
  - Balance the load among cores.
  - Move threads in runtime.

## Automatic Optimisation $_{\text{Some Results}}$

- $\triangleright$  A code with many memory accesses.
- $\triangleright~$  All threads do the same work.
- $\triangleright\,$  Two processors (0 and 1), each connected to a 8GB memory cell.
- $\triangleright\,$  All data is store near the procesor 0.
- $\triangleright~$  Threads in processor 1 take longer.
- $\,\triangleright\,$  We measure memory access latency for each thread.
- $\triangleright\,$  Simple Strategy: The worst thread is moved.
  - To an empty core if possible.
  - Interchange with the best.
- $\triangleright$  Times:
  - Without migration: 4:31 min
  - With thread migration: 4:16 min
- ▷ Works somewhat.



## Automatic Optimisation <sub>Current Work</sub>

- $\triangleright\,$  We can move threads between cores.
- $\triangleright\,$  We can move memory pages between cells.
- $\,\triangleright\,$  We can capture data about memory usage, per core and thread.
- We can capture data about performance, per core and thread.
  The problem now is to combine
  - everything.
    - We need strategies and algorithms.
- $\triangleright~$  Then we will have to test it.
  - We need access to more machines and systems.
  - Software support is not ready.



### Index

- 1 Introduction
- 2 Manycore Issues
- 3 PEBS
- 4 Memory Analysis
- 5 Performance Analysis
- 6 Automatic Optimisation
- 7 Recap and Future Work





Introduction Manycore Issues PEBS Memory Analysis Performance Analysis Automatic Optimisation Re



Introduction Manycore Issues PEBS Memory Analysis Performance Analysis Automatic Optimisation Re

# Future Work <sub>Future Work</sub>

- $\triangleright$  We need algorithms.
- $\triangleright$  We need to test them.
- $\triangleright\,$  We need to validate them in more systems.



## Publications Publications

- Oscar G. Lorenzo, Juan A. Lorenzo, Dora B. Heras, Juan C. Pichel, Francisco F. Rivera, "Herramientas para la Monitorización de los Accesos a Memoria de Códigos Paralelos Mediante Contadores Hardware", Actas XXII Jornadas de Paralelismo (JP2011), La Laguna 2011, pages 651–656.
- Oscar G. Lorenzo, Juan A. Lorenzo, José C. Cabaleiro, Dora B. Heras, Marcos Suarez, Juan C. Pichel "A Study of Memory Access Patterns in Irregular Parallel Codes Using Hardware Counter-Based Tools", Int. Conf. on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas (USA), 2011, pages 920–923
- Oscar G. Lorenzo; Tomás F. Pena; José C. Cabaleiro; Juan C. Pichel; Juan A. Lorenzo; Francisco F. Rivera, "Hardware Counter Based Analysis of Memory Accesses in SMPs", ISPA2012 Madrid July 2012



## Publications Publications

- Oscar G. Lorenzo; Tomás F. Pena; José C. Cabaleiro; Juan C. Pichel; Francisco F. Rivera, "DyRM: A Dynamic Roofline Model Based on Runtime Information", CMMSE 2013 (Accepted)
- Oscar G. Lorenzo; Tomás F. Pena; José C. Cabaleiro; Juan C. Pichel; Juan A. Lorenzo; Francisco F. Rivera, "A Hardware Counters Based Toolkit for the Analysis of Memory Accesses in SMPs", Concurrency and Computation: Practice and Experience (Under Review)



# Thank you!!

