
Efficient optimization

techniques for automatic

composition of Web services
Doctoral Meeting

Pablo Rodríguez Mier
Supervisors: Manuel Lama, Manuel Mucientes

Centro Singular de Investigación en Tecnoloxías da Información

Universidade de Santiago de Compostela

February 5, 2015
citius.usc.es

Introduction Problem Formalization Algorithms

Outline

1 Introduction

2 Problem Formalization

3 Algorithms

February 5, 2015

Introduction Problem Formalization Algorithms

Web Services

Definition

“A Web service is a software system designed to support

interoperable machine-to-machine interaction over a network.”

— W3C Web Services Architecture Working Group

Simple I/O Web Service Model:

Examples: Payment services (e.g. Paypal WS), Geolocation (e.g. Google

Maps), IaaS (e.g. Amazon WS), E-commerce (e.g. Ebay WS), Delivery

services (e.g. FedEx WS)...

February 5, 2015 1/34

Introduction Problem Formalization Algorithms

Web Services (II)

Web services are the most common realization of Service Oriented

Architectures. Why?

Loosely-coupled components: well defined interfaces and

functionality

Distributed components: can be deployed and accessed through

the network

Interoperability: built on standardized protocols and technologies

Composability: can be combined to create new functionality by

reusing services

...

February 5, 2015 2/34

Introduction Problem Formalization Algorithms

Composition of Web Services

A key feature of Web services is that they can be composed to create

new services with new functionality by reusing the existing ones:

Web Services Composition of Services
e-business servicese-commerce services

bank services

text summarization service translation service

summarization + translation service

Full text (input) translated summary (output)

February 5, 2015 3/34

Introduction Problem Formalization Algorithms

Problems

Web service composition is a highly complex task

Huge amount of Web services

Highly dynamic nature of the Web

. Services are constantly updated, created and destroyed

Many possible combinations, hard to find the best one

Need for efficient automatic composition techniques

February 5, 2015 4/34

Introduction Problem Formalization Algorithms

Automatic Composition of Web Services

Question

Given a input/output description of the composition goal, how can we

obtain optimal compositions (fast) that satisfy the goal?

February 5, 2015 5/34

Introduction Problem Formalization Algorithms

State-of-the-art current problems

Elevated time to compute good compositions

Poor scalability with the number of services

Inefficient / sub-optimal compositions

Lack of support for automatic service discovery

February 5, 2015 6/34

Introduction Problem Formalization Algorithms

PhD Tasks & Research goals

Define a model for composing services by connecting their

inputs/outputs (semantics)

Develop efficient algorithms for automatic composition

. Minimizing the length of the composition

. Minimizing the number of services in the composition

. Optimizing non-functional aspects (QoS)

Define optimizations to improve the scalability

Integrated framework for automatic composition and discovery

February 5, 2015 7/34

Introduction Problem Formalization Algorithms

Applications

Automatic Composition: Applications

E-commerce

E-business

Internet of Things

Smart Cities

February 5, 2015 8/34

Introduction Problem Formalization Algorithms

Outline

1 Introduction

2 Problem Formalization

3 Algorithms

February 5, 2015

Introduction Problem Formalization Algorithms

Semantic Web Services (SWS)

How can we “match” inputs and outputs of services?

Semantic annotations of WS enables logic reasoning of services

We define a semantic Web

service as a tuple

w = {Inw, Outw} where:

Inw = {i1, i2, ..., in} is the

set of required inputs

Outw = {o1, o2, ..., on} is

the set of generated

outputs

Inw, Outw ⊂ O are

concepts from an

ontology O
W1

ont:Description

ont:Video

ont:Text

ont:Video

ont:Description

ont:Videoont:Text

ont:Asset

rdfs:subclassOf

rdfs:subclassOf
rdfs:subclassOf

exact match

plugin match

Ontology

ow1

ow1

iw2

iw2

1

1

2
2

W2

February 5, 2015 9/34

Introduction Problem Formalization Algorithms

Semantic Matching

When can we invoke a service?

Types of match [Paolucci 2002]1:

Exact (≡): ow1 ≡ iw2 ⇐⇒
same concepts

Plugin (v): ow1 v iw2 ⇐⇒
ow1 subclass of iw2

Subsume (w):

ow1 w iw2 ⇐⇒ ow1
superclass of iw2

Fail (⊥): no match between

concepts

Service invokability:

Given C1, C2 ⊆ O, we define

⊗ : O×O→ O such that

C1 ⊗ C2 = {c2 ∈
C2|match(c1, c2), c1 ∈ C1}

match(c1, c2) is true

⇐⇒ c1 ≡ c2 ∨ c1 v c2

w = {Inw, Outw} is

invokable with a set of

concepts C ⊆ O ⇐⇒
C⊗ Inw = Inw

February 5, 2015 10/34

Introduction Problem Formalization Algorithms

Semantic Composition

How can we model a valid composition for a request?

Given a composition request r = {Inr, Outr}, a composite service

wc = {Inwc , Outwc , P = {W,≺}} satisfies r if:

Inr ⊗ Inwc = Inwc (invokable with the available inputs)

Outwc ⊗Outr = Outr (returns all the requested outputs)

Every service w ∈ W in the composite service is invokable with the

preceding output concepts according to a partial order P imposed

by the match dependencies relations between inputs/outputs

February 5, 2015 11/34

Introduction Problem Formalization Algorithms

Composition Example

The partial order of the services in the composition can be seen as a

directed graph.

Weather
Service

Whois
Service

Weather
Auth

Service

IPAddr IPAddr

UserCredential

Credential WeatherAuthToken

WeatherAuth

TimeZone

Country

Place

TimeZone

Weather

Weather

Place

Request Inputs Request Outputs

There are many topological orderings of the services (many ways

of invoking the composition: sequence, parallel...)

February 5, 2015 12/34

Introduction Problem Formalization Algorithms

Optimizing length & services

How to generate good compositions?

Minimize length⇒ maximize parallel execution

Minimize num. of services⇒more interpretable & reliable solutions

Length Composition size (4 services)

Finding the optimal composition with the minimum number of services

is NP-Hard!

February 5, 2015 13/34

Introduction Problem Formalization Algorithms

Service minimization is NP-Hard

SET COVER PROBLEM ≤P SERVICE MINIMIZATION

A

B

C

D

E

F

X

Y

1

2

3

4

5

A={1}

B={2}

C={3}

D={4}

E={2,4}

F={3,5}

Every instance of the SCP can be trivially represented as an

instance of the Service Minimization Problem

February 5, 2015 14/34

Introduction Problem Formalization Algorithms

Outline

1 Introduction

2 Problem Formalization

3 Algorithms

February 5, 2015

Introduction Problem Formalization Algorithms

Genetic Algorithm for Automatic Composition (I)
Context-Free Grammar Evolutionary Approach

Sequence
Id: 2.1

Process
Id: 2.2 cs: sequence 2.1

Ia: ia, ib In: ia
Io: O: o3.1

Composite Process
Id: 1 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

Atomic Process
Id: 3.2 cs: sequence 2.1

Ia: ia, ib, o3.1

In: ib, o3.1 Io: o3.1 O: o3.2

Atomic Process
Id: 3.1 cs: sequence 2.1

Ia: ia, ib
In: ia Io: O: o3.1

Process
Id: 2.3 cs: sequence 2.1

Ia: ia, ib, o3.1 In: ia, ib, o3.1, o3.2

Io: o3.1 O: o3.2, o6.1, o6.2

Initial Process
Id: 0 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

Generation of random compositions using the
context-free grammar

A

B

C

Sequence(AtomicProcess(A),
Split(AtomicProcess(B), AtomicProcess(C))

A B

Sequence(AtomicProcess(A),
AtomicProcess(B))

February 5, 2015 15/34

Introduction Problem Formalization Algorithms

Genetic Algorithm for Automatic Composition (II)
Context-Free Grammar Evolutionary Approach

Sequence
Id: 2.1

Process
Id: 2.2 cs: sequence 2.1

Ia: ia, ib In: ia
Io: O: o3.1

Composite Process
Id: 1 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

Atomic Process
Id: 3.2 cs: sequence 2.1

Ia: ia, ib, o3.1

In: ib, o3.1 Io: o3.1 O: o3.2

Atomic Process
Id: 3.1 cs: sequence 2.1

Ia: ia, ib
In: ia Io: O: o3.1

Process
Id: 2.3 cs: sequence 2.1

Ia: ia, ib, o3.1 In: ia, ib, o3.1, o3.2

Io: o3.1 O: o3.2, o6.1, o6.2

Initial Process
Id: 0 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

k-tournament based selection of individuals

A

B

C

A B VS

February 5, 2015 16/34

Introduction Problem Formalization Algorithms

Genetic Algorithm for Automatic Composition (III)
Context-Free Grammar Evolutionary Approach

Sequence
Id: 2.1

Process
Id: 2.2 cs: sequence 2.1

Ia: ia, ib In: ia
Io: O: o3.1

Composite Process
Id: 1 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

Atomic Process
Id: 3.2 cs: sequence 2.1

Ia: ia, ib, o3.1

In: ib, o3.1 Io: o3.1 O: o3.2

Atomic Process
Id: 3.1 cs: sequence 2.1

Ia: ia, ib
In: ia Io: O: o3.1

Process
Id: 2.3 cs: sequence 2.1

Ia: ia, ib, o3.1 In: ia, ib, o3.1, o3.2

Io: o3.1 O: o3.2, o6.1, o6.2

Initial Process
Id: 0 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

Crossover + mutations

E

F

G

A B

+
=

C

D

E

F

G

A

B CD

H

February 5, 2015 17/34

Introduction Problem Formalization Algorithms

Genetic Algorithm for Automatic Composition (IV)
Context-Free Grammar Evolutionary Approach

Sequence
Id: 2.1

Process
Id: 2.2 cs: sequence 2.1

Ia: ia, ib In: ia
Io: O: o3.1

Composite Process
Id: 1 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

Atomic Process
Id: 3.2 cs: sequence 2.1

Ia: ia, ib, o3.1

In: ib, o3.1 Io: o3.1 O: o3.2

Atomic Process
Id: 3.1 cs: sequence 2.1

Ia: ia, ib
In: ia Io: O: o3.1

Process
Id: 2.3 cs: sequence 2.1

Ia: ia, ib, o3.1 In: ia, ib, o3.1, o3.2

Io: o3.1 O: o3.2, o6.1, o6.2

Initial Process
Id: 0 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

Fitness evaluation of each individual

Length Num. services

Inputs used
Outputs satisfied

February 5, 2015 18/34

Introduction Problem Formalization Algorithms

Genetic Algorithm for Automatic Composition (V)
Context-Free Grammar Evolutionary Approach

Sequence
Id: 2.1

Process
Id: 2.2 cs: sequence 2.1

Ia: ia, ib In: ia
Io: O: o3.1

Composite Process
Id: 1 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

Atomic Process
Id: 3.2 cs: sequence 2.1

Ia: ia, ib, o3.1

In: ib, o3.1 Io: o3.1 O: o3.2

Atomic Process
Id: 3.1 cs: sequence 2.1

Ia: ia, ib
In: ia Io: O: o3.1

Process
Id: 2.3 cs: sequence 2.1

Ia: ia, ib, o3.1 In: ia, ib, o3.1, o3.2

Io: o3.1 O: o3.2, o6.1, o6.2

Initial Process
Id: 0 cs:

Ia: ia, ib In: ia, ib, o3.1, o3.2

Io: O: o3.1, o3.2, o6.1, o6.2

Population-based selection approach

N offspring + N parents merged, best N selected

February 5, 2015 19/34

Introduction Problem Formalization Algorithms

Genetic Algorithm for Automatic Composition (VI)

Pros

Can handle very complex control constructions

Many different solutions (improved over time)

Cons

Slow convergence for large compositions

Complex and suboptimal solutions

Hard to adjust tradeoffs in the fitness function

Contributions

P. Rodríguez-Mier, M. Mucientes, M. Lama and M.I. Couto. Composition of web services through

genetic programming. Evolutionary Intelligence, 3:171-186, 2010

February 5, 2015 20/34

Introduction Problem Formalization Algorithms

Graph-based algorithm (I)

Request
Inputs

Forward graph generation
L1 L2 L3 L1 L2 L3

Optimizations
L1 L2 L3

Backward heuristic search

Request
Outputs

Given a request, compute the shortest dependency graph of

services that produces the expected outputs

The graph is computed incrementally in polynomial time:

. The first layer (L1) contains the services that are invokable with the

inputs of the request

. The second layer (L2) contains the services that are invokable with

the inputs of the request plus the outputs of L1
. The generation stops when the expected outputs are achieved

February 5, 2015 21/34

Introduction Problem Formalization Algorithms

Graph-based algorithm (II)

Request
Inputs

Forward graph generation
L1 L2 L3 L1 L2 L3

Optimizations
L1 L2 L3

Backward heuristic search

Request
Outputs

Optimizations to prune irrelevant services

. Remove all services that do not contribute to the output goals

Analyze equivalence / dominance of functionality

. Admissible state-space pruning by combining equivalent and

dominated services

February 5, 2015 22/34

Introduction Problem Formalization Algorithms

Graph-based algorithm (II) - Interface Equivalence

G

B

C

D

E

A

F

There are 6 different compositions: {B, C} × {D, E, F} but:

. B and C are functionally (I/O) equivalent

. C, D and F are also functionally (I/O) equivalent

We can merge both groups of services to end with just one

composition: Sequence(A, Split(Choice(B,C), Choice(D,E,F), G).

February 5, 2015 23/34

Introduction Problem Formalization Algorithms

Graph-based algorithm (II) - Interface Dominance

G

B

C

D

E

A

Service E dominates B, C and D:

. It only needs A to solve its inputs

. It resolves all the inputs of service G

. Any other combination of services is redundant, i.e., leads to a

composition with more services and same functionality.

February 5, 2015 24/34

Introduction Problem Formalization Algorithms

Graph-based algorithm (III)

Request
Inputs

Forward graph generation
L1 L2 L3 L1 L2 L3

Optimizations
L1 L2 L3

Backward heuristic search

Request
Outputs

Backward heuristic A* algorithm to extract the optimal composition

subgraph from the graph

The algorithm starts searching from the last layer LN until it

reaches L1

Heuristic based cost function f (x) = g(x) + h(x) where

. g(x) = number of different services selected

. h(x) = distance from the current layer to L1 (consistent heuristic)

February 5, 2015 25/34

Introduction Problem Formalization Algorithms

Graph-based algorithm (IV) - A* search example

LN-1 LNLN-2

C

D

E

F

A

B

L0

Source Sink

Initial state

Neighbor state

estimated distance

A* backward heuristic search

February 5, 2015 26/34

Introduction Problem Formalization Algorithms

Graph-based algorithm (V) - Evaluation

Evaluation with the Web Service Challenge 2008 (8 datasets)

From 158 to 8,000 services with semantic annotations

Graph example of the smallest dataset (158 services):

February 5, 2015 27/34

Introduction Problem Formalization Algorithms

Graph-based algorithm (VI) - Results
Our algorithm solves all the datasets with optimal results

It finds a solution which is better than the winners of the challenge

(42 vs 46 services)

Main contributions

P. Rodríguez-Mier, M. Mucientes and M. Lama. Web Service Composition with a

Heuristic-based Search Algorithm. In IEEE ICWS, pages 81–88, Washington DC (USA), 2011

(CORE-A 14% acceptance)

P. Rodríguez-Mier, M. Mucientes, J.C. Vidal, and M. Lama. An Optimal and Complete Algorithm

for Automatic Web Service Composition. IJWSR, 9(2):1-20, 2012 (JCR)

February 5, 2015 28/34

Introduction Problem Formalization Algorithms

QoS-Driven Automatic Composition

Services are associated with non-functional properties such as

response time or throughput

Extension of the previous approach to:

. Optimize the end-to-end Quality-of-Service of the composition

. Keep the composition simple (optimize the number of services)

Proposed approach:

1. Compute the service graph for a request

2. Run an adapted version of the Dijkstra’s algorithm to obtain the best

possible QoS in polynomial time (forwards)
3. State-space search to minimize the number of services but keeping

the optimal QoS (backwards)

- Optimization: use best QoS value as a bound to prune all states that

worsen the overall QoS

February 5, 2015 29/34

Introduction Problem Formalization Algorithms

QoS-Driven Automatic Composition

LN-1 LNLN-2

G

C

D

E

F

A

B

Q1 Q2
A A,

Q1 Q2
B B,

Q1 Q2
A A

w1 +w2

Q1 Q2
B B

w1 +w2Q1 Q2
A A

w1 +w2min(),

Q1 Q2
C C,

Q1
A

w1 Q1
C+((

+ Q2
A

w1 Q2
C+((

QoS Aggregation Function

Q1 Q2
D D,

Q1 Q2
E E,

Q1 Q2
F F,

Backward State-Space Search to minimize the services

Forward computation of the best QoS

February 5, 2015 30/34

Introduction Problem Formalization Algorithms

QoS-Driven Automatic Composition - Evaluation

We have validated the algorithm using the 5 repositories of the Web

Service Challenge 2009

We found shorter solutions in datasets 4 and 5

Main contributions

P. Rodríguez-Mier, M. Mucientes and M. Lama. A Dynamic QoS-Aware Semantic Web Service

Composition Algorithm. In Proceedings of the 10th International Conference on

Service-Oriented Computing (ICSOC), pages 623-630, Shanghai (China), 2012 (CORE-A)

February 5, 2015 31/34

Introduction Problem Formalization Algorithms

Integrated Framework & Architecture (I)

Graph-Based
Optimizations

Comp.
Request

Optimal
Composition

Search

Search
Optimizations

Input/Output
service composition

description

Service Registries

Concept
Matchmaking

Composition
Graph

Generation

Service
Discovery

Optimal
Composition

WorkflowOptimized composition graph

Semantic
Reasoner MATCHMAKING / DISCOVERY

Composition Graph

GRAPH-BASED COMPOSITION

An Integrated semantic Web service discovery and composition

framework was developed in collaboration with the Knowledge

Media Institute, The Open University, UK

Main contributions:

. Integration with service discovery

. Reference implementation

. Performance analysis with different optimizations

February 5, 2015 32/34

Introduction Problem Formalization Algorithms

Integrated Framework & Architecture (II)

Reference implementation:

. ComposIT: graph-based composition algorithm developed in this

thesis (http://github.com/citiususc/composit).

. iServe: service warehouse developed by the KMi, The Open

University, UK. Project lead by Dr. Carlos Pedrinaci

(https://github.com/kmi/iserve).

Part of this research was used in the European COMPOSE Project

February 5, 2015 33/34

http://github.com/citiususc/composit
https://github.com/kmi/iserve

Introduction Problem Formalization Algorithms

PhD Chronology

2011 2012 2013 2014 2015

ICWS (CORE-A)
Acceptance rate: 14%

ICSOC (CORE-A)
Acceptance rate: 28%

IJWSR (JCR Journal)

JCIS Conference

Research Internship
(Barrié Grant)

KMI, The Open University, UK

TSC (JCR Journal)
minor revision

CISTI (Iberian conference)

2010

EVIN (Int. Journal)

Other activities

Conferences

Journals

February 5, 2015 34/34

Introduction Problem Formalization Algorithms

Thank you!

Questions? :-)

pablo.rodriguez.mier@usc.es

February 5, 2015

	Introduction
	Problem Formalization
	Algorithms

