Doctoral Meeting

Line-based Structure-from-Motion

• Roi Santos

Artificial Vision Group

• Directores: Xose M. Pardo, Xose R. Fdez-Vidal

Centro Singular de Investigación en Tecnoloxías da Información UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

citius.usc.es

Centro Singular de Investigación en **Tecnoloxías** da **Información**

- Main topics
 - From 2D line detection, to 3D line reconstruction
 - Context
 - 2D
 - Detection of straight segments
 - Line matching on pairs of views
 - Results
 - Matching outlier detection
 - 3D
 - Simple triangulation
 - 3D reconstruction based on lines
 - Simple 2-views triangulation
 - Line based SfM
 - Bundle adjustment
 - Results
 - Applications
 - Future work

Context

Feature matching is a fundamental task in Computer Vision.

We can match primitives or more complex geometrical forms.

Feature points matching

Context – Line segments

Work with line segments

- Line detection
- Line matching

Ci

• Line based 3D reconstruction

Line detection (OpenCV)

Line matching (OpenCV)

- 2D
 - Hypothesis

A combination of

- line segment detector based on phase congruency and
- line matcher based on individual appearance and structure can improve the state-of-the-art matching.

- 2D Detection
 - Downsample images

• Extract edges

- 2D Detection
 - Downsample images •

Extract edges •

Max. phase congruency

Convolution with Gaussian

III FITH STAT 13371

- 2D Detection
 - Fit to straight lines

• Identify multi-scale

- 2D Detection
 - Fit to straight lines

• Identify multi-scale

- 2D Detection
 - End of multi-scale fusion

Line segments are classified.

- 2D Detection
 - End of multi-scale fusion

Line segments are classified.

• 2D - Detection

TASK

Detect segments on the scale-space

ADVANTAGES AGAINST THE COMPETITION

- Resilience to changes in illumination conditions
- Less segment fragmentation
- Scale-space information for matching

APLICATIONS

Multi-view matching of different shapes

• Look for groups of segments

Divide and conquer Build relations between groups of lines

Build relations between groups of lines

• 2D - Matching

Iterative algorithm for creating hypothesis

Similarity between groups of segments

- Each line votes their neighbors
- A line can be part of several different neighborhoods

• 2D – Matching: Results

Method	Line Correspondences	Correct counterparts	Redundant lines	Avg. length dissimilarity	Avg. segment length (pix.)	Total length (pix.)	Time (s)
CLPI	1	0	-	-	-	-	7
LJL	52	41	2	0.38	62.2	3300	38
LBD	24	8	0	0.38	67.7	1692.8	1
LS	49	45	ND	ND	ND	ND	6
Proposed	42	33	0	0.16	73.9	3104.9	20

• 2D – Matching: Results

Method	Line Correspondences	Correct counterparts	Redundant lines	Avg. length dissimilarity	Avg. segment length (pix.)	Total length (pix.)	Time (s)
CLPI	0	0	-	-	-	-	20
LJL	27	27	3	0.38	100	2699.9	4
LBD	40	17	2	0.51	93.0	3722.8	1
LS	44	40	ND	ND	ND	ND	7
Proposed	22	22	0	0.12	187.5	4124.9	38

• 2D – Matching: Results

Method	Inlier ratio	Avg. length	Avg. dissimilarity	Processing time (s)
CLPI (Jia et al. (2016))	27.25%	67.3 pix.	0.23	39
LJL (Li et al. (2016b))	85.91%	59.3 pix.	0.33	154
LBD (Zhang and Koch (2013))	24.27%	66.6 pix.	0.40	2
LS (Wang et al. (2009a))	91.94%	-	-	6
Proposed	92.22%	105.1 pix.	0.14	39

• 2D - Matching

TASK

Find counterparts of the detections on other images

ADVANTAGES AGAINST THE COMPETITION

- Better use of **Structure** of groups of lines & **Appearance** individual segments
- PCA to discriminate hypothesis
- Finds global transformation

APLICATIONS

Understanding scene, autonomous robots 3D scene reconstruction

- 3D
 - Hypothesis
- A 3D line based sketch aimed for low texture and low resolution images can add valuable information for the understanding of an scene.

• 3D - Stereo

• Triangulation from two views

- Create stereo sub-systems
 - Constraints between correspondences
 - Five-point Relative Pose Problem (Nistér 2004)

• 3D - Stereo

Triangulation from two views

- All the possible pairs of images are merged
- Multi-view entity
 - Refers to a real segment with counterparts on several views

3D – Bundle adjustment

Structure-From-Motion from 3 or more views

- Unifies multiple stereo projections to an unique sketch.
- Least squares optimization.
 - Based on Levenberg-Marquardt
- Obtains most probable 3D points and camera poses.
 - Minimizes the total **reprojection error** on the camera planes

3D – Bundle adjustment

Structure-From-Motion from 3 or more views

• 3D – Structures in the spatial sketch

Exploitation of coplanar intersections

- ▷ 1) Fit Spatial lines to different planes
 - Group coplanar lines
- 2) Intersect coplanar lines on the images
 - Add coplanar line intersections into the reconstructions

Useful when a low number of lines is available

- 3D Results
 - Camera poses and 3D lines retrieved exclusively from matched segments ٠

With four images showing:

• 3D – Results

Matched segments teaming with Point Cloud •

Method	Line detection and matching	Depends on point cloud	First 3D estimation	Final result
Proposed Line3D++ [16] (M. Hofer 2016)	Appearance and structure [21] LSD and SfM pipeline	NO YES	Linear triangulation Depends on point cloud	Bundle adjustment Bundle adjustment
	_			
				30

• 3D – Quantitative evaluation

• Distances to Ground Truth mesh, Timber Frame House (Jain et al. 2010)

Method	Line detection and matching	Depends on point cloud	First 3D estimation	Final result
Proposed Line3D++ [16]	Appearance and structure [21] LSD and SfM pipeline	NO YES	Linear triangulation Depends on point cloud	Bundle adjustment Bundle adjustment

8 and 10 images

• 3D – Quantitative evaluation

• Distances to Ground Truth mesh, Timber Frame House (Jain et al. 2010)

Method	Line detection and matching	Depends on point cloud	First 3D estimation	Final result
Proposed Line3D++ [16]	Appearance and structure [21] LSD and SfM pipeline	NO YES	Linear triangulation Depends on point cloud	Bundle adjustment Bundle adjustment
With 10 images:		C2M absolute distances 0.79310 0.74353 0.693962 0.644394 0.594825 0.545257 0.36688 0.346987 0.346987 0.39655 0.346982 0.346987 0.39858 0.346987 0.39858 0.346987 0.39858		C2M absolute distances[<0.8] 0.80000C 0.75000C 0.65000C 0.65000C 0.55000C 0.50000C 0.50000C 0.45000C 0.45000C 0.35000C 0.35000C 0.35000C 0.15000 0.15000 0.15000 0.05000 0.05000
Cinus	Propo	osed	Line3D++ (2016)	

3D – Quantitative evaluation

Distances to Ground Truth mesh, Timber Frame House (Jain et al. 2010)

3D – Quantitative evaluation

Distances to Ground Truth mesh, Timber Frame House (Jain et al. 2010)

With 8 images

3D – Qualitative comparison

Oxford dataset. Merton College (1024×768)

• 3D sketch

TASK

Obtain a **3D straight segment** based abstraction of a scene/object.

ADVANTAGES AGAINST THE COMPETITION

- Higher resilience to an absence of a dense point cloud
- More 3D lines when a low number of images is available
- More 3D lines when the resolution is low (hence low number of lines)
- Identifies and exploits 3D structures

APLICATIONS

Build 3D sketch of man-made environments (buildings, interiors of offices) Reconstruct simple 3D objects

3D Applications – Matching Outlier detector

3D Applications – UAV real-time 3D sketch

HROS

- Implementation
 - Due to software registration

C++, ROS

FEATURES

- Real time from images and camera intrinsic parameters
- Performs detection, matching and 3D reconstruction
- Bundle adjustment
- Output: PLY file with lines, points and camera poses.

REAL TIME APLICATION WITH UAV

Parrot Bebop 2

Near future

MAIN

Defend Thesis

TBD

- Matching would benefit from Machine Learning?
- Improve how matched lines are projected.

OUR PAPERS

Published:

- → Journal **Pattern Recognition** (2014) about Line Detection and Matching
- → Congress **IbPRIA** (2015)
- ➤ Congress IEEE AIPR (2017)

Awaiting response:

- → Journal Pattern Recognition (2017) about <u>3D Reconstruction</u> ONGOING REVISION .
- Congress ICCV (2018) about Line Matching.
- Journal CVIU (2018) about Line Matching.

Near future

THANK YOU

