Corpus-based Construction of Polarity Lexicon to Identify Extreme Opinions

Sattam Almataue bibjectivity and ata Stress Facebook

Centro Singular de Investigación en Tecnoloxías da Información

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Ci

<u>citius.usc.es</u>

Outlines

1. Introduction

- Objectives
- Motivations
- Sentiment Analysis(SA)
- Sentiment Polarity Classification.
- **2. Sentiment Lexicon Construction**
- **3. Experiments and Evaluation**
- 4. Conclusions and Discussion

Objectives

Propose a method for automatically building polarity lexicons from corpora

Investigate the effectiveness of the automatic construction of a sentiment lexicon using unsupervised machine learning classification to search for extreme opinions.

Motivations

- The Significant impact of Extreme Opinions in many fields such as industry, trade, political and social issues.
- Only about 5% of all opinions are in the most negative or the most positive level of the opinion scale,
- The construction of polarity lexicons is a strenuous and boring task if it is made manually.
- To the best of our knowledge, no sentiment analysis approach has considered the automatic identification and extraction of Extreme opinions

Motivations

Hypothetical continuous distribution of negative, neutral and positive views on a scale from 1 to 5, according to the borderline between stars.

Sentiment Analysis(SA).

SENTIMENT ANALYSIS

Discovering people opinions, emotions and feelings about a product or service

Sentiment Polarity Classification

Sentiment Polarity Classification.

Ci

US

First step

$\mathbf{D}\mathbf{F}(\mathbf{a}\mathbf{r})$		freq(w, c)
$hF_{c}(w)$	=	$Total_{c}$

 l_c

Tag	Category	Freq	Total	Corpus
a	1	122232	25395214	IMDB
a	2	40491	11755132	IMDB
a	3	37787	13995838	IMDB
a	4	33070	14963866	IMDB
a	5	39205	20390515	IMDB
a	6	43101	27420036	IMDB
a	7	46696	40192077	IMDB
a	8	42228	48723444	IMDB
a	9	29588	40277743	IMDB
a	10	51778	73948447	IMDB
	Tag a	Tag Category a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10	TagCategoryFreqa1 122232 a2 40491 a3 37787 a4 33070 a5 39205 a6 43101 a7 46696 a8 42228 a9 29588 a10 51778	TagCategoryFreqTotala1 122232 25395214 a2 40491 11755132 a3 37787 13995838 a4 33070 14963866 a5 39205 20390515 a6 43101 27420036 a7 46696 40192077 a8 42228 48723444 a9 29588 40277743 a10 51778 73948447

Second step

		Negat	ives		Neutr	al			Positive	9
B=4	1	2	3	4	5	6	7	8	9	10
B=3	1	2	3	4	5	6	7	8	9	10
B=2	1	2	3	4	5	6	7	8	9	10
B=1	1	2	3	4	5	6	7	8	9	10
B=2		1		2		3		1		
B=1		1		2		- 3	ц. ц		5	
				_	•	-		-		

Given a borderline value, *B*

$$AvMN(w) = \frac{\sum_{c=1}^{B} RF_c(w)}{B}$$
$$AvMP(w) = \frac{\sum_{c=(N+1)-B}^{N} RF_c(w)}{B}$$

 $R = N - B_{\perp}$, where N is the total number of categories

$$AvNMN(w) = \frac{\sum_{c=B+1}^{N} RF_c(w)}{R}$$

$$AvNMP(w) = \frac{\sum_{c=1}^{N-B} RF_c(w)}{R}$$

$$D_{neg}(w) = AvNMN(w) - AvMN(w)$$

- IF $D_{MN}(w) < 0$
- IF $D_{MN}(w) > 0$

1	2	3	4	5	6	7	8	9	10
---	---	---	---	---	---	---	---	---	----

$$D_{pos}(w) = AvNMP(w) - AvMP(w)$$

- IF $D_{MP}(w) < 0$
- IF $D_{MP}(w) > 0$

1	2	3	4	5	6	7	8	9	10
---	---	---	---	---	---	---	---	---	----

Sentiment Classification

Algorithm 1 Identifying the most negative	Algorithm 2 Identifying the most positive
1: $docScore = 0$	$1: \ docScore = 0$
2: for Each document do	2: for Each document do
3: $WordScore = 0$	3: $WordScore = 0$
4: for Each Word in document do	4: for Each Word in document \mathbf{do}
5: if Word IN <i>MN</i> then	5: if Word IN <i>MP</i> then
6: WordScore =-1 {the word in MN (most negative words).}	6: WordScore= $+1$ {the word in MP (most positive words).}
7: else	7: $else$
8: WordScore $+1$ {the word in NMN (not most negative words).}	8: WordScore $= -1$ {the word in NMP (not most positive words).}
9: end if $docScore = docScore + WordScore$	9: end if $docScore = docScore + WordScore$
10: end for	10: end for
11: if $docScore \le 0$ then	11: if $docScore \ge 0$ then
12: $\operatorname{docScore} = \operatorname{Most} \operatorname{Negative}$	12: $\operatorname{docScore} = \operatorname{Most} \operatorname{positive}$
13: else	13: $else$
14: $\operatorname{docScore} = \operatorname{Not} \operatorname{Most} \operatorname{Negative}$	14: $\operatorname{docScore} = \operatorname{Not} \operatorname{Most} \operatorname{positive}$
15: end if	15: end if
16: return docScore	16: return $docScore$
17: end for	17: end for

Data Collection

Datasets	# of Reviews	MN	NMN	\mathbf{MP}	NMP
Books	2000	522	1478	731	1269
DVDs	2000	530	1470	714	1286
Electronics	2000	666	1334	680	1320
Kitchens	2000	687	1313	754	1246
Movies	50000	14708	35292	14338	35662

Size of the five test datasets and the total number of reviews in each class the most negative Vs. Not most negative (MN vs. NMN) and the most positive Vs. not most positive (MP vs. NMP)

Lexicons

	Num	ber of v	words		\mathbf{MN}			$\mathbf{N}\mathbf{M}\mathbf{N}$	
Lexicon	ADJ	ADV	Total	ADJ	ADV	Total	ADJ	ADV	Total
VERY-NEG B=1	11670	2790	14460	4178	1092	5270	7492	1698	9190
VERY-NEG B=2	11557	2771	14328	4966	1266	6232	6591	1505	8096
SO-CAL NP1	2826	876	3702	189	62	251	2637	814	3451
SO-CAL NP2	2826	876	3702	536	135	671	2290	741	3031
SO-CAL NP3	2826	876	3702	1080	289	1369	1746	587	2333
SO-CAL NP4	2826	876	3702	1576	429	2005	1250	447	1697
SentiWords NP1	13425	2811	16236	156	4	160	13269	2807	16076
SentiWords NP2	13425	2811	16236	1132	24	1156	12293	2787	15080
SentiWords NP3	13425	2811	16236	4016	189	4205	9409	2622	12031
SentiWords NP4	13425	2811	16236	7612	540	8152	5813	2271	8084

Negative lexicons: total number of words (adjectives and adverbs) for each lexicon, and number of words for each class (MP and NMP) in each lexicon

Polarity classification results for all collections with **SO-CAL**, **SentiWords** and **VERY-NEG** lexicon, in terms of Precision (P_{neg}), Recall (R_{neg}) and F1_{neg} scores for most negative (MN) and other (NMN) class of documents.

		NP1			NP2			NP3			$\mathbf{NP4}$	
Dataset	\mathbf{P}_{neg}	\mathbf{R}_{neg}	${ m F1}_{neg}$	\mathbf{P}_{neg}	\mathbf{R}_{neg}	$F1_{neg}$	\mathbf{P}_{neg}	\mathbf{R}_{neg}	$F1_{neg}$	\mathbf{P}_{neg}	\mathbf{R}_{neg}	$\mathbf{F1}_{neg}$
Books	0.36	0.06	0.10	0.47	0.13	0.20	0.50	0.26	0.34	0.46	0.50	0.48
DVDs	0.60	0.10	0.17	0.58	0.18	0.28	0.56	0.31	0.40	0.48	0.51	0.49
Electronics	0.57	0.13	0.21	0.62	0.20	0.31	0.62	0.29	0.39	0.55	0.49	0.52
Kitchens	0.59	0.10	0.17	0.64	0.19	0.29	0.66	0.29	0.40	0.57	0.48	0.52
Movies	0.13	0.03	0.05	0.30	0.14	0.19	0.40	0.30	0.34	0.42	0.55	0.48

		NP1			NP2			NP3			NP4	
Dataset	\mathbf{P}_{neg}	\mathbf{R}_{neg}	$F1_{neg}$	\mathbf{P}_{neg}	\mathbf{R}_{neg}	${ m F1}_{neg}$	\mathbf{P}_{neg}	\mathbf{R}_{neg}	${ m F1}_{neg}$	\mathbf{P}_{neg}	${f R}_{neg}$	${ m F1}_{neg}$
Books	0.42	0.01	0.02	0.35	0.01	0.03	0.28	0.04	0.07	0.24	0.43	0.31
DVDs	0.33	0.01	0.01	0.53	0.03	0.06	0.58	0.13	0.22	0.49	0.41	0.44
Electronics	0.26	0.01	0.01	0.37	0.02	0.03	0.63	0.18	0.28	0.57	0.49	0.53
Kitchens	0.36	0.01	0.01	0.56	0.01	0.03	0.71	0.17	0.27	0.62	0.45	0.52
Movies	0.09	0.00	0.00	0.31	0.01	0.01	0.32	0.05	0.08	0.44	0.25	0.32

	VER	Y-NEC	B = 1	VERY-NEG B=2				
Dataset	$ \mathbf{P}_{neg} $	$ \mathbf{R}_{neg} $	${ m F1}_{neg}$	\mathbf{P}_{neg}	$ \mathbf{R}_{neg} $	$\mathbf{F1}_{neg}$		
Books	0.42	0.64	0.51	0.40	0.80	0.53		
DVDs	0.43	0.76	0.55	0.88	0.88	0.53		
Electronics	0.50	0.80	0.62	0.45	0.86	0.59		
Kitchen	0.52	0.70	0.60	0.47	0.80	0.59		
Movies	0.42	0.77	0.54	0.39	0.89	0.54		

The best performance (F1_{neg}) obtained by all lexicons on all datasets for identifying most negative documents (MN vs NMN).

Polarity classification results for all collections with **SO-CAL**, **SentiWords** and **VERY-POS** lexicon, in terms of Precision (P_{pos}), Recall (R_{pos}) and $F1_{pos}$ scores for most positive (MP) and other (NMP) class of documents.

		PP1			$\mathbf{PP2}$			PP3			$\mathbf{PP4}$	
Dataset	\mathbf{P}_{pos}	\mathbf{R}_{pos}	${ m F1}_{pos}$	\mathbf{P}_{pos}	\mathbf{R}_{pos}	$\mathbf{F1}_{pos}$	\mathbf{P}_{pos}	\mathbf{R}_{pos}	${ m F1}_{pos}$	\mathbf{P}_{pos}	\mathbf{R}_{pos}	${ m F1}_{pos}$
Books	0.61	0.17	0.27	0.54	0.34	0.42	0.52	0.55	0.53	0.41	0.94	0.57
DVDs	0.66	0.21	0.32	0.58	0.38	0.46	0.54	0.56	0.55	0.41	0.95	0.58
Electronics	0.54	0.26	0.35	0.51	0.40	0.45	0.49	0.60	0.54	0.38	0.94	0.54
Kitchens	0.53	0.23	0.32	0.53	0.36	0.43	0.50	0.55	0.52	0.42	0.97	0.59
Movies	0.75	0.11	0.20	0.60	0.29	0.39	0.52	0.49	0.50	0.35	0.94	0.51

	PP1			$\mathbf{PP2}$			PP3			PP4		
Dataset	\mathbf{P}_{pos}	\mathbf{R}_{pos}	F1 _{pos}	$ \mathbf{P}_{pos} $	$ \mathbf{R}_{pos} $	${ m F1}_{pos}$	$ \mathbf{P}_{pos} $	$ \mathbf{R}_{pos} $	$\mathbf{F1}_{pos}$	\mathbf{P}_{pos}	\mathbf{R}_{pos}	${ m F1}_{pos}$
Books	0.76	0.06	0.12	0.66	0.13	0.22	0.60	0.38	0.46	0.40	0.93	0.55
DVDs	0.65	0.07	0.21	0.64	0.13	0.22	0.59	0.38	0.46	0.39	0.92	0.55
Electronics	0.70	0.11	0.19	0.71	0.19	0.30	0.63	0.41	0.50	0.40	0.93	0.55
Kitchens	0.61	0.07	0.13	0.63	0.17	0.27	0.65	0.37	0.47	0.43	0.94	0.59
Movies	0.64	0.01	0.03	0.63	0.05	0.09	0.55	0.27	0.36	0.31	0.95	0.47

	VEI	RY-POS	B=1	VERY-POS B=2				
Dataset	\mathbf{P}_{pos}	\mathbf{R}_{pos}	${ m F1}_{pos}$	\mathbf{P}_{pos}	\mathbf{R}_{pos}	${ m F1}_{pos}$		
Books	0.67	0.55	0.61	0.61	0.67	0.64		
DVDs	0.68	0.49	0.57	0.63	0.61	0.62		
Electronics	0.63	0.42	0.50	0.57	0.52	0.54		
Kitchen	0.63	0.43	0.51	0.60	0.60	0.60		
Movies	0.63	0.41	0.50	0.55	0.58	0.57		

The best performance (F1_{pos}) obtained by all lexicons on all datasets for identifying the most positive documents.

4. Conclusion and Discussion

Conclusion

- Method to automatically build a lexicon of extremely negative and positive words from labeled corpora.
- Put the stress on the extreme opinions because of their importance in various fields.
- Our classification algorithm is based on the very basic word-matching scheme to perform unsupervised sentiment analysis.
- Our automatically built lexicons have been fairly compared with handcrafted lexicons, by taking into account some partitions of them.
- The results of the experiments show that our lexicons are better suited for identifying the extreme opinions than two well-known resources: SO-CALL and SentiWords (a version of SentiWordNet).

4. Conclusion and Discussion

Difficulties and challenges.

- The borderline between very negative and not very negative or very positive and not very positive is still more difficult to find than that discriminating between positive and negative opinions.
- We made an exhaustive study of the effectiveness of linguistic features in supervised machine learning classification to search for the most negative opinions. The experiments we reported on that work showed low performance for all configuration systems. This means that the task of searching for extreme opinions is very challenging even for supervised strategies.

