

# **Discovering temporal exceptions**

Data mining in temporal databases

Vanesa Graíño - PhD Student CiTIUS, University of Santiago de Compostela, Spain Doctoral Consortium AIME15 - Pavia, Italy - 17/06/2015

# Contract

Centro Singular de Investigación en **Tecnoloxías** da **Información** 

http://citius.usc.es

#### Contents

- 1 Context and motivation
- 2 Goals and novelty
- 3 Current status and future work
- 4 Conclusions



#### Contents

- 1 Context and motivation
- 2 Goals and novelty
- 3 Current status and future work
- 4 Conclusions



## **Exception Mining**

Clovers





## **Sequential Exception Mining**

Medical records

| Patient #1 |                     | Patient #2 |                     | Pa | Patient #3          |    | Patient #4          |  |  |
|------------|---------------------|------------|---------------------|----|---------------------|----|---------------------|--|--|
| 1          | Headache            | 1          | Headache            | 1  | Headache            | 1  | Headache            |  |  |
| 2          | Vertigo             | 2          | Vertigo             | 2  | Nose discharge      | 3  | Shortness of breath |  |  |
| 3          | Nose discharge      | 3          | Nose discharge      | 6  | Chest pain          | 9  | Chest pain          |  |  |
| 6          | Shortness of breath | 5          | Chest pain          | 6  | Shortness of breath | 10 | Nose discharge      |  |  |
| 7          | Nausea              | 7          | Shortness of breath | 7  | Nausea              |    |                     |  |  |
|            |                     |            |                     |    |                     |    |                     |  |  |

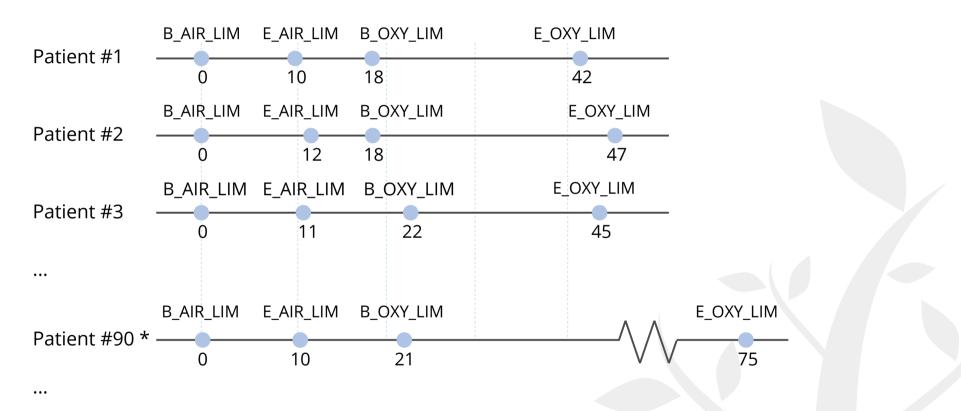
## **Sequential Exception Mining**

Medical records

| Patient #1 |                     | Patient #2 |                     | Patient #3 |                     | Patient #4 |                     |  |
|------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|--|
| 1          | Headache            | 1          | Headache            | 1          | Headache            | 1          | Headache            |  |
| 2          | Vertigo             | 2          | Vertigo             | 2          | Nose discharge      | 3          | Shortness of breath |  |
| 3          | Nose discharge      | 3          | Nose discharge      | 6          | Chest pain          | 9          | Chest pain          |  |
| 6          | Shortness of breath | 5          | Chest pain          | 6          | Shortness of breath | 10         | Nose discharge      |  |
| 7          | Nausea              | 7          | Shortness of breath | 7          | Nausea              |            |                     |  |
|            |                     |            |                     |            |                     |            |                     |  |

#### **Temporal Exception Mining**

Apnea Syndrome



\* 10% of the patients are treated with rheumatoid arthritis medicine

#### Contents

- 1 Context and motivation
- 2 Goals and novelty
- 3 Current status and future work
- 4 Conclusions



## The problem

#### Objectives

Design and develop new temporal data mining algorithms able to:

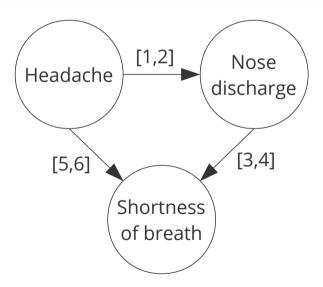
- 1 Discover temporal exception patterns.
- 2 Consider **events** and **episodes** as temporal entities.
- 3 Allow a domain expert to introduce previous knowledge and expectations.
- 4 Represent quantitative temporal information.
- 5 Provide expressive, useful, and readable results.

#### The solution

Simple Temporal Problem patterns

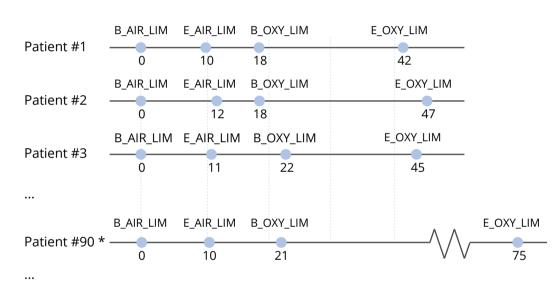
#### **STP Patterns**

A temporal pattern  $P = \langle A, \mathcal{L} \rangle$  of size n consists of a temporal association  $A = \{E_1, \ldots, E_n\} \subseteq E$ , and a set of temporal constraints  $\mathcal{L} = \{L_{ij}; 1 \leq i, j \leq n\}$  between the event types in A.

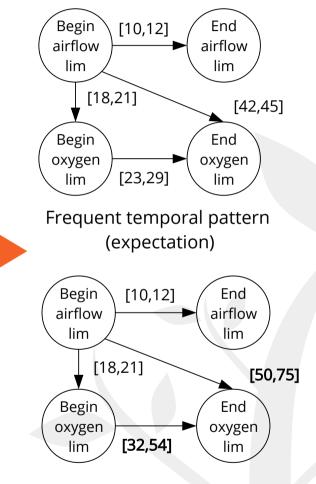


## The solution

#### Simple Temporal Problem patterns



\* 10% of the patients are treated with rheumatoid arthritis medicine



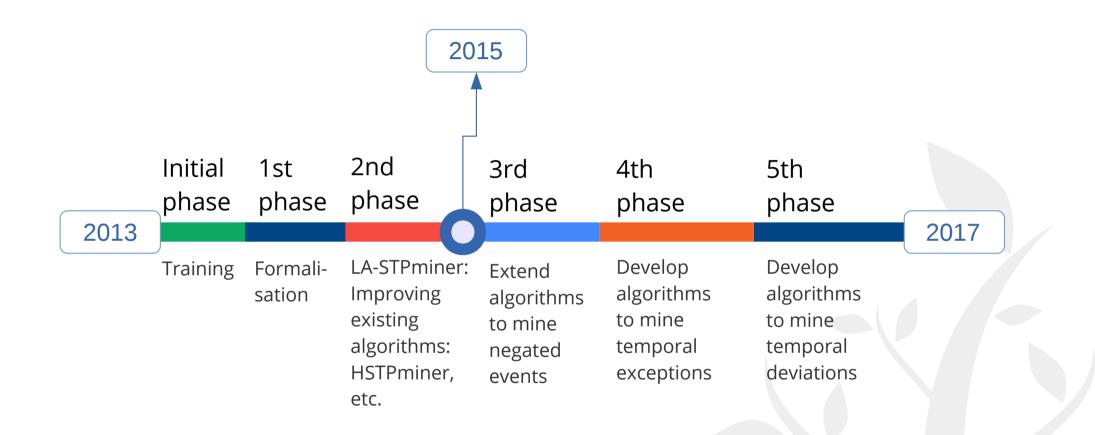
Temporal exception pattern

#### Contents

- 1 Context and motivation
- 2 Goals and novelty
- 3 Current status and future work
- 4 Conclusions



#### Work status

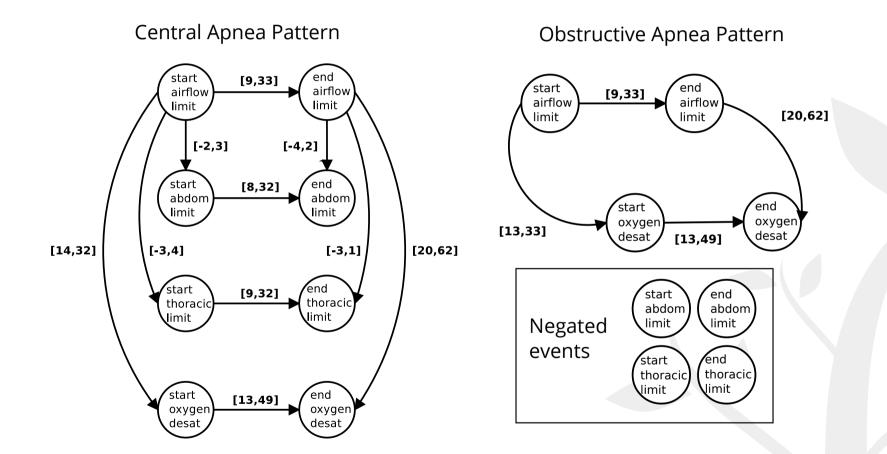


## Modelling temporal exception patterns

- Given a temporal pattern representing an **expectation**  $P_E = \langle D_E, \mathcal{L}_E \rangle$ , an **exception** is defined as a new temporal pattern  $P_X = \langle D_X, \mathcal{L}_X \rangle$  such that  $P_X = P_{E'} \cup \neg (P_E P_{E'}) \cup P_A$ , where
  - $P_{E^{\prime}}$  is a subpattern of  $P_{E}$  ,
  - $\neg(P_E P_{E'})$  is the result of negating the rest of the pattern  $P_E$ , and
  - $P_A$  is the result of adding new event types and constraints to that of  $P_E$ .
- The negation of rest of the pattern can be accomplished either negating its events, or negating its temporal constraints, or a combination of both.

#### **Temporal exception example: SAHS**

Annotated database of 50 SAHS patients, consisting of 120,000 events from 8 event types and 280 hours of sleep.



## Negated-events in temporal mining

Formalisation

An **extended temporal pattern** of size n is a pair  $P = \langle A, \mathcal{L} 
angle$  where

- \* A is an extended temporal association  $A=\{\hat{E_i},\ldots,\hat{E_n}\}\subseteq \mathcal{E}, E_1<\cdots< E_n$   $A=\{A^+\cup A^-\}$  where
  - $A^+$  are the positive event types  $A^+ = \{ \hat{E_i} \in A | \hat{E_i} \in \mathcal{E} \}$  and
  - $A^-$  are the negated event types  $A^- = \{ \hat{E}_i \in A | \neg \hat{E}_i \in \mathcal{E} \}$
- $\mathcal L$  is a set of temporal constraints  $\mathcal L=\{L_{ij}; 1\leq i,j\leq n\}$  between the event types in  $A^+.$
- An occurrence of an extended temporal pattern is a temporal window  $W = \{e_1, \ldots, e_m\}$  of width  $\omega$  where every  $E_i \in A^+$  has an event occurrence  $e_j \in W$  satisfying all the temporal constraints in  $\mathcal{L}$  and none of  $\neg E_i \in A^-$  has an event occurrence.

## Improving algorithms: LA-STPminer

Look-Ahead STP Miner Algorithm

#### Purpose

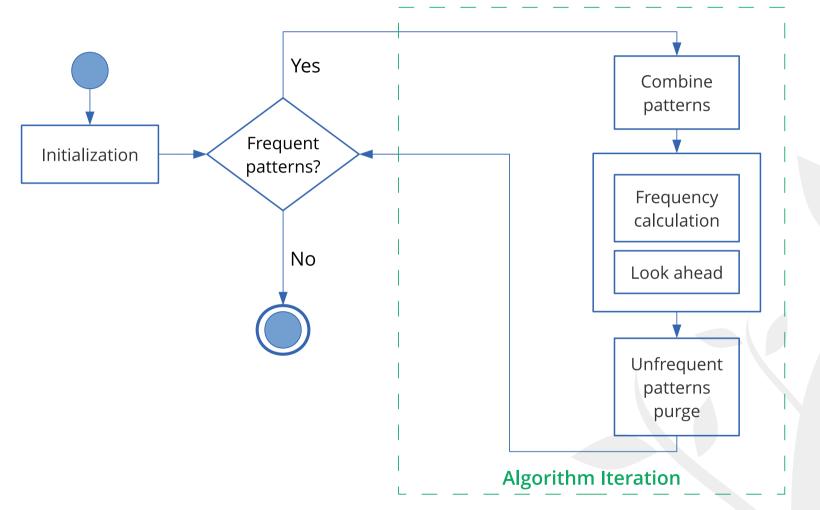
- To extract a set of frequent temporal patterns from a collection of event sequences.
- Each pattern represents a set of temporal arrangements between events considered sufficiently similar and frequent.

#### **STP Patterns**

- Quantitative temporal constraint networks.
- Candidate patterns constructed from previous frequent patterns.
- Size two patterns obtained using a clustering procedure.

## LA-STPminer

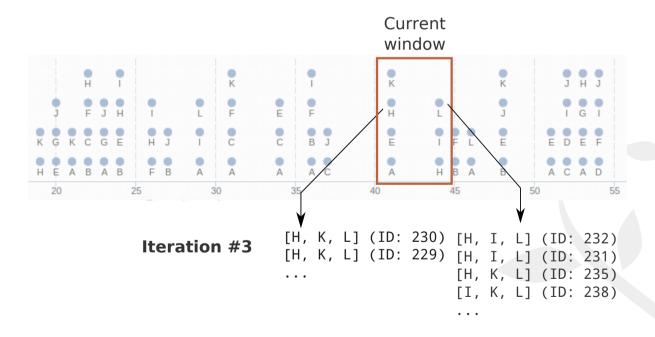
#### Flow chart



#### LA-STPminer

Look ahead strategy

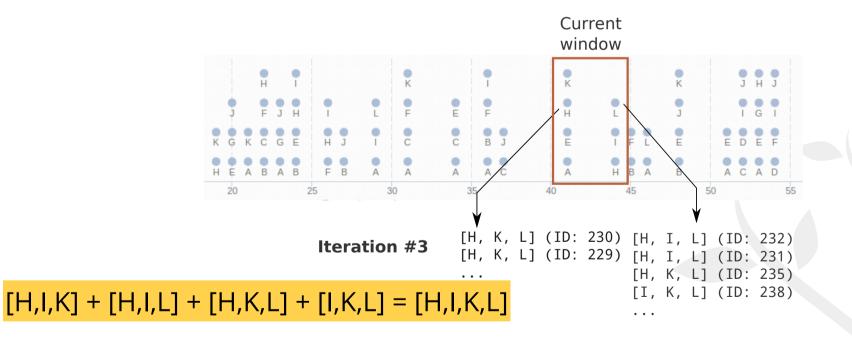
- The patterns found in one iteration are annotated in the last event of their occurrences, but only if they can be combined into a bigger association.
- These annotations are extended in the frequency calculation of the next iteration.



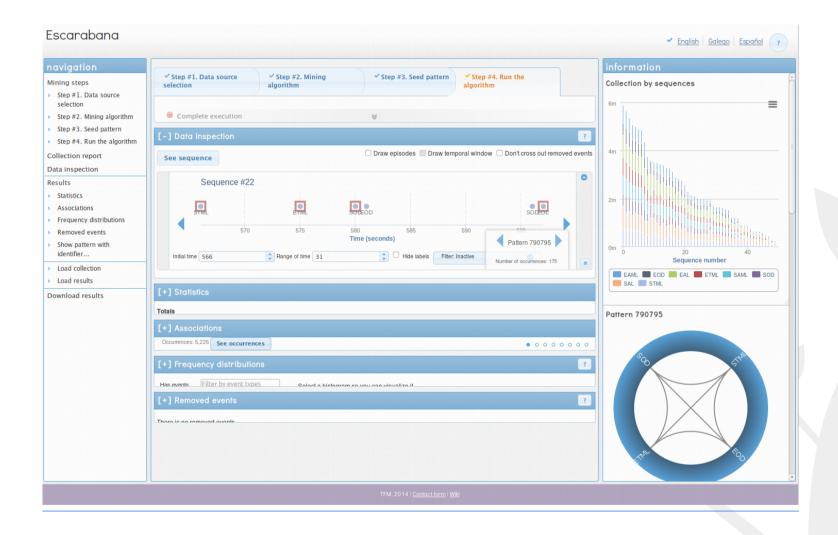
#### LA-STPminer

Look ahead strategy

- The patterns found in one iteration are annotated in the last event of their occurrences, but only if they can be combined into a bigger association.
- These annotations are extended in the frequency calculation of the next iteration.



#### Escarabana



## Open problems

Temporal exception patterns

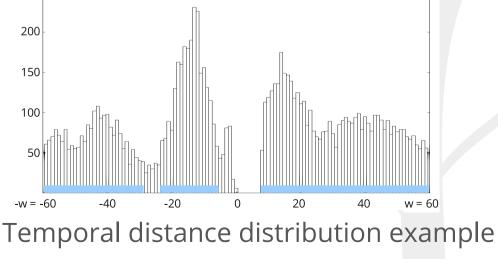
- Measures to:
  - Distinguish an interesting exception pattern from a non-interesting one.
  - Distinguish noise from an exception pattern.



## **Open problems**

#### Temporal deviation patterns

- Temporal deviation patterns are temporal anomalies inside a dataset. They represent instances that are a relatively frequent distorsion from what is frequent inside the dataset when new data is added. They are not an opposition to an expectation.
- Measures of how different is a pattern from another in order to consider it a deviation.
- Comparing their temporal distances distributions between pair of event types:
  - Statistical tests:  $\tilde{\chi}^2$  test which tells if two histograms come from the same population.
  - Distance function with a threshold:
    - Manhattan, or City Block Distance
    - Cosine distance



...

#### Contents

- 1 Context and motivation
- 2 Goals and novelty
- 3 Current status and future work
- 4 Conclusions





## Summary

- Conclusions
  - Improving of existing algorithms: parallelization and new strategies.
  - Modelling of the problem
  - Visualization tool
- Mid- and long-term problems:
  - Design of measure that quantifies the interestingness of temporal exception and deviation patterns.
  - Design of a deviation measure between different temporal arrangements.
  - Generation of synthetic databases with exceptions and deviations.
- Short-term problem: A need for temporal databases where there may be deviations and/or exceptions.



## **Thank You! Questions?**

Contact information:

email vanesa.graino@usc.estwitter @nessia.gpwww es.linkedin.com/in/nessiagp/esgithub github.com/Nessia