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Sequential Exception Mining

Medical records

Patient #1 Patient #2 Patient #3 Patient #4

Headache Headache
2 \Vertigo 2 Vertigo
3 Nose discharge 3 Nose discharge
6 Shortness of breath 5 Chest pain
7 Nausea 7 Shortness of breath
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Shortness of breath
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Temporal Exception Mining

Apnea Syndrome

B_AIR_ LIM E_AIR LIM B_OXY_LIM E_OXY_LIM
Patient #1
0 10 18 42
B AIR LIM E AIR LIM B_OXY_LIM E_OXY_LIM
Patient #2
0 12 18 47
B AIR_LIM E_AIR_ LIM B_OXY_LIM E_OXY_LIM
Patient #3
0 11 22 45
B_AIR_LIM E_AIR_LIM B_OXY_LIM E_OXY_LIM
Patient #90 *
0 10 21 75

* 10% of the patients are treated with rheumatoid arthritis medicine
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The problem

Design and develop new temporal data mining algorithms able to:

Discover temporal exception patterns.
Consider events and episodes as temporal entities.

Allow a domain expert to introduce previous knowledge and expectations.

Represent quantitative temporal information.

Provide expressive, useful, and readable results.
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The solution
Simple Temporal Problem patterns

STP Patterns

A temporal pattern P = (A, £) of size n consists of a temporal association
A={F,..., E,} CE, and a set of temporal constraints £ = {L;;; 1 <1i,j <n}
between the event types in A.
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The solution

Simple Temporal Problem patterns
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* 10% of the patients are treated with rheumatoid arthritis medicine
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Work status

Initial  1st 2nd 3rd 4th 5th
phase phase

Training Formali- LA-STPminer: Extend Develop Develop
sation Improving algorithms  algorithms algorithms
existing to mine to mine to mine
algorithms: negated temporal temporal
HSTPminer,  events exceptions deviations
etc.
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Modelling temporal exception patterns

® Given a temporal pattern representing an expectation P = (Dg,Lg), an
exception is defined as a new temporal pattern Px = (Dx, Lx) such that
PX — PE/ U_l(PE_PE’) UPA,Where

* Pp is a subpattern of Pg,
+ —(Pg — Pyg) is the result of negating the rest of the pattern Pg, and
- Py is the result of adding new event types and constraints to that of Pg.

m The negation of rest of the pattern can be accomplished either negating its
events, or negating its temporal constraints, or a combination of both.
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Temporal exception example: SAHS

m Annotated database of 50 SAHS patients, consisting of 120,000 events from 8

event types and 280 hours of sleep.
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Negated-events in temporal mining

Formalisation

= An extended temporal pattern of size n is a pair P = (A, L) where

A is an extended temporal association A = {EZ, ey En} CEEL<---< E,
A={A"UA } where

+ A" are the positive event types AT = {E; € A|E; € £} and
+ A are the negated event types A~ = {EA'Z S A]—E’Z- c &}
- L is a set of temporal constraints £ = {L;;; 1 < 4, j < n} between the event types

in AT,
m An occurrence of an extended temporal pattern is a temporal window
W = {61, ceey em} of width w where every E; € A™ has an event occurrence

e; € W satisfying all the temporal constraints in £ and none of = E; € A~ has an
event occurrence.
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Improving algorithms: LA-STPminer
Look-Ahead STP Miner Algorithm

m To extract a set of frequent temporal patterns from a collection of event
sequences.

m Each pattern represents a set of temporal arrangements between events
considered sufficiently similar and frequent.

STP Patterns

m Quantitative temporal constraint networks.

m Candidate patterns constructed from previous frequent patterns.

m Size two patterns obtained using a clustering procedure.
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LA-STPminer

Flow chart
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LA-STPminer

Look ahead strategy

m The patterns found in one iteration are annotated in the last event of their
occurrences, but only if they can be combined into a bigger association.

m These annotations are extended in the frequency calculation of the next
iteration.

Current
window
H | K | K K Jd H J
J F J H | L F E F H L J I G 1
K G KCGE H J | C C B J E I F L E E D E F
HE AB AUB F B A A A A A HE A A C A D
0 Y 30 3 40 45 20 55

i [H, K, L] (ID: 230) [H, I, L] (ID: 232)
Iteration #3  |," ¢ (] (1D: 229) [H. I. L] (ID: 231)
[H, K, L] (ID: 235)
[I, K, L] (ID: 238)
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Escarabana

Escarabana
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http://tec.citius.usc.es/escarabana

Open problems
Temporal exception patterns
m Measures to:
Distinguish an interesting exception pattern from a non-interesting one.

Distinguish noise from an exception pattern.
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Open problems

Temporal deviation patterns

m Temporal deviation patterns are temporal anomalies inside a dataset. They
represent instances that are a relatively frequent distorsion from what is frequent
inside the dataset when new data is added. They are not an opposition to an
expectation.

m Measures of how different is a pattern from another in order to consider it a
deviation.

m Comparing their temporal distances distributions between pair of event types:

- Statistical tests: x° test which tells if
two histograms come from the same
population. =250

Distance function with a threshold: |
- Manhattan, or City Block Distance 1
- Cosine distance 100|

50

-w = -60 -40 -20 0 20 40 w =60

Temporal distance distribution example
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Summary

m Conclusions
Improving of existing algorithms: parallelization and new strategies.
Modelling of the problem
+ Visualization tool

m Mid- and long-term problems:

Design of measure that quantifies the interestingness of temporal exception
and deviation patterns.

Design of a deviation measure between different temporal arrangements.
- Generation of synthetic databases with exceptions and deviations.

m Short-term problem: A need for temporal databases where there may be
deviations and/or exceptions.
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Thank You! Questions?

Contact information:

email vanesa.graino@usc.es
twitter @nessia.gp

www  es.linkedin.com/in/nessiagp/es
github github.com/Nessia
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