Feeling Lucky? Multi-armed bandits for Ordering Judgements in Pooling-based Evaluation

Javier Parapar, Álvaro Barreiro

Evaluation is **Crucial**

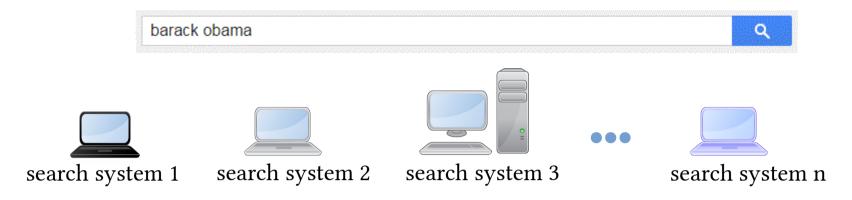
compare retrieval algorithms, design new Search solutions, ...

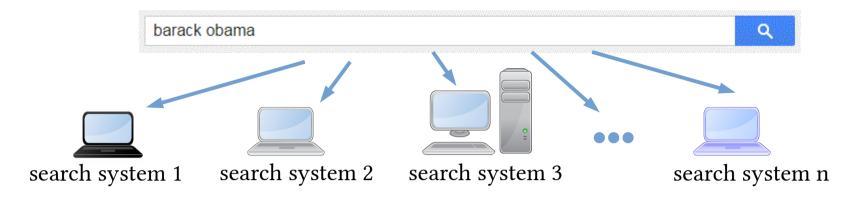
information retrieval evaluation: 3 main ingredients

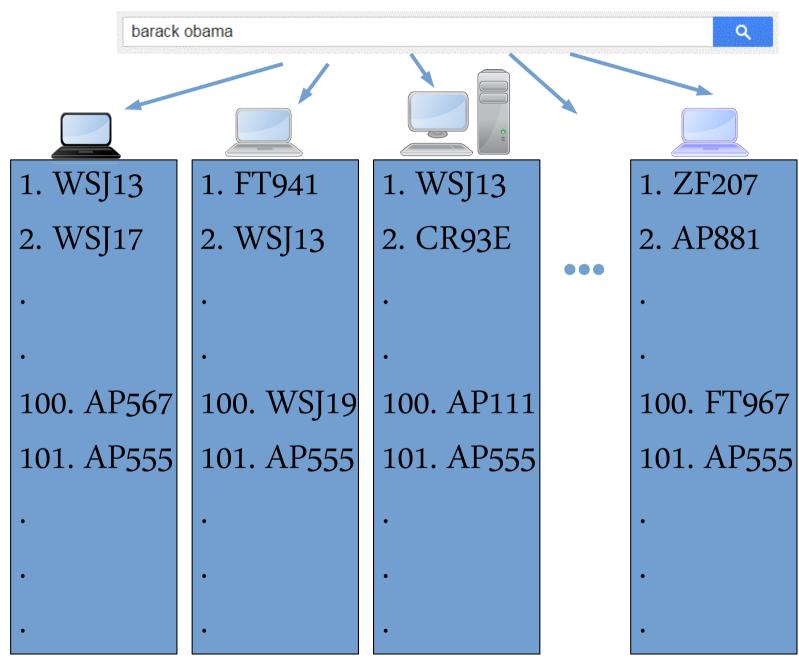
information retrieval evaluation: **3 main ingredients**

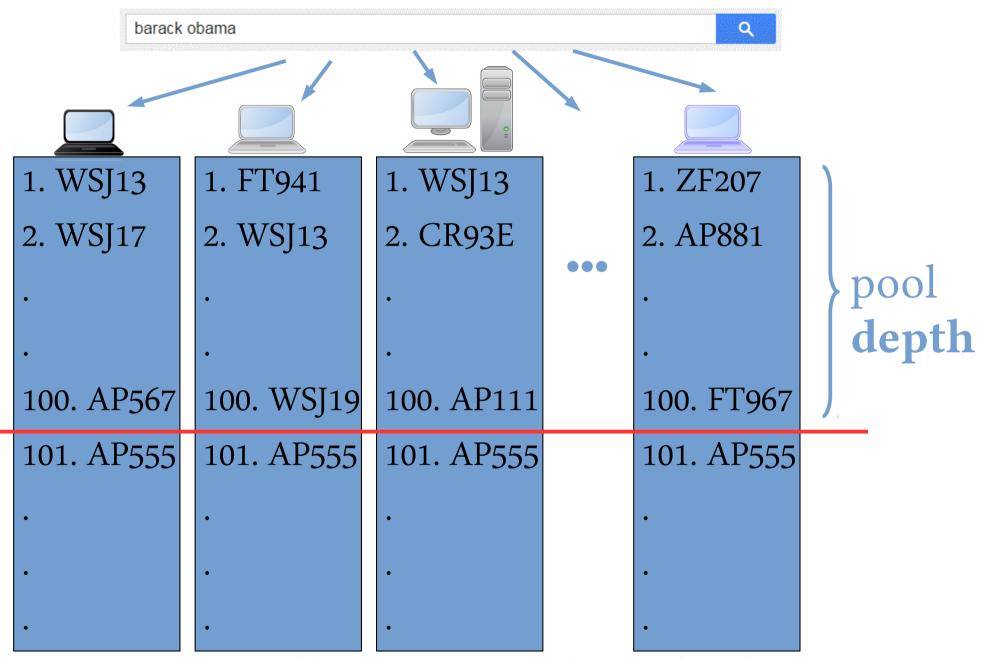
queries

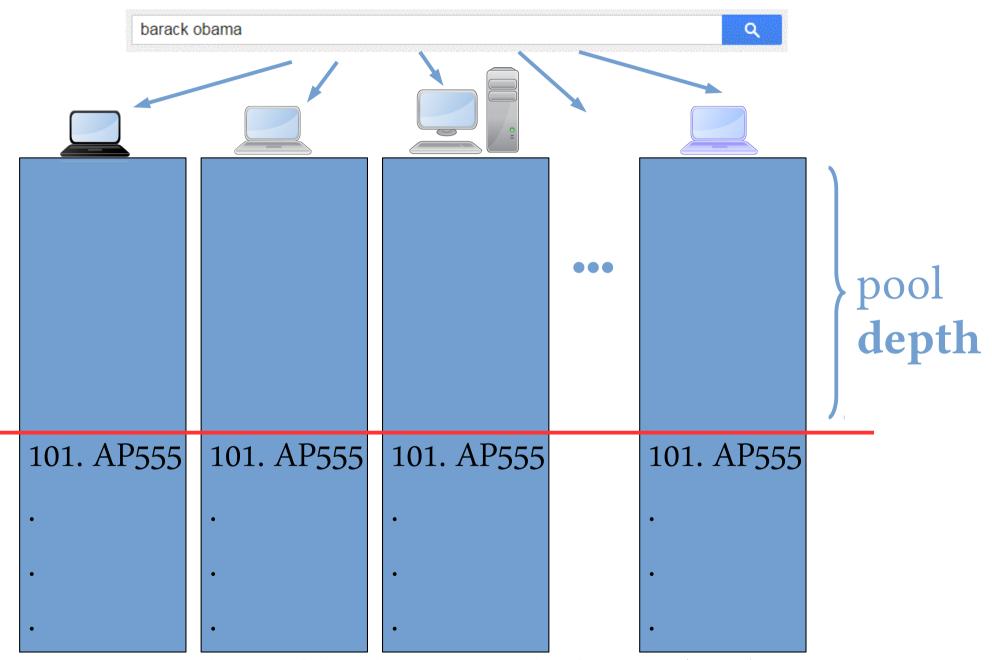
Aligned statil fung, syn kit werden statik in termer s

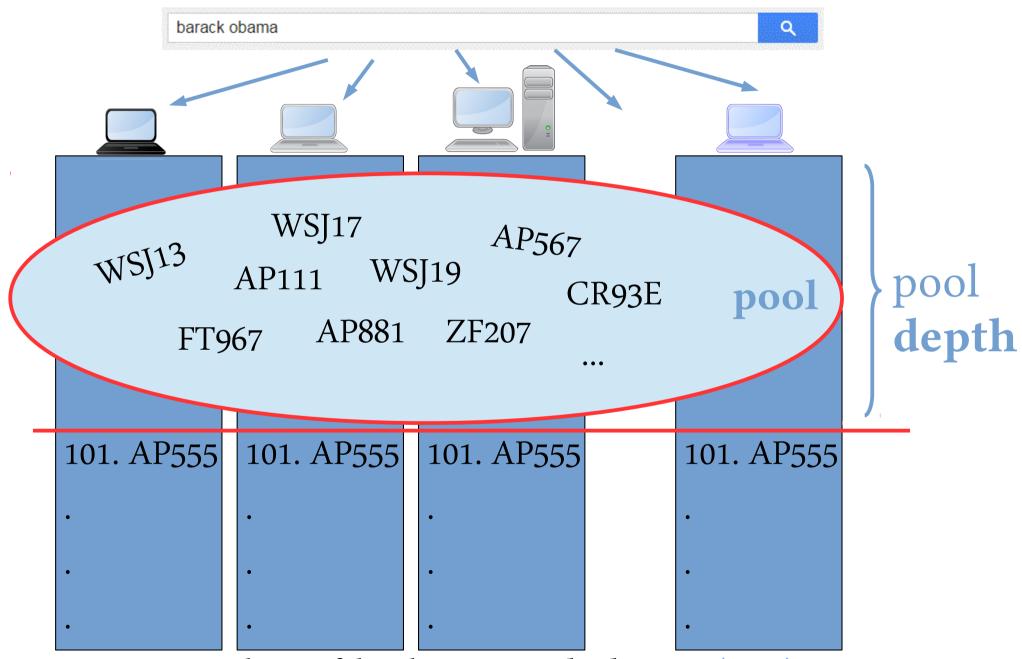

information retrieval evaluation: 3 main ingredients

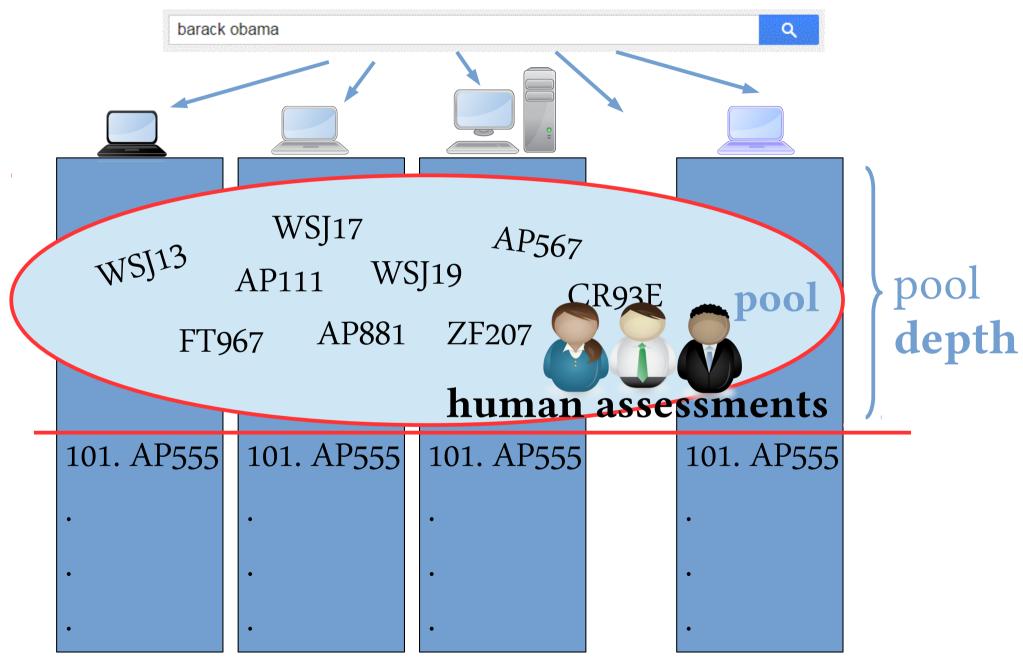

relevance judgements




barack obama







finding relevant docs is the key

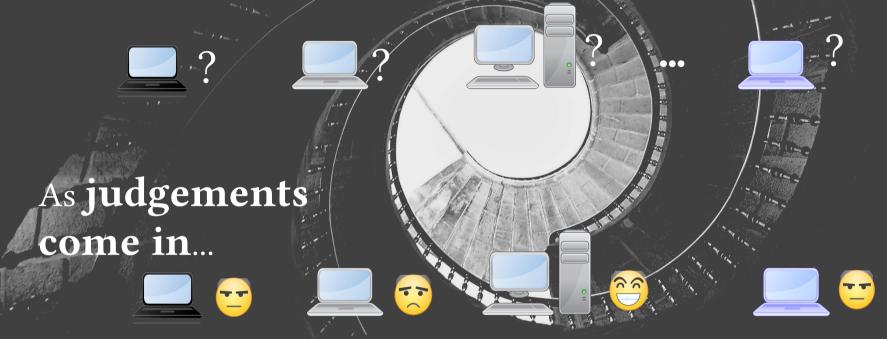
Most productive use of assessors' time is spent on judging relevant docs (Sanderson & Zobel, 2005)

Effective adjudication methods

Give priority to **pooled docs** that are **potentially relevant**

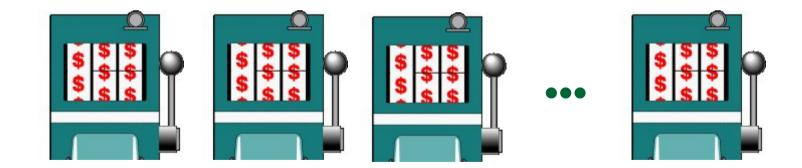
Can **significantly reduce** the num. of **judgements** required to identify a given num. of relevant docs

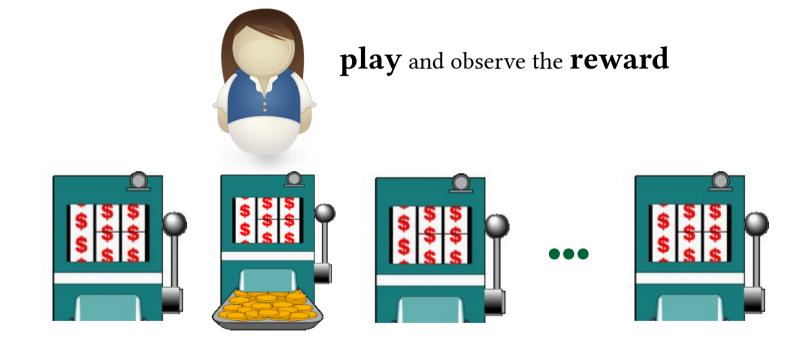
But most existing methods are **adhoc**...

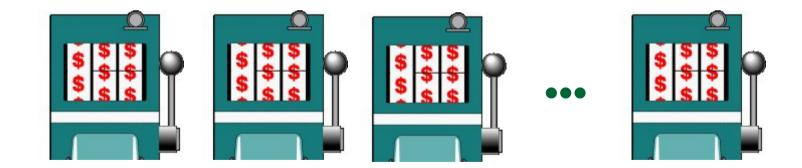

Our main idea...

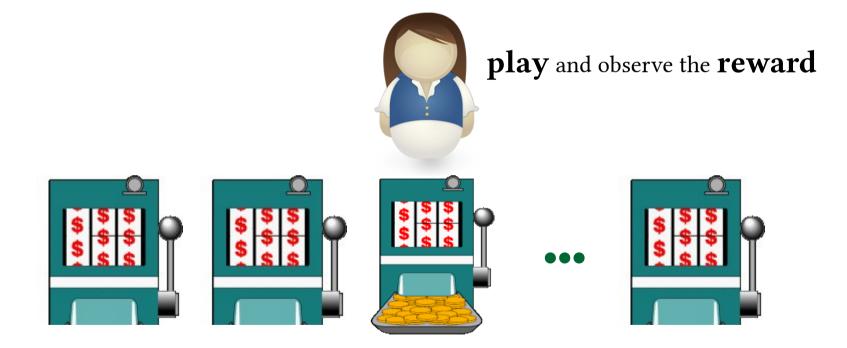
Cast doc adjudication as a reinforcement learning problem

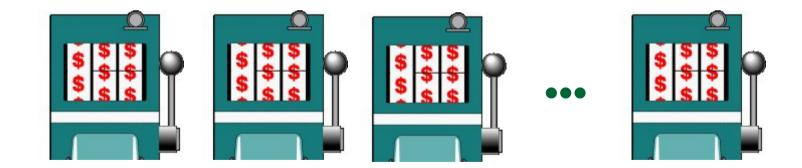
Doc judging is an **iterative** process where we learn as judgements come in

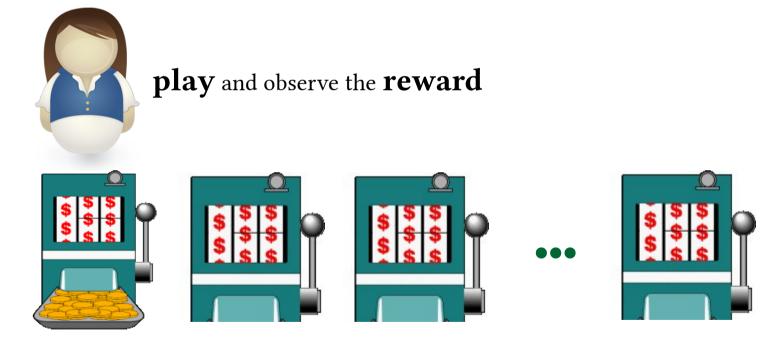

Doc adjudication as a reinforcement learning problem

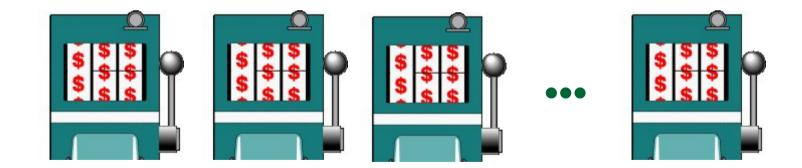

Initially we **know nothing** about the quality of the runs


And we can **adapt** and allocate more docs for judgement from the most promising runs

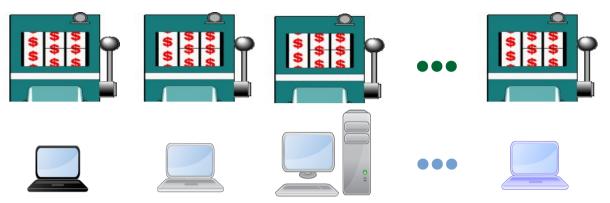




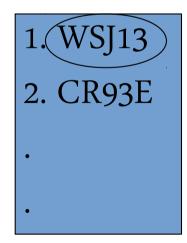




exploration vs exploitation


explores **uncertain** actions gets **more info** about expected payoffs may produce greater total reward **in the long run**

exploits **current knowledge** spends no time sampling inferior actions maximizes expected reward on the **next** action


allocation methods: choose next action (play) based on past plays and obtained rewards implement different ways to **trade** between exploration and exploitation

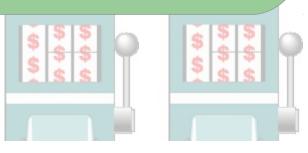
Multi-armed bandits for ordering judgements

machines = runs

play a machine = select a run and get the next (unjudged) doc

(binary) reward = relevance/non-relevance of the selected doc

Allocation methods tested

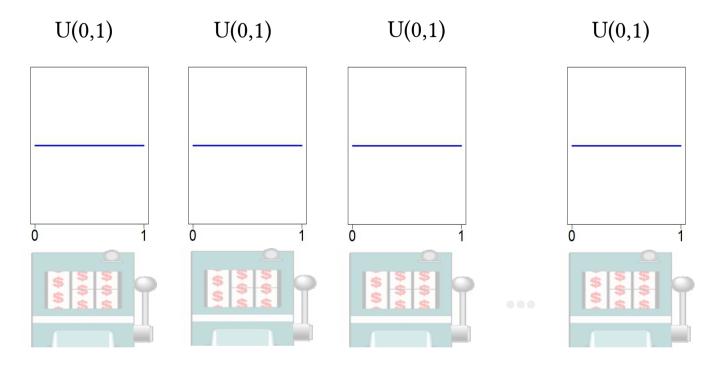

random

Upper Confidence Bound (UCB)

computes upper confidence bounds for avg rewards

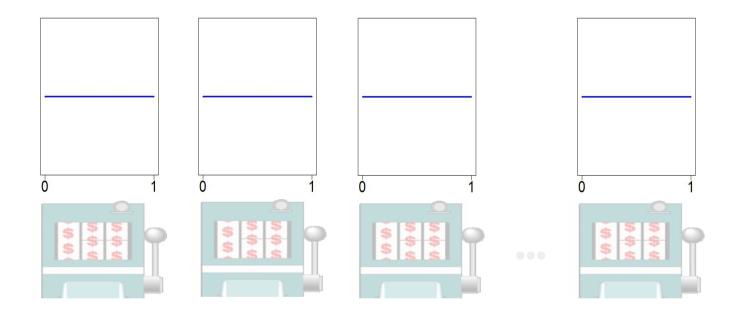
conf. intervals get **narrower with the number of plays**

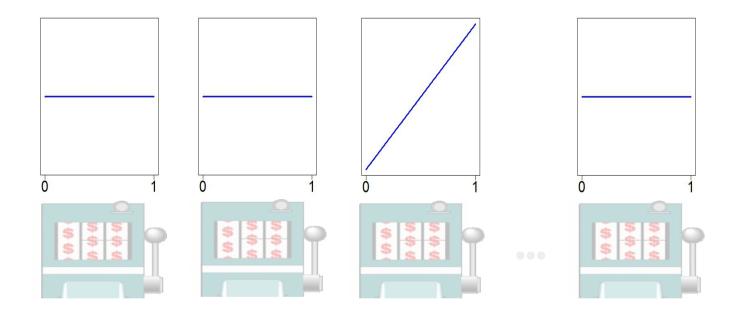
selects the machine with the **highest optimistic estimate**

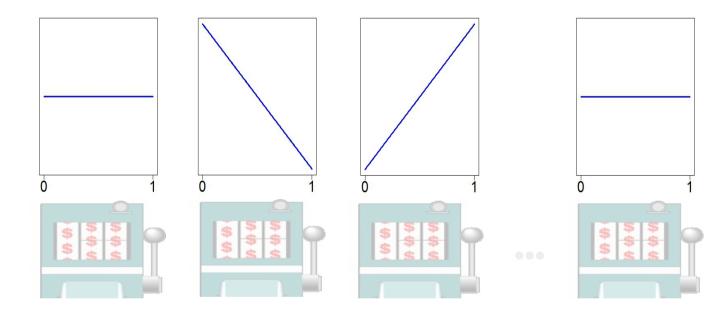


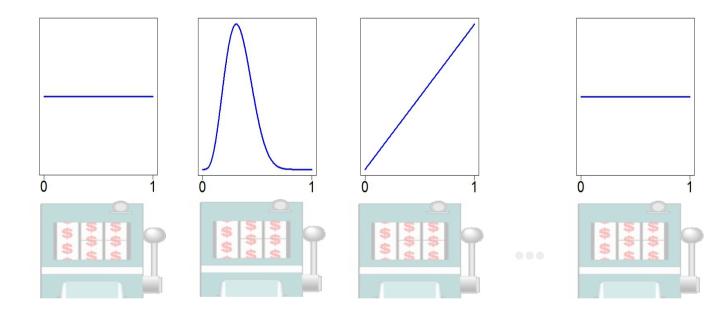
with **prob 1-\epsilon** plays the machine with the highest avg reward

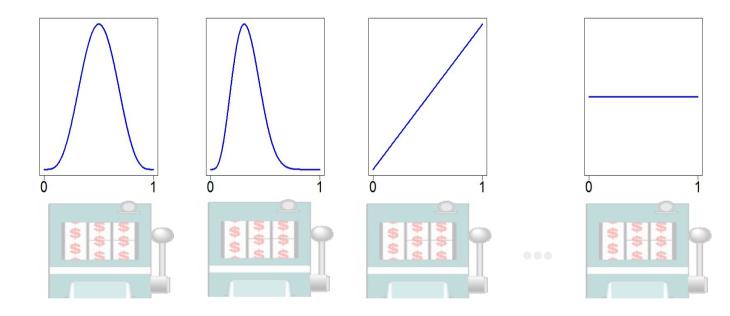
with **prob** ε plays a random machine

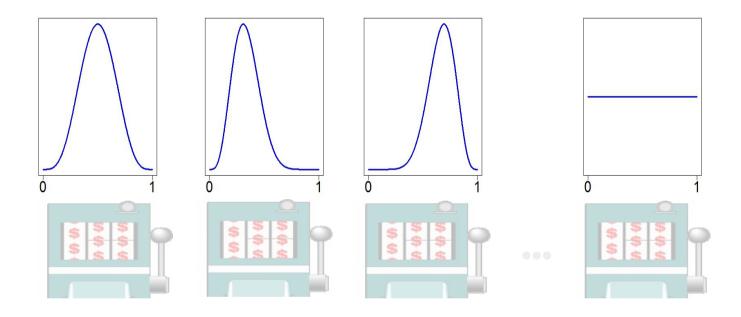

prob of exploration (ϵ) decreases with the num. of plays

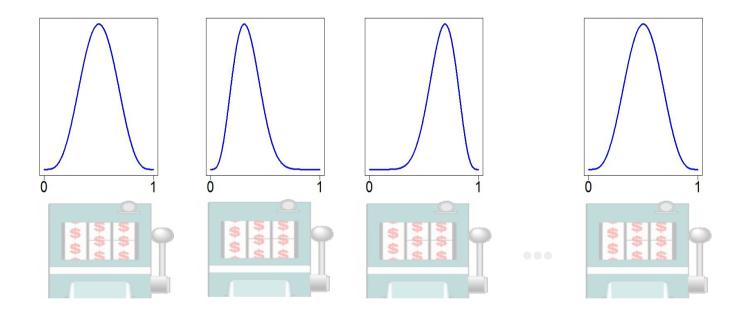

prior probabilities of giving a relevant doc: **Uniform(0,1)** (or, equivalently, Beta(α,β), $\alpha,\beta=1$)

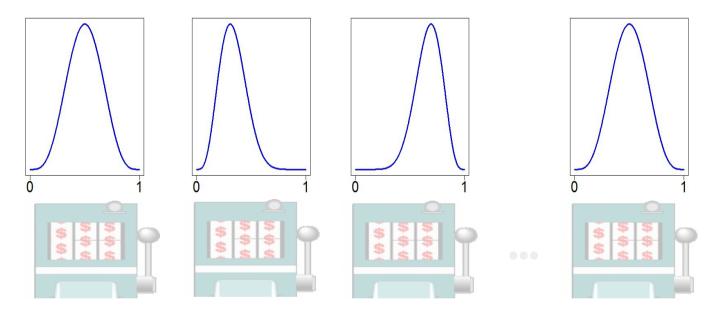



evidence $(O \in \{0,1\})$ is Bernoulli (or, equivalently, Binomial(1,p))


posterior probabilities of giving a relevant doc: Beta(α +O, β +1-O) (Beta: conjugate prior for Binomial)





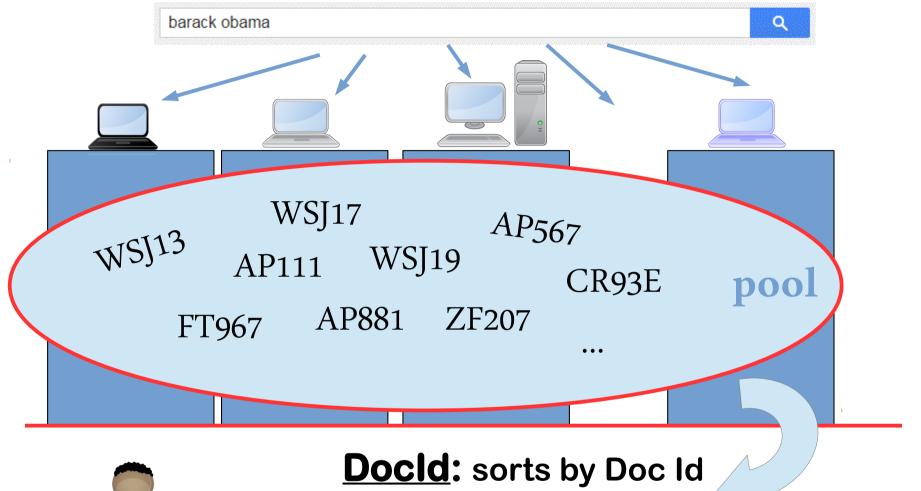


we **iteratively update** our estimations using Bayes:

two strategies to select the **next machine**:

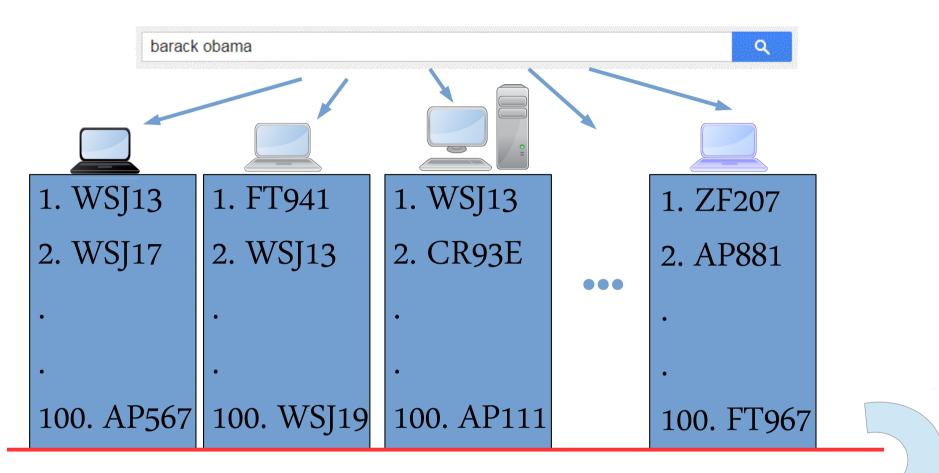
Bayesian Learning Automaton (BLA): draws a **sample from each the posterior** distribution and selects the machine yieding the **highest** sample

MaxMean (MM): selects the machine with the highest expectation of the posterior distribution


experiments

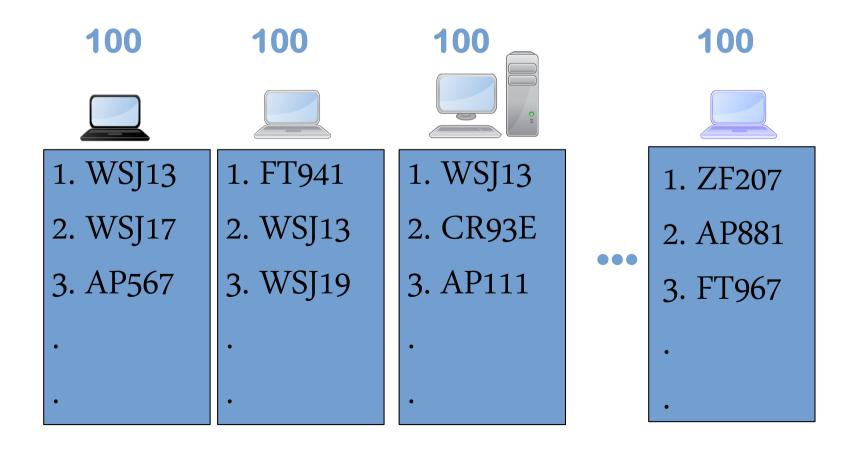
test different document adjudication strategies in terms of how quickly they find the relevant docs in the pool

rel docs found at diff. number of judgements performed

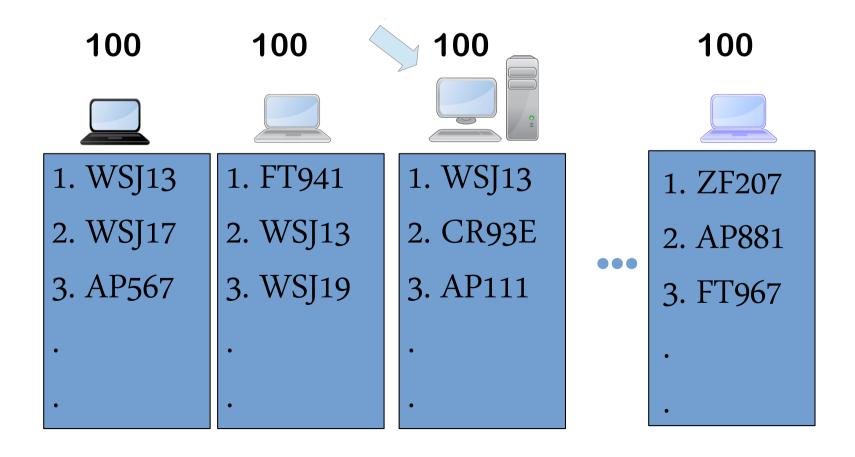

experiments: data

	TREC5	TREC6	TREC7	TREC8
# queries	50	50	50	50
# automatic runs	77	31	77	71
# manual runs	24	15	7	0
# assessed docs	133681	72270	80345	86830
avg. $\#$ docs judged				
per query	2673.6	1445.4	1606.9	1736.6
% of rel docs				
in the pool	4.1%	6.4%	5.8%	5.4%
avg. $\#$ rels				
per query	110.48	92.22	93.48	94.56

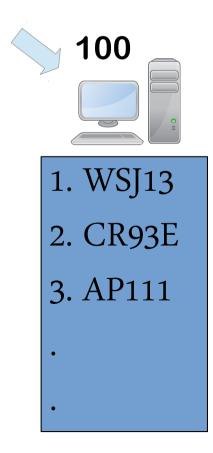
– AP111, AP881, AP567, CR93E, FT967, WSJ13, ...



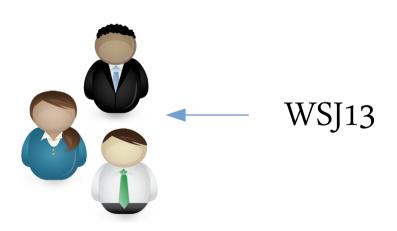
— WSJ13, FT941, ZF207, WSJ17, CR93E, AP881 ... **Rank:** rank #1 docs go 1st, then rank #2 docs, ...

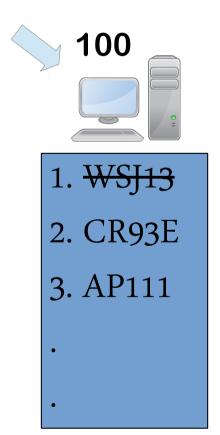

MoveToFront (MTF) (Cormack et al 98)

starts with uniform priorities for all runs (e.g. max priority=100) selects a random run (from those with max priority)

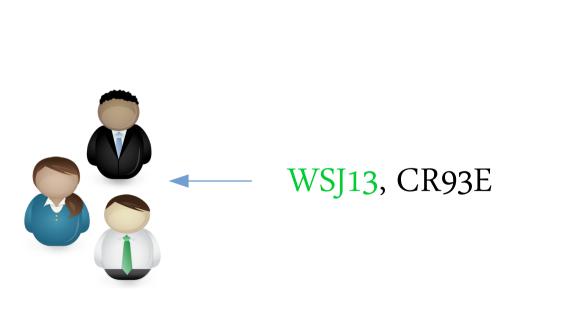


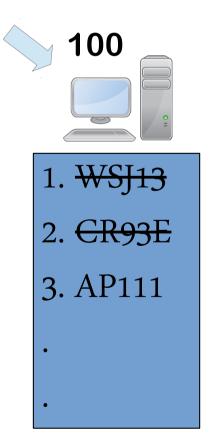
MoveToFront (MTF) (Cormack et al 98)

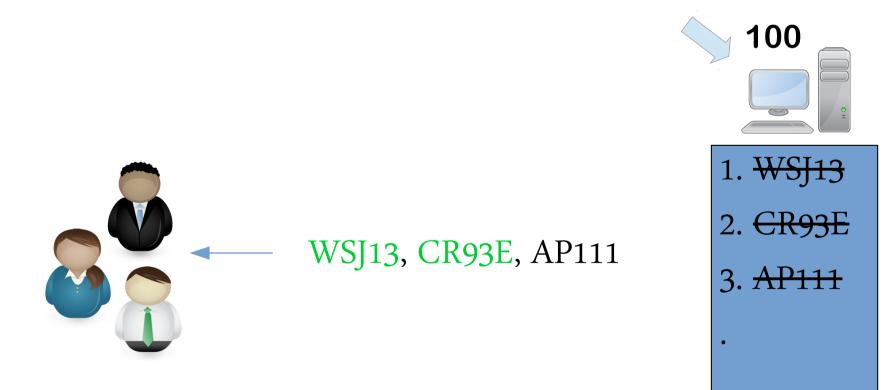

starts with uniform priorities for all runs (e.g. max priority=100) selects a random run (from those with max priority)



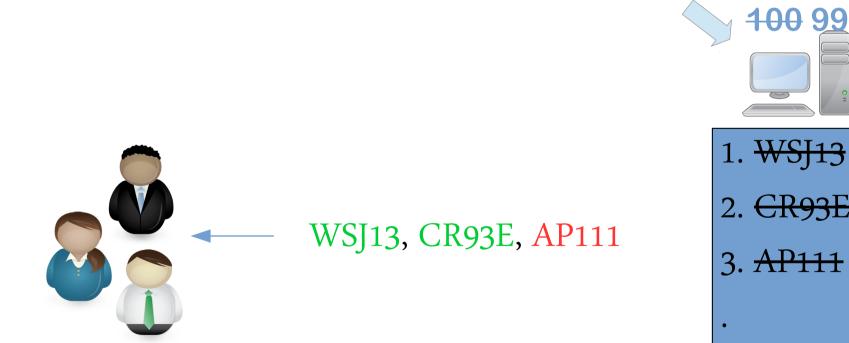
MoveToFront (MTF) (Cormack et al 98)



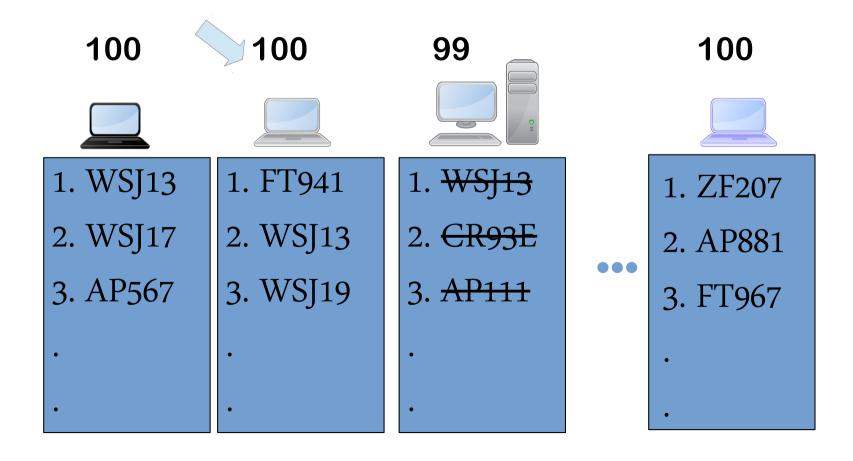

MoveToFront (MTF) (Cormack et al 98)



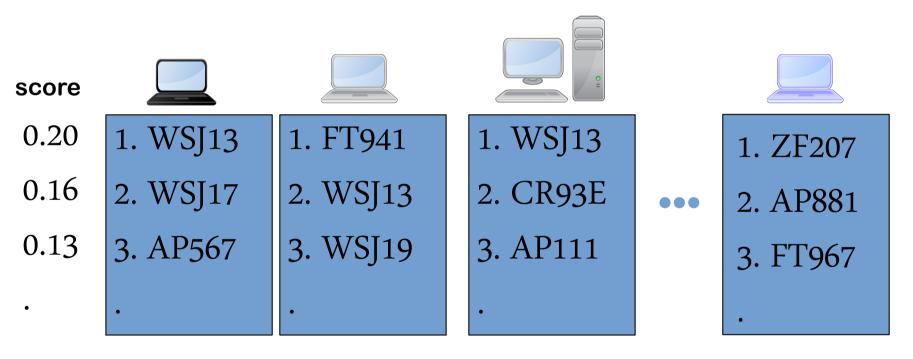
MoveToFront (MTF) (Cormack et al 98)



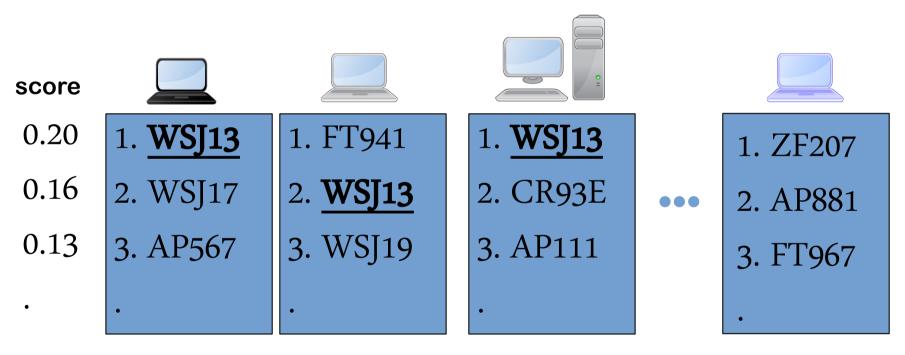
MoveToFront (MTF) (Cormack et al 98)


MoveToFront (MTF) (Cormack et al 98)

extracts & judges docs from the selected run stays in the run until a non-rel doc is found when a non-rel doc is found, priority is decreased


MoveToFront (MTF) (Cormack et al 98)

and we jump again to another max priority run

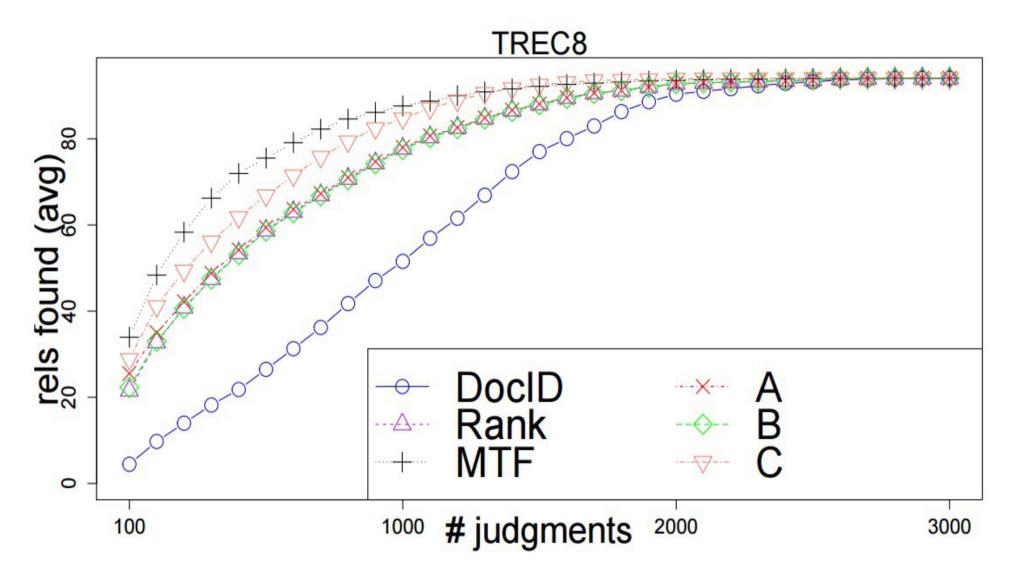

Moffat et al.'s method (A) (Moffat et al 2007)

based on rank-biased precision (RBP) sums a rank-dependent score for each doc

Moffat et al.'s method (A) (Moffat et al 2007)

based on rank-biased precision (RBP) sums a rank-dependent score for each doc

WSJ13: 0.20+0.16+0.20+...


all docs are ranked by decreasing accummulated score and the ranked list defines the order in which docs are judged

Moffat et al.'s method (B) (Moffat et al 2007)

evolution over A's method considers not only the rank-dependent doc's contributions but also the runs' *residuals* promotes the selection of docs from runs with many unjudged docs

Moffat et al.'s method (C) (Moffat et al 2007)

evolution over B's method considers not only the rank-dependent doc's and the residuals promotes the selection of docs from effective runs

MTF: best performing baseline

experiments: MTF vs bandit-based models

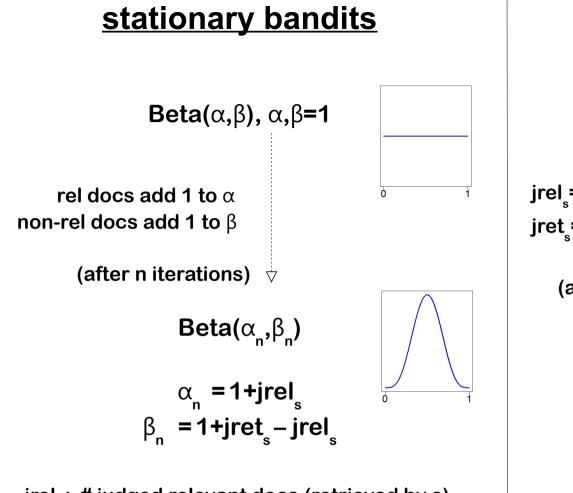
60. TI II	0.0123		N	umber of	judgeme	nts					
Method	100	300	500	700	900	1100	2000	all			
	TREC5										
MTF	27.66	49.5	63.54	72.04	78.64	84.58	99.58	109.9			
BLA	23.46	45.1	59.36	69.82	77.34	82.7	97.58	109.9			
MM	27.76	53.54	68.18	77.96	84.18	88.74	101.42	109.9			
RANDOM	20.94	41.48	53.38	63.42	71.28	76.36	93.92	109.9			
UCB	20.82	46.42	58.56	67.5	74.44	79.8	96.4	109.9			
ϵ_n -GREEDY	21.1	46.7	59.96	69.48	76.82	82.26	96.88	109.9			
		TREC6									
MTF	31.96	55.7	66.68	75.82	82.04	86.28	91.8				
BLA	24.94	46.42	60.62	70.4	78.84	84.56	91.8				
MM	32.12	56.1	68.98	78.06	83.16	87.24	91.8				
RANDOM	25.56	46.9	59.98	69.7	77.4	83.82	91.8				
UCB	27.86	48.96	62.36	71.38	79.14	84.9	91.8				
ϵ_n -GREEDY	27.6	50.8	63.12	71.84	78.8	84.44	91.8				
				TR	EC7		the second s				
MTF	35	58.04	70.58	78.52	83.48	86.94	92.7	92.84			
BLA	27.64	49.8	62.3	71.42	78.3	83.16	91.58	92.84			
MM	34.62	56.4	70	78.18	83	86.36	92.4	92.84			
RANDOM	27.48	50.74	62.86	71.86	78.44	83.44	91.3	92.84			
UCB	30.32	52.4	64.44	72.44	79.32	83.68	91.06	92.84			
ϵ_n -GREEDY	28	53.8	65.06	73.54	79.22	83.02	91.2	92.84			
	TREC8										
MTF	34.06	58.48	71.78	79.22	84.5	87.58	93.22	94.04			
BLA	27.14	50.42	64.9	73.96	80.36	84.96	93.36	94.04			
MM	34.4	59.34	72.9	80.82	85.56	88.8	93.54	94.04			
RANDOM	26.94	50.58	63.9	72.58	79.28	83.48	92.58	94.04			
UCB	29.86	52.9	65.92	74.06	80.52	85.12	93.4	94.04			
ϵ_n -GREEDY	28.16	53.66	66.76	74.88	80.6	84.88	93.2	94.04			

experiments: MTF vs bandit-based models

			N	umber of	judgeme	nts				
Method	100	300	500	700	900	1100	2000	all		
Contractor	TREC5									
MTF	27.66	49.5	63.54	72.04	78.64	84.58	99.58	109.9		
BLA	23.46	45.1	59.36	69.82	77.34	82.7	97.58	109.9		
MM	27.76	PA			-	88.74	101.42	109.9		
RANDOM	20					C	93.92	109.9		
UCB							96.4	109.9		
ϵ_n -GREF	_					•	8	109.9		
	Ra	ndom	: wea	kest a	appro	ach				
MT					••					
B										
		CBIE	aroo	dy are		ntim	al			
~			- 91 66	uy arc						
		n – – – – – – – – – – – – – – – – – – –	U	-		•				
		••						~		
_ (sophi		••						g		
		ed ex	plora	tion/e	xploit			g _		
(sophi		ed ex	plora		xploit			g .84		
(sophi BL		ed ex	plora	tion/e	xploit			.84		
(sophi BL	sticat	ed ex	plorat not ne	tion/e eeded	xploit)	ation	trading	.84		
(sophi ^N BL MM RAND MT	sticat	ed ex	plorat not ne	tion/e	xploit)	ation	trading	.84		
(sophi BL MM RAND MT UCB	sticat	ed ex	plorat not ne	tion/e eeded	xploit)	ation	trading ods	.84 2.84 92.84 92.84 92.84		
(sophi BL MM RAND MT UCB	sticat	ed ex	plorat not ne	tion/e eeded	xploit)	ation	trading	.84 2.84 92.84 92.84		
(sophi BL MM RAND MT UCB ϵ_n -GREEDY	sticat F and	ed ex	plorat not ne	tion/e eeded	xploit)	ation meth	trading ods	.84 2.84 92.84 92.84 92.84 92.84		
(sophi BL MM RAND MT UCB ϵ_n -GREEDY	sticat F and	ed ex I MM:	plorat not ne best j	tion/e eeded oerfor	xploit) rming	ation	trading ods 91.2 93.22	.84 2.84 92.84 92.84 92.84 92.84 92.84		
(sophi BL MM RAND MT UCB ϵ_n -GREEDY MTF BLA	sticat F and	ed ex 1 MM: 58.40 50.42	ploration not ne best p	tion/ex eeded oerfor	xploit) rming	ation meth ^{87.58} 84.96	trading ods 91.2 93.22 93.36	.84 2.84 92.84 92.84 92.84 92.84 92.84 92.84 92.84		
(sophi BL MM RAND MT UCB ϵ_n -GREEDY MTF BLA MM	sticat F and	ed ex I MM:	ploration not ne best p	tion/ex eeded oerfor ^{73.96} 80.82	xploit) rming	ation meth ^{87.58}	trading ods 91.2 93.36 93.54	.84 2.84 92.84 92.84 92.84 92.84 92.84		
(sophi BL MM RAND MT UCB ϵ_n -GREEDY MTF BLA MM RANDOM	sticat F and 34.06 27.14	ed ex 1 MM: 58.40 50.42	ploration not ne best p	tion/ex eeded oerfor	xploit) rming 80.36	ation meth ^{87.58} 84.96	trading ods 91.2 93.22 93.36	.84 2.84 92.84 92.84 92.84 92.84 92.84 92.84 92.84		
(sophi BL MM RAND MT UCB ϵ_n -GREEDY MTF BLA MM	sticat F and 34.06 27.14 34.4	58.40 50.42 59.34	ploration not ne best p	tion/ex eeded oerfor ^{73.96} 80.82	xploit) rming 80.36 85.56	ation meth ^{87.58} 84.96 88.8	trading ods 91.2 93.36 93.54	.84 2.84 92.84 92.84 92.84 92.84 92.84 92.84 92.84		

improved bandit-based models

MTF: forgets quickly about past rewards (a single non-relevance doc triggers a jump)



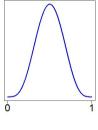
non-stationary

bandit-based solutions:

not all historical rewards count the same

MM-NS and BLA-NS non-stationary variants of MM and BLA

all judged docs count the same


non-stationary bandits

Beta(α,β), α,β=1

jrel_s= rate* jrel_s+ rel_d jret_s= rate* jret_s+ 1

(after n iterations) \heartsuit

Beta(α_n, β_n)


```
\alpha_n = 1 + jrel_s
\beta_n = 1 + jret_s - jrel_s
```

rate>1: weights more early relevant docs rate<1: weights more late relevant docs rate=0: only the last judged doc counts (BLA-NS, MM-NS) rate=1: stationary version

experiments: improved bandit-based models

	Number of judgements							
Method	100	300	500	700	900	1100	2000	all
0.01507011	2010/22010	2.1	1 1000 1000	TR	EC5	00000000	14100000	C.L.C.S.GAR
MTF	27.66	49.5	63.54	72.04	78.64	84.58	99.58	109.9
BLA	23.46	45.1	59.36	69.82	77.34	82.7	97.58	109.9
BLA-NS	22.8	44.8	58.74	68.78	76.04	81.44	97.4	109.9
MM	27.76	53.54	68.18	77.96	84.18	88.74	101.42	109.9
MM-NS	30	56.76	70.96	79.06	85.18	89.42	101.32	109.9
			·	TR	EC6			
MTF	31.96	55.7	66.68	75.82	82.04	86.28	91.8	
BLA	24.94	46.42	60.62	70.4	78.84	84.56	91.8	
BLA-NS	25.58	46.68	60.44	70	76.7	83.16	91.8	
MM	32.12	56.1	68.98	78.06	83.16	87.24	91.8	
MM-NS	33.5	58.2	69.72	77.9	83.48	87.44	91.8	
				TR	EC7			
MTF	35	58.04	70.58	78.52	83.48	86.94	92.7	92.84
BLA	27.64	49.8	62.3	71.42	78.3	83.16	91.58	92.84
BLA-NS	27.8	50.14	62.54	70.34	76.92	81.56	90.28	92.84
MM	34.62	56.4	70	78.18	83	86.36	92.4	92.84
MM-NS	36.8	62.42	74.42	81.74	85.82	88.32	92.58	92.84
				TR	EC8			
MTF	34.06	58.48	71.78	79.22	84.5	87.58	93.22	94.04
BLA	27.14	50.42	64.9	73.96	80.36	84.96	93.36	94.04
BLA-NS	27.12	49.5	63.68	72.06	77.56	82.54	92.42	94.04
MM	34.4	59.34	72.9	80.82	85.56	88.8	93.54	94.04
MM-NS	36.96	64.62	77.3	82.5	86.34	89.2	93.6	94.04

conclusions

multi-arm bandits: formal & effective framework for doc adjudication in a pooling-based evaluation

it's good to react quickly to non-relevant docs (non-stationary variants)

it's not good to increasingly reduce exploration (UCB, \in -greedy)

reproduce our experiments & test new ideas!

http://tec.citius.usc.es/ir/code/pooling_bandits.html (our R code, instructions, etc)

Pooling - Bandits

This document provides all details needed to reproduce the experiments reported in the paper D. Losada, J. Parapar, A. Barreiro. "Feeling Lucky? Multi-armed Bandits for Ordering Judgements in Pooling-based Evaluation". ACM Symposium on Applied Computing, 2016.

Any scientific publication derived from the use of this software should explicitly refer to this ACM SAC paper.

Next, we explain the data used for experimentation and provide our R code, which implement all pooling strategies.

Data

We used four TREC collections (http://trec.nist.gov): TREC5, TREC6, TREC7 and TREC8.

NIST kindly provided the runs that contributed to the pools of the adhoc tasks of TREC5, TREC6, TREC7 and TREC8 (http://trec.nist.gov/data/intro_eng.html).

The pooled runs are archived by NIST within a password protected area. If you want to reproduce our experiments you need to request access to the protected area (follow the instructions given at http://trec.nist.gov/results.html).

TREC5

• 101 runs in the pool (77 adhoc + 24 other).

The **77** adhoc runs are: input.anu5aut1 input.anu5aut2 input.anu5man4 input.anu5man6 input.brkly15 input.brkly16 input.brkly17 input.brkly18 input.city96a1 input.city96a2 input.CLCLUS input.CLTHES input.colm1 input.colm4 input.Cor5A1se input.Cor5A2cr input.Cor5M1le input.Cor5M2rf input.Ctifr1 input.Ctifr2 input.DCU961 input.DCU962 input.DCU963 input.DCU964 input.DCU969 input.DCU96C input.DCU96D input.erliA1 input.ETHal1 input.ETHas1 input.ETHme1 input.gru96au2 input.ibmgd1 input.ibmgd2 input.ibmgd2 input.ibmge1 input.ibms96a input.INQ301 input.INQ302 input.KUSG2 input.KUSG3 input.LNaDesc1 input.LNaDesc2 input.LNmFull1 input.ETMI12 input.gru96au3 input.mds003 input.Mercure-al input.Mercure-as input.MONASH input.pircsAAL input.pircsAAS input.pircsAM1 input.sdmix2 input.umcpa1 input.uncis1 input.uncis2 input.UniNE8 input.UniNE8 input.uwgcx0 input.uwgcx1 input.vtwnA1 input.vtwnB1

The other 24 runs are: input.anu5mrg0 input.anu5mrg1 input.anu5mrg7 input.CLATMC input.CLATMN input.CLPHR0 input.CLPHR1 input.CLPHR2 input.fsclt3m input.genlp1 input.genlp2 input.genlp3 input.genlp4 input.MTRa961 input.sbase1 input.sbase2 input.UniNE0 input.UniNE9 input.xerox_nlp1 input.xerox_nlp2 input.xerox_nlp3 input.xerox_nlp4 input.xerox_nlp5 input.xerox_nlp6

Feeling Lucky? Multi-armed bandits for Ordering Judgements in Pooling-based Evaluation

Ci

David E. Losada

Centro Singular de Investigación en **Tecnoloxías** da Información

US

Javier Parapar, Álvaro Barreiro

UNIVERSIDADE DA CORUÑA

Acknowledgements:

MsSaraKelly. picture pg 1 (modified). CC BY 2.0. Sanofi Pasteur. picture pg 2 (modified).CC BY-NC-ND 2.0. pedrik. picture pas 3-5.CC BY 2.0. Christa Lohman. picture pg 3 (left).CC BY-NC-ND 2.0. Chris. picture pg 4 (tag cloud).CC BY 2.0. Daniel Horacio Agostini. picture pg 5 (right).CC BY-NC-ND 2.0. ScaarAT. picture pg 14.CC BY-NC-ND 2.0. Sebastien Wiertz, picture pg 15 (modified).CC BY 2.0. Willard. picture pg 16 (modified).CC BY-NC-ND 2.0. Jose Luis Cernadas Iglesias. picture pg 17 (modified). CC BY 2.0. Michelle Bender. picture pg 25 (left).CC BY-NC-ND 2.0. Robert Levy. picture pg 25 (right).CC BY-NC-ND 2.0. Simply Swim UK. picture pg 37.CC BY-SA 2.0. Sarah J. Poe. picture pg 55.CC BY-ND 2.0. Kate Brady. picture pg 58.CC BY 2.0. August Brill. picture pg 59.CC BY 2.0.

This work was supported by the "Ministerio de Economía y Competitividad" of the Goverment of Spain and FEDER Funds under research projects TIN2012-33867 and TIN2015-64282-R.

Unión Europea

Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"