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Introduccion

Los sistemas indiscutiblemente inteligentes en este planeta son
biolagicos.

Los seres vivos y los organismos biologicos, frente a las exigencias
de su medio ambiente, utilizan soluciones diferentes a los enfoques
tradicionales de la ingenieria humana para resolver problemas.
Los sistemas biologicos tienden a ser adaptables, distribuidos,
cooperativos, ...

(Pueden estos sistemas biologicos y los procesos que los
crearon aportar lecciones que nos ayuden a disenar
sistemas artificiales inteligentes?

La respuesta es “SI”.




Introduccion

. Pueden estos sistemas biologicos y los procesos que los crearon aportar lecciones que
nos ayuden a disefnar sistemas artificiales inteligentes?

La respuesta es “SI”.

Entre los modelos biologicos que nos permiten crear sistemas
inteligentes nos encontramos modelos de imitacion de los
sistemas nerviosos e inmunologicos dando lugar a los modelos
computaciones de redes neuronales y sistemas inmunologicos, la
evolucion natural en la que estan basados los algoritmos
evolutivos, ...

El disefo y aplicacion de métodos de computacion que
modelan/imitan los principios biologicos de la naturaleza ha
dado lugar al area de la inteligencia artificial denominada

Computacion Bioinspirada.




Introduccion

,Pueden estos sistemas biologicos y los procesos que los crearon aportar lecciones que nos
ayuden a disefar sistemas artificiales inteligentes?

La respuesta es “SI”.

En esta conferencia introduciremos
brevemente la Computacion Bioinspirada,
analizaremos sus origenes, los modelos y
mostraremos algunas de sus aplicaciones.




Bioinspired Algorithms and

Potted history of AI(1/3)

1943 McCulloch&Pitts: Boolean circuit model of brain
1950 Turing’s “Computing Machinery and Intelligence:

H— ?-

1950s Early Al programs, including Samuel’s checkers
program, Newell & Simon’s Logic Theorist,
Gelernter’s Geometry Engine

1956 Dartmouth meeting:
“Artificial Intelligence” adopted




The birth of “Artificial Intelligence”

e John McCarthy used the term “Artificial Intelligence” for
the first time as the topic of the Dartmouth conference in
1956.

— Venue:
 Dartmouth College, Hanover, state New Hamphshire, USA

— Organizers:

e John McCarthy, Marvin Minsky, Nathaniel Rochester, and
Claude Shannon

— Participants: o
 Ray Solomonoff, Oliver Selfridge, Trenchard More,
Arthur Samuel, Herbert Simon, and Allen Newell ..

— Proposal:

To prove that every aspect of learning

or any other feature of intelligence

can be so precisely described that a machine
can be made to simulate it.

s
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The First Biologically inspired model:

Artificial Neural Networks

e Warren McCulloch and Walter Pitts
— Model of artificial neuron (1943)

— Neuron represents functions.

 Donald Olding Hebb

— Rule for neural network training (1949)

 Marvin Minsky and Dean Edmonds have built the
first computer with neural network.

— SNARC (1951)




Bioinspired Algorithms and

Potted history of AI(2/3)

1965 Robinson’s complete algorithm for logical
reasoning

1966-74 Al discovers computational complexity, Neural
network research almost disappears

1969-79 Early development of knowledge-based
systems

1980-88 Expert systems industry booms
1988-93 Expert systems industry busts: “Al Winter”
1995- Agents




Bioinspired Algorithms and

Potted history of AI(3/3)

1985-95 Neural networks return to popularity

1988- Resurgence of probability; general increase in
technical depth “Nouvelle AI”: ALife, GAs, Soft
Computing, Bio-inspired Computation
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Introduction: Bio-inspired Computation

The term “bio-inspired”

 The term bio-inspired has been introduced to
demonstrate the strong relation between a particular
system or algorithm, which has been proposed to
solve a specific problem, and a biological system,
which follows a similar procedure or has similar
capabilities.




Introduction: Bio-inspired Computation

The design of bio-inspired solutions

* Identification of analogies
— In nature or biology and Information Technology based systems

 Understanding

— Computer modeling of realistic biological behavior

 Engineering
— Model simplification and tuning for IT applications
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Neural Netwoks

The brain as a computer

Higher level functions in animal behaviour

e Gathering data (sensation)

e Inferring useful structures in data (perception)
 Storing and recalling information (memaory)

* Planning and guiding future actions (decision)
« Carrying out the decisions (behaviour)

"' 7/

e Learning conseguences of these actions




Neural Netwoks

The brain as a computer

Hardware functions and architectures

» 10 billion neurons in human cortex
« 10,000 synapses (connections) per neuron
 Machine language: 100mV, 1-2msec spikes (action potential)

» Specialised regions & pathways (visual, auditory, language...)




Neural Netwoks

The neuron doctrine [
R -
Ramon y Cajal (1899) i jmut

Santiago Ramén y Cajal



Neural Netwoks

1) Neurons are cells: distinct entities (or agents).
2) Inputs & outputs are received at junctions called synapses.

3) Input & output ports are distinct. Signals are uni-directional
from Input to output.

Inputs Outputs

Today, neurons (or nerve cells) are regarded as the basic
Information processing unit of the nervous system.




Neural Netwoks

How brains seem to do pattern recognition

Dendrites ] f’

Axon terminals synapse
with dendrites on target cell

The business end of this is made of lots of these joined in networks like this

Much of our own “computations” are performed in/by this network




Neural Netwoks

The key idea In brain-inspired computing

The brain is a complex tangle of When neurons are

neurons, connected by synapses active, they send signals
to others.




Neural Netwoks

Computation of a pyramidal neuron

~ all-or-none
output




Neural Netwoks

the environment

- self-learning property

Input: Xn

Input: X2 ~

Input: X 1 N

W,
W5

o Wh

Bio-inspired research — ANNs

Summing

junction

o Artificial neural networks (ANNS)

— Primary objective of an ANN is to acquire knowledge from

Activation

function

u>

f(u)




Neural Netwoks

Early history (1943)

McCulloch & Pitts (1943). “A logical calculus of the ideas immanent in nervous
activity”, Bulletin of Mathematical Biophysics, 5, 115-137.

In this seminal paper, Warren McCulloch and Walter Pitts
Invented the first artificial (MP) neuron, based on the insight
that a nerve cell will fire an impulse only if its threshold
value is exceeded. MP neurons are hard-wired devices,
reading pre-defined input-output associations to determine
their final output. Despite their simplicity, M&P proved that a
single MP neuron can perform universal logic operations.

A network of such neurons can therefore do anything a
Turing machine can do, but with a much more flexible (and
potentially very parallel) architecture.




Neural Netwoks

Neural Computing

Pattern recognition using neural networks is the most
widely used form of BIC in industry and science. We
will learn about the most common and successful
types of neural network.

This is Stanley, winner of the
DARPA grand Challenge — a
great example of bio-inspired
computing winning over all
other entries, which were
largely classical’
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Evolutionary Computation:

A New Way to Search for Solutions

Genetic algorithms

They are optimization algorithms,
search

and learning

inspired in the process of

Natural and Genetic Evolution




Evolutionary Computation:

A New Way to Search for Solutions

Biological systems result from
an evolutionary process are
yp g @}'

* robust o
o complex W | can %@ Evolutionary
. S Computation
e adaptive ' = attempts to copy

process of natural
evolution for
automatic solution
of complex
problems.




Evolutionary Computation:
A New Way to Search for Solutions

All species derive
from common
ancestor

Charles Darwin, 1859

On the Origins of Species

THE ORIGIN OF SPECIES

LONDON




Evolutionary Computation:

A New Way to Search for Solutions
The 4 Pillars of Evolution

Population

Group of several individuals
Diversity

Individuals have different characteristics
Heredity

Characteristics are transmitted over generations
Selection

* Individuals make more offspring than the environment can support

« Better at food gathering = better at surviving = make more offspring




Evolutionary Computation:

A New Way to Search for Solutions

Artificial Evolution
Automatic generation of solutions to hard problems

Similarities between natural and artificial evolution:

 Population
 Diversity
e Selection

e Inheritance

* Phenotype (computer program, object shape,, robot, etc.)

» Genotype (genetic representation of the phenotype)

Differences between natural and artificial evolution:

* Fitness is measure of performance of the individual
solution to the problem

* Selection of the best according to performance criterion
(fitness function)

* Expected improvement between initial and final
solution




Evolutionary Computation:

A New Way to Search for Solutions

The ingredients

t reproduction t+1
——

selection
47 Lt
T T T
e e
P N M
mutation
Crossover(or

recombination)




Evolutionary Computation:

A New Way to Search for Solutions

Genetic Algorithm Structure

Basic Genetic Algorithms
Beginning (1)
t=0
Initialization P(t)
evalution P(t)

While (the stop contition is not verified) do
Beginning (2)
t=t+1
selection P’(t) from P(t-1)
P’’(t) < crossover P’(t)
P’’’ (t) < mutation P’’(t)
P(t) < replacement (P(t-1),P’’’(t))
evaluation P(t)
Final(2)
Final(1)




Evolutionary Computation:

A New Way to Search for Solutions

The evolution cycle

Selection
PARENTS
Crossover
Mutation
POPULATION

Replacement
DESCENDANTS




Evolutionary Computation:

A New Way to Search for Solutions

HOW TO CONSTRUCT A GA? S
SS
. &R
e Representation & §
. (] o o Q @
Initial population > 4%

* Fitness function (How to evaluate a GA? % Q

 Chromosomes selection for parents é

&

* Design of crossover operator (57 g

* Design of mutation operator 6@ éO
O

* Chromosomes replacement
e Stop condition




Evolutionary Computation:

A New Way to Search for Solutions

Genetic Representation
Choice of representation benefits from domain
knowledge:

* Encoding of relevant parameters

» Appropriate resolution of parameters

> > 1- 4‘1¢ : » 'Til‘ﬁ';.'-' , | ——
: iy g el ] 'L_':'_‘1 3 S o
DR | h 11001101010001
N L R : "
e '?‘ 't'l f"l_n = \ e

soperators of recombination and mutation

* Must match genetic

e Set of possible chromosomes should include optimal
solution to the problem




Evolutionary Computation:

A New Way to Search for Solutions
Discrete Representations

A sequence of | discrete values drawn from alphabet with cardinality k
* E.g., binary string of 8 positions (=8, k=2): 01010100
« Can be mapped into several phenotypes:.

to Integer 1 using 51010100

_I—'_'_'_'_'_'_'__\_\_\_\_\_\_‘—\_

binary code 84 Job | AM. PM.
X ? ! X -
q'fY'-‘F% 2 x to Job schedule:
= 3 X
e iI0h= 1t
T 219815 g x x * Job=gene position
to real value r in range [min, max]: 6 x * time=gene value
! X
r = min + (i/255)(max-min) 8 1 x




Evolutionary Computation:

A New Way to Search for Solutions

Sequence Representation

It Is a particular case of discrete representation used for class of
Traveling Salesman Problems (plan a path to visit n cities under
some constraints). E.g., planning ski holidays with lowest
transportation costs
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Encoding |Start/ end point| . 2P
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Evolutionary Computation:

A New Way to Search for Solutions

Real-Valued Representation

Genotype Is sequence of real values that represent parameters

* Used when high-precision parameter optimization is required

 For example, genetic encoding of wing profile for shape optimization

Evolvable wing made of deformable

material with pressure tubes

} //%/%//// //’ /féf/,,f,:\}? f fﬁmm

130

— o

Genotype= pressure values of 14 tubes

16,2




Evolutionary Computation:

A New Way to Search for Solutions
Tree-based Representation

Genotype describes a tree with branching points and terminals
Suitable for encoding hierarchical structures

E.g., used to encode computer programs , made of:

® Operators (Function set: multiplication, If-Then, Log, etc.)

« Operands (Terminal set: constants, variables, sensor readings, etc.)

/ \ root

Expression r=min+{i/255}{max-min} min - \\‘

Nested list  (+min, (* (/,,255), (- max, min))) /“‘\5
ma:r. mln terminals




Evolutionary Computation:

A New Way to Search for Solutions
Initial Population

Sufficiently large to cover problem space (!), but sufficiently small for
evaluation costs (typical size: between 10s and 1000s individuals)

Uniform sample of search space:

— Binary strings: 0 or 1 with probability 0.5

— Real-valued representations: uniform on a given interval if bounded
phenotype (e.g., +2.0, -2.0); otherwise best guess or binary string with
dynamic mapping resolution (Schraudolph and Belew, 1992; Diirr et al,
2007)

— Trees are built recursively starting from root: root is randomly chosen
from function set; for every branch, randomly choose among all
elements of function set and of terminal set; if terminal is chosen, it
becomes leaf; set maximum depth of tree.




Evolutionary Computation:

A New Way to Search for Solutions

Fitness Function

Evaluates performance of phenotype with a numerical score

 Choice of components; e.g., lift and drag of wing
e Combination of components; e.g. (lift + 1/drag) or (lift - drag)

 Extensive test of each phenotype
« Warning! You Get What You Evaluate (example in application, later)

eConstraint problems can introduce a penalization in the fitness
function.

*\With multiple objectives we find a pareto (set of non-dominated
solutions).




Evolutionary Computation:

A New Way to Search for Solutions

HOW TO CONSTRUCT A GA?

Selection
PARENTS

Representation

Initialization

/ Population

POPULATION Fitness function

42




Evolutionary Computation:

A New Way to Search for Solutions

Selection

A method to make sure that better

Individuals make comparatively more
offspring

- = Used in artificial evolution and breeding

« Selection pressure is inversely proportional to nr. of selected individuals
» High selection pressure = rapid loss of diversity and premature convergence

» Make sure that also less performing individuals can reproduce to some extent




Evolutionary Computation:

A New Way to Search for Solutions

Strategy of selection: Tournament selection
For each parent:

 Random selection of k individuals, with replacement
e Selection of the best

K is called the tournament size. A high K value, a high selective
pressure and vice versa.




Evolutionary Computation:

A New Way to Search for Solutions

HOW TO CONSTRUCT A GA?

Selection
PARENTS
Representation Crossover
Initialization
/ Population

POPULATION Fitness function




Evolutionary Computation:

A New Way to Search for Solutions

Crossover operator

Emulates recombination of genetic material from two parents during
meiosis

Exploitation of synergy of sub-solutions (building blocks) from parents
Applied to randomly paired offspring with probability p_(pair)

— The offspring must contain a heredity from the parents,
associated to the parent features. In other case it would be
a mutation operator.

— It depend on the representation.
— The recombination must produce valid chromosomes.

— It uses a probability for running on the two parents (Pc
between 0.6 and 0.9, usually).




Evolutionary Computation:

A New Way to Search for Solutions

Example: Simple crossover on the binary representation

Population:

Each chromosome is divided into n parts that are recombined
(example for n = 2)

ou ut
113{ 1 00000 parents ﬁ%ﬁ?

descendants
11000 00111 f?ﬁ%




Evolutionary Computation:

A New Way to Search for Solutions
Crossover

Classical image (John Holland): Biologica crosover

1010100101010 1100100010

|1n11nu1n1ﬂu11p1ﬂ1uu1u1ﬂ1u

./[010100101010]
) —
g0 11100100010

1610110010101

1011001010011

jujﬁj{ﬁpjﬁ{ﬁin1ﬂ1uaﬁu1u1d

101100101001 1D REIIEL LR

CROSSOVER is the fundamental mechanism ol genctic rear Chromusomes line up and then swap the portions of their ge-
rangement for both real organisms and penetic algorithms.  netic code bevond the crossover point.

43




Evolutionary Computation:

A New Way to Search for Solutions
Crossover

1 1 1 o ﬂ:l a 1 o a9 o 1 1 o 1 1 1 ¢ 9 o o 1 & 9 1 1 1 o
1 : ]U[ )

One point

[nllnninn1001110]m[011001u1unu11uj
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Uniform
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Evolutionary Computation:

A New Way to Search for Solutions

HOW TO CONSTRUCT A GA?

Selection
PARENTS
Representation Crossover
Initialization
/ Population Mutation

POPULATION Fitness function

DESCENDANTS




Evolutionary Computation:

A New Way to Search for Solutions
Mutation

Emulates genetic mutations
Exploration of variation of existing solutions

Applied to each character in the genotype with probability p_(char)

(1110010100011 0] For trees o
Binary genotypes #
Ihlll]I]ﬂlﬂllﬂlllllD] @ o
I:I].E 0.6 1.2 3.0 0.8 2.4 D.E] - 9 9
Real-valued genotypes (0.2 0.7 1.2 3.0 D.8 2.2 0.6 e
‘P g (D
@ FCDEAE|
Sequence genotypes x) %)

e F C EE A D]




Evolutionary Computation:

A New Way to Search for Solutions

Example: binary mutation

before 11111 ‘?j

after 1 1011

Mutated gen

The mutation happens with a low running probability per gen p,,

52




Evolutionary Computation:

A New Way to Search for Solutions

HOW TO CONSTRUCT A GA?

Selection
PARENTS
Representation Crossover
Initialization
/ Population Mutation

POPULATION Fitness function

Replacement
DESCENDANTS




Evolutionary Computation:

A New Way to Search for Solutions

Replacement
F Rﬂ«aﬂz’;‘;ﬂ = ‘;e

J.'qr-.'l."'

11
¥ ff-::#

- ?-!.#_ fE\g

A7 N P | -
Generational replacement: old populatlon IS entirely replaced by
offspring (most frequent method)

Elitism: maintain n best individuals from previous

generation to prevent loss of best individuals by

effects of mutations or sub-optimal fitness evaluation

Generational rollover: insert offspring at the place of worst individuals




Evolutionary Computation:

A New Way to Search for Solutions

Components
Selection
PARENTS
Representation Crossover
Initialization
/ Population Mutation

POPULATION Fitness function

Replacement
DESCENDANTS




Evolutionary Computation:

A New Way to Search for Solutions

Monitoring Performance

Track best and population
average fitness of each
generation

Multiple runs are necessary:
plot average data and

| eI
0.0 T

Standard error 0 20 4 ‘ _ 60 ' 80 100

e Fitness graphs are meaningful only if the problem is stationary!

e Stagnation of fitness function may mean best solution found or
premature convergence




Evolutionary Computation:

A New Way to Search for Solutions
Measuring Diversity

Diversity tells whether the population has potential for further
evolution.

Measures of diversity depend on genetic representation.

E.qg., for binary and real valued, use sum of Euclidean or Hamming
distances 1

T 0.9

max fithess
D.(P)= Y d(g.g)) f
1,0eF | | | 0.7

1,000

diversity

100

diversity

10- . 0
0 40 80 120 160 200 240 280 320 360 400

generation




Evolutionary Computation:

A New Way to Search for Solutions
Applicability

* Evolutionary algorithms are used in a huge number of problems
 Biological inspiration is essential, but often distorted

e Different problems may require different algorithms

A
algorithm

performance EAZ
EAL

EA3

problem type

Knowledge of problem domain can help to choose or assemble
best algorithm




Evolutionary Computation:

A New Way to Search for Solutions
APPLICATIONS

Clasification control

Learning
Structural
optimization

Trayectory

generation
Planification
—
2 m /

S9




Evolutionary Computation:

A New Way to Search for Solutions

Traveling Salesman Problem

 Given a number of cities and the costs of
traveling from any city to any other city, what
is the cheapest round-trip route that visits
each city exactly once and then returns to the
starting city?
— Trying all possible solutions means n! permutations.
— Using the techniques of dynamic programming, it

can be solved in time O(n?2") % {J\r&%ﬂ% S
* The problem is of considerable g@?ﬁﬁ% ek
. S e

practical importance. Example: %

;

printed circuit manufacturing: EWM JE;,::,“ P
scheduling of a route of the drill %}@W@ 3 STt :

machine to drill holes in a PCB.




Evolutionary Computation:

A New Way to Search for Solutions

EXAMPLE: TRAVELLING SALESMAN PROBLEM
(TSP)

Order representation

351136158217 111447 9 10 12 16)

17 cities

Objective: Sum of distance among cities.
Population: 61 chromosomes - Elitism
Crossover: OX (P_.=0,6)

Mutation: List inversion (P_ = 0,01 — chromosome)

0l
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Evolutionary Computation:

A New Way to Search for Solutions

TSP

Mejor solucién Mejor solucién
- Soluci6n optimat Solucién optimal
Iteration: 0 Cost: 403.7 [teration: 25 Cost: 303.86

Optimum solution: 226.64




Evolutionary Computation:

A New Way to Search for Solutions

TSP

Mejor solucion

MEJO‘I'JSOIUCE --------- - Solucién optimal
Solucién optimal

Iteration: 50 Cost: 293,6 [teration: 100 Cost: 256,55
Optimum solution: 226,64




Evolutionary Computation:

A New Way to Search for Solutions

TSP

Mejor solucién
- Solucién optimal

Mejor solucién
________ Solucién optimal

[teration: 200 Costo: 231,4 Iteration: 250

Optimum solution: 226,64




Evolutionary Computation:

A New Way to Search for Solutions

TSP

o R NI % W
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Visualization of the evolution with a population of size 50 and
70 iterations
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Evolutionary Computation:

A New Way to Search for Solutions

TSP

(10)

Visualization of the evolution with a population of size 50 and
70 iterations




Evolutionary Computation:

A New Way to Search for S

TSP
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70 iterations

Visualization of the evolution with a population of size 50 and




Evolutionary Computation:

A New Way to Search for Solutions

TSP

nalpolnaesw=ealnallseslns

2500025250252 5:25125:25

no2oln8 29252502525

DD E =T D DI DI

2c(palnolnoeo.25la5lns

20200:29(25,29252525
(50)

Visualization of the evolution with a population of size 50 and
70 iterations




Evolutionary Computation:

A New Way to Search for Solutions

TSP

oo292029005.25025005105
o0D02925025.25125025025
200202525025252525
D00 26,d6,20:.265006(06
oo2929p5ngl35.2525
o920 29.2005l0525105

(70)

Visualization of the evolution with a population of size 50 and
70 iterations




Evolutionary Computation:

A New Way to Search for Solutions

TSP

. r * e &
p. 1 0 [+ 0 ) N
G arnetinee

Visualization of the evolution with a population of size 50 and
70 iterations




Evolutionary Computation:

A New Way to Search for Solutions
SOFTWARE AND IMPLEMENTATIONS

EO Evolutionary Computation Framework

EO is a template-based, ANSI-C++ compliant evolutionary
computation library. It contains classes for almost any kind of
evolutionary computation you might come up to at least for the
ones we could think of. It is component-based, so that if you don't
find the class you need in it, it is very easy to subclass existing
abstract or concrete classes.

L. L4

http://eodev.sourcefor

Maintained by J.J. Merelo, Grupo Geneura, Univ. Granada
<jjmerelo@gmail.com>




Evolutionary Computation:

A New Way to Search for Solutions

SOFTWARE AND IMPLEMENTATIONS

JCLEC JAVA Library | GLES

JCLEC is a software system for Evolutionary Computation (EC)
research, developed in the Java programming language. It provides
a high-level software environment to do any kind of Evolutionary
Algorithm (EA), with support for genetic algorithms (binary, integer
and real encoding), genetic programming (Koza style, strongly
typed, and grammar based) and evolutionary programming.

http://iclec.sourceforge.net/

Maintained: Sebastian Ventura, Universad de Cordoba (sventura@uco.es)

S. Ventura, C. Romero, A. Zafra, J.A. Delgado, C. Hervas-Martinez. JCLEC: A Java Framework
for Evolutionary Computing. Soft Computing, 2008.
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Artificial Evolution
There are 4 classic paradigms:

Genetic Algorlthms 1975, Michigan University

Evolution Strategies 1964, Technische Universitat Berlin

John Holland

Inventor of genetic
algorithms

Professor of CS and
Psychology at the U. of
Michigan.

Inventors of
Evolution
Strategies

Hans-Paul Schwefel

Universitat Dortmund

Evolutionary Programming. 1960-1966, Florida

Genetic Programming.iess, stanford University

Thre exist other modelos based on population evolution

Ing. Ingo Rechenberg
Bionics & Evolutiontechnique
Technical University Berlin

http://www.bionik.tu-berlin.de/

Lawrence J. Fogel,
Natural Selection, Inc.

Inventor of Evolutionary

Programming

John Koza

Stanford University.

Inventor of Genetic
Programming
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Artificial Evolution

EVOLUTIONARY
CLASSIC PARADIGMS

GENETIC EVOLUTION
ALGORITHMS STRATEGIES
GENETIC

EVOLUTIONARY
PROGRAMMING

MM A/AASMNYARMNMARMRARLRNLIA
FRUGRKAIVIVITING

EVOLUTIONARY COMPUTATION

OTHER EVOLUTIONARY
MODELS

ESTIMATION DISTRIBUTIION
ALGORITHMS: PBIL, EDA, ...

PARTICLE SWARM: SOCIAL
ADAPTATION

SCATTER SEARCH

CULTURAL EVOLUTIOARY ALGORITHMS

DIFFERENTIAL EVOLUTION

MEMETIC ALGORITHMS
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Artificial Evolution — Advanced research —
Niching Genetic Algorithms

e There are a lot of
Interesting

problems with | ﬁ\
multiple optima.

n some problems we want
to obtain a se

fitness

at nf Mmiuiltinla enh
LIIIUI'J Ul
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Artificial Evolution — Advanced research —

Nlchlng Genetlc Algorlthms

1 Generation 100.
1 4
0.9
0.8 A
0.7
0.6
0.5
0.4
0.3 A
0.2 H
\J 01 /\
1 o T T T T T T T l/\l
[} 0.2 0.4 0.6 0.8

Various global optima Various local optima

We have a convergence towards different optima

pan
(&9

Evolution with niches and without mutation Evolution with niches and without mutation

Pérez, E., Herrera, F. and Hernandez, C. (2003). Finding multiple solutions in
job shop scheduling by niching genetic algorithms. Journal of Intelligent
Manufacturing, (14) Pp. 323-341.
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Artificial Evolution — Advanced research —
Multiobjectivee Evolutionary Algorithms (MOEAS)

Single-objective optimization: f(X)
To find a single optimal solution x* A
of a single objective function f(X). m

I

|

I
Multi-objective optimization: /\/\/\l | \/\/\

|
To find a large number of Pareto optimal |
solutions with respect to multiple |
objective functions. 0 y*

> X
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Artificial Evolution — Advanced research —
Multiobjectivee Evolutionary Algorithms (MOEAS)

Multiobjective Optimization Problem

f(x) = (f1(x), T2(x), ..., T (x))

Maximize

subject to

X € X

Many Pareto-optimal solutions

fo (x)

Pareto Optimal
Solutions

o
o

O O
© 0o
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Two Goals in the Design of MOEAS
(1) To increase the diversity of solutions

/T

(2) To Improve the convergence on the Pareto-front

A

@ ¥

Niching, Crowding

—>

A A

Ehisl

Pareto Ranking & Elitist Strategy

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-11.

IEEE Transactions on Evolutionary Computation 6:2 (2002) 182-197.

Nondominated Sorting Genetic Algorithm 11
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Artificial Evolution — Advanced research —
Memetic Algorithms

Algorithm based on the evolution of populations
that use the knowledge on the problem in the
search process (usually, the knowledge is In the
form of local search algorithms acting on the
population individuals).

Why this hybrid model?
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Why this hybrid model?
The limits of the EAs

On the behaviour of EAS

‘ Evolutionary algorithms

Behaviour

Problems domain
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Memetic Algoriths: Basic concepts

MUTATION
New
Agent 1
Agent 1
New
Agent 2
Agent 2

CROSSOVER LOCAL OPTIMIZER

N. Krasnogor and J.E. Smith. A tutorial for competent memetic algorithms: model,
taxonomy and design issues. IEEE Transactions on Evolutionary Computation
9(5):474- 488, 2005.

M. Lozano, F. Herrera, N. Krasnogor, D. Molina, Real-Coded Memetic Algorithms with
Crossover Hill-Climbing. Evolutionary Computation 12:3 (2004) 273-302.
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CONCLUDING REMARKS

Evolutionary Algorithms
0 Based in a biological metaphor: evolution

O high applicability
O very popular
O High performance and low cost

O Powerful algorithms for a lot of appllcatlé

4
i. =
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Artificial Immune System (AIS)

o “Artificial Immune systems are computational systems inspired
by theoretical immunology and observed immune functions,
principles and models, which are applied to complex problem
domains”

A
(de Castro & Timmis) i ‘I’
C A

7 Immune

Leandro N. de Castro and Jonathan Timmis % H Network

/.,’//%/ o *fv}_{ el

S / _ e

Artificial Inmune Systems: L /é'/, e /é

7% // M

7 z'/' ’//? ( J 1 ;

f/ 1

: L N N
A New Computational :
_ XX X
Intelligence Approach PP ‘\&
[ X X J /r"
Antigens /
e
o
N

B cells with Antibodies




Artificial Immune System (AIS)

Why the immune system?

Recognition — Ability to recognize pattern that are (slightly)
different from previously known or trained samples, i.e.
capability of anomaly detection

Robustness — Tolerance against interference and noise
Diversity — Applicability in various domains

Reinforcement learning — Inherent self-learning capability
that is accelerated if needed through reinforcement
techniques

Memory — System-inherent memorization of trained pattern
Distributed — Autonomous and distributed processing




Artificial Immune System (AIS)

M HC protein A ntigen

APC {iﬁ?é (1)
M‘“ Peptide
T-cell ( I11 - cVvV)
; (IV) ®

[+
[+
A ctivated T -cell oLymphoknes °

A ctivated B -cell
(plasm a cell)




Artificial Immune System (AIS)

Self/Non-Self Recognition

 Immune system needs to be able to differentiate between self and non-self
cells
* Antigenic encounters may result in cell death, therefore
— Some kind of positive selection
— Some element of negative selection

 Primary immune response
— Launch a response to invading pathogens
-> unspecific response (Leucoytes)

 Secondary immune response
— Remember past encounters (immunologic memory)
— Faster response the second time around

-> specific response (B-cells, T-cells)




Artificial Immune System (AIS)

Immune Pattern Recognition

 The immune recognition is based on the complementarity
between the binding region of the receptor and a portion of
the antigen called epitope

* Antibodies present a single type of receptor, antigens might
present several epitopes
— This means that different antibodies can recognize a single antigen

—— Lymphocytes

< Receptorm N

b Q
e < Epitopes




Artificial Immune System (AIS)

AIS — Application Examples

 Fault and anomaly detection

 Data mining (machine learning, pattern recognition)
 Agent based systems

e Autonomous control and robotics

 Scheduling and other optimization problems

e Security of information systems
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Bioinspired Research - Others

Nancy Forbes
IMITATION OF LIFE. How Biology Is Inspiring Computing.
The MIT,2004
Preface ix
1 Artificial Neural Networks 1
2 Evolutionary Algorithms 13
3 Cellular Automata 25
4 Artificial Life 37
5 DNA Computation 51
6 Biomolecular Self-Assembly 67
7 Amorphous Computing 83
8 Computer Immune Systems 97
9 Biologically Inspired Hardware 113
10 Biology through the Lens of Computer Science 139
Epilogue 155
Notes 159 WANET POEREN
Index 163




Bioinspired Research - Others

Bio-inspired research — others

 Swarm intelligence (SI)
e Cellular automata

e Artificial life

e DNA Computing




Bioinspired Research - Others

DNA Computing

Exploit replication and binding of
biological DNA to solve large
combinatorial problems: e.g. TSP
(Adleman, 1994, Science)

(' Hybridized DNA ) \

('C ity encur.lings)

/ | Miami || New York |
CTACGG G.C;TAC CTACGGATGCCG
+ =g celiie
New York
IR _
(Ruuf: encading;]
| Dallas || Miami || Mew ¥ork |

[ Date Mi || Mito NY |

|[Los Angeles] Chicago || Dallas || New Yark |
[LAtoCh || ChtoDa | Dato NY |

[ Chicage | Callas ][ Miami |
[LAtoCh || ChtoDa || DatoMi || Mito NY |

See also DNA primer on

www.howstuffworks.com

/\
| Dallas [T [ Miami |

Miami

g

« Create DNA =

* Create DNA routes

 Make many copies with PCR
 Mix all DNA strings in test tube




Bioinspired Research - Others

- voltage

(DNA starts here )

)

+ voltage

E daia
(1 ©lo )

145 Grillion ©os

DNA Computing

S 600 bp

400 bp

100 bp
50 bp

Problems of

“DNA computers”:

Y o'

laAwvr ~AF At~
=1urriper Ol

strands
- laborious process

- restricted to few
problems

Select only strands with good size
(e.g., 5 cities x 6 bases = 30 bases)

Create baits:

compliment of city + magnetic bead

Fish out all strands starting with 1st city

Out of those, fish out all strands with 2nd city
Out of those, fish out all strands with 3rd city
Out of those, fish out all strands with 4th city

Repeat for all cities until...




Collective Intelligence:
from neurons and genes to ants and agents

“Dumb parts, properly connected into a swarm, yield to smart results”
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Final Comments

There are a lot of bio-
inspired computation
based areas tackling
different problems,
inspired by different

This is an exciting
research area that we
can consider at the
beginning.

Success in Al will
arrive from success
from Bio-inspired
Computing.

biological mechanisms.

[ 1 )
a) Genetic algorithms: Survival of the
genetically fittest (i.e., tallest)

[ S e A st 1 i '|
b) Memetic algorithms: Survival of the
genetically fittest and most experienced

T

Fataas: 1

c) Particle swarm: Flock migration

%
7

%
f
“:- \.“A % ::\m. Mﬁa

i 4 F Selected

Sy

1 F ath
H‘“-..'F B

d) Ant colony: Shortest path to food source

e) Shuffled Frog Leaping: Group search for food

Search space: each group
performing local search, then
they change information with
other groups.




Final Comments

A few books

\

Evolutionary
Gomputation

A.E.Eiben - J.E. Smith

| Introduction
:|to Evolutionary
: Computing

Leandro N. de Castro and Jonathan Timmis

Artificial Immune Systems:

A New Computational
Intelligence Approach

Gheorghe il

- a ‘

Grzegorz Rozenbefg

 Arto Salomaa

CUNELH) 1

New Computing Paradigms

DNA Compu




Computacion Bioinspirada: Cuando la
informatica imita a los seres vivos

Thanks !l

Any Questions?



