
Efficient 2D and 3D Watershed on Graphics Processing Unit: Block-Asynchronous
Approaches Based on Cellular Automata

Centro de Investigación en Tecnoloxı́as da Información (CiTIUS)

University of Santiago de Compostela, Santiago de Compostela, 15842 Spain

Pablo Quesada-Barriuso, Dora B. Heras, Francisco Argüello

Abstract

The watershed transform is a method for non-supervised image segmentation. In this paper we show that a watershed algorithm
based on a cellular automaton is a good choice for the recent GPU architectures, especially when the synchronization rules are
relaxed. In particular, we propose a block-asynchronous computation strategy that maps the cellular automaton on the thread
blocks of the GPU. This method reduces the number of points of global synchronization allowing efficient exploitation of the
memory hierarchy of the GPU. We also avoid the artifacts produced in the watershed lines by the block-asynchronous updating
scheme by correcting the data propagation speed among the blocks. The proposals are compared to an OpenMP multithreaded
code. The high speedups indicate the potential of this kind of algorithm for new architectures based on hundreds of cores. The
method is tuned to be applied to 3D volumes obtaining similar results.

Keywords: Watershed transform, Cellular Automata, Asynchronous Algorithm, CUDA, Image Segmentation

1. Introduction

The watershed transform is a non-supervised region-based
segmentation tool for digital images. The idea behind this
method comes from geography. A grey scale image can be rep-
resented as a topographic relief, where the height of each pixel
is directly related to its grey level. The dividing lines of the
catchment basins for precipitation falling over the region are
called watershed lines [1]. Various definitions, algorithms and
proposals can be found in the literature but, in practice, they can
be classified into two groups: those based on the specification
of a recursive algorithm by Vincent and Soille [1], and those
based on the distance functions defined by Meyer [2].

One of the main advantages of the watershed transform is
that all regions of the image are well defined at the end of the
segmentation process, even if the contrast of the image is poor.
For this reason it has been widely used in image processing,
e.g., for medicine and biology [3]. The results of applying di-
rectly the watershed algorithm are over-segmented owing to the
large number of regions detected [4]. This problem is overcome

Email addresses: pablo.quesada@usc.es (Pablo Quesada-Barriuso),
dora.blanco@usc.es (Dora B. Heras), francisco.arguello@usc.es
(Francisco Argüello)

1NOTICE: this is the author’s version of a work that was accepted for publi-
cation in Computers and Electrical Engineering. Changes resulting from the
publishing process, such as peer review, editing, corrections, structural for-
matting, and other quality control mechanisms may not be reflected in this
document. Changes may have been made to this work since it was sub-
mitted for publication. A definitive version was subsequently published in
Computers and Electrical Engineering, [Volume 39, Issue 8, November 2013]
doi:10.1016/j.compeleceng.2013.04.020

by preprocessing the image with the objective of reducing the
number of regions; e.g., by applying a filter to improve the
image contrast, or processing a marker-controlled watershed
transform that preselects the regions of interest [4]. The com-
putational cost of these tasks joins to high computational cost
of the watershed segmentation itself.

Different sequential algorithms have been designed to com-
pute the watershed transform using sequential structures as
queues [1] or graphs [5] to simulate the flooding process. Due
to the recursive nature of the watershed transformation, its
parallelization is not a trivial task. Two early algorithms for
computing the watershed transformations on parallel comput-
ers were developed by Moga et al. [6]. Both algorithms start
by detecting the regional minima, and then the image is lower-
complete transformed and represented as a graph or forest. Two
methods of propagating the labels of minima are proposed and
compared. These algorithms are implemented using the mes-
sage passing paradigm and executed on multiprocessor sys-
tems. Moreover, the wavefront technique was introduced in
this work. This is used to propagate the labels from the bor-
der to the inner of a flat zone, so the propagation reaches the
middle of the flat zone at the same time. In the field of parallel
processing, most efforts have focused on multiprocessors [6]
and to a lesser extent on specific architectures, such as field-
programmable gate arrays (FPGAs). A compendium of algo-
rithms and parallelization strategies for watershed is presented
in [7].

With high computational power, Graphic Processor Units
(GPUs) have evolved into low-cost, multithreaded, multicore
processors with enormous computational power, which are now

1

common in PC hardware. The Computed Unified Device Ar-
chitecture (CUDA) developed by NVIDIA, based on a data par-
allel programming model, provides support for general-purpose
computing on graphics hardware. In recent years, a number of
parallel implementations of watershed algorithms in GPUs have
been published [8–11]. In particular, a watershed algorithm im-
plemented on GPU using CUDA was presented by Körbes et
al. [10]. The algorithm is a four-step procedure. The efficiency
of this algorithm is a result of the labelling method used, greatly
reducing the number of iterations required for the task comple-
tion. The algorithm requires several steps of synchronization
and non-local data movement.

Cellular automata (CA) constitute a computing model that
has been extensively used for artificial life, pattern recogni-
tion [12] or image processing [13]. The popularity of CA is
mainly due to the simplicity of modelling complex problems
with the help of local information only. CA are dynamical sys-
tems that consist of a n-dimensional array of cells [14], each
one of which can be in one of a finite number of possible states.
They are synchronously updated in discrete time steps accord-
ing to a local, identical, interaction rule. This requires a strict
order for the component updates, where a cell cannot be up-
dated until all other cells have been updated. The concept of
parallelism is therefore implicit in CA and matches the com-
puting model of the GPUs, multicore and many-core systems,
as it is based on the individual evolution of different cells based
on local information. This is the reason why different parallel
algorithms based on CA for GPU and multicore systems have
been developed for general purpose computing, visualization
and image processing [15].

Watershed implementations based on CA were proposed us-
ing shaders in the graphic pipeline of the GPU [8]. This im-
plementation is synchronous as it updates the entire image at
each step of the evolution of the automaton. The authors de-
veloped an algorithm using image integration via the Ford-
Bellman shortest paths algorithm. From each minimum of
the image, a wavefront is started, labelled by the index of the
minimum it started from, and the distance is initialized with
the value of the minimum. The transition rule must be syn-
chronously applied to all the cells. This algorithm is simple and
fast, but it requires a previous detection of minima through the
use of any other method. Galilée et al. [16] introduced a parallel
algorithm-architecture based on asynchronous CA to compute
the watershed transform, updating each pixel as soon the infor-
mation from the neighbors becomes available.

In general, the asynchronous computing model is suitable for
parallel computing where a problem is split into independent
subproblems, each one solved by a different processor, mini-
mizing the number of interprocessor communications that im-
ply synchronization points. This data-parallel model is used by
CUDA. In the CUDA parallel model, a multithreaded program
is partitioned into blocks of threads that run independently from
each other [17]. The order in which blocks are computed is not
preset so the communications among them must be performed
by means of synchronization points, that are costly. So, we
have found that the asynchronous algorithm described in [16]
is particularly suitable for the CUDA computing model as dif-

ferent regions of the image can be simultaneously and indepen-
dently updated during certain number of steps, thus reducing
the number of synchronization points. Taking into account that
multi-CPU computers also benefit from a high computations to
communications ratio, research on algorithms that can be parti-
tioned into blocks and asynchronously computed is relevant.

In this paper we present a block-asynchronous computa-
tion method for the watershed algorithm based on CA (CA-
watershed) defined by [16]. We first study two proposals based
on 2D CA, thus applied to 2D images, and finally they are ex-
tended to the case of 3D volumes. The proposals are called
block-asynchronous and artifact-free block-asynchronous. An
early version for 2D images was published in [18] and applied
to hyperspectral images in [19].

We compare our GPU watershed proposals to an efficient
multithreaded OpenMP implementation of the watershed on
the CPU. When the block-asynchronous CA-watershed algo-
rithm is computed a problem arises as the quality of the seg-
mentation is slightly affected. In particular, the algorithm
presents the problem of data propagation at the block bound-
aries which causes undesirable artifacts. The artifact-free
block-asynchronous algorithm is based on the application of a
technique known as wavefront [6] increasing the quality of the
watershed lines obtained.

This paper is organized as follows: Section 2.1 introduces the
watershed transform and, Section 2.2, the main concepts associ-
ated to CA. The watershed algorithm based on CA is described
in Section 2.3. In section 3 we present the GPU architecture and
the CUDA programming model. The different GPU algorithms
are described in Section 4 and the results obtained are discussed
in Section 5. Finally, Section 6 presents the conclusions.

2. Watershed based on cellular automata

In this section we introduce the watershed transform and the
CA principles, and describe a watershed algorithm based on
CA.

First, we introduce a few concepts and notations regarding
topography in order to continue with the watershed transform.
A grey scale image may be considered as a graph G = (V, A)
with a finite set of V vertexes (pixels) and a set of arcs A ⊆ V×V
defining the connectivity. Two pixels u and v are connected if
(u, v) ∈ A. The pixels connected to u, called neighbors, are
denoted by N(u).

The most widely used connectivity is four, considering the
orthogonal neighbors, left, right, up and down, known as the
Von Neumann neighborhood. Another variation is the Moore
neighborhood, where the eight neighbors surrounding a pixel
are connected.

The slope between two neighbors is defined by:

∀u ∈ V,∀v ∈ N(u), slope(u, v) = h(u) − h(v),

where h(u) is the grey value (altitude) of the pixel u. The lower
slope is defined as the maximal slope connecting u to any of its
neighbors of a lower altitude:

LS (u) = max(h(u) − h(v)) | v ∈ Γ(u),

2

with Γ(u) the set of neighbors v with h(v) < h(u). If Γ(u) has
more than one element, NF(u) represents an arbitrary element
of that set.

A plateau is a connected subgraph P = (VP, AP) ⊆ G, where
∀u ∈ VP, h(u) = c, and c is the altitude of the plateau. Thus, a
plateau is a region of constant grey value within the image. The
set N=(u) denotes the pixels v ∈ N(u) with h(u) = h(v).

Finally, the lower border of a plateau P is defined as:

∂−P = { u ∈ VP | ∃v ∈ N(u), h(v) < h(u) }.

If ∂−P = ∅, the plateau is called a minimum plateau. All the
pixels within a minimum plateau are also minimum. In contrast,
if ∂−P , ∅, the plateau is called a non-minimum plateau.

2.1. Watershed transform

The watershed transform is a region-based technique for im-
age segmentation which is particularly interesting when the im-
ages have low contrast. Although various implementations can
be found in the literature, in this paper we follow the Hill-
Climbing algorithm based on the topographical distance by
Meyer [2].

The Hill-Climbing algorithm starts by detecting and labelling
all minima in the image with unique labels. The process con-
tinues propagating the labels upwards, climbing up the hill, fol-
lowing the path defined by the lower slope of each pixel. The
result of the segmentation is a set of regions, each one repre-
sented by a catchment basin, with their own label. At the end
all the pixels belong to a region and the watershed lines could be
defined as the limits between these regions. The precision of the
segmentation depends on the connectivity. The same algorithm
would permit a more precise placement of the watershed lines
or the catchment basins if a higher connectivity were used [2].

Problems arise for digital images with plateaus, as it is not
possible to know a priori whether a plateau is minimum or non-
minimum; thus, an additional processing is required. The most
common solution is to preprocess the image by calculating its
lower complete image [4], where each pixel has at least one
neighbor with a lower value, except the pixels that are minima.
Another alternative is to calculate the distances from an inner
pixel to the lower border of the plateau during the watershed
processing, which is the strategy selected for the present work,
and which requires propagating information outside the closest
neighborhood of each pixel.

Figure 1: A 2D grid with four (left) or eight (right) neighbors.

2.2. Cellular automata

CA are computing models composed of a set of cells ar-
ranged in a regular grid of one, two or three dimensions origi-
nally proposed by John Von Neumann as formal models of self-
reproducing organisms [20]. In the case of two dimensions,
each cell is connected to its four or eight adjacent neighbors,
depending on the connectivity, as shown in Fig. 1. CA are char-
acterized by a set of states and a set of transition rules which de-
termine the evolution of each cell among different states [20].
Each cell changes its state depending on the current state and
the state of its neighbors. The updates of the cells are usually
performed synchronously and in discrete time steps.

If the updates of the cells are not required to take place syn-
chronously, but each one can be updated to its next state an
unbounded number of times without synchronization, then we
have an asynchronous automaton [21]. In this case, the grid can
be partitioned into different regions which can be independently
updated.

It is possible to ignore the synchronization points associated
to the computation of the CA, resulting in a so-called asyn-
chronous CA. In this case, however, the correctness and con-
vergence of the algorithm could be severely affected [22]. In
order to efficiently develop asynchronously updating comput-
ing schemes, it is important to investigate the non-deterministic
and probabilistic behavior associated to such schemes [23].

2.3. Watershed based on a cellular automaton

In this section we present the watershed algorithm introduced
in [16] which can be synchronously or asynchronously imple-
mented. The main advantage of this algorithm is that minima
detection, labeling, and climbing the steepest paths are per-
formed simultaneously and locally.

This algorithm is based on a three-state cellular automaton
implementing the Hill-Climbing algorithm, as shown in Fig. 2.
Each cell of the automaton computes a pixel of the image. First,
the pixels are sequentially labelled in a row-major order. In the
initial state, all pixels compute the sets NF(u) and N=(u) cor-
responding to an arbitrary lower slope and the neighbors with
the same grey value, respectively.

If a pixel has no lower slope, NF(u) = ∅, it switches to the
minimum or plateau (MP) state and its label is modified as fol-

Compute and

non-minimum
MP NM

INIT

look at look at

Extend plateaus Hill-Climbing

Figure 2: Three-state automaton implementing Hill-Climbing algorithm [16].

3

lows:
l(u) = min (l(v)) , (1)

where l(v) are the labels of the pixels v ∈ N=(u).
Otherwise, the state of the pixel switches to non-minimum

(NM) and NF(u) points to the climbing direction. The grey
value and the label of the pixel are modified as follows:

f (u) = f
(
NF(u)

)
, (2)

where f (u) is the pair h(u), l(u), being h(u) the grey value of the
pixel u and l(u) its label.

Once the pixel has been initialized, the update stage begins.
This is an iterative task that processes the MP and NM states. A
pixel in MP state waits for data from any neighbor v ∈ N=(u),
and, depending on the grey value of the neighbor, two cases are
considered. If the value of the neighbor is equal to or greater
than its current value, the label of the pixel is updated as:

l(u) = min (l(u), l(v)) if h(v) ≥ h(u), (3)

otherwise, the pixel belongs to the lower border of the plateau
and its state switches to NM as follows:

NF(u) = v,

f (u) = f (v),
state = NM,

 if h(v) < h(u). (4)

On the other hand, a pixel in NM state remains in that state and
waits for data from the neighbor NF(u), updating its data as
follows:

f (u) = f (NF(u)). (5)

This iterative task ends when no more changes occur. A
pseudocode of the algorithm is shown below:

Algorithm 1: CA-watershed

Input: current state(u), f (v) from the neighbors
Output: next state(u), f (u)
Case (current state = “INIT”)

Compute N=(u), NF(u)
If (NF(u) = ∅)
{ l(u)← minv∈N=(u) (l(v)) ; next state(u)← “MP”; }
Else
{ f (u)← f (NF(u)); next state(u)← “NM”; }

Case (current state = “MP”)
For any neighbor v ∈ N=(u):
If (h(v) < h(u))
{ NF(u) = {v}; f (u)← f (v);

next state(u)← “NM”; }
Else
{ l(u)← min(l(u), l(v)); }

Case (current state = “NM”)
For its flooding neighbor v = NF(u):
f (u)← f (v);

This algorithm is non-deterministic and may lead to different
segmentation results. A formal proof of correctness and conver-
gence towards a watershed segmentation using a mathematical
model of data propagation in a graph is presented in [16].

3. GPU architecture

GPUs provide massively parallel processing capabilities
based on a data-parallel architecture. There are Application
Programming Interfaces (APIs) for writing programs that are
executed in the GPU, such as CUDA for NVIDIA devices, or
OpenCL, for heterogeneous platforms.

A CUDA program, which is called a kernel, is executed by
thousands of threads grouped into blocks. The blocks are ar-
ranged into a grid and scheduled to any of the available GPU
cores which enables automatic scalability for future architec-
tures [17].

The CUDA architecture is organized into a set of stream-
ing multiprocessors (SMs), each one with many cores called
streaming processors (SPs). These cores can manage hundreds
of threads in a Single Instruction, Multiple Data (SIMD) pro-
gramming model. The number of cores per SM depends on
device architecture.

The graphics memory is organized into a global memory
(usually known as device memory), a read-only texture memory
and a constant memory, with special features, such as caching
or prefetching data. These memories are available for all the
threads. Each thread has its own local memory and registers.
There is also an on-chip shared memory space only available
per block. This feature enables extremely rapid read/write ac-
cess to the data in this memory but with the lifetime of the
block. The new Fermi architecture includes a cache hierarchy
consisting of a L1 and a L2 caches.

There are mechanisms for synchronizing threads within a
block but not among different blocks. Owing to this restric-
tion it is not possible to share data among blocks and the com-
munication among them must be through the global memory.
Perform computations efficiently when this situation arises is a
challenge.

4. Block-asynchronous GPU algorithm

In this section we present the GPU algorithm for the CA-
based watershed introduced in Section 2.3. We first explain
the method for a 2D automaton and then apply it to 2D im-
ages. A synchronous implementation of the watershed algo-
rithm on the GPU is presented in section 4.1. Then we develop
a more efficient block-asynchronous GPU algorithm in Section
4.2. As a consequence of the computation by blocks, the block-
asynchronous watershed algorithm presents some undesirable
artifacts that are corrected in the algorithm proposed in Section
4.3, at the cost of increasing the computational load. Finally,
in Section 4.4 the extension of the method on a 3D automaton
developed for the application over 3D volumes is presented.

4.1. Synchronous CA-watershed implementation

The GPU synchronous algorithm has two stages: one for ini-
tializing and another for updating the automaton. The NF(u)
and the set of neighbors with the same grey value, N=(u), are
computed for each pixel in the first stage. In the second stage,
the updates flood each region with a representative label in an

4

iterative process, with a global synchronization at each step. We
have used 4-neighbor connectivity.

With the objective of increasing the data locality, we pack
the information required for each pixel into 64 bits. The min-
imum amount of data required are 4 bytes for l(u), 1 byte for
h(u), 1 byte for N=(u) and 2 bytes for NF(u). It is not neces-
sary to store the state of each pixel as it can be deduced from
NF(u). If the lower slope is empty, the state is MP; otherwise,
the state is NM. Fig. 3 (a) shows an example of data packing
for one pixel. The setN=(u) is compressed in 1 byte using 1 bit
for each neighbor (L, R, U, D in Fig. 3 (b)) where “1” means
a neighbor with the same grey level and “0” means a neighbor
with a different one. The four least significant bits are ignored
but they may be used to connect up to 8 neighbors, the maxi-
mum possible number for a two dimensional automata. NF(u)
is stored as an offset relative to the position of pixel u in mem-
ory, considering that the image is stored in row-major order. Its
possible values are ±1 and ±w, as shown in Fig. 3 (c), being w
the width of the image.

The algorithm consists of two kernels which implement the
initialization and updating stages, respectively. These kernels
are configured to work in 16 × 16 thread blocks with a thread
operating on one pixel. With the first kernel the automaton is
initialized according to Eq. (1) and Eq. (2). The grey values
are read from texture memory as this read-only memory speeds
up the accesses to data when they present high spatial locality.
Once all data have been initialized, they are packed into 64 bits
before being transferred to global memory. At the end of the
initialization stage the state of each pixel, a cell of the automa-
ton, has switched to NM or MP. In order to update all the pixels
synchronously, we use two 64-bit buffers, one input buffer for
reading data and one output buffer for writing the results.

The updating stage has been implemented through a loop ex-
ecuted by the CPU, which calls a CUDA kernel at each step, so
there is one global synchronization per step. The pseudo-code
shown in Algorithm 2 describes this iterative process. In each
call to the kernel, data are read from the input buffer in global
memory and are unpacked in registers. The pixels are updated
once as described by Eq. (3) and Eq. (4) if their state is MP,
and by Eq. (5) if their state is NM. Finally, the resulting data
are packed and stored in the output buffer. The input and out-
put buffers are swapped before the next iteration. Only one flag
needs to be moved to the CPU at each inter-block iteration in-

(a)

(b) (c)

1 1 0 1 0 0 0 0

L R U D
not used{

RL

U

D

+1-1

-w

+w

4 bytes 1 byte 1 byte 2 bytes

Figure 3: Data structures for one pixel. (a) Data packed into 64 bits, (b) struc-
ture of the variable N=(u) and (c) possible values for the variable NF (u).

dicating whether a pixel must be further processed. The update
ends when all regions have been flooded.

Algorithm 2: CA-watershed synchronous algorithm – Inter-
block iterative updating

Host code
do (inter-block updating)

CUDAKernel(i buffer, o buffer)
Global synchronization among blocks
swapBuffers(i buffer, o buffer)

while new updates

CUDAKernel(i buffer, o buffer)
loadToRegisters(i buffer)
Updating according to Eqs. (3) – (5)
storeResults(o buffer)

4.2. Block-asynchronous CA-watershed algorithm

In this section we explain the block-asynchronous algo-
rithm, which has the advantage of reusing information within
a block, unlike the synchronous implementation, efficiently ex-
ploiting the shared and cache memories of the GPU. By block-
asynchronous, we mean updating a group of pixels to their next
state an unbounded number of times without a global synchro-
nization. Thus, the image can be partitioned into different re-
gions which can be updated independently. Thus, each region
is updated asynchronously with respect to other regions.

This algorithm has two kernels configured to work in blocks
of 16 × 16 threads operating on 16 × 16 pixel regions of the
image.

The storage requirements are the same as for the synchronous
implementation, but in this case, for the variable NF(u), the
value w represents the width of the region of the image pro-
cessed within the block. The initialization stage is also the
same.

In this block-asynchronous algorithm the updating stage has
been adapted to perform in shared memory as many updates in-
side a region as possible (called intra-block updates) before per-
forming a synchronization among thread blocks which we call
inter-block updates. Each region is synchronously updated (i.e.
all cells within a region are updated at each time step), while the
regions themselves are asynchronously updated (an update of
the entire grid is performed at some selected steps). Hence, this
is a hybrid iterative process that includes asynchronous intra-
block updates and synchronous inter-block updates.

This model is shown in Fig. 4. During the intra-block up-
dating the values used from outside the block are kept constant
(equal to their values at the beginning of the stage). In the inter-
block updating process after a global synchronization, data are
read at the block boundaries, which allows the propagation of
data across the entire grid.

The pseudo-code shown in Algorithm 3 describes the iter-
ative process of the updating stage. The inter-block updating
loop is executed in the CPU and calls the updating kernel that
is executed in the GPU. In the kernel, for each block, once data

5

Figure 4: Cellular automata with 4-connectivity and 4 blocks: intra-block up-
dating (left) and inter-block updating (right).

are loaded in shared memory, the pixels are modified according
to Eqs. (3) – (5) in an iterative intra-block process within each
region of the image. Data are updated in registers and stored
back to shared memory. Threads within a block are synchro-
nized locally at each step of the intra-block process, so data
updated within a block can be reused from the shared memory,
which is much faster than the global memory space [17].

Algorithm 3: CA-watershed block-asynchronous algorithm –
Inter- and intra-block iterative updating

Host code
do (inter-block updating)

CUDAKernel(i buffer, o buffer)
Global synchronization among blocks
swapBuffers(i buffer, o buffer)

while new updates

CUDAKernel(i buffer, o buffer)
loadToSharedMemory(i buffer)
do (intra-block updating)

Updating according to Eqs. (3) – (5)
Local synchronization among threads

while new updates
storeResults(o buffer)

The intra-block updating ends when no new modifications
are made with the available data within the region. Then the
data in shared memory are packed and stored in global mem-
ory in the output buffer and the input and output buffers are
swapped. The updating stage ends when all regions have been
flooded.

In order to update the pixels at the edge of the block in this
block-asynchronous implementation, the shared memory allo-
cated for each region must be extended with a border of size
one. Thus, the border of one region overlaps the adjacent re-
gions. Fig. 5 shows an image divided into regions of 4 × 4
pixels (left) and the shared memory allocated (right). Threads
on the edge of the block have to do extra work loading the data
of the border.

4.3. Artifact-free block-asynchronous watershed algorithm

In the previous section we developed a block-asynchronous
algorithm for computing the watershed transform based on a

���������	��
������������

�
��
�
��

�
��
�
��

�
��

�
��

�
��
�
��
�
��

�
��

�����������������������

������������

Figure 5: An image divided in regions of 4 × 4 pixels (left) and the extended
shared memory allocated for one region of the image (right).

Figure 6: An image of size 128 × 128 pixels (left), the correct watershed line
obtained using 4-connectivity (middle), and the artifacts produced by the asyn-
chronous computation using blocks of cells of size 32 × 32 (right).

2D cellular automaton [16]. This algorithm follows a computa-
tional model in which the grid of cells of the automaton is parti-
tioned into regular regions that are assigned to blocks of threads
of the GPU. The block-asynchronous algorithm avoids points
of global synchronization that are costly in execution time and
efficiently exploits the shared memory, which has lower access
times than the global memory. The algorithm obtains a correct
segmentation according to the watershed segmentation defini-
tion. Thus, when non-minimum plateaus exist in the image, the
algorithm gives a correct segmentation; nevertheless, the water-
shed lines may not match the geodesic distance properly. This
situation is visually observed as small irregularities in the wa-
tershed lines.

When the data propagation speed is similar for all the cells,
the algorithm may give a good approximation of the watershed
lines. However, when computed by regions, it presents the
problem of data propagation at the region boundaries, which
causes artifacts as shown in the example in Fig. 6. Initially data
are propagated within the region during the intra-block updat-
ing, and later this is performed at the region boundaries during
the inter-block updating. The different speed of data propaga-
tion in the intra-block (one update per cell is performed at each
time step) and inter-block (one update of the boundaries of the
region is performed each several steps) updates result in im-
properly placed watershed lines.

The origin of this problem can be shown by introducing a
variable which measures the propagation distance of data from
the slopes of the image, as shown in Fig. 7. The region bound-
aries delay the data propagation. However, this problem can be
solved by data correction from the information provided by the
inter-block updating process and the measured distances. Ac-
cordingly, a procedure for performing this is required.

6

block 2block 1

0

0

0

0

1

1

1

2

2

23

3

3

4

4

4

4

5

5

6

6

7

0

0 1

1 2

2

3

0

0

1

1

2

2

3

4

3

incorrect watershed line

5610 323 2 1

7 6 5 3 2 11234 210

0

0

0

01

2

2

23

3

3

44

4

4

3

3

block 1 block 2

watershed line

0

0

0

1

2

2

0

0

1

1

1

2

2

3

3

3

3

4

4

3

2 532

3

4

1

1 1

1

5 4

21 15 5

4

4

12 0 2

Figure 7: An image of 4 × 16 pixels displayed as a topographical relief (top),
map of distances when the watershed is computed using asynchronous blocks
(middle), and map of corrected distances (bottom).

In order to correct the artifacts produced by the asynchronous
computation, we propose incorporating the wavefront tech-
nique into the algorithm, in a similar way to how it was in-
troduced by Moga et. al [6]. It is necessary to define a distance
variable, d(u), that is initiated as,

d(u) =

{
∞ if NF(u) = ∅

0 otherwise, (6)

i.e., the pixels in the neighborhood of a lower border of a
plateau are assigned a distance of 0.

Then an iterative process for updating the automaton starts.
The distances of pixels in the “MP” state are computed by in-
creasing the distance from a neighbor by one. Thus, at the same
time as the data are propagated over the plateau, the distances
are computed by the pixels. However, the distances obtained
during the intra-block updating can take incorrect values, as
shown in Fig. 7. If a pixel is switched to the “NM” state, its
distance and its label might need to be corrected, as the pixel
could be part of a non-minimum plateau which should be split
between two basins. The decision is taken by comparing the
variable d of the pixel to those of its neighbors, and in the event
that the difference is bigger than one, it must be corrected.

This technique provides watershed lines that match the
geodesic distance properly. In Fig. 7, two slopes are symmet-
rically placed at both sides of a non-minimum plateau that are
separated by an even number of pixels; hence, in this case only
one solution is possible.

The original CA-watershed algorithm is therefore modified
as shown below in Algorithm 4, where we have marked in bold
the modifications over the initial Algorithm 1.

Algorithm 4: Artifact-free CA-watershed

Input: current state(u), f (v), d(v) from the neighbors
Output: next state(u), f (u), d(u)
Case (current state = “INIT”)

Compute N=(u), NF(u), d(u)

If (NF(u) = ∅)
{ l(u)← minv∈N=(u) (l(v)) ; next state(u)← “MP”; }
Else
{ f (u)← f (NF(u)); next state(u)← “NM”; }

Case (current state = “MP”)
For any neighbor v ∈ N=(u):
If (h(v) < h(u))
{ NF(u) = {v}; f (u)← f (v); d(u) = d(v) + 1;

next state(u)← “NM”; }
Else
{ l(u)← min(l(u), l(v)); }

Case (current state = “NM”)
For its flooding neighbor v = NF(u):
f (u)← f (v);
For any neighbor v ∈ N=(u):
If (d(u) − d(v) > 1)
{ l(u)← l(v); NF(u) = {v}; d(u) = d(v) + 1; }

Regarding the implementation on GPU, the storage require-
ments are also similar to those for the previous GPU proposals,
but an additional double buffer of integers is also required for
storing the distances d(u). The buffer is initialized in the first
stage and it must be moved between shared and global memory
at each inter-block updating. The amount of data per pixel are
two buffers of 8 bytes of packed information (see Fig. 3) and
other two buffers of integers to store the distance values.

4.4. Asynchronous watershed proposal based on a 3D cellular
automaton

As explained in Section 2.2 the cells of an automaton may
be arranged in three dimensions in order to process a 3D vol-
ume. In this case the connectivity of the automaton needs to be
adapted to connect a cell to its surrounding neighbors, which
may range from a minimum of 6 (connecting a cell to its left,
right, top, bottom, forward and backward neighbors) up to a
maximum of twenty six neighbors.

The previous 2D watershed proposals in GPU can be eas-
ily adapted to process a 3D volume of data, especially when
only a low number of neighbors is considered. In this section
we describe the changes made to the previous 2D asynchronous
artifact-free algorithm described in Section 4.3 to process a vol-
ume. The new 3D implementation also consists of two kernels
which are configured to work in blocks of 8 × 8 × 4 threads,
with each one operating on a different 3D region in the volume.
In the first stage the input data are read from global memory
and the cells are initialized by accessing to their neighbors. The
hybrid iterative process described in Section 4.2 performs the
inter-block and intra-block updates in the second stage.

The same memory requirements per pixel as for the 2D
artifact-free asynchronous algorithm can be applied in this case.
If we consider a 6-neighbour connectivity, the data required in
global memory per each voxel can be compressed in 8 bytes,
as explained in Section 4.1 and showed in Fig. 3 including one
byte that stores the connectivity allowing to store up to 8 neigh-
bors. The storage requirements per voxel are two buffers (input
and output buffers) of 8 bytes of global memory for the packed

7

data and two additional buffers of 4 bytes each storing the dis-
tance value.

The shared memory allocated for each 3D region is extended
with a border of size one in each dimension, so the borders with
the adjacent regions are overlapped in the same way as in the
2D case. So, compared to the 2D algorithm, the shared mem-
ory requirements are much higher. More resources in terms of
registers are also required as it will be detailed in Section 5.4.

5. Results

We have evaluated our proposals on a PC with an Intel Core
i7 with four cores at 2.80 GHz and 8 GB of RAM. Each core
has separate L1 caches for instructions and data, and a unified
L2 cache. The unified L3 cache is common to all the cores, as
shown in Table 1. The GPU is a NVIDIA GeForce GTX580,
consisting of 16 SMs, each one with 32 SPs. The GPU memory
size is 1536 MB and its cache architecture consists of a unified
L1 cache per SM and a L2 unified cache of 768 KB shared by
all the SMs. The L1 cache of the GPU can be configured as 16
KB, being in this case 48 KB the size of the shared memory, in-
dicated in Table 1 as “L1 opt1”, or vice versa, indicated as “L1
opt2”. We have chosen one configuration or the other depend-
ing on the shared memory requirements of each GPU proposal.
The code has been compiled using the gcc version 4.4.3 with
OpenMP 3.0 support under Linux for the CPU implementation
and using the nvcc and the toolkit 4.0, also under Linux, for the
GPU implementations.

The performance results analyzed are expressed in terms
of execution times and speedups. The execution times were
obtained as the average of twenty executions. The speedups
were calculated with respect to the best OpenMP multithreaded
parallel implementation of the synchronous cellular automa-
ton. The OpenMP code is optimized by using four threads for
running on the four available cores of the CPU and the work
scheduling is static in order to evenly distribute the workload
among the threads and to achieve a high locality in the data
accesses. Therefore, the 2D image or the 3D volume is di-
vided into four consecutive horizontal strips or volumes and
each thread processes one of them. The need to access data
outside the region assigned to each thread is not a problem in
the OpenMP implementation, as all the threads access the same

Table 1: CPU and GPU cache memory hierarchies of the test platforms.

CPU Intel Core i7
L1 64 KB × 4 cores = 256 KB
L2 256 KB × 4 cores = 1024 KB
L3 8192 KB

GPU GTX580
L1 opt1 16 KB × 16 SMs = 256 KB
L1 opt2 48 KB × 16 SMs = 768 KB
L2 768 KB
L3 –

Table 2: CPU–GPU data transfer times.

Image size 5122 10242 20482

Transfer time 0.0022s 0.0082s 0.0321s

memory space. The algorithm includes a synchronization bar-
rier at each step of the updating stage.

The tests executing the GPU proposals were run on two im-
ages and one volume at different resolutions. The CPU–GPU
data transfers are carried out at the beginning, for transferring
the image to the GPU, and at the end, for sending the results
back to the CPU.

In the following sections we analyze the different GPU
proposals for the CA-watershed: synchronous, block-
asynchronous and artifact-free block-asynchronous. First in
Section 5.1 we have checked the correctness by comparing the
number of segmented regions obtained by the GPU algorithms
over 2D images to the number of regions obtained by a sequen-
tial watershed algorithm. Then the performance is analyzed in
terms of executions times and speedups for 2D images. The
main differences in performance among the synchronous and
the block-asynchronous algorithms are explained in Section 5.2
mainly by inspecting the number of synchronization points re-
quired by the different proposals. We study the artifact-free
block-asynchronous results in detail in Section 5.3 in a similar
way as in Section 5.1. Section 5.4 describes the performance
results obtained for a 3D implementation of the artifact-free
block-asynchronous algorithm. Finally, we compare the results
to other works in Section 5.5.

5.1. GPU performance results for 2D images

This section describes the performance results obtained by
the three different GPU proposals when they are applied over
2D images of different sizes.

First, we have evaluated and compared the synchronous im-
plementation and the two block-asynchronous proposals in the
GPU in terms of execution times and speedups. For the GPU
tests we have measured execution times calculated as the sum
of the data transfer times between CPU and GPU and the com-
putation times.

Table 2 shows the data transfer times in seconds for the dif-
ferent image resolutions used in our experiments. The test im-
ages used were Lena and a computed tomography scan of a
human head (CT Scan), as representatives of processing small
and large plateaus, respectively (see Fig. 8 (left)). The process-
ing of large plateaus (regions of uniform grey values) makes it
necessary to propagate the labels through large regions of the
image. This requires more computation time than processing
small plateaus. Thus the selected images represent two very dif-
ferent cases regarding to computational cost of the watershed.

Fig. 8 (right) shows the result of applying watershed to the
original images without any additional processing, although,
when the watershed is applied to a particular image domain,
it is usual to previously apply techniques, such as a gradient

8

Table 3: Number of regions generated by the algorithms using Lena and the CT
Scan of a human head.

Image size 5122 10242 20482

Lena 24958 25139 28521
CT Scan 6221 7300 13381

function, to enhance image edges, and a denoise filter or mark-
ers selection to reduce the over-segmentation [3, 4]. We have
validated our segmentation results by comparing the number
of segmented regions obtained by a sequential watershed algo-
rithm with the number of regions generated by the GPU im-
plementations. All the proposals obtain the same number of
regions, as shown in Table 3. The difference between the num-
ber of regions at different resolutions is due to the process of
scaling the image. The CT Scan image presents large plateaus
and therefore the number of regions is lower than for the Lena
image.

For the GPU proposals, the L1 cache is maximized to 48
KB, with the remaining 16 KB being for the shared memory
corresponding this configuration to “L1 opt2” in Table 1. The
reasons for selecting this configuration are: in the GPU syn-
chronous implementation because shared memory is not used,
and in the block-asynchronous proposals because only 15 KB
of shared memory are required for the 6 blocks that are simulta-
neously active per SM. As described in Section 4.1, 8 bytes per
pixel are required in the case of the block-asynchronous pro-
posal. For a 16 × 16 thread block, the shared memory required
has been extended with a border of size one, so the algorithm
needs 18 × 18 × 8 bytes of shared memory, i.e. 2.5 KB per
block. Therefore, considering 6 blocks per SM, a total of 15

Figure 8: Images used in the tests and watershed results obtained.

KB of shared memory per SM are used.
For the case of the artifact-free asynchronous proposal the

number of simultaneously active blocks per SM is reduced to 4.
In this case the limiting factor is the number of 32768 registers
available per SM. The proposal requires 26 registers per thread,
which gives a total of 16 × 16 × 26 = 6656 registers per block,
so there are enough registers in each SM for only 4 blocks. Re-
garding shared memory use, each pixel requires 12 bytes in this
proposal, so 18 × 18 × 12 = 3888 bytes per block are required,
which gives a total of 15.2 KB of shared memory required for
the 4 blocks in each SM, so the configuration “L1 opt2”, i.e. 16
KB of shared memory are sufficient.

Table 4 shows a summary of the performance results ob-
tained. The speedups of the GPU proposals considering only
computation times are displayed in Fig. 9. For both images all
GPU proposals obtain high speedups for all the image sizes. As
shown in Fig. 9, the speedups also scale well with the size of
the image; i.e. from 20.4x and 17.5x for the synchronous imple-
mentation for the Lena and CT Scan 512× 512 images, respec-
tively, up to 51.7x and 115.5x with the block-asynchronous pro-
posal when the 2048×2048 images are processed. When the im-
age size increases, so does the amount of computational work,
thus the hundreds of available threads are better exploited. The
artifact-free block-asynchronous proposal also obtains better
speedups than the synchronous one: 30x and 74.3x for the Lena
and CT Scan 2048 × 2048 images.

5.2. Block-asynchronous approach versus synchronous ap-
proach

In this section we analyze the reason why the block-
asynchronous performance results are better than for the syn-
chronous approach. The discussion is based on analyzing the

Table 4: Performance results for 2D Lena and CT Scan images including data
transfer times

Lena 5122 10242 20482

time
CPU OpenMP 0.0351s 0.1990s 1.2452s
GPU Sync. 0.0039s 0.0188s 0.0916s
GPU Async. 0.0030s 0.0131s 0.0562s
GPU A-F Async. 0.0034s 0.0158s 0.0736s
speedup
GPU Sync. 9.0x 10.6x 13.6x
GPU Async. 11.7x 15.2x 22.2x
GPU A-F Async. 10.3x 12.6x 16.9x

CT Scan 5122 10242 20482

time
CPU OpenMP 0.4941s 2.8793s 15.0919s
GPU Sync. 0.0305s 0.1436s 0.6992s
GPU Async. 0.0093s 0.0381s 0.1628s
GPU A-F Async. 0.0126s 0.0522s 0.2353s
speedup
GPU Sync. 16.2x 20.1x 21.6x
GPU Async. 53.1x 75.6x 92.7x
GPU A-F Async. 39.2x 55.2x 64.1x

9

characteristics of the two algorithms, the test images in number
and size of the plateaus and on the number of global and local
synchronizations required.

We focus the test on the images at a resolution of 2048×2048
pixels as the behaviour of processing large plateaus is bet-
ter appreciated in this case. When the image presents large
plateaus the computational cost of the watershed transform in-
creases because the labels must be propagated through large
regions of the image. Comparing the execution times of the
synchronous and block-asynchronous approaches (see Table 4),
a speedup of 1.6x is obtained for the image of Lena while the
speedup increases up to 4.3x for the CT Scan image. The im-
provement of the block-asynchronous proposal versus the syn-
chronous implementation is better for the second image; al-
though, as shown in Table 4, processing large plateaus takes
more time: 0.1628s for the CT Scan image while the Lena im-
age only requires 0.0562s. The reason is that for the block-
asynchronous proposal the intra-block updating allows the la-
bels to propagate faster among regions, especially in images
with large plateaus. If a region is entirely within a plateau,
the labels have to be propagated from side to side of that re-
gion. In this situation, only one inter-block update and w intra-
block updates are needed, where w is the width of the region.
The synchronous implementation would need w inter-block up-

Figure 9: Speedup of the GPU proposals using the image of Lena (top) and a
the CT Scan (bottom), not including data transfer times.

Table 5: Number of updates per pixel for the different GPU implementations
for 2048 × 2048 images.

Lena GPU Sync. GPU Async.
inter-block 114 16
intra-block min. — 22
intra-block max. — 195
intra-block avg. — 108.5

CT Scan GPU Sync. GPU Async.
inter-block 1156 76
intra-block min. — 88
intra-block max. — 1248
intra-block avg. — 668

dates, with the consequent penalty for transferring data from
and to global memory at each step, with each one of those steps
corresponding with a global synchronization.

The block-asynchronous approach reduces the number of
synchronizations among thread blocks and increases data reuse
thanks to the inter- and intra-block updating scheme.

The decrease in the number of synchronizations for the
block-asynchronous proposals is illustrated in Table 5, where
the number of inter-block and intra-block updates are summa-
rized for the synchronous and the block-asynchronous imple-
mentations and the test images. Only the values for the block-
asynchronous implementation are shown as the numbers are the
same for the artifact-free proposal. For the synchronous imple-
mentations (in CPU as in GPU) only inter-block updates take
place in the sense that after each update of all the pixels of the
image one global synchronization operation is required. Ob-
serving, for example, the values for the CT Scan image in the
table, the number of inter-block updates (i.e. the number of
global synchronizations required) is 1156 for the synchronous
implementation. For the block-asynchronous cases the num-
ber of inter-block updates decreases to 76 and the total num-
ber of asynchronous intra-block updates per block summing
up all the iterations ranges from 88 to 1248, depending on the
block, with 668 being the average value over all the blocks.
Hence, the number of updates per pixel is 1156, with the same
number of corresponding global synchronizations for the syn-
chronous implementation, and an average of 668 local synchro-
nizations with only 76 global synchronizations for the block-
asynchronous algorithms. In the case of the Lena image, a sim-
ilar decrease is observed.

The block-asynchronous proposal also exploits the resources
available in the GPU better, using the shared memory, which is
faster than the global memory.

5.3. Artifact-free block-asynchronous results

The artifact-free block-asynchronous algorithm is the best
GPU solution for computing the CA-watershed as it obtains the
most correct watershed lines as well as greater speedups. In
this section, details of its GPU implementation are discussed
and the performance results are analyzed in detail by inspecting
the time-breakdown for the different test images.

10

The artifact-free block-asynchronous algorithm gives the
correct watershed solution at the cost of increasing the compu-
tational cost by adding computations that include conditionals
in the cases where non-minimum plateaus are present. In addi-
tion, this implementation requires an additional double buffer
for sorting the distances, as described in Section 4.3. The
speedups over the synchronous version are high, as shown in
Fig. 9, but lower than for the plain block-asynchronous pro-
posal. The speedups for Lena and CT Scan 2048 × 2048 im-
ages are 30x and 74.3x, while for the block-asynchronous pro-
posal the values were 51.7x and 115.5x, respectively. The main
reason for the bigger speedups for the block-asynchronous im-
plementation is that, as a consequence of the number of reg-
isters required, as we have explained in Section 5.1, the num-
ber of active blocks per SM are 4 for the artifact-free block-
asynchronous implementation and 6 in the case of the plain
block-asynchronous one. The ratio in the number of concur-
rent blocks per SM is therefore 6/4 = 1.5, which is approxi-
mately the ratio observed in the execution times; i.e. the block-
asynchronous approach is 1.5 times faster than the artifact-free
one. In addition, the artifact-free block-asynchronous proposal
uses two buffers for the distances which need to be loaded from
global to shared memory at each inter-block update. Thus, the
overhead is mainly introduced by the hardware limitations of
the GPU. That is, if it could allocate up to six concurrent blocks
per SM the performance would be higher.

Fig. 10 shows in detail a breakdown of the execution times
and the time percentages corresponding to data transfer and to
computation for the artifact-free block-asynchronous proposal
with the CT Scan image. The time percentage for computation
increased in proportion to the image size, in particular, from
82.5% to 86.3% for resolutions of 512 × 512 and 2048 × 2048
pixels, respectively. A similar trend can also be observed in
Fig. 11 for the Lena image. This is due to the fact that, while the
data transfer time increases linearly by a factor roughly equal to
the scaling factor of the image, the computation time increases
by a factor proportional to the increase in the size of the image.
This behaviour is related to the number of regions in the im-
age which, as shown in Table 3, increases with the size of the
images. It is interesting to note that, for the CT Scan image,
computations take the greatest percentage of time as this im-
age includes large plateaus that require the propagation of the
labels through large regions of the image thus increasing the

Figure 10: Time breakdown for the artifact-free block-asynchronous proposal
when the CT scan image is processed.

Figure 11: Time breakdown for the artifact-free block-asynchronous proposal
when the Lena image is processed.

Table 6: CPU–GPU data transfer times for the 3D BrainWeb volumes.

Volume size 452 × 54 902 × 108 1812 × 217
Transfer time 0.0013s 0.0073s 0.0581s

computation time.

5.4. GPU performance for 3D images

In this section results for the proposal based on a 3D cellular
automata are analyzed. In order to assess the quality of our pro-
posals we have used a volume downloaded from the BrainWeb
Simulated Brain Database [24]. This database contains a set of
realistic MRI data volumes produced by a MRI simulator. The
aim of this analysis is to study the performance of the best of
our GPU algorithms, the artifact-free block-asynchronous one,
in a real environment with a heavier dataset. The test volume
shown in Fig. 12 consists of a range of grey values represent-
ing the background and the region of interest, the grey matter.
Noise or other features which may produce over-segmentation
when the watershed is calculated are not present.

As in the case of the previous proposals, we have measured
the execution times calculated as the sum of the data transfer
times between CPU and GPU and the computation times. These
data transfers, which are carried out at the beginning and the
end of the codes, are represented in Table 6.

The correctness of the algorithm has been validated by com-
paring the number of segmented regions. The numbers are

Figure 12: 3D volume used in the tests (left) and a section of the volume (right).
Images produced using Voreen (voreen.uni-muenster.de)

11

Table 7: Number of regions generated by the watershed for 3D volumes from
BrainWeb.

Volume size 452 × 54 902 × 108 1812 × 217
BrainWeb 1115 5669 14348

Table 8: Performance results for 3D BrainWeb volume including data transfer
times.

BrainWeb 452 × 54 902 × 108 1812 × 217
time
CPU OpenMP 0.1337s 2.2611s 37.7378s
GPU Sync. 0.0084s 0.0820s 1.1227s
GPU Async. 0.0044s 0.0451s 0.5907s
GPU A-F Async. 0.0050s 0.0540s 0.7304s
speedup
GPU Sync. 15.9x 27.6x 33.6x
GPU Async. 30.4x 50.2x 63.9x
GPU A-F Async. 26.5x 41.8x 51.7x

shown in Table 7. The 3D proposals for GPU obtain the same
number of regions as the sequential version on CPU.

Before executing the algorithms, the shared memory/L1 dis-
tribution of the GPU must be chosen. For this proposal the
shared memory/L1 configuration is different from the case of
the 2D images. In the 3D case only 4 blocks can be simultane-
ously active in each SM. The reason is that each SM provides a
maximum of 32768 registers, and this proposal requires 32 reg-
isters per thread, where 8×8×4 = 256 is the number of threads
per block, and therefore 8192 the number of registers required
per block. Regarding the shared memory, each block operates
on 10 × 10 × 6 = 600 voxels, which requires 600 × 10 = 6000
bytes of shared memory that include the distance values of the
artifact-free block-asynchronous version. 24000 bytes are re-
quired for the 4 active blocks per SM; hence, the shared mem-
ory/L1 configuration must be 48 KB for shared memory and 16
KB for the L1 cache (case “L1 opt1” in Table 1).

Table 8 shows a summary of the performance results ob-
tained in terms of execution times and speedups. As for the
2D case, all the 3D GPU proposals obtain speedups for all the
volume sizes, and the speedup values increase with the vol-
ume size as the computational load also increases. The per-
formance results for the block-asynchronous proposals are al-
ways better than for the synchronous implementation; approx-
imately twice as good. The performance results for both, the
block-asynchronous and the artifact-free block-asynchronous
approaches are very similar.

5.5. Comparison to other works

Proposals of different watershed algorithms on the GPU us-
ing shaders [8] and CUDA [9–11] have been presented in the
last few years. In [9] a new algorithm is presented based on the
introduction of a chromatic function for establishing the order
in which the voxels are processed. The experiments are car-
ried out over volume data sets obtaining maximum speedups
of 7x on a Nvidia GTX295 when compared to the sequential

proposal of the algorithm, even when large volume data sets of
up to 600 × 600 × 600 are considered. In our case, the largest
volume considered was 181×217×181, 9 times smaller, achiev-
ing speedup values of around 64x on a GTX580. Taking into
account that the speedups of our block-asynchronous proposals
for 3D increase with the volume size, as shown in Table 6, and
that our experiments have proved that the block-asynchronous
proposals scale by a factor of 2x–4x among the GTX295 and
the GTX580 GPUs, we can conclude that our proposals outper-
form the results in [9].

The algorithm presented in [10] is inspired by the drop of
water paradigm and performs a component labelling and a path
compression approach [25]. Its results are compared to a GPU
synchronous algorithm for the watershed based on a CA [8] out-
performing it. Given that the experiments in [10] are performed
in a older GPU than in our case, we have executed them on
our GTX580, obtaining similar speedup results to the obtained
with our block-asynchronous proposal of the CA-watershed de-
scribed in this paper.

The main advantage of our proposals is the simplicity of the
CA computing model. They are simple and easy to understand
because the CA present only three states and the projection over
a regular structure of independent computing cores is immedi-
ate. Furthermore, our CA-watershed proposals for GPUs can
easily be extended to introduce preprocessing or postprocessing
steps, such as, for example, calculating the gradient or perform-
ing region merging.

6. Conclusions

A block-asynchronous strategy to compute the cellular au-
tomata based watershed on the GPU was studied. The implicit
parallelism of CA consisting in independent cells that evolve
following a set of rules, perfectly matches the computing model
of modern GPUs. The block-asynchronous proposal relaxes the
synchronization requirements thus exploiting the computing ca-
pabilities of GPUs to the maximum. Moreover, this implemen-
tation also matches the computing requirements of multi-CPU
computers, and therefore it could be also adapted to these ar-
chitectures.

As a consequence of the asynchronous computation by
blocks, the watershed lines obtained do not match the geodesic
distance properly. An artifact-free block-asynchronous algo-
rithm that applies the wavefront method in order to correct this
problem has also been proposed.

A drawback of the proposed algorithms is a small increase
in the number of operations with respect to the original water-
shed algorithm, specially for the artifact-free proposal. Never-
theless, very good performance results are obtained, specially
for images with large plateaus where the block-asynchronous
approach is better exploited, achieving a maximum speedup of
115.5x at a resolution of 2048 × 2048 pixels.

In our future work, we plan to modify the CA-watershed to
include other image operations, such as pre- or postprocessing
stages. A multi-GPU implementation that can be efficiently ap-
plied to large multidimensional images is also among our ob-
jectives.

12

Acknowledgments

This work was supported in part by the Ministry of Sci-
ence and Innovation, Government of Spain, cofounded by the
FEDER funds of European Union, under contract TIN 2010-
17541, and by Xunta de Galicia, Program for Consolidation of
Competitive Research Groups ref. 2010/28. Pablo acknowl-
edges financial support from the Ministry of Science and Inno-
vation, Government of Spain, under a MICINN-FPI grant.

References

[1] Vincent, L. and Soille, P., Watersheds in digital spaces: An efficient al-
gorithm based on immersion simulations, IEEE Trans Pattern Anal Mach
Intell, 13(6) pp. 583–598, 1991.

[2] Meyer, F., Topographic distance and watershed lines, Signal Processing,
38(1), pp. 113–125, 1994.

[3] Grau, V., Mewes, A.U.J., Alcaniz, M., Kikinis, R. and Warfield, S.K., Im-
proved watershed transform for medical image segmentation using prior
information, Medical Imaging, IEEE Trans. on, 23(4), pp. 447–458, 2004.

[4] Meyer, F. and Beucher, S., Morphological segmentation, Journal of Visual
Communication and Image Representation, 1(1), pp. 21–46, 1990.

[5] Bieniek, A. and Moga, A connected component approach to the watershed
segmentation. In Mathematical Morphology and its Applications to Image
and Signal Processing, Heijmans, H. J. A. M. and Roerdink, J. B. T. M.,
Eds. Kluwer Acad. Publ., Dordrecht, pp. 215–222, 1998.

[6] Moga, A.N., Cramariuc, B., and Gabbouj, M., Parallel watershed trans-
formation algorithms for image segmentation, Parallel Computing, 24,
pp. 1981-2001, 1998.

[7] Roerdink J. B. T. M. and Meijster A., The watershed transform: defini-
tions, algorithms and parallelization strategies, Fundam. Inf., 41(1), pp.
187–228, 2000

[8] Kauffmann, C. and Piche, N., Cellular automaton for ultra-fast watershed
transform on gpu, in Proc. of the 19th Int. Conf. on Pattern Recognition,
pp. 1–4, 2008.

[9] Wagner, B., Müller, P. and Haase, G., A Parallel Watershed-
Transformation Algorithm for the GPU, in Proc. of the Workshop on App.
of Discrete Geometry and Math. Morphology, pp. 111–115, 2010.

[10] Körbes, A., Vitor, G.B., Lotufo, R. and Ferreira, J.V., Advances on water-
shed processing on GPU architecture, in Mathematical Morphology and
Its Applications to Image and Signal Processing, Springer, pp. 260-271,
2011.

[11] Hučko, M. and Šrámek, M., Streamed Watershed Transform on GPU for
Processing of Large Volume Data, in Proceedings of Spring Conf. on
Computer Graphics (SCCG), 2012.

[12] Chua, L.O., Yang, L., Cellular neural networks: applications, Circuits and
Systems, IEEE Transactions on, 35(10), pp 1273–1290, 1998.

[13] Priego, B., Souto, D., Bellas, F. and Duro, R. J., Unsupervised Segmen-
tation of Hyperspectral Images through Evolved Cellular Automata, Ad-
vances in Knowledge-Based and Intelligent Information and Engineering
Systems, 243, pp. 2160–2169, 2012.

[14] Sipper, M., Tomassini, M. and Capcarrere, M., Evolving asynchronous
and scalable cellular automata, in Proc. Int. Conf. on Artificial Neural
Networks and Genetic Algorithms, Springer-Verlag, pp. 67-68, 1998.

[15] Kauffmann, C. and Piche, N., A cellular automaton framework for image
processing on gpu, in Pattern Recognition, Peng-Yeng, Y., Ed. inTech, pp.
353–376, 2009.

[16] Galilée, B., Mamalet, F., Renaudin, M. and Coulon, P.-Y, Parallel asyn-
chronous watershed algorithm-architecture, IEEE Trans. on Parallel and
Distributed Systems, 18(1), pp. 44–56, 2007.

[17] Kirk, D. B., and Wen-mei, W. H., Programming Massively Parallel Pro-
cessors: A Hands-on Approach, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2010.

[18] Quesada-Barriuso, P., Heras, D.B. and Argüello, F., Efficient GPU asyn-
chronous implementation of a watershed algorithm based on cellular au-
tomata, in Proc. IEEE Int. Symp. on Parallel and Distributed Processing
with Applications, pp. 79-86, 2012.

[19] Quesada-Barriuso, P., Argüello, F. and Heras, D.B, Efficient segmentation
of hyperspectral images on commodity GPUs, Advances in Knowledge-
Based and Intelligent Information and Engineering Systems, 243 pp.
2130–2139, 2012.

[20] Sarkar, P. A brief history of cellular automata, ACM Computing Surveys
(CSUR), 32(1), pp. 80–107, 2000.

[21] Nehaniv, C. L., Evolution in asynchronous cellular automata, in Proc. of
the eighth Int. Conf. on Artificial life, MIT Press, pp. 65–73, 2003.

[22] Anzt, H., Tomov, S., Dongarra, J. and Heuveline, V., A Block-
Asynchronous Relaxation Method for Graphics Processing Units, Tech-
nical report, Innovative Computing Laboratory, University of Tennessee,
UT-CS-11-687, 2011.

[23] Adachi, S., Peper, F. and Lee, J.: Computation by asynchronously updat-
ing cellular automata, J. Stat. Phys., 114 pp. 261-289, 2004.

[24] Cocosco, C.A., Kollokian V., Kwan, R.K.-S, Evans, A.C., BrainWeb: On-
line Interface to a 3D MRI Simulated Brain Database, in NeuroImage,
Proceedings of 3-rd International Conference on Functional Mapping of
the Human Brain, 5(4) part 2/4, S425 1997.

[25] Hawick, K. A., Leist, A. and Playne, D. P., Parallel graph component
labelling with GPUs and CUDA, Parallel Computing, 36(12), pp. 655–
678, 2010.

Pablo Quesada-Barriuso received his B.S. in Computer Science and his
M.S. in Graphics, Games and Virtual Reality in 2007 and 2010 respectively.
He joined the Computer Architecture Group of the University of Santiago de
Compostela as a research assistant, and he currently pursuing a Ph.D. in Com-
puter Science. His main research interests include image processing, parallel
algorithms and GPUs.

Dora B. Heras received a M.S. degree in Physics in 1994 and a Ph.D. in
2000. She is currently an Associate Professor in the Department of Electron-
ics and Computer Engineering at the same University. Her research interests
include parallel and distributed computing, software optimization techniques
for emerging architectures, computer graphics for high performance computing
and image processing.

Francisco Argüello received the B.S. and Ph.D. degrees in Physics from the
University of Santiago, Spain in 1988 and 1992, respectively. He is currently
an associate professor in the Department of Electronic and Computer Engineer-
ing at the University of Santiago, Spain. His current research interests include
signal and image processing, computer graphics, parallel and distributed com-
puting, and quantum computing.

13

