
The VLDB Journal manuscript No.
(will be inserted by the editor)

Jose R. Rios Viqueira · Nikos A. Lorentzos

SQL Extension for Spatio–Temporal Data

Received: date / Accepted: date

Abstract An SQL extension is formalised for the
management of spatio-temporal data, i.e. of spatial
data that evolves with respect to time. The extension
is dedicated to applications such as topography,
cartography and cadastral systems, hence it considers
discrete changes both in space and in time. It is based
on the rigid formalization of data types and of SQL
constructs. Data types are defined in terms of time
and spatial quanta. The SQL constructs are defined in
terms of a kernel of few relational algebra operations,
composed of the well–known operations of the 1NF
model and of two more, Unfold and Fold. In conjunction
with previous work, it enables the uniform management
of 1NF structures that may contain not only spatio–
temporal but also either purely temporal or purely
spatial or conventional data. The syntax and semantics
of the extension is fully consistent with the SQL:1999
standard.

Keywords Spatial Databases · Data Modelling ·
Spatio–temporal Databases · SQL

The final publication is available at Springer via
http://dx.doi.org/10.1007/s00778-005-0161-9

Jose R. Rios Viqueira
Systems Laboratory, Department of Electronics and Com-
puter Science, University of Santiago de Compostela, Insti-
tuto de Investigaciones Tecnolgicas, Campus Sur, 15782 San-
tiago de Compostela, A Coruña, Spain
Tel.: +34 981 520829
Fax: +34 981 520829
E-mail: joserios@usc.es

Nikos A. Lorentzos
Informatics Laboratory, Agricultural University of Athens,
Iera Odos 75, GR 11855 Athens, Greece
Tel.: +30 210 529 4175
Fax: +30 210 529 4199
E-mail: lorentzos@aua.gr

1 Introduction

During the last two decades a lot of research has
been undertaken in the areas of temporal [2,9,10,44,
55] and spatial [5,14,20,22,24,26,27,37,38,42,47,50–52,
54,56,58,59] data management. Most of temporal data
models were dedicated to the management of valid
time data, i.e. of data associated with the time during
which these data are true in the real world. In their
majority, these models attempted to embed the temporal
functionality in the core of a Database Management
System (DBMS) by the definition of new data types and
operations.

The first generation spatial approaches, termed GIS–
centric [12], provided data structures and operations
for the direct manipulation of maps [3,16,27,28,56].
Relevant implementations attempted to link graphic
objects with conventional data stored in separate
files, missing, this way, the advantages of database
technology. The more recent GIS–centric tools are
implemented either on top of only a conventional
DBMS (layered architecture) or on top of two different
subsystems (dual architecture), (i) a conventional DBMS
and (ii) a spatial subsystem. Clearly, neither of these
two architectures takes full advantage of database
technology, since conventional DBMSs do not provide
efficient manipulation of spatial data. To overcome this
limitation, a new research effort was next undertaken in
the area of spatial databases [5,14,20,22,24,26,37,38,42,
47,50–52,54,58,59], leading to a new set of approaches,
termed DBMS–centric in [12]. As a result of the research
in this area, the last generation commercial and open–
source DBMSs [29,30,46,1] include extensions of models
that enable the storage and management of spatial
data and a spatial SQL as well, compliant with already
existing standards [35,45].

Finally, the combination of research in temporal and
in spatial data management, gave rise to a new research
area, spatio–temporal databases, which is concerned with
the management of the changes of spatial data with

2 Jose R. Rios Viqueira, Nikos A. Lorentzos

respect to time [4,6,7,13,17–19,21,23,25,36,43,53,57,
62,64,66,67].

Despite however the large number of approaches for
temporal, spatial and spatio–temporal data manage-
ment, the authors of this paper argue that a completely
satisfactory solution has not still been achieved, in the
sense that specific limitations can be identified in every
approach. In particular, a major problem is that opera-
tions on 2–d spatial objects have much individuality. It
is noticed, for example, that three spatial types should
in principle be defined in a spatial data model, point,
line and surface, whose definition should match the com-
mon interpretation by humans. However, it is also no-
ticed that the spatial intersection of two spatial objects
of a surface type is, in the general case, a set consisting
of (i) points, (ii) lines, (iii) surfaces and (iv) spatial ob-
jects composed of surfaces that are connected with lines.
The situation becomes even more complex if time is also
involved. To cope with this problem, the broad major-
ity of approaches had to either (i) simplify the obtained
results by losing pieces of spatial data or (ii) consider
complex data types and complex data structures. As an
example of the former, only the surface parts are ob-
tained by the spatial intersection of two surfaces in [3,
16,20,24,27,29,30,49,52,54,59] whereas a second oper-
ation is required to obtain the line parts in [17,19,25,
26,64]. Regarding the latter, data types of the form set
of spatial objects are adopted in [3,7,17,19,20,22,25,26,
28,37,38,46,51,64,66], spatio–temporal data types are
considered in [7,17,19,23,25,43,66] and complex data
structures, such as nested–relational, object–relational
and object–oriented, are used in [5,47,49,51,58,59,67].
Also, object–relational structures are used in [29,30,46]
to implement complex data types.

Additional limitations identified in the various spatial
and spatio–temporal approaches can be resumed as
follows. Some approaches restrict to only informal
presentations either of the data types or of the
functionality of the operations [4,5,7,14,24,27,36,38,43,
50,52–54,56,64,66,67]. The empty set is treated as a
valid spatial object in [14,17,16,19,20,25,26,29,30,35,
37,38,45,51,52,64,66]. Non–closed valid spatial objects
are considered in [51,58]. A relation may have at most
one spatial attribute in [3,6,27,36,57]. Two types of
attributes, explicit and implicit, have to be considered
in [4]. Many–sorted algebras are defined in [24,54].
Various granularities of time are not supported in [4,
7,13,17–19,21,25,31,53,66,67]. Finally, the functionality
of conventional algebra operations had to be redefined in
[7,67].

In this paper, an SQL extension is formalised for
the management of spatio–temporal data that overcomes
the above limitations. It is dedicated to applications
such as topography, cartography and cadastral systems,
hence it considers discrete changes both in space and in
time. Data types are defined in terms of timeand spatial
quanta. The SQL constructs are defined in terms of a

kernel of few relational algebra operations, composed of
the well–known operations of the 1NF model and of two
more, Unfold and Fold. The present work extends further
IXSQL [40], defined for the management of temporal
data. In conjunction with [40], it enables the uniform
management of conventional, temporal, spatial, and
spatio–temporal data. It also achieves and generalizes
further the functionality of other approaches. The spatial
and spatio–temporal functionality can be implemented
in the core of a 1NF relational DBMS, which can next
be extended, in a generic manner, to a more powerful
either nested–relational or object–relational model.

The remainder sections of this paper are outlined as
follows. Sections 2 and 3 are devoted to the definition of
quanta and data types for time and space, respectively.
Predicates and functions, only those required in
subsequent formalism, are defined in Section 4. Data
structures and relational algebra operations are defined
in Section 5. The syntax and semantics of the SQL
extension are defined in Section 6. Some discussion
on continues changes is made in Section 7. Section 8
summarises the characteristics of the approach, discusses
further capabilities, reviews previous work and addresses
implementation issues. Conclusions and issues of further
research are drawn in the last section. The full syntax of
the SQL extension is given in an Appendix.

2 Quanta and Data Types for Time

Definition 1 If N is the set of natural numbers and
n ∈ N, n > 0, then In = {i | i ∈ N, 0 ≤ i < n} is called a
discrete 1-dimensional (1-d) space. The elements of In
are called (1-d) points.

Note that, by definition, In is a nonempty, finite,
totally ordered set.

Definition 2 If p, q ∈ In, p ≤ q, a period [p, q] over In
is defined as the set

[p, q] ≡ {i | i ∈ In ∧ p ≤ i ≤ q}.
For the objectives of the present paper, it is assumed

that In matches some time data type like those supported
in SQL, i.e. DATE, TIME, TIMESTAMP. To avoid
however restricting to a particular time data type,
successive time points of a generic type are denoted as
ti, ti+1, ti+2 etc, and periods of time instants are denoted
as [ti, tj]. Based on this, the following definition is given.

Definition 3 Two generic types for time are defined:
− INSTANT≡{t0, t1, . . . , tn−1}.
−PERIOD ≡{[ti, tj] | ti, tj ∈ INSTANT ∧ ti ≤ tj}.

The elements of the first set are called (time)
instants or time quanta and those of the second
(time) periods. Figure 1 depicts the time instants of
the generic data type INSTANT and periods over it.

SQL Extension for Spatio–Temporal Data 3

{

t0
t1 t2 t3 t4 tn-2

[t , t]1 4

tn-1

. . .

Fig. 1 Quanta for Time.

P0 P1 P2 P3 P4 Pn-2 Pn-1

P0*n

P1*n

P2*n

P3*n

P4*n

P(n-2)*n

P(n-1)*n

P1*n-1

P2*n-1

P3*n-1

P4*n-1

P5*n-1

P(n-1)*n-1

Pn2-1

H0

V2

S3

P(n-1)*n+1 Pn2-2

. . .

. . .

. . .

. . .

. . .

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

. . .

. . .

.
.
.

.
.
.

Fig. 2 Quanta for Space.

A period of particular interest is used in subsequent
formalism tTIME ALL, defined as tTIME ALL ≡ [t0, tn−1].
By definition, INSTANT is totally ordered. Taking this
into account, the following definition is given.

Definition 4 A set S of time instants is connected iff it
matches the period [min(ti ∈ S),max(ti ∈ S)].

3 Spatial Quanta and Spatial Data Types

In this section a series of successive definitions is
provided that ends up with a rigid formalism of the
spatial data types that are considered in this approach.

Definition 5 A discrete 2-dimensional (2-d) space is
defined as a set In × In, where In is a (1-d) space.

Based on this definition, the following types of spatial
quanta are formalized.

Definition 6
Let (i, j) ∈ In × In and let k = n ∗ j + i ∈ In2 . Then the
set
– Pk = {(i, j)} is called a 2-dimensional (2-d) spatial

point or a 2-d quantum point or simply a point,
– Hk ≡ {(x, y) ∈ R2 | i ≤ x ≤ i + 1 ∧ y = j} is called a

pure horizontal quantum line iff 0 ≤ i < n− 1,
– Vk ≡ {(x, y) ∈ R2 | x = i ∧ j ≤ y ≤ j + 1} is called a

pure vertical quantum line iff 0 ≤ j < n− 1,
– Sk ≡ {(x, y) ∈ R2 | i ≤ x ≤ i + 1 ∧ j ≤ y ≤ j + 1} is

called a pure quantum surface iff 0 ≤ i < n− 1 and
0 ≤ j < n− 1.

By definition, a point is a set of just one element of R2

whereas a pure quantum line and a pure quantum surface
is an infinite subset of R2. A point (pure quantum line,

pure quantum surface) is geometrically represented as a
dot (line segment, square) on a plane. Figure 2 depicts
the geometric representation of the following quanta:
points P0,P1, . . . , Pn2−1, pure horizontal quantum line
H0, pure vertical quantum line V2 and pure quantum
surface S3.

Clearly, the number of quanta defined this way is
finite. As will be seen (Definition 10), an element of some
spatial data type will be defined in terms of this finite set.

Definition 7 Let the set of all quantum points (pure
quantum lines, pure quantum surfaces) be denoted as
QPOINT(QPL,QPS). Then the following sets are also
defined.
– QLINE ≡ QPL ∪QPOINT, called the set of all quantum

lines.
– QSURFACE ≡ QPS ∪QLINE, called the set of all

quantum surfaces.

Based on the concept of spatial quanta, a series of
data types for space are defined. Before the formalism is
given, preliminary definitions for quantum set and spatial
connectivity are provided.

Definition 8 If ∅ 6= S = q1 ∪ q2 ∪ . . . ∪ qn ⊂ R2, where
qi ∈ QSURFACE ∀i = 1, 2, . . . , n, S is called a quantum set.

Definition 9 A quantum set S ⊂ R2 is called connected
iff for every pair of elements x, y ∈ S there exists
a sequence of spatial quanta q1, q2, . . . , qn ⊆ S that
satisfies the following two properties:
1. x ∈ q1 and y ∈ qn.
2. qi ∩ qi+1 6= ∅ for i = 1, 2, . . . , n− 1.

Based on this definition, spatial data types are
formalized.

Definition 10 Let g be a non-empty, connected
quantum set. It is then defined that g is of a (2-d spatial)
type
−POINT ⇔ g ≡ qi, qi ∈ QPOINT.
−PLINE ⇔ g ≡ ∪iqi, qi ∈ QPL.
−LINE ⇔ g ≡ ∪iqi, qi ∈ QLINE.
−PSURFACE⇔ g ≡ ∪iqi, qi ∈ QPS.
− SURFACE ⇔ g ≡ ∪iqi, qi ∈ QSURFACE.

An element of one of the above types is called,
respectively, (2-d spatial) point, pure line, line, pure
surface and surface.

Figure 3(a) depicts the geometric representation of
the following spatial objects:
– Points: P0,P1, . . . , P168.
– Pure lines: (i), (ii), (iv) and (v). Object (iv) is the

union of four pure quantum lines.
– Lines: Any of the previous pure lines and points.
– Pure surfaces: (iii), (vi) and (vii). Object (vi) is the

union of eleven pure quantum surfaces. Object (vii)
is a surface with a hole.

4 Jose R. Rios Viqueira, Nikos A. Lorentzos

(i) (ii) (iii)

(iv) (v)

(vi) (vii)

(viii)

SURFACE

PSURFACE LINE

PLINE POINT

(a) (b)

P0 P12

P156 P168

Fig. 3 Spatial Objects and Spatial Data Types.

– Surfaces: Any of the above pure surfaces, any of
the above lines and object (viii), which is a hybrid
surface.

Note that, by definition, a point is a unary set, it is
not an element. Due to the fact that all other data types
have also been defined as sets, it is possible to define set
operations (union, intersection, etc.) involving a point
and a spatial object of some other data type, as will be
seen in the next section. As will also be seen, such set
operations will also be possible to be applied between
spatial objects of any two distinct types. Due to this, it
is said that all the spatial objects are spatially compatible.

A spatial object of type PLINE is also of type
SURFACE. Alternatively therefore, and in order to
distinguish it from a pure surface, such an object is also
called a degenerate pure surface. For a similar reason, an
object of type POINT is also called a degenerate pure
line and a degenerate pure surface.

Figure 3(b) illustrates the relationship between all
the spatial data types. Two spatial objects of particular
interest are used in subsequent formalism, gSURF ALL

and gLINE OUT, defined as follows (Figure 2):
– gSURF ALL = S0S1S2 . . . S(n−1)∗n−2 = ∪iSi,

where Si ∈ QPS.
– gLINE OUT = LBOTTOM ∪ LRIGHT ∪ LTOP ∪ LLEFT,

where
LBOTTOM =H0 ∪H1 ∪ . . . ∪Hn−2,
LTOP =H(n−1)∗n ∪H(n−1)∗n+1 ∪ . . . ∪Hn2−2,
LLEFT =V0 ∪Vn ∪ . . . ∪V(n−2)∗n,
LRIGHT =Vn−1 ∪V2∗n−1 ∪ . . . ∪V(n−1)∗n−1.

Hence, gSURF ALL is a pure surface decomposed of
the union of all possible quanta. Also, gLINE OUT is a line
composed of the four sides of a rectangle with corners the
points P0, Pn−1, Pn2−1 and P(n−1)∗n.

4 Predicates and Functions

Providing definitions for a full set of predicates and
functions is beyond the objectives of this paper. Hence,
the definitions below restrict only to those that are either
necessary for the subsequent formalism or are used in
examples.

g1 g2

g4

g3

g5

g1

g2

g3

g4

g5

g6

g7

(a) (b)

gLINE_OUT

gSURF_ALL

gINSULATOR

gCONDUCTOR

Fig. 4 Illustration of conductive and surrounds.

If g1, g2, gCONDUCTOR and gINSULATOR are spatial
objects of any type, the next predicate enables
determining whether there is a path from g1 to g2 in
gCONDUCTOR, which does not cross gINSULATOR.

conductive (gA, gB, gCONDUCTOR, gINSULATOR) ⇔
there exists a sequence of quanta q1, q2, . . . qn ⊆
gCONDUCTOR which satisfies the following three
conditions:
1. q1 ⊆ gA.
2. qn ⊆ gB.
3. (∀i, 1 ≤ i ≤ n− 1)

(∅ 6= qi ∩ qi+1 * gINSULATOR).

Considering the objects in Figure 4(a), it fol-
lows that conductive(g1, gB, gCONDUCTOR, gINSULATOR)
evaluates to true if gB = g2. If gB is any of
g3, g4, g5 the predicate evaluates to false. Let
gLINE OUT and gSURF ALL be the spatial objects de-
fined in Section 3 then, for the objects in Fig-
ure 4(b), conductive(gi, gLINE OUT, gSURFACE ALL, g1)
evaluates to true for i = 5, 6, 7, but it evaluates to false
for i = 2, 3, 4.

The next predicate is defined in terms of conductive
and is of spatial interest, as is witnessed by its name.

g1 surrounds g2 ⇔
¬conductive(g2, gLINE OUT, gSURF ALL, g1).

Hence, for the objects in Figure 4(b), g1 surrounds gi,
evaluates to true for i = 2, 3, 4, but it evaluates to false
for i = 5, 6, 7. Note that, as opposed to conductive,
g1 surrounds g2 6= g2 surrounds g1.

If Pk1, Pk2 are points with coordinates (ik1, jk1),
(ik2, jk2), respectively, their Euclidian distance is defined
as the real number

distance(Pk1, Pk2) =
√

(ik2 − ik1)2 + (jk2 − jk1)2.

Let gA and gB be two spatial objects of any data
type. It is then defined that

distance(gA, gB) = min(distance(PAi ,PBj)),

where PAi , PBj ∈ QPOINT, and PAi ⊆ gA and PBj ⊆ gB.

SQL Extension for Spatio–Temporal Data 5

Name G

Marathon lake

Aoos river

Crystal spring

g

g

g

1

2

3

R

Marathon
lake

Aoos
river

Crystal
spring

Fig. 5 Spatial Relation and its Geometric Representation.

5 Relational Algebra

A relation is defined in the known way, except that
the underlying domain of one or more of its attributes
can be of some time or space data type. In the sequel,
R(A, B, C) denotes a relation, where A, B, C are
three non-empty disjoint sets of one or more attributes
whose data types are immaterial. T and G are used
to denote, respectively, an attribute of a time or space
data type. Moreover, TG (TG) denotes an attribute
(set of attributes) of either a time or of a space type,
exclusively. Finally, (a, b, c) denotes a tuple of a relation
with scheme R(A, B, C), where a (b, c) denotes the
values for attributes A (B, C). Similarly, t, g and tg,
possibly subscripted, are used to denote, respectively,
time instants, spatial objects and any of the two.

An example of a spatial relation is given in Figure 5.
The geometric representation of the objects recorded
in attribute R.G are a point, a pure line and a pure
surface. Figure 6(a) gives an example of a spatio-
temporal relation recording the evolution of a spatial
object, Morpheas, with respect to time. Indeed, from
the geometric representation of the values recorded
in attribute Shape, it can be seen that during [d11,
d20] Morpheas was a spring. Next, during [d21, d40],
[d41, d50], and [d51, d60] it became, respectively, a
river, a river flowing into a small lake and a big lake
with an island. Note that Figure 6(b) shows another
spatio-temporal relation, but its difference from that in
Figure 6(a) is discussed later in this section. Two more
examples of spatio-temporal relations are depicted in
Figure 7. Specifically, LAND USE records the evolution
of land use with respect to time. The plots of these
lands are given in the same figure. Note that the lifespan
of object g3 (last tuple of LAND USE) is [d31, d50].
However, two plots of this object are given, one during
[d31, d40] and another for [d41, d50]. This discipline
is followed in the sequel for other objects too, for
ease of presentation, as will be realized later. Similarly,
P OWNER is used to record the owner and the shape of
various land parcels during various periods of time.

If TG1,TG2, . . . , TGn is a set of attributes, where
the data type of each TGi is either SURFACE or
PERIOD, then one relation of particular interest
is QUANTA ALL(TG1,TG2, . . . , TGn), which contains
a single tuple t = (tgALL1, tgALL2, . . . , tgALLn), where

Name TimeShape

Morpheas

Morpheas

Morpheas

Morpheas

g

g

g

g

1

2

3

4

[d11, d20]

[d21, d40]

[d41, d50]

[d51, d60]

H

[d11, d20] [d21, d40] [d41, d50] [d51, d60]

g1
g2 g3

g4

1

1

1

1

5

5

5

5

DG DT

Name TimeShape

Morpheas

Morpheas

Morpheas

Morpheas

Morpheas

g

g

g

g

g

1

7

8

5

9

[d11, d40]

[d21, d40]

[d21, d50]

[d41, d60]

[d51, d60]

H1

[d11, d40] [d21, d40] [d21, d50] [d41, d60] [d51, d60]

g1 g7

g8 g5

g9

DG

1

1

1

1

1

DT

5

5

5

5

5

(a) Spatio-temporal Relation Normalised on Space and Time

(b) Non-normalised Spatio-temporal Relation

Fig. 6 Normalised and Non-normalised Spatio-temporal
Relations.

tgALLi is gSURF ALL, if the data type of TGi is
SURFACE, and it is tTIME ALL otherwise.

Based on the previous data structures, relational
operations are also defined. In particular, the model
incorporates the well-known relational operations,
Union, Except, Project, Cartesian Product, Select,
Intersect, Join etc. For the remainder operations, it is
preliminarily defined that set(x) ≡ x if x is not a set
and set(x) ≡ x otherwise. Based on this, some more
operations are defined next.

Definition 11 If R is a relation with scheme R(A, TG)
then relation

U = Unfold [TG](R)
has scheme U(A, TG), where the data type of U.TG is
that in Figure 8 and contents

{(a, qi) | qi is a quantum∧ set(qi) ⊆ set(tg)∧
(a, tg) ∈ R}.

For an example of the application of Unfold on
a time attribute, consider relation H1 in Figure 6(b).
Then the result of UH1 = Unfold[Time](H1) is shown
in Figure 9(a). For an example of the application
of this operation on a spatial attribute, let R be

6 Jose R. Rios Viqueira, Nikos A. Lorentzos

Use Shape Time

PidOwner TimeShape

Cultivation

Forest

Forest

Industrial

Industrial

[d11, d20]

[d11, d30]

[d31, d50]

[d21, d30]

[d31, d50]

g

g

g

g

g

1

2

4

1

3

John

Peter

Peter

Peter

Susan

Susan

Susan

P2

P1

P1

P3

P1

P2

P3

[d21, d40]

[d21, d30]

[d31, d40]

[d41, d60]

[d41, d60]

[d41, d60]

[d31, d40]

g

g

g

g

g

g

g

5

6

8

7

7

8

5

LAND_USE

P_OWNER

Relation
[d11, d20] [d21, d30] [d31, d40] [d41, d50] [d51, d60]

P Peter's parcelº

J parcelº John's
S parcelº Susan's

LAND_USE

P_OWNER

F º Forest
C º Cultivation
I º Industrial

C

FF

I

F
I

F
Ig1

g2

g1

g2

g3

g2

g3

g2

J P S

P

J P PS

S

S

Sg5

g6 g5 g5
g5

g7 g7 g7

g8 g8 g8

Time

Fig. 7 Spatio-temporal Relations.

R.TG Unfold[TG](R) Fold[TG](R)

INSTANT

PERIOD

POINT

PLINE

LINE

PSURFACE

SURFACE

INSTANT

INSTANT

POINT

LINE

LINE

SURFACE

SURFACE

PERIOD

PERIOD

POINT

PLINE

LINE

PSURFACE

SURFACE

T
IM

E
S

P
A

C
E

Fig. 8 Result Data Types in Unfold and Fold.

the relation in Figure 5. Then U = Unfold[G](R) is
depicted in Figure 10(a). Such result consists of pure
quantum surfaces (Figure 10(b)), pure quantum lines
(Figure 10(c)) and points (Figure 10(d)).

Definition 12 If R is a relation with scheme R(A, TG)
then relation

F = Fold [TG](R)
has scheme F(A, TG), where the data type of F.TG is
that in Figure 8, and contents

{(a, tg =
⋃n

i=1 set(tgi)) |
(tg is connected) ∧ ((a, tgi) ∈ R, i = 1, 2, . . . , n)∧
(@(a, tgn+1) ∈ R such that

set(tg) ∪ set(tgn+1) is connected)}.
For an example of the application of Fold on a time

attribute, if UH1 is the relation in Figure 9(a), then
Fold[Time](UH1) yields relation H1 in Figure 6(b). To
illustrate its application on a spatial attribute, consider
a relation R(A, G) = {(a, gAi)} ∪ {(a, gBi)}, where gAi

and gBi are the spatial objects depicted in Figure 11.
Then, the result of F = Fold[G](R) yields a relation
F(A, G) = {(gUi)}, where the geometric representation
of each gUi is shown in Figure 12(a).

Name TimeShape

Morpheas

. . .

Morpheas

Morpheas

. . .

Morpheas

Morpheas

. . .

Morpheas

Morpheas

. . .

Morpheas

Morpheas

. . .

Morpheas

g

. . .
g

g

. . .
g

g

. . .
g

g

. . .
g

g

. . .
g

1

1

7

7

8

8

5

5

9

9

d11

. . .

d40

d21

. . .

d40

d21

. . .

d50

d41

. . .

d60

d51

. . .

d60

UH1

Name TimeShape

Morpheas

Morpheas

Morpheas

.

.

.

Morpheas

. . .

q

q

q

.

.

.
q

. . .

8,1

8,2

8,3

8,n

d50

d50

d50

.

.

.

d50

. . .

UH2

Each q denotes one of the quanta in gi,j i

.

(a) [Time](H)Unfold 1

(b) [Shape](UH)Unfold 1

DG

1

. . .

1

1

. . .

1

1

. . .

1

1

. . .

1

1

. . .

1

DT

5

. . .

5

5

. . .

5

5

. . .

5

5

. . .

5

5

. . .

5

DG

1

1

1

.

.

.

1

. . .

. . .
DT

5

5

5

.

.

.

5

. . .

. . .

Fig. 9 Illustration of operation Unfold.

SQL Extension for Spatio–Temporal Data 7

U

Name G

Marathon lake

. . .

Marathon lake

Aoos river

. . .

Aoos river

Crystal spring

g

. . .
g

g

. . .
g

g

1,1

1,225

2,1

2,21

3

(a) Result of Unfold (b) Pure surfaces

(Marathon lake, g)1,1

(Aoos river, g)2,21

(d) Points(c) Pure lines

(Aoos river, g)2,10

(Marathon lake, g)1,160 (Marathon lake, g)1,225

(Crystal spring, g)3

Fig. 10 Illustration of operation Unfold on spatial data.

gA2

gA4
gB6

gA10

gA7gA6

gB8

gB9

gA3

gA9

gB4

gB7
gB5

gB2gB1 gB3
gA1

gA5

gA8

S = {g }, S = {g }A Ai B Bj

Fig. 11 Input Spatial Data.

Operations Unfold and Fold can be generalised so as
to be applied to various time and space attributes as
follows.

Definition 13 Let R(A, TG1,TG2, . . . , TGn) be a
relation, then it is defined that:
Unfold[TG1,TG2, . . . , TGn](R) ≡

Unfold[TGn](. . . (Unfold[TG2](Unfold[TG1](R)))).
Fold[TG1, TG2, . . . , TGn](R) ≡

Fold[TGn](. . . (Fold[TG2](Fold[TG1](R)))).

Although in [40] it has been argued that these
operations can be applied to a relation on some attribute
of any data type, for the objectives of this paper only
space and time attributes are considered. To illustrate
their functionality, consider relation H1 in Figure 6(b).
It is a spatio-temporal relation and, by a careful
examination, it can be seen that it contains duplicate
data. As an example, consider its fourth tuple and the
geometric representation of object g5. It is then noted

gU2

gU3

gU5

gU1

gU4

gE1

gE2

gE3

gE4

gE5

gE6
gE7

(a)
of S and S
spatial union

A B

gI1

gI3

gI2 gI4

gI5

gI6

gI7

gI8

gI9

gI10

gI11

gI12

gI13

gI16

gI14 gI15

gI17

gE11

gE12

gE10

gE9

gE8

(b)
of S from S
spatial difference

B A

(d)
of S from S
spatial difference

A B

(c)
of S and S

spatial intersection

A B

Fig. 12 Result of Spatial Operations.

that during the period [d51, d60] (which is a sub-period
of the lifespan of g5), object g5 contains the top left
quantum surface. From the geometric representation of
object g9, it is noted that during [d51, d60] this quantum
surface is also contained in object g9. Hence, a piece of
surface has been recorded redundantly in two distinct
tuples during [d51, d60]. A similar observation applies
to objects g7 and g8 for the period [d21, d40]. This
data duplication can be eliminated by the application of
UH2 = Unfold[Shape,Time](H1), where UH2 is shown in
Figure 9(b). Since UH2 does not contain duplicate data,
then the same is also true for relation H (Figure 6(a))
resulting from H = Fold[Shape,Time](UH2). It is also
noticed that the application of Fold first on a space and
then on a time attribute yields a relation that enables
identifying the evolution of the shape of spatial data with
respect to time.

To complete this formalism, one more operation
Normalise is introduced, that simplifies the formulation
of queries.

Definition 14 Let R(A, TG) be a relation, then it is
defined that:

Normalise[TG](R) ≡ Fold[TG](Unfold[TG](R))

Thus, relation H in Figure 6(a) can be obtained
directly from relation H1 in Figure 6(b) with the
expression: H = Normalise[Shape,Time](H1).

6 SQL Extension

Based on the relational algebra of the previous section,
a spatio-temporal SQL extension is formalized. The

8 Jose R. Rios Viqueira, Nikos A. Lorentzos

functionality of the extension is defined in terms of
primitive SQL expressions. Note that in [61] this
functionality has been defined in terms of relational
algebra operations. Keywords are given in bold. The full
SQL syntax is given in the Appendix.

6.1 Query Specification

Two new optional clauses, <reformat clause> and
<normalise clause>, have been added to the syntax of
the SQL:1999 query specification, which is thus extended
as follows [40] (full syntax details are given in the
Appendix):

SELECT [<set quantifier>] <select list> (1)
FROM <table ref list> (2)
[WHERE <search condition>] (3)
[GROUP BY <grouping column ref list>] (4)
[HAVING <search condition>] (5)
[<reformat clause>] (6)
[<normalise clause>] (7)
[ORDER BY <sort spec list>] (8)

The BNF syntax of the new constructs is as follows:

<reformat clause> ::=
REFORMAT AS <reformat item>

<reformat item> ::=
FOLD [ALL] <reformat column list>

[<reformat item>]
| UNFOLD [ALL] <reformat column list>

[<reformat item>]

<normalise clause> ::=
NORMALISE ON[ALL]

<reformat column list>

<reformat column list> ::=
<reformat column>

[{, <reformat column>}. . .]

<reformat column> ::=
<column reference> | <unsigned integer>

Rule 1 The <reformat column list> must be a sub–list
of the attributes that appear in <select list>.

(Note that in SQL:1999 line (8) is not actually part of
<query specification>, but it has been included here for
simplicity reasons. Note also that, as is known, literals
may be included at various places in the previous syntax.
The definition of time and space literals can be found
in [40] and [61], respectively. Full syntax details are
also given in the Appendix below). The semantics and
functionality of this extension is described below.

6.1.1 Reformat Clause

Lines (1)-(5) are executed as in SQL:1999 and
next lines (6)-(8) are executed in this order. The
<reformat clause> enables the introduction of a
sequence of Unfold and Fold operations that are applied
to the result produced by the execution of lines (1)-
(5). Formally, let TR0(A,TG1,TG2, . . . ,TGm) be the
scheme of the relation obtained by execution of lines
(1)-(5). Let also XFOLD denote either UNFOLD or
FOLD. Then, the result obtained by

REFORMAT AS
XFOLD TG1, XFOLD TG2, . . . ,
XFOLD TGm

is a relation TRm that matches the result of the sequence
of m relational algebra operations

TRi = XFold[TGi](TRi−1), i = 1, 2, . . . , m.

Hence, an example of such a valid clause is:

REFORMAT AS
UNFOLD T1, G1, G2,
FOLD T2, G3, TG2

6.1.2 Normalise Clause

The <normalise clause> enables the application of a
Normalise operation to the relation obtained by the
execution of lines (1)-(6).

Formally, if TR(A, TG1, TG2, . . . , TGn) is the
relation obtained by the execution of lines (1)-(6), then
the SQL expression

NORMALISE ON TG1, TG2, . . . , TGn

is equivalent to the relational algebra expression

Normalise[TG1, TG2, . . . , TGn](TR).

Since duplicate tuples are allowed in SQL, a
variation of UNFOLD, FOLD and NORMALISE
is also provided that enables obtaining relations with
duplicate tuples. This functionality is achieved by the
incorporation of the [ALL] option. Such option is also
incorporated in the remainder of SQL extension but, its
discussion is beyond the objectives of this paper.

6.1.3 Sort Rows on the Basis of Space and Time
Columns

The total ordering defined for spatial objects in [61] and
time periods in [40] enables incorporating references to
attributes of these types after the key words ORDER
BY. In addition, aggregate functions can be applied to
attributes of these types.

SQL Extension for Spatio–Temporal Data 9

6.2 Query Expression

In SQL:1999, binary operations are involved in a
<query expression>. Such an expression can be either
a <non–join query expression> or a <joined table>
and is extended further in Subsection 6.3 and 6.6,
respectively. Moreover, one more expression is added,
<unary query expression>, described in Subsection 6.7.
Hence, the syntax of a <query expression> becomes

<query expression> ::=
<IXSQL non–join query expression>
| <IXSQL joined table>
| <IXSQL unary query expression>

All of these extensions make use of the following
algorithm, originally presented in [39], which enables
the easy formulation of queries that return data which
evolves with respect to time. This algorithm is described
below.

Let R(A), S(B) be two non-temporal relations and
let

R OPERATION S
denote any SQL:1999 binary operation. Let also
TR(A,T), TS(B, T) be the respective temporal
relations, i.e., they record the contents of R and S,
respectively, for various time instants. It is then defined
that

TR OPERATION [ALL] EXPANDING(T) TS
returns a relation with scheme and contents deduced by
the execution of the following five steps:

S1 Let UR = TR UNFOLD [ALL] (T),
US = TS UNFOLD [ALL] (T).

S2 Let TIME be the relation returned by the expression
SELECT T FROM UR
UNION
SELECT T FROM US

S3 For every t ∈ TIME, let URt and USt be the
relations returned, respectively, by the expression

SELECT A FROM UR WHERE T = ’t’
SELECT B FROM US WHERE T = ’t’

S4 For every t ∈ TIME, let UPt(C) be the scheme of the
relation obtained by the SQL:1999 binary operation

URt OPERATION [ALL] USt

S5 It is then defined that
TR OPERATION [ALL] EXPANDING(T) TS

returns a relation P(C, T), where the domain of T is
of a period type. The rows of P are those obtained
by steps S5.1 and S5.2 below.
S5.1 For every t ∈ TIME,

if c is a row in UPt

then add a row (c, t) in UP(C, T).

S5.2 P = UP NORMALIZE [ALL] (T).

Definition 15 Given ‘OPERATION ’ as above, it is
said that ‘OPERATION EXPANDING(T)’ is its
evolution with respect to time.

6.3 Non–Join Query Expression

The syntax of the SQL:1999 non–join query expression,
has been extended to support two sets of binary
operations, namely quantum and pair–wise operations.

6.4 Quantum Operations

In a simplified case (full syntax details are given in the
Appendix), the syntax, to incorporate within SQL the
quantum operations, is the following:

<non–join query expression> ::=
<query exp 1> UNION [ALL]

[EXPANDING (<reformat column list>)]
<query exp 2>

| <query exp 1> EXCEPT [ALL]
[EXPANDING (<reformat column list>)]
<query exp 2>

| <query exp 1> INTERSECT [ALL]
[EXPANDING (<reformat column list>)]
<query exp 2>

Rule 2 <query exp 1> and <query exp 2> must return
union compatible relations.

Rule 3 <reformat column list> must form a sub–list
of the attributes of the relations returned by both
<query exp 1> and <query exp 2>.

The functionality achieved by the inclusion of the
EXPANDING option has already been described
in the previous section for time attributes. Notice,
that spatial attributes can also be included in the
<reformat column list>, achieving this way spatial and
spatio–temporal functionality. Such functionality is next
illustrated by examples.

To start with spatial data, let R1(A, G) = {(a, gAi)},
R2(A, G) = {(a, gBj)} be two relations, where the
geometric representation of each gAi and each gBj is
depicted in Figure 11. Then, the expression

SELECT * FROM R1 (1)
UNION EXPANDING (G) (2)
SELECT * FROM R2 (3)

yields a relation with scheme (A, G) and contents
{(a, gUk)}, where the geometric representation of
each gUK is depicted in Figure 12(a). Similarly,
if line (2) in the expression above is replaced by
“EXCEPT EXPANDING (G)” (“INTERSECT

10 Jose R. Rios Viqueira, Nikos A. Lorentzos

Relation
Time [d21, d30] [d31, d40] [d41, d50] [d51, d60]

I
(Industrial Areas)

S
(Susan's Land)

QU
(Quantum Union)

QE
(Quantum Except)

QI
(Quantum Intersect)

S

TimeShape

[d31, d40]

[d41, d60]

g

g
7

9

Shape Time

[d21, d30]

[d31, d50]

g

g
1

3

I QU

[d21, d30]

[d31, d40]

[d41, d50]

[d51, d60]

g

g

g

g

1

17

18

9

TimeShape

QE

[d21, d30]

[d31, d40]

[d31, d40]

[d41, d50]

g

g

g

g

1

11

19

20

TimeShape

QI

[d31, d40]

[d41, d50]

[d41, d50]

g

g

g

20

11

19

TimeShape

g1 g3 g3

g9

g7

g9

g1

g17
g18

g9

g11

g19

g20

g20 g11

g19

g1

Fig. 13 Illustration of Quantum Operations on Spatio–temporal Data.

EXPANDING (G)”), then the contents of the
result relation are {(a, gEk)} ({(a, gIK)}), where the
geometric representation of each gEK (gIK) is depicted
in Figure 12(b) (Figure 12(c)).

To illustrate the application of the extension
to spatio–temporal data consider, initially, relations
LAND USE and P OWNER in Figure 7. Then, relations
I (evolution with respect to time of industrial areas)
and S (evolution with respect to time of Susan’s land),
both in Figure 13, are obtained, respectively, by the two
following expressions:

SELECTShape, Time SELECT Shape, Time
FROM LAND USE FROM P OWNER
WHERE WHEREOwner = ‘Susan’

Use = ‘Industrial’ NORMALISE ON
Shape,Time

Then the expression

SELECT * FROM I (1)
UNION EXPANDING (Shape, Time) (2)
SELECT * FROM S (3)

yields a relation whose scheme and contents match
those of relation QU in Figure 13. Similarly, if line
(2) in the expression above is replaced by“EXCEPT
EXPANDING (Shape, Time)” (“INTERSECT
EXPANDING (Shape, Time)”), then the scheme and
contents of the result relation match those of relation QE
(QI), also in Figure 13.

6.5 Pair–Wise Operations

In a simplified case (full syntax details are given in the
Appendix), the syntax, to incorporate within SQL the
pair–wise operations, is the following:

<non–join query expression>::=
<query exp 1>

WUNION [ALL] OF (<ref col list 1>)
[EXPANDING (<ref col list 2>)]
<query exp 2>

| <query exp 1>
WEXCEPT [ALL] OF (<ref col list 1>)
[EXPANDING (<ref col list 2>)]
<query exp 2>

| <query exp 1>
WINTERSECT [ALL] OF (<ref col list 1>)
[EXPANDING (<ref col list 2>)]
<query exp 2>

Rule 4 <ref col list 1> and <ref col list 2> must form
sub–lists of the list of attributes of the relations returned
by both <query exp 1> and <query exp 2>.

Rule 5 <ref col list 1> and <ref col list 2> may not
have attributes in common.

Note that sets of columns returned by <query exp 1>
and <query exp 2> do not have to be disjoint
because SQL:1999 does not impose such a restriction.
If R1(A,TG), R2(B,TG) are the relations returned by

SQL Extension for Spatio–Temporal Data 11

<query exp 1> and <query exp 2>, respectively, then
the result obtained by

<query exp 1> WUNION OF (TG) <query exp 2>

matches the one obtained by the expression

SELECT R1.A, R2.B, R1.TG (1)
FROM R1, R2 (2)
UNION EXPANDING (TG) (3)
SELECT R1.A, R2.B, R2.TG (4)
FROM R1, R2 (5)

Similarly, if line (3) in the previous expression is
replaced by either of

EXCEPT EXPANDING (TG) (3)
INTERSECT EXPANDING (TG) (3)

then the result of the expression matches, respec-
tively, the one obtained by either of the two following
expressions:

<query exp 1>
WEXCEPT OF (TG) <query exp 2>

<query exp 1>
WINTERSECT OF (TG) <query exp 2>

The functionality of the extension is next illustrated
by examples. Regarding spatial data, consider relations
R1(A, G) = {(a, gAi)}, R2(B, G) = {(b, gBj)} where
the geometric representation of each gAi and each gBj is
depicted in Figure 11. Then, the expression

SELECT * FROM R1 (1)
WUNION OF (G) (2)
SELECT * FROM R2 (3)

yields a relation with scheme (A, B, G) and contents
{(a,b, gUk)}, where the geometric representation of each
gUK is depicted in Figure 12(a). Similarly, if line (2) in
the expression above is replaced by “WEXCEPT OF
(G)” (“WINTERSECT OF (G)”), then the contents
of the result relation are {(a,b, gEk)} ({(a,b, gIK)}),
where the geometric representation of each gEK (gIK)
is depicted in Figure 12(b) (Figure 12(c)).

For spatio–temporal data consider, again, relations
LAND USE and P OWNER in Figure 7. Then, relations
I (evolution with respect to time of industrial areas)
and S (evolution with respect to time of land Owned by
either Susan or Peter), both in Figure 14, are obtained,
respectively, by the two following expressions:

SELECTUse, Shape, SELECTOwner, Shape,
Time Time

FROM LAND USE FROM P OWNER
WHERE WHERE

Use = ’Industrial’ Owner = ’Susan’
or Owner = ’Peter’
NORMALISE ON

Shape,Time

Then the expression

SELECT * FROM I (1)
WUNION OF (Shape, Time) (2)
SELECT * FROM S (3)

yields a relation whose scheme and contents match
those of relation WU in Figure 14. Similarly, if line (2)
in the expression above is replaced by “WEXCEPT
OF (Shape, Time)” (“WINTERSECT OF(Shape,
Time)”), then the scheme and contents of the result
relation match those of relation WE (WI), also in
Figure 14.

To conclude with pair–wise operations, note that
the EXPANDING option can also be included. The
functionality achieved by this keyword has already been
described in Subsection 6.2.

6.6 Joined Table

Beyond the extension by the EXPANDING option
of the various types of the SQL:1999 join operations
[39], a syntax has also been provided for joined tables,
that enables the explicit application of various types of
overlay operations. This syntax is given below.

<IXSQL overlay> ::=
<table ref 1> [NATURAL][<overlay type>]

OVERLAY [ALL] [OF (<ref col list 1>)]
[EXPANDING (<ref col list 2>)]
<table ref 2>

<overlay type> ::=
INNER
| {LEFT | RIGHT | FULL} [OUTER]

Rule 6 Exactly one of the options, either NATURAL
or OF (<ref col list 1>) must be specified.

If the option <overlay type> is not specified then
INNER is assumed by default. The option NATURAL
is equivalent to the option OF (<ref col list>), where
<ref col list> is the list of all attributes in the result of
both <query exp 1> and <query exp 2>. Recall that
<ref col list 1> and <ref col list 2> must be disjoint
sub–lists of the attributes of the relations returned by
<query exp 1> and <query exp 2>. If R1(A, TG),
R2(B, TG) are two relations then the result obtained
by

R1 INNER OVERLAY OF (TG) R2

matches the one obtained by the expression

12 Jose R. Rios Viqueira, Nikos A. Lorentzos

Use Shape Time

Owner TimeShape

Industrial

Industrial

[d21, d30]

[d31, d50]

g

g
1

3

Susan

Susan

Peter

Peter

Peter

[d31, d40]

[d41, d60]

[d21, d30]

[d31, d40]

[d41, d60]

g

g

g

g

g

7

9

6

8

7

I

S

Use Owner TimeShape

Industrial

Industrial

Industrial

Industrial

Industrial

Industrial

Industrial

Industrial

Susan

Susan

Susan

Susan

Peter

Peter

Peter

Peter

[d21, d30]

[d31, d40]

[d41, d50]

[d51, d60]

[d21, d30]

[d31, d40]

[d41, d50]

[d51, d60]

g

g

g

g

g

g

g

g

1

17

18

9

22

23

17

7

I

S

Relation
[d21, d30] [d31, d40] [d41, d50] [d51, d60]

P Peter's parcelº

S parcelº Susan's

WU

Industrial land

I I Ig1 g3 g3

P S

P

PS
g6

g7 g7

g8 g9

PS
g7

g9

g9

Time

g1

In
d
u
st

ri
al

S
u
sa

n

WU

In
d
u
st

ri
al

P
et

er

g7

g17

g18

g22

g23

g17

Use Owner TimeShape

Industrial

Industrial

Industrial

Industrial

Industrial

Industrial

Industrial

Industrial

Susan

Susan

Susan

Susan

Peter

Peter

Peter

Peter

[d21, d30]

[d31, d40]

[d31, d40]

[d41, d50]

[d21, d30]

[d31, d40]

[d41, d50]

[d41, d50]

g

g

g

g

g

g

g

g

1

11

19

20

11

24

11

19

WE

g1

In
d
u
st

ri
al

S
u
sa

n

WE

In
d
u
st

ri
al

P
et

er

g11

g19

g20

g11 g24
g11

g19

Use Owner TimeShape

Industrial

Industrial

Industrial

Industrial

Industrial

Industrial

Susan

Susan

Susan

Peter

Peter

Peter

[d31, d40]

[d41, d50]

[d41, d50]

[d21, d30]

[d31, d40]

[d41, d50]

g

g

g

g

g

g

20

11

19

25

19

20

WI

In
d
u
st

ri
al

S
u
sa

n

WI

In
d
u
st

ri
al

P
et

er

g20
g11

g19

g25

g19

g20

Fig. 14 Illustration of Pair–Wise Operations on Spatio–temporal Data.

SELECT * (1)
FROM (2)

(SELECT * (3)
FROM R1 (4)
REFORMAT AS UNFOLD TG) (5)

INNER JOIN (6)
(SELECT * (7)
FROM R2 (8)
REFORMAT AS UNFOLD TG) (9)

USING (TG) (10)
REFORMAT AS FOLD TG (11)

Similarly, if line (6) in the previous expression is
replaced by either of

LEFT JOIN (6)
RIGHT JOIN (6)
FULL JOIN (6)

SQL Extension for Spatio–Temporal Data 13

then the result of the expression matches, respectively,
the one obtained by either of

R1 LEFT OVERLAY OF (TG) R2
R1 RIGHT OVERLAY OF (TG) R2
R1 FULL OVERLAY OF (TG) R2

The spatial and spatio–temporal functionality of
overlay operations is next illustrated by examples.
For spatial data, consider relations R1(A, G) =
{(a, gAi)}, R2(B, G) = {(b, gBj)} where the geometric
representation of each gAi and each gBj is depicted in
Figure 11. Consider also relations I(A, B, G)={(a, b,
gIK)} (gIK in Figure 12(c)), L(A, B, G)={(a, b, gEK)}
(gEK in Figure 12(b)) and R(A, B, G)={(a, b, gEK)}
(gEK in Figure 12(d)). Then, the expression

SELECT * FROM R1 (1)
INNER OVERLAY OF (G) (2)
SELECT * FROM R2 (3)

yields a relation whose scheme and contents match
those of relation I. Similarly, if line (2) in the
expression above is replaced by “LEFT OVERLAY
OF (G)” (“RIGHT OVERLAY OF (G)”, “FULL
OVERLAY OF (G)”), then the scheme and contents
of the result relation match those of the relation I ∪ L
(I ∪ R, I ∪ L ∪ R).

For spatio–temporal data consider, again, relations
LAND USE and P OWNER in Figure 7. Then, relations
I (evolution with respect to time of industrial areas)
and S (evolution with respect to time of Susan’s land),
both in Figure 15, are obtained, respectively, by the two
following expressions:

SELECTUse, Shape, SELECTOwner, Shape,
Time Time

FROM LAND USE FROM P OWNER
WHERE WHEREOwner = ’Susan’

Use = ’Industrial’ NORMALISE ON
Shape,Time

Then the expression

SELECT * FROM I (1)
FULL OVERLAY OF (Shape, Time) (2)
SELECT * FROM S (3)

yields a relation whose scheme and contents match those
of relation FO in Figure 15. The subsets of relation FO
achieved by the other types of overlay operations are also
shown in the same Figure 15.

Finally, note that the EXPANDING option can
also be included. The functionality achieved by this
keyword has already been described in Subsection 6.2.

6.7 Unary Query Expression

The definition of <unary query expression> enables
incorporating in SQL the functionality of the unary
operations Complementation, Boundary, Envelope and
Buffer. An obvious revision of the algorithm given in
Definition 15 is also considered, which enables defining
the evolution of these operations with respect to time.
Hence, the syntax is as follows:

<unary query expression> ::=
(<unary query expression>)
|<table ref>{COMPLEMENTATION

| BOUNDARY
| ENVELOPE [ALL]}

OF (<ref col list 1>)
[EXPANDING (<ref col list 2>)]

| <table ref> BUFFER [ALL]
OF (<ref col list 1>)
WITHIN DISTANCE (<ref col list 3>)
[EXPANDING (<ref col list 2>)]

Rule 7 <ref col list 1>, <ref col list 2> and
<ref col list 3> must form disjoint sub–lists of the
attributes of the relations returned by <table ref>.

Rule 8 The data type of attributes in <ref col list 3>
must be numeric.

Rule 9 The number of attributes in <ref col list 2>
must be identical to the number of attributes in
<ref col list 3>.

Let R be a relation with scheme R(A, TG)
and QUANTA ALL(TG) be the relation defined in
Section 5. Then the result obtained by

R COMPLEMENTATION OF (TG)

matches the one obtained by the following expression:

SELECT * FROM QUANTA ALL
WEXCEPT OF (TG)
SELECT * FROM R

Similarly, the result given by

R BOUNDARY OF (TG)

matches the one obtained by the following expression:

R COMPLEMENTATION OF (TG)
INTERSECT EXPANDING (TG)
SELECT * FROM R

Finally, the result given by

R ENVELOPE OF (TG)

matches the one obtained by the following expression:

14 Jose R. Rios Viqueira, Nikos A. Lorentzos

Relation
Time [d21, d30] [d31, d40] [d41, d50] [d51, d60]

I

Shape Time

[d21, d30]

[d31, d50]

g

g
1

3

I
(Industrial Areas)

S
(Susan's Land)

Use

Industrial

Industrial

FO
(Full Overlay)

FO

TimeShape

[d21, d30]

[d31, d40]

[d31, d40]

[d41, d50]

[d31, d40]

[d41, d50]

[d41, d50]

[d31, d40]

[d41, d50]

[d51, d60]

g

g

g

g

g

g

g

g

g

g

1

11

19

20

20

11

19

21

22

9

OwnerUse

Industrial

Industrial

Industrial

Industrial

Industrial

Industrial

Industrial

Susan

Susan

Susan

Susan

Susan

Susan

S

TimeShape

[d31, d40]

[d41, d60]

g

g
7

9

Owner

Susan

Susan
In

n
er

L
ef

t
R

ig
h
t

F
u
ll

g1 g3 g3

g9

g7

g9

g1

g21

g22

g20

g11 g19 g11 g19

g20

}
g9

}
}}

Fig. 15 Illustration of Overlay Operations on Spatio–temporal Data.

SELECT NR.A, UQA.TG (1)
FROM (SELECT * (2)

FROM R (3)
NORMALISE ON TG) AS NR, (4)
(SELECT * (5)
FROM QUANTA ALL (6)
REFORMAT AS UNFOLD TG) AS UQA (7)

WHERE NR.TG surrounds UQA.TG (8)
REFORMAT AS FOLD TG (9)

Notice that if TG is a set of attributes {TG1,
TG2, . . . , TGn} then the expression in line (8) above
has to be replaced by the expression

NR.TG1 surrounds UQA.TG1 and
NR.TG2 surrounds UQA.TG2 and . . . and
NR.TGn surrounds UQA.TGn

Let R be a relation with scheme R(A, TG, D), where
the attributes in D are of some numeric data type, then
the result obtained by

R BUFFER OF(TG) WITHIN DISTANCE (D)

matches the one obtained by the following expression:

gB4

gB2

gC1

gC2

gB2

gB3

gB6

gB1

gB5

gB4

gE2

gE3

gE5

gE1

gE4

(a) Complementation (b) Boundary

(c) Envelope (d) Buffer

gB3

gB1

Fig. 16 Results of Unary Spatial Operations.

SELECTR.A, UQA.TG, R.D (1)
FROM R, (2)

(SELECT * (3)
FROM QUANTA ALL (4)
REFORMAT AS UNFOLD TG) AS UQA (5)

WHERE distance(R.TG, UQA.TG) < R.D (6)
REFORMAT AS FOLD TG (7)

SQL Extension for Spatio–Temporal Data 15

Name TimeShape

Morpheas

Morpheas

Morpheas

Morpheas

g

g

g

g

E1

E2

E3

E4

[d11, d20]

[d21, d40]

[d41, d50]

[d51, d60]

E

[d11, d20] [d21, d40] [d41, d50] [d51, d60]

1

1

1

1

5

5

5

5

DG DT

Name TimeShape

Morpheas

Morpheas

Morpheas

Morpheas

Morpheas

g

g

g

g

SURF_ALL

C1

C2

C3

SURF_ALLg

[d0 , d40]

[d41, d50]

[d51, d60]

[d51, d60]

[d61, dn]

C

[d0, d40] [d41, d50] [d51, d60]

1

1

1

1

1

5

5

5

5

5

DG DT

gSURF_ALL

gC1

gC2

gC3

[d61, dn]

gSURF_ALL

Name TimeShape

Morpheas

Morpheas

Morpheas

Morpheas

Morpheas

g

g

g

g

B1

B2

B3

B5

gB4

[d11, d20]

[d21, d40]

[d41, d50]

[d51, d60]

[d51, d60]

BO

[d11, d20] [d21, d40] [d41, d50] [d51, d60]

1

1

1

1

1

5

5

5

5

5

DG DT

gB1
gB2 gB3

gB4

gB5

gE1
gE2 gE3

gE4

Name TimeShape

Morpheas

Morpheas

Morpheas

Morpheas

g

g

g

g

B1

B2

B3

B4

[d6 , d15]

[d16, d35]

[d36, d45]

[d46, d65]

BU

[d6 , d15] [d16, d35] [d36, d45] [d46, d65]

1

1

1

1

5

5

5

5

DG DT

gB1 gB2
gB3

gB4

(a) Complementation (b) Boundary

(c) Envelope (d) Buffer

Fig. 17 Illustration of Unary Operations on Spatio–temporal Data.

Notice that if TG, D are two sets of attributes,
respectively, TG1, TG2, . . . , TGn and D1, D2, . . . , Dn,
then the expression in line (6) above has to be replaced
by the expression

distance(R.TG1, UQA.TG1) < R.D1 and
distance(R.TG2, UQA.TG2) < R.D2 and . . . and
distance(R.TGn, UQA.TGn) < R.Dn

The spatial and spatio–temporal functionality of
these operations is next illustrated by examples. For
spatial data, consider a relation R(A, D, G) = (a, 1,
gUi), where the geometric representation of each gUk is
depicted in Figure 12(a). Then, each of the expressions

– R COMPLEMENTATION OF (G)
– R BOUNDARY OF (G),
– R ENVELOPE OF (G),
– R BUFFER OF(G) WITHIN DISTANCE (D),

give a relation with scheme (A, D, G) and with
respective contents
– {(a, 1, gCk)} (gCk in Figure 16(a)),
– {(a, 1, gBk)} (gBk in Figure 16(b)),
– {(a, 1, gEk)} (gEk in Figure 16(c)),
– {(a, 1, gBk)} (gBk in Figure 16(d)).

Regarding spatio–temporal data, if H is the relation
in Figure 6(a), then the expressions

– H COMPLEMENTATION OF (Shape, Time)
– H BOUNDARY OF (Shape, Time),
– H ENVELOPE OF (Shape, Time),
– H BUFFER OF(Shape, Time)

WITHIN DISTANCE (DG, DT),

give, respectively, a relation whose scheme and contents
match those of relation

– C in Figure 17(a),
– BO in Figure 17(b),
– E in Figure 17(c),
– BU in Figure 17(d).

7 Continues Changes in Time

Although it has explicitly been stated that the proposed
model is dedicated to the management of discrete
changes in time, an outline of some application to
continues changes is presented in this section. Consider
therefore the relation in Figure 18(a), used to record
flights. The interpretation, e.g. for of the first two tuples,

16 Jose R. Rios Viqueira, Nikos A. Lorentzos

Fid

A

A

A

A

A

B

B

B

B

FLIGHTS

Time

[t10, t19]

[t20, t29]

[t40, t49]

[t50, t79]

[t80, t89]

[t20, t29]

[t30, t39]

[t40, t49]

[t50, t59]

Position

P1

P

P

P

P

P

P

P

P

2

3

4

5

6

7

8

9

Fid

A

A

A

B

B

B

R

B_T

t10

t40

t50

t20

t30

t40

E_T

t20

t50

t80

t30

t40

t50

P1

P

P

P

P

P

3

4

6

7

8

P2

P

P

P

P

P

4

5

7

8

9

B_P E_P

(a) (b)

Fig. 18 Illustration of continuous changes in time.

is that flight A was at position p1 and p2 at time t10 and
t20, respectively. Then the relation in Figure 18(b) can
be obtained by the IXSQL [40] expression

SELECTFid,
start(F1.Time)AS B T,
start(F2.Time)AS E T,
F1.Position AS B P,
F2.Position AS E P

FROM FLIGHT AS F1, FLIGHT AS F2
WHERE F1.Fid = F2.Fid AND

succ(end(F1.Time), 1) = start(F2.Time)

The first row shows that at times t10 and t20 flight A
was at positions p1 and p2, respectively. Assume also
that a function f enables computing the position of
a flight at some intermediate time instant. Then the
query ‘give the position of all flights at time t45 ’ can
be formulated as

SELECT Fid,
f (B T, E T, B P, E P) AS P

FROM R
WHERE B T <= t45 AND t45 <= E T

Function f can be selected from a list. Note however
that the management of continuous changes in time
cannot be exhausted by a simple example, i.e. further
research is required for the application of the proposed
model in this area. Approaches however to handle
continues (and also discrete) changes are addressed in
[17,19,25] (although none of them aims at defining a
data model). Observations on them are the following.

Many data types are considered. The spatial types
are POINT, POINTS (set of points), LINE (set of lines)
and REGION (set of surfaces). A variety of spatio-
temporal data types are also defined. One example is
MAPPING(A), where A is one of the above spatial data
types. If ik represents a time interval and fk represents a
function from the time instants in ik to A then a value
of type MAPPING(A) is a set of the form {(i1, f1),

(i2, f2), . . . , (in, fn)}. Hence, [17,19,25] enable defining
many functions fk and each of them is defined at the
time of data recording (as opposed to the example given
earlier, where this definition was provided at the time
of query formulation). At the same time, however, the
modification of a function, for experimentation purposes,
requires the prior update of the contents of the database.

Note that three types of continues changes in time
can generally be identified, (i) the change of position of
an object, discussed above, (ii) the change of its shape
and (iii) the change of both its position and shape.
However, it is not always easy to define an interpolation
function for cases (ii) and (iii). This problem can become
even more difficult if the interpolation has to consider
spatial types of the form set of spatial objects. As a
final observation, [17,19,25] do not define some spatial
data type that consists of objects whose geometric
representation consists of both points and lines and
surfaces. (The authors of the present paper estimate that
this is easy to fix.). As a consequence, however, it seems
that currently continues changes like those in Figures 5
and 6 of this work cannot currently be modelled in [17,
19,25].

8 Discussion

The spatio–temporal SQL extension defined in the
present paper has been designed to manipulate discrete
changes both in space and in time. Regarding the
representation of space, it is close to raster-based
approaches, although it considers points, lines and
surfaces. Regarding the management of time, it considers
valid time recorded at the level of tuple. The
characteristics of the proposed model can be outlined
as follows:

Formalism: Although many models have been defined
for the management of spatial and spatio-temporal data,
many of them lack formalism [4,7,14,27,36,38,50,52,54,
56,64,66,67]. Contrary to this, a rigid formalism has
been developed in the present paper for the definition of
the data types (time and space), the relational algebra
operations and the SQL constructs.

Data Types: A minimum set of data types is supported:
Two generic types for time (instant, period), three types
for space (point, pure line and pure surface) and two
more, line (either a pure line or a point) and surface
(either a pure surface or a line). The first five match
those used by humans in daily practice. The last two
enable the uniform management of every type of spatial
data. As opposed to this, other models consider sets of
time instants [7,22,23], sets of time intervals [17,19,25,
43], sets of spatial objects [3,7,17,19,20,22,25,26,28,37,
38,46,51,64,66]. Only surfaces are supported in [18,20]
and points are not supported in [13]. Only one generic

SQL Extension for Spatio–Temporal Data 17

spatial data type is supported in [3,7,22,23,37,38,46,
51,56,58,66,67]. Only surfaces without holes or lines
with only two end–points are supported in [24,29,30,35,
36,45,47,49,54,59,64]. Note that all the spatial objects
are set–theoretically closed. Note also that since the
model is dedicated to applications such as topography,
cartography and cadastral systems, hence there was no
need to define specific spatio–temporal data types mainly
useful for the management of moving objects [7,17,19,
23,25,43,66].

The empty set is treated as a valid period
in [17,19,21,25,66] and as a valid set of spatial
objects in [14,17,16,19,20,25,26,29,30,35,37,38,45,51,
52,64,66]. It seems however that such a set does not have
practical interest and indeed, the proposed model does
not make use of this set.

Hybrid Surfaces, composed of pure surfaces con-
nected by pure lines, are valid spatial objects. Such a
spatial object can have practical interest. For example, a
hydrological information system may necessitate record-
ing, as a whole, lakes and rivers pouring into them. How-
ever, such objects are not supported in [13,17,16,19,20,
24–26,31,36,47,49,52,54,59].

Data Structures: The proposed model makes use of the
simple 1NF data structures for the recording of spatio–
temporal data. As opposed to this, nested structures
are considered in [5,51,58], and some form of an object–
relational model is adopted in [47,49,59]. A combination
of two structures, relations and layers is considered in [3,
27,36], and, as a result, two distinct types of operations
are defined, one to handle relations and another to
handle layers. Moreover, it does not enforce limitations
on the data structures. Hence, a relation may have more
than one attribute of either a spatial or time type. As
opposed to this, a data structure may have at most
one spatial attribute in [3,27,36]. Two or more spatial
attributes are allowed in the data structures of [16,
28] but only one of them may be involved in spatial
operations. Finally, explicit and implicit attributes are
used in [4].

Operations: In many approaches, limitations are en-
forced on the functionality of operations related to the
management of spatial or spatio–temporal data. For ex-
ample, Overlay is defined only between surfaces in [3,18,
16,24,26]. Quantum Intersection is supported only par-
tially in [3,24,49,50,52,59,64,66], and none of the Quan-
tum Operations is supported in [13,14,36,43,47]. Con-
trary to these, in the proposed model Overlay applies
not only to surfaces but also to lines as well as to spatial
objects of distinct geometric representations, such as be-
tween a surface and a line. Note that such a result has
not only theoretical but also practical interest.

More generally, all the relational operations are
applicable to all the types of data. In particular, it has
been shown [40] that operations Unfold and Fold can

also be applied to conventional data. It thus follows that
all the operations can be applied uniformly to any type
of data, i.e. conventional, temporal, spatial and spatio–
temporal. It also follows, that the model is of general
purpose.

From the previous discussion, it follows that all the
relational operations are closed, in that they are applied
to relations and they always return relations.

In many approaches, the individuality of spatial and
spatio–temporal operations has also led to limitations
in their definition. For example, the spatial intersection
of two surfaces is defined in a way that discards
the line parts in [3,18,16,20,24,27,29,30,49,52,54,59,
64] but this definitely results in data loss. To overcome
this problem, two such operations are defined in [19,25],
one to obtain only the surface and another to obtain
only the line parts. Similarly, only points are obtained
by the spatial intersection of two lines in [24,50,54,64].
Contrary to these approaches, in the proposed model
the application of one operation suffices to obtain all the
result spatial objects without any data loss.

In their majority, the DBMS–centric approaches
maintain the operations of a data model and define
functions for the management of spatial or spatio–
temporal data. Contrary to this, one characteristic
of the proposed model is that the management of
spatial and spatio-temporal data actually reduces to
the management of relations, in that the user achieves
the manipulation of spatial data by the application
of operations to relations (injection of operations on
spatial objects into the relational model). Moreover, a
map of spatial objects can be seen as the geometric
representation of the spatial data recorded in one or
more relations. Hence, the approach combines fully the
flexibility of GIS–Centric approaches [3,16,27,28,56]
with the advantages of database technology.

One advantage of the proposed model is that all the
operations on relations are defined in terms of few kernel
relational operations. This set consists of the known
relational operations and two more, Unfold and Fold.

Functionality additional to that described in the
present paper can be outlined as follows [61]: (i)
obtaining the holes of a set of pure surfaces [5,64], (ii)
obtaining the end–points of a set of pure lines [5,29,30,
35,45,47,54], (iii) splitting a set of spatial objects with
respect to some others [5,54], (iv) obtaining the nearest
neighbours of spatial objects [24,26,30,46,50] and (v)
obtaining the Voronoi diagram of a set of objects [5,24,
54,59]. In fact, the relevant operations defined in [61]
achieve a more general functionality than that in [5,24,
26,29,30,35,45–47,50,54,59,64]

Finally, initial investigation [63] has shown that, in
conjunction with the recursive capabilities of SQL:1999,
the approach can also be used for the formalization
of operations related to the management of continuous
changes in space. Note that such changes have much

18 Jose R. Rios Viqueira, Nikos A. Lorentzos

practical interest but relevant operations have been
proposed only informally in [56].

It follows, therefore, that the model is of general
purpose, in that it can be applied uniformly to any type
of data such as temporal, interval, spatial and spatio–
temporal.

Spatial Compatibility: As has been shown, it is possible
to record in the same attribute spatial objects whose
geometric representation can be either a point or a pure
line or a pure surface (Figure 5). Due to this, it is always
possible to record in a relation the temporal evolution of
any spatial object with respect to time. This flexibility is
not supported in [13,17,16,19,24–26,36,47,49,52,54,59].
Given in addition that all the operations can be applied
to all spatial objects, it is thus said that all these objects
are spatially compatible. Note incidentally that evolution
of spatial operations is not supported in [31,36,43,53,57,
67].

SQL Constructs: The syntax and semantics of the
extension is fully consistent with the SQL:1999 standard.

Dimension Independent Model: The majority of the ap-
proaches restrict to the management of 2–d data [3,5,
6,16,19,24–26,29,30,28,35,36,38,
45–47,49,50,52,54,66]. Only some of them handle both
2–d and 3–d data [14,59,64,67]. As opposed to this, the
extension of the proposed model, so as to apply to n–d,
n ≥ 3, spatial data is straightforward.

As a final remark, it is recalled that the approaches
in [17,19,25] (Section 7) also support discrete changes.
This is achieved by the use of constant functions,
whose definition is clearly simple. Beyond however the
observations on these approaches in the previous and
the present section, the estimation of the authors of
this paper is that the model proposed in the present
paper is simpler because (i) it considers few and simple
data types, those of daily practice and (ii) it does not
necessitate the use of functions. Overall, the authors of
this paper are not aware of any other approach that
satisfies all the above properties.

Similarities with other research approaches are
outlined as follows: Elements resembling the spatial
quanta of the present work are used in [65], however,
the objective of [65] is just the incorporation of the 9–
intersection model [15] in raster–based approaches.

Raster cells or pixels, which resemble the pure
quantum surfaces of the present work, are used in [20,
48]. Therefore, neither pure quantum lines nor points
are supported in these approaches. Besides, pixels have
been considered in [48] only for issues related to image
processing. Similarities can also be identified between
the spatial data types of the present SQL extension and
those proposed in [5]. However important differences are
the following: Contrary to the present work, the model in

[5] makes use of set–valued attributes, all the operations
are primitive, operations are described informally, hybrid
surfaces are supported only partially, spatial difference
is not defined and a vector–based representation is
considered. Operations resembling Unfold and Fold are
used in [20,58]. However, the functionality of these
operations differs radically from that in the present
paper. Specifically, Unfold returns an infinite set of
tuples, therefore, the model is conceptual, as is also
admitted in [58]. Besides, two types of a Fold operation
are defined, which return elements of some set of points
type. In [20], only two operations are defined. The first
one, which resembles operation Unfold, decomposes each
tuple of a relation into so many tuples as the number of
raster cells that are contained in a spatial object. The
second, which resembles operation Fold, merges tuples
with matching values on a given conventional attribute.

The SQL version defined in the present paper is a
further extension of the IXSQL defined in [40]. Note that
IXSQL [40] is dedicated to the management of interval
(and subsequently to temporal) data, i.e. it does not
handle spatial data. Even however for the management
of temporal data, IXSQL considers intervals of the form
[x, y), as opposed to the [x, y] intervals in the present
work, which represent a potential ISO standard [34,32,
33]. Finally, there is also a difference in the formalism,
in that temporal quanta are not defined in IXSQL.
Part of a relational algebra (Unfold, Fold and Quantum
operations), dedicated solely to the management of
spatial data, is presented in [42] but the formalism for
Unfold and Fold is different than that in the present
paper. In addition, only four spatial data types are
considered in [42], whose formalism differs from that in
the present paper. A limited part of the SQL extension
(Unfold, Fold, Quantum Operations and Full Overlay)
for the management of spatio–temporal data is also
presented in [62]. However, a distinct definition for each
of the operations Unfold and Fold is provided, depending
on whether it applies to a relation on a time or space
attribute. Also, the syntax for Full Overlay is both
different than that in the present paper and also of
limited functionality. Finally an informal description of
the afore–mentioned operations is provided in [60].

An implementation of the temporal part of the
present SQL extension has already been undertaken
as part of previous work [40]. Such an implementation
includes the application of optimization techniques that
are based on a study of the properties of operations
Unfold and Fold [41]. Besides, an internal Split
operation, applied instead of Unfold, reduces drastically
the execution time (see also [11]). Furthermore, none of
the relevant operations that have been implemented [40]
requires the explicit execution of Unfold.

Regarding the part related to the management of
spatial and spatio–temporal data, our investigation
has shown that the results obtained in temporal
data management are directly applicable to the

SQL Extension for Spatio–Temporal Data 19

implementation of the spatial part. As an initial effort,
it is noted that, for a prototype, it only suffices to
implement operations Unfold and Fold, and predicate
conductive, given that all the others are expressed in
terms of them and the conventional operations (relevant
pseudo code is provided in [61]). Besides, a canonical
form [61], gives a unique internal representation for
all spatial objects. It should however be noted that
the formalism in this paper does not necessarily
imply that only a raster–based implementation should
be undertaken. Indeed, a tight coupling of the
logical with the physical level (vector or raster–based
implementation) contradicts data independence. Initial
investigation has shown that an efficient implementation
can be based on a vector–based approach. Relevant
research in this area must consider, amongst others,
that current commercial DBMSs do not provide direct
support of all the spatial data types proposed in this
model, therefore an implementation based on them must
consider the development of an appropriate interface.

9 Conclusions

An SQL extension for the management of spatio–
temporal data has been developed, whose definition
has been based on a formal extension of the relational
model. The authors of this paper estimate that
its further extension to an object–relational model
can enable the easy and efficient implementation
of commonly used spatial standards [35,45]. Further
research concerns the formalization of a complete set
of predicates and functions, including predicates to test
topological relationships [8,15], a deeper investigation
on the application of the present SQL extension to
the management of continuous changes in space and
in time. Finally, an efficient implementation should
consider storage structures, optimisation techniques and
an appropriate mapping to vector-based approaches.

Acknowledgements The authors are thankful to the re-
viewers for their substantial contribution in the improve-
ment of this work. This work has partially been supported
by the European Union, TMR Project CHOROCHRONOS
(FMRX-CT96-0056). Additionally, the work of Jose R.R.
Viqueira has been partially funded by CICYT (refs. TIC2002-
04413-C04-04 and TIC2003-06593), and Xunta de Galicia
(ref. PGIDIT02SIN10501PR).

References

1. Postgis: Geographic objects for postgresql. Retrieved
April 2005 from http://www.postgis.org/

2. Ariav, G.: A temporally oriented data model. ACM
Transactions on Database Systems 11(4), 499–527 (1986)

3. Bentley Systems Inc: MicroStation GeoGraph-
ics Users Guide Version 7.2 (2001). Found at
http://docs.bentley.com

4. Böhlen, M.H., Jensen, C.S., Skjellaug, B.: Spatio-
temporal database support for legacy applications. In:
Proceedings of the 1998 ACM symposium on Applied
Computing (SAC’98), Atlanta, GA, February 27 – March
1, pp. 226–234. ACM (1998)

5. Chan, E.P.F., Zhu, R.: QL/G – A query language
for geometric data bases. In: Proceedings of the 1st
International Conference on GIS, Urban Regional and
Environmental Planning, Samos, Greece, April 19-21, pp.
271–286 (1996)

6. Chen, C.X., Zaniolo, C.: SQLST: A spatio-temporal data
model and query language. In: Proceedings of the 19th
International Conference on Conceptual Modeling (ER-
2000), Salt Lake City, Utah, October 9-12, pp. 96–111
(2000)

7. Cheng, T.S., Gadia, S.K.: A pattern matching language
for spatio-temporal databases. In: Proceedings of
the 3th International Conference on Information
and Knowledge Management (CIKM’94), Gaithersburg,
Maryland, November 29 - December 2, pp. 288–295
(1994)

8. Clementini, E., Di Felice, P.: A model for representing
topological relationships between complex geometric
features in spatial databases. Information Sciences 90(1–
4), 121–136 (1996)

9. Clifford, J., Croker, A.: The historical relational data
model (HRDM) revisited. In: A. Tansel, J. Clifford,
S. Gadia, A. Segev, R. Snodgrass (eds.) Temporal
Databases: Theory, Design and Implementation, pp. 6–
27. Benjamin/Cummings, Redwood City, CA (1993)

10. Clifford, J., Tansel, A.U.: On an algebra for historical
relational databases: Two views. In: Proceedings
of the ACM SIGMOD International Conference on
Management of Data, Austin, Texas, May 28-31, pp. 247–
265. ACM SIGMOD Record 14(4) (1985)

11. Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data
and the Relational Model. Morgan Kaufmann Publishers,
San Fransisco, California (2003)

12. Davis, J.R.: Ibm’s db2 spatial extender: Managing geo-
spatial information within the dbms. Tech. rep., IBM
Corporation (1998)

13. d’Onofrio, A., Pourabbas, E.: Formalization of temporal
thematic map contents. In: Proceedings of the 9th ACM
International Symposium on Advances in Geographic
Information Systems (GIS 2001), Atlanta, GA, November
9-10, pp. 15–20 (2001)

14. Egenhofer, M.J.: Spatial sql: A query and presentation
language. IEEE Transactions on Knowledge and Data
Engineering 6(1), 86–95 (1994)

15. Egenhofer, M.J., Herring, J.R.: Categorizing binary
topological relations between regions, lines, and points
in geographic databases. Tech. rep., Department of
Surveying Engineering, University of Maine (1992)

16. Environmental Systems Research Institute, Inc.: ArcInfo
8: A New GIS for the New Millennium (2000). Found at
http://www.esri.com

17. Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis,
M.: Spatio-temporal data types: An approach to
modeling and querying moving objects in databases.
GeoInformatica 3(3), 269–296 (1999)

18. Erwig, M., Schneider, M.: The honeycomb model
of spatio-temporal partitions. In: Proceedings of
the International Workshop Spatio-Temporal Database
Management (STDBM’99), Edinburgh, Scotland, UK,
September 10-11, pp. 39–59 (1999)

19. Forlizzi, L., Güting, R.R., Nardelli, E., Schneider, M.:
A data model and data structures for moving objects
databases. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Dallas, Texas, May 16-18, pp. 319–330. ACM SIGMOD
Record 29(2) (2000)

20 Jose R. Rios Viqueira, Nikos A. Lorentzos

20. Gargano, M., Nardelli, E., Talamo, M.: Abstract
data types for the logical modeling of complex data.
Information Systems 16(6), 565–583 (1991)

21. Griffiths, T., Fernandes, A.A.A., Paton, N.W., Mason,
K.T., Huang, B., Worboys, M.F.: Tripod: A comprehen-
sive model for spatial and aspatial historical objects. In:
Proceedings of the 20th International Conference on Con-
ceptual Modeling (ER 2001), Yokohama, Japan, Novem-
ber 27-30, pp. 84–102 (2001)

22. Grumbach, S., Rigaux, P., Segoufin, L.: The dedale
system for complex spatial queries. In: Proceedings
of the ACM SIGMOD International Conference on
Management of Data, Seattle, Washington, June 2-4, pp.
213–224. ACM (1998)

23. Grumbach, S., Rigaux, P., Segoufin, L.: Manipulating
interpolated data is easier than you thought. In:
Proceedings of the 26th International Conference on
Very Large Data Bases (VLDB 2000), Cairo, Egypt,
September 10-14, pp. 156–165 (2000)

24. Güting, R.H.: Geo-relational algebra: A model and query
language for geometric database systems. In: Proceedings
of the International Conference on Extending Database
Technology (EDBT’88), Venice, Italy, March 14-18, pp.
506–527 (1988)

25. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S.,
Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A
foundation for representing and querying moving objects.
ACM Transactions on Database Systems 25(1), 1–42
(2000)

26. Güting, R.H., Schneider, M.: Realm-based spatial data
types: The rose algebra. VLDB Journal 4, 100–143 (1995)

27. Hadzilacos, T., Tryfona, N.: Logical data modeling
for geographical applications. International Journal of
Geographical Information Science 10(2), 179–203 (1996)

28. Intergraph Corporation: Working with Geomedia Proffe-
sional (2002)

29. International Business Machines Corporation (IBM):
IBM DB2 Spatial Extender User’s Guide and Reference,
Version 7 (2001)

30. International Business Machines Corporation (IBM):
IBM Informix Spatial DataBlade Module User’s Guide,
Version 8.11 (2001)

31. International Business Machines Corporation (IBM):
Informix Geodetic DataBlade Module User’s Guide,
Version 3 (2001)

32. International Organization for Standardization (ISO):
More Elements of Type PERIOD, Expert’s Contribution
(1996). ISO/IEC JTC 1/SC 21/WG 3: MCI-044

33. International Organization for Standardization (ISO):
Periods of Integers, Expert’s Contribution (1996).
ISO/IEC JTC 1/SC 21/WG 3: MAD-151

34. International Organization for Standardization (ISO):
SQL3 Part 7: Temporal, Working Draft (1996). ISO/IEC
JTC 1/SC 21/WG 3: MCI-009

35. International Organization for Standardization (ISO):
Information technology – Database languages – SQL
multimedia and application packages – Part 3: Spatial
(2003). ISO/IEC 13249-2:2000/Cor 1:2003 ISO/IEC
13249-3:2003

36. Kemp, Z., Kowalczyk, A.: Incorporating the temporal
dimension in a gis. In: M.F. Worboys (ed.) Innovations in
GIS 1, pp. 89–102. Taylor&Francis, London, UK (1994)

37. Kuper, G.M., Ramaswamy, S., Shim, K., Su, J.: A
constraint-based spatial extension to sql. In: Proceedings
of the 6th international symposium on Advances in
Geographic Information Systems (GIS’98), Washington,
DC, November 6-7, pp. 112–117 (1998)

38. Larue, T., Pastre, D., Viémont, Y.: Strong integration of
spatial domains and operators in a relational database
system. In: Proceedings of the 3rd International
Symposium on Large Spatial Databases (SSD’93),
Singapore, June 23-25, pp. 53–72 (1993)

39. Lorentzos, N.A., Darwen, H.: Extension to sql2 binary
operations for temporal data. In: Proceedings of the 3rd
HERMIS Conference, Athens, Greece, September 26-28,
pp. 462–469 (1996). Invited paper

40. Lorentzos, N.A., Mitsopoulos, Y.G.: Sql extension for
interval data. IEEE Transactions on Knowledge and
Data Engineering 9(3), 480–499 (1997)

41. Lorentzos, N.A., Poulovassilis, A., Small, C.: Manipula-
tion operations for an interval-extended relational model.
Data and Knowledge Engineering 17, 1–29 (1995)

42. Lorentzos, N.A., Tryfona, N., Viqueira, J.R.R.: Rela-
tional algebra for spatial data management. In: Pro-
ceedings of the International Workshop Integrated Spa-
tial Databases, Digital Images and GIS, Portland, Maine,
June 14-16, pp. 192–208 (1999)

43. Moreira, J., Ribeiro, C., Abdessalem, T.: Query
operations for moving objects database systems.
In: Proceedings of the 8th ACM Symposium on
Advances in Geographic Information Systems (GIS
2000), Washington, DC, November 10-11, pp. 108–114
(2000)

44. Navathe, S.B., Ahmed, R.: Temporal extensions to the
relational model and sql. In: A.U. Tansel, J. Clifford,
S. Gadia, A. Segev, R. Snodgrass (eds.) Temporal
Databases: Theory, Design and Implementation, pp. 6–
27. Benjamin/Cummings, Redwood City, CA (1993)

45. Open GeoSpatial Consortium (OGC): Simple Features
Specification for SQL 1.1 (SFS) (1999). OGC Project
Document 99-049

46. Oracle corporation: Oracle Spatial: Users Guide and
Reference. Release 8.1.7 (2000)

47. Park, K., Lee, J., Lee, K., Ahn, K., Lee, J., Kim,
J.: The development of geus: A spatial dbms tightly
integrated with an object-relational database engine. In:
Proceedings of the Annual Conference Urban & Regional
Information Systems Association (URISA’98), Charlotte,
North Carolina, July, pp. 256–267 (1998)

48. Pavlidis, T.: Algorithms for graphics and image
processing. Computer Science Press (1982)

49. PostgreSQL Global Development Group: PostgreSQL 7.2
User’s Guide (2001)

50. Roussopoulos, N., Faloutsos, C., Sellis, T.K.: An efficient
pictorial database system for psql. IEEE Transactions on
Software Engineering 14(5), 639–650 (1988)

51. Scholl, M., Voisard, A.: Thematic map modeling. In:
Proceedings of the 1st International Symposium on Large
Spatial Databases (SSD’89), Santa Barbara, California,
July 17-18, pp. 167–190 (1989)

52. Scholl, M., Voisard, A.: Object-oriented database systems
for geographic applications: An experiment with o2. In:
F. Bancilhon, C. Delobel, P.C. Kanellakis (eds.) Building
an Object-Oriented Database System, The Story of O2,
pp. 585–618. Morgan Kaufmann, San Fransisco (1992)

53. Sistla, P., Wolfson, O., Chamberlain, S., Dao, S.:
Modeling and querying moving objects. In: Proceedings
of the 13th International Conference on Data Engineering
(ICDE’97), Birmingham, UK, April 7-11, pp. 422–432
(1997)

54. Svensson, P., Huang, Z.: Geo-sal – a query language
for spatial data analysis. In: Proceedings of the 2nd
International Symposium on Large Spatial Databases
(SSD’91), Zrich, Switzerland, August 28-30, pp. 119–140
(1991)

55. Tansel, A.U.: Adding time dimension to relational model
and extending relational algebra. Information Systems
11(4), 343–355 (1990)

56. Tomlin, C.D.: Geographic Information Systems and
Cartographic Modeling. Prentice Hall, Englewood Cliffs,
NJ (1990)

57. Tryfona, N., Hadzilacos, T.: Logical data modelling
of spatio temporal applications: Definitions and a

SQL Extension for Spatio–Temporal Data 21

model. In: Proceedings of the 1998 International
Database Engineering and Applications Symposium
(IDEAS 1998), Cardiff, Wales, UK, July 8-10, pp. 14–
23 (1998)

58. van Roessel, J.W.: An integrated point-attribute model
for four types of areal gis features. In: Proceedings of the
6th International Symposium on Spatial Data Handling
(SDH’94), Edinburg, Scotland, UK, pp. vol. 1 127–144
(1994)

59. Vijlbrief, T., van Oosterom, P.: The geo++ system:
An extensible gis. In: Proceedings of the 5th
International Symposium on Spatial Data Handling
(SDH’92), Charleston, South Carolina, August 3-7, pp.
40–50 (1992)

60. Viqueira, J.R.R.: Relational algebra for spatio-temporal
data management. In: Proceedings of the EDBT 2000
PhD Workshop, Konstanz, Germany, March 31 - April
1, pp. 43–46 (2000)

61. Viqueira, J.R.R.: Formal extension of the relational
model for the management of spatial and spatio-temporal
data. Ph.D. thesis, Computer Science Department,
University of A Coruña, Spain (2003)

62. Viqueira, J.R.R., Lorentzos, N.A.: Spatio-temporal
sql. In: Y. Manolopoulos, S. Evripidou, A. Kakas
(eds.) Advances in Informatics – Post-proceedings
8th Panhellenic Conference in Informatics, pp. 50–63.
Lecture Notes in Computer Science 2563 Springer-Verlag,
Berlin (2003)

63. Viqueira, J.R.R., Lorentzos, N.A., Brisaboa, N.R.:
Management of continuous spatial changes. In:
Proceedings of the 9th Panhellenic Conference on
Informatics, Salonica, Greece, November 21-23, pp. 431–
445 (2003)

64. Voigtmann, A.: An object-oriented database kernel for
spatio-temporal geo-applications. Ph.D. thesis, Westf.
Wilhelms-Universitt Mnster, Germany (1997)

65. Winter, S., Frank, A.U.: Topology in raster and vector
representation. GeoInformatica 4(1), 35–65 (2000)

66. Worboys, M.F.: A unified model for spatial and temporal
information. The Computer Journal 37(1), 36–34 (1994)

67. Yeh, T., de Cambray, B.: Modeling highly vari-
able spatio-temporal data. In: Proceedings of
the 6th Australasian Database Conference (ADC’95),
Glenelg/Adelaide, South Australia, January, pp. Vol 17,
No. 2, 221–230 (1995)

Appendix

General Remarks
It is assumed that the SQL:1999 documentation is

available for reference, hence only its extension is given here,
in bold. Note also that additional constructs, which relate
only to the management of time and intervals, can be found
in [40].

Query Expressions

<query expression> ::=
<IXSQL non–join query expression>
| <IXSQL joined table>
| <IXSQL unary query expression>

<IXSQL non–join query expression> ::=
(<non-join query expression>) [<reformat clause>]

[<normalise clause>]
| <non–join query expression>

<non–join query expression> ::=
<non–join query term>

| <query expression> UNION [ALL]
[EXPANDING (<reformat column list>)]
[<corresponding spec>]
<IXSQL query term>

| <query expression> EXCEPT [ALL]
[EXPANDING (<reformat column list>)]
[<corresponding spec>]
<IXSQL query term>

| <query expression> WUNION [ALL]
OF (<reformat column list>)
[EXPANDING (<reformat column list>)]
<IXSQL query term>

| <query expression> WEXCEPT [ALL]
OF (<reformat column list>)
[EXPANDING (<reformat column list>)]
<IXSQL query term>

<IXSQL query term> ::=
<IXSQL non–join query term>
| <IXSQL joined table>
| <IXSQL unary query expression>

<IXSQL non–join query term> ::=
<non–join query term>
| (<non–join query term>) [<reformat clause>]

[<normalise clause>]

<non–join query term> ::=
<non–join query primary>
| <IXSQL query term> INTERSECT [ALL]

[EXPANDING(<reformat column list>)]
[<corresponding spec>]
<IXSQL query primary>

| <IXSQL query term> WINTERSECT [ALL]
OF (<reformat column list>)
[EXPANDING(<reformat column list>)]
<IXSQL query primary>

<IXSQL query primary> ::=
<non–join query primary>
| <IXSQL joined table>
| <IXSQL unary query exp>

<non–join query primary> ::=
<simple table>
| (<IXSQL non–join query expression>)

<simple table> ::=
<IXSQL query specification>
| <IXSQL table value constructor>
| <IXSQL explicit table>

<IXSQL query specification> ::=
<query specification>[<reformat clause>]

[<normalise clause>]

<query specification> ::=
SELECT <set quantifier> <select list>

<table expression>

<table expression> ::=
<from clause> [<where clause>]

[<group by clause>] [<having clause>]

<from clause> ::=
FROM <table reference> [{, <table reference>}. . .]

<table reference> ::=
<table name> [[AS] <correlation name>

[(derived column list)]]
| <table subquery> [[AS]

<correlation name> [(derived column list)]]
| <IXSQL joined table>
| <IXSQL unary query expression>

<IXSQL row value constructor> ::=

22 Jose R. Rios Viqueira, Nikos A. Lorentzos

(<row value constructor>)
[<reformat clause>][<normalise clause>]

<IXSQL table value constructor> ::=
(<table value constructor>)

[<reformat clause>] [<normalise clause>]
<IXSQL explicit table>::=

TABLE <table name>
[<reformat clause>] [<normalise clause>]

<IXSQL joined table> ::=
(<joined table>) [<reformat clause>]

[<normalise clause>]
| <joined table>

<joined table> ::=
<cross join>
| <qualified join>
| <IXSQL overlay>
| (<joined table>)

<cross join> ::=
<table reference> CROSS JOIN

[EXPANDING (<reformat column list>)]
<table reference>

<qualified join> ::=
<table reference> [NATURAL] [<join type>] JOIN

[EXPANDING (<reformat column list>)]
<table reference>

[<join specification>]
<IXSQL overlay> ::=

<table reference> [NATURAL][<overlay type>]
OVERLAY [ALL]

[OF (<reformat column list>)]
[EXPANDING(<reformat column list>)]

<table reference>
<overlay type> ::=

INNER
| {LEFT | RIGHT | FULL} [OUTER]

<IXSQL unary query expression> ::=
<unary query expression>
| (<unary query expression>)

[<reformat clause>]
[<normalise clause>]

<unary query expression> ::=
(<unary query expression>)
| <table reference> {COMPLEMENTATION

| BOUNDARY
| ENVELOPE [ALL]}

OF (<reformat column list>)
[EXPANDING (<reformat column list>)]

| <table reference> BUFFER [ALL]
OF (<reformat column list>)
WITHIN DISTANCE

(<reformat column list>)
[EXPANDING (<reformat column list>)]

<reformat clause> ::=
REFORMAT AS <reformat item>

<reformat item> ::=
FOLD [ALL] <reformat column list>

[<reformat item>]
UNFOLD [ALL] <reformat column list>

[<reformat item>]
<normalise clause> ::=

NORMALISE ON [ALL]
<reformat column list>

<reformat column list> ::=
<reformat column> [{, <reformat column>}. . .]

<reformat column> ::=
<column reference> | <unsigned integer>

Notes: The keyword EXPANDING has been borrowed
from [39].

Literals
<IXSQL literal> ::=

<literal>
| <IXSQL period literal>

<IXSQL period literal> ::=
[<literal>, <literal>]

<literal> ::=
<signed numeric literal>
| <general literal>

<general literal> ::=
<character string literal>
| <national character string literal>
| <bit string literal>
| <hex string literal>
| <datetime literal>
| <interval literal>
| <IXSQL spatial literal>

<IXSQL spatial literal> ::=
<spatial object type> <spatial quanta string>

<spatial object type>::=
POINT | PLINE | LINE |
SURFACE | SURFACE

<spatial quanta string> ::=
‘<spatial quantum>[{<spatial quantum>}. . .]’

<spatial quantum> ::=
<spatial quantum type> <unsigned integer>

<spatial quantum type> ::= P | H | V | S
Search Conditions
<IXSQL predicate> ::=

<predicate>
| <IXSQL period predicate>
| <IXSQL spatial predicate>

<IXSQL period predicate> ::=
<IXSQL period binary predicate>

<IXSQL period binary predicate> ::=
<IXSQL period value expression>

<period binary predicate name>
<IXSQL period value expression>

<IXSQL spatial predicate> ::=
<IXSQL spatial binary predicate>
| <IXSQL spatial n–ary predicate>

<IXSQL spatial binary predicate> ::=
<IXSQL spatial value expression>

<spatial binary predicate name>
<IXSQL spatial value expression>

<spatial binary predicate name> ::=
cp | disjoint | surrounds

<IXSQL spatial n–ary predicate> ::=
is point (<IXSQL patial value expression>)
| is pure line (<IXSQL spatial value expression>)
| is line (<IXSQL spatial value expression>)
| is pure surface

(<IXSQL spatial value expression>)
| is surface(<IXSQL spatial value expression>)
| is hybrid surface

(<IXSQL spatial value expression>)
| is simple(<IXSQL spatial value expression>)
| is circular(<IXSQL spatial value expression>)
| conductive

(<IXSQL spatial value expression>,
<IXSQL spatial value expression>,
<IXSQL spatial value expression>,
<IXSQL spatial value expression>)

| has holes(<IXSQL spatial value expression>)
Notes: Both <comparison predicate>s (=, <>, <,
>, etc.) and <quantified comparison predicate>s (=
SOME, > ANY, etc.) of SQL:1999 can be applied
to pairs of <row value constructor>s containing some
<value expression> of either a period or a spatial type.

SQL Extension for Spatio–Temporal Data 23

Value Expressions

<value expression> ::=
<atomic value expression>
| <IXSQL period value expression>

<atomic value expression> ::=
<numeric value expression>
| <string value expression>
| <datetime value expression>
| <interval value expression>
| <IXSQL spatial value expression>

<IXSQL common primary> ::=
<common primary>
| <IXSQL period common primary>

<IXSQL numeric primary> ::=
<numeric primary>
| <IXSQL period numeric primary>
| | <IXSQL spatial numeric primary>

<IXSQL spatial numeric primary> ::=
ord(<IXSQL spatial value expression>)
| h coord(<IXSQL spatial value expression>)
| v coord(<IXSQL spatial value expression>)
| distance

(<IXSQL spatial value expression>,
<IXSQL spatial value expression>)

| greatest distance
(<IXSQL spatial value expression>,
<IXSQL spatial value expression>)

| length(<IXSQL spatial value expression>)
| area(<IXSQL spatial value expression>)

<IXSQL datetime primary> ::=
<datetime primary>
| <IXSQL period datetime primary>

<IXSQL spatial value expression> ::=
form point

(<numeric value expression>,
<numeric value expression>)

| to point(<IXSQL spatial value expression>)
| to pure line(<IXSQL spatial value expression>)
| to line(<IXSQL spatial value expression>)
| to pure surface

(<IXSQL spatial value expression>)
| to surface(<IXSQL spatial value expression>)

