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Abstract

In the blogosphere, different actors express their opinions about multiple topics.
Users, companies or editors socially interact by commenting, recommending and
linking blogs and posts. These social media contents are increasingly growing. As
a matter of fact, the size of the blogosphere is estimated to double every six months.
In this context, the problem of finding a topically relevant blog to subscribe to
becomes a Big Data challenge. Moreover, combining multiple types of evidence
is essential for this search task. In this paper we propose a group of textual and
social-based signals, and apply different Information Fusion algorithms for a Blog
Distillation Search task.

Information fusion through the combination of the different types of evidence
requires optimisation for appropriately weighting each source of evidence. To
this end, we analyse well-established population-based search methods. Namely,
global search (Particle Swarm Optimisation and Differential Evolution) and a lo-
cal search method (Line Search) that has been effective in various Information Re-
trieval tasks. Moreover, we propose hybrid combinations between the global search
and the local search method and compare all the alternatives following a standard
methodology. Efficiency is an imperative here and, therefore, we focus not only on
achieving high search effectiveness but also on designing efficient solutions.
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1. Introduction

The blogosphere has become a key source of information to follow new trends
and opinions about a wide variety of topics [1]. The raise and success of social
networks (e.g., Facebook or Twitter) has motivated the evolution of blogs from
informal discussion or informational sites to professional platforms specialised in
specific domains (e.g., technology, fashion or finances). The proliferation of plat-
forms to create and manage blogs, such as Blogger1 or WordPress2, facilitates the
development of immense communities of blogs on the Internet. This explosion of
specialised information sources complicates the identification of new blogs related
to people’s interests.

Seeking information in the blogosphere is a Big Data problem. Because of the
large number of publishers and followers, because of the huge volume of contents
and topics, and because of the variety of signals needed to automatically estimate
relevance. For instance, a blog search engine can be tracking more than 182 million
blogs3; and the number of blogs doubles every six months [2].

Several studies have focused on search tools for the blogosphere [3, 4]. In this
area, different features and algorithms have been proposed and tested for detecting
blogs potentially relevant to specific interests. For instance, some authors use the
information provided by blog feeds4 to estimate the relatedness between a blog
and a particular topic [5]. Other authors go beyond these feeds and try to mea-
sure the relatedness between the topic and individual blog posts [6]. The use of a
more heterogeneous set of features is also common. For instance, blog timestamps,
link analysis or information provided from external resources (e.g., Wikipedia [5]).
This array of experimental studies makes it difficult to understand what features are
effective, and when and how they are best used. To shed light on these issues, in
this paper we investigate different methods to automatically and effectively com-
bine multiple sources of evidence to recommend blog posts based on a particular
interest. We combine evidence of relevance –at blog and post level– with more
heterogeneous signals such as temporal or social features.

This combination of different types of evidence entails an optimisation task
for setting the most appropriate weight to each source of evidence. To face this
challenge, we have selected well-established population-based methods providing
a global search (Particle Swarm Optimisation and Differential Evolution); and a lo-
cal search method (Line Search) that has been effectively employed in Information

1https://www.blogger.com
2https://wordpress.com/
3http://smartdatacollective.com/matthewhurst/44748/farewell-blogpulse
4A blog feed is a collection of the last entries –the blog’s posts– from a particular blog.
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Retrieval. The focus of the paper is not on providing a comparison of a wide range
of search algorithms and variants of these. We have rather selected popular algo-
rithms and standard implementations and, additionally, we implemented a hybrid
version for integrating the advantages of global and local search. Besides search
effectiveness, efficiency is an imperative in our application domain. Therefore, we
will report on both effectiveness and efficiency results.

The main contributions of this paper are:

• We propose a set of relevance-based and social-based signals for estimating
the relevance of blogs.

• We propose a fusion approach that combines these information signals for
finding potentially relevant blogs to subscribe to.

• We evaluate different optimisation algorithms for weighting different fea-
tures.

• We perform a thorough analysis of performance of the Information Fusion
methods. Our evaluation considers both search effectiveness and efficiency.

The rest of the paper is organised as follows. Section 2 reviews some papers
related to our research. In section 3, we present our fusion methods and explain
the approach to combine evidence, the search models utilised, and the features
proposed to estimate the relevance of a blog feed. The experimentation design and
results are reported in section 4. The paper ends with section 5, where we expose
some conclusions.

2. Related Work

2.1. Blog Distillation Task

The blog distillation task is defined as the process of searching for blogs with
a recurring central interest, typically expressed as a textual query [3]. The task can
be summarised as: Find me a blog with a principle, recurring interest in T . For a
given target topic T , systems should suggest feeds that are devoted to T [3].

This problem can be seen as a particular instance of a resource selection prob-
lem in distributed Information Retrieval [7], in which the goal is to select the blogs
that more likely contain documents relevant to the query T [1]. Many researchers
utilised both the information provided by blog feeds and the information provided
by the blog posts referenced by the feeds. For instance, Elsas et al. [5] combined
relevance scores at feed level and at blog post level, and employed Language Mod-
els (LMs) to retrieve feeds related to a specific query. They also proposed a Query
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Expansion (QE) technique based on data extracted from the Wikipedia. This tech-
nique was effective and, in fact, the best performing systems in the TREC blog
distillation task applied expansion [3, 4].

In [8], Seo and Croft also followed the resource selection principle and consid-
ered different blog representations. Two main models were tested: 1) a blog rep-
resented as the concatenation of all its posts, and 2) a blog represented as a query-
dependent cluster (containing only highly ranked blog posts for a given query).
They found that the combination of both models was the most effective approach.

Other studies addressed the problem as an expert finding task [9]. Given a blog
post and a query, the estimated relevance of the blog to the query can be seen as
an indication of the interest of the post’s author with respect to the query topic [1].
This approach was explored by Macdonald and Ounis [10], who defined a Voting
Model [11] that represents the blogger (the blog writer) as a concatenation of all
blog posts written by him. A query is run against all blog posts and every blog post
retrieved that belongs to the profile is considered as a vote for the relevance of that
blog. Combining evidence from feeds and posts has also been studied for other
social media tasks, such as trend detection [12].

In this paper we explore an alternative approach to the blog distillation task. We
consider blog distillation as an Information Fusion problem where multiple types
of signals need to be combined. We study what signals are effective, and when
and how they are best used to assess the recurring interest of a blog in a specific
topic. We evaluate different fusion methods –with relevance-based, social-based,
and temporal-based evidence– and compare their performance with that of baseline
and state-of-the-art methods.

2.2. Combining evidence
A straightforward way to combine evidence in IR is linear interpolation [13].

However, optimising these models is a major bottleneck within the retrieval pro-
cess. The traditional methodology in IR implies that parameter values are opti-
mised with a training sample (for a certain evaluation measure); and, then, the
trained parameter values are evaluated with a test sample. With one or two pa-
rameters, an exhaustive search for the best parameter setting –e.g., through line
search– is expensive but affordable. But the computational cost of the optimisa-
tion process grows exponentially with the number of parameters. This problem has
been previously addressed in the literature. Taylor et al. [14] studied retrieval mod-
els containing up to 375 parameters and agreed that the lack of efficient algorithms
for parameter optimisation is one of the bottlenecks of current IR research.

The problem of combining multiple sources of evidence has been widely ad-
dressed in the literature of Information Retrieval (IR) and Machine Learning (ML).
A well-known family of methods that naturally allows the combination of evidence
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is Learning To Rank (L2R). L2R [15] has received much attention lately as a result
of the popularity of Web search engines. These methods learn how to combine
predefined features for ranking by means of discriminative learning algorithms.
L2R models can be grouped into three approaches. The pointwise approach as-
sumes that we want to predict the relevance degree of each individual document.
Regression-based algorithms and classification-based algorithms are examples of
pointwise approaches [16, 17]. The pairwise approach [15, 18, 19, 20, 21] takes
a pair of documents and predicts their pairwise preference (e.g., +1 or -1). The
listwise approach [22, 23, 24, 25, 26] takes the entire set of documents associated
with a query and predicts the complete ranking. The listwise approach is the most
natural method to rank documents in decreasing order of estimated relevance; and
experimental results have showed that it has certain advantages over other algo-
rithms [15, 26]. In this paper, we follow a listwise approach and learn a ranking
function from a certain set of signals. Given a training set of blogs and a vector
of features, we directly optimise a global measure of performance –Mean Aver-
age Precision (MAP)–, which is computed over the ranked set of documents as a
whole.

Evolutionary algorithms [27] have been applied to learn ranking functions.
For instance, Particle Swarm Optimisation (PSO) was successfully applied in IR
[28, 29]. In [30], the authors experimented with a hybrid PSO-Line Search model
and proposed a cooperative Line Search-Particle Swarm Optimisation (CLS-PSO)
algorithm by integrating local Line Search and basic PSO. The Line Search algo-
rithm was applied to a subset of the PSO population. The performance of the pro-
posed hybrid algorithm –examined through four common nonlinear optimisation
problems– was better than that of the standard PSO. On the other hand, Differen-
tial Evolution (DE) methods were also applied in search domains. Bollegala et al.
[26] proposed a ranking method that used DE to learn a function that ranks a list
of documents retrieved by a Web search engine. Their method outperformed pre-
viously proposed rank learning methods that used evolutionary computation algo-
rithms such as PSO and Genetic Programming (GP). Another evolutionary options
popularly chosen are Genetic Algorithms (GA) [31] and Fuzzy Genetic Algorithms
[32]. We decided not to use GA methods because the primary focus of this paper
is on efficiency. We have not experimented with Fuzzy GA either because neither
we have used a classical GA for the optimisation of the weight parameters nor we
used a fusion model that can be modelled as fuzzy.

In our current endeavours, we have opted to compare Line Search, Particle
Swarm Optimisation and Differential Evolution, as well as a hybrid approach that
combines the global search methods and Line Search.
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Figure 1: General framework for solving the Blog Distillation task using fusion mehtods.

3. Fusion Method

Our general framework for solving the blog distillation problem is sketched
in Figure 1. First, we briefly describe the interpolation approach used to combine
evidence. Second, we explain the Information Retrieval models that are required
to compute some features. Third, we report the set of features proposed to estimate
the relevance of a blog feed. And last, we will comment on different optimisation
methods.

3.1. Combining evidence

Some of the selected features represent content-match evidence, which is de-
pendent on the query topic. Other features, such as time-based or social-based
features, are query-independent.

To effectively combine the features we need the scores in the same range
([0,1]). To meet this aim, we apply the following normalisation for query-dependent
features:
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qd f eatk(norm)(F,Q) =
qd f eatk(F,Q)

maxFi∈C qd f eatk(Fi,Q)
(1)

where F is a feed, Q is the query, qd f eatk(F,Q) is one of the query-dependent
features (presented next) and C is the collection of feeds.

Query-independent features are normalised as follows:

qi f eatk(norm)(F) =
qi f eatk(F)

maxFi∈C qi f eatk(Fi)
(2)

where F is a feed, qi f eatk(F) is one of the query-independent features (presented
next), and C is the collection of feeds. This type of normalisation is broadly used
and has been considered as a good solution since the early beginnings of IR re-
search [33].

We follow a simple linear combination method to combine evidence from
query-dependent and query-independent features:

Rel(F,Q) =
∑

i

αi · qd f eati(norm)(F,Q) +
∑

j

β j · qi f eat j(norm)(F) (3)

where F is a feed, Q is the query, qd f eatnorm are the normalised query-dependent
features, qi f eatnorm are the normalised query-independent features, and αi, β j are
free parameters.

Combining evidence by linear combination is a simple but effective approach.
The review done by Croft on combination methods for Information Retrieval [13]
showed that linear methods produced the best overall performance for combining
multiple sources of evidence.

3.2. Information Retrieval models
Two different scoring methods, BM25 and a unigram Language Model with

Dirichlet smoothing, are employed for assessing the relatedness between the query
and every document. BM25 is an effective IR model derived within a Probabilistic
framework5. We used the Lemur’s implementation of the BM25 matching func-
tion6:

BM25(D,Q) =
∑

t∈Q∩D

w ·
(K1 + 1) t ft,D

K1 ((1 − b) + b × (LD/Lave)) + t ft,D

(K3 + 1) t ft,Q
K3 + t ft,Q

(4)

5We applied the well-known BM25 suggested configuration (K1 = 1.2, K3 = 7, b = 0.75), which
has proved to be robust in many retrieval experiments [34].

6http://www.lemurproject.org/.
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where t ft,D is the frequency of t in document D, t ft,Q is the frequency of t in query
Q, LD and Lave are the length of document D and the average document length in
the whole collection. And w is an inverse document frequency (idf) weight defined
as:

w = log
(

N − n + 0.5
n + 0.5

)
(5)

where N is the total number of documents in the collection, n is number of docu-
ments that contain the term t.

The unigram Language Model with Dirichlet smoothing [35] is computed as
follows7:

Dirichlet(D,Q) =

n∏
i=1

P(qi|D) =

n∏
i=1

t f (qi,D) + µ · P(qi|C)
|D| + µ

(6)

where D is a document, n is the number of query terms, t f (qi,D) is the raw term
frequency of qi in D, |D| is the document length (term count) and µ is a parameter
for adjusting the amount of smoothing applied. P(qi|C) is the probability of the
term qi occurring in the collection C (usually obtained as the maximum likelihood
estimator computed from the collection).

These two measures produce evolved query-document similarity scores that
incorporate advanced term weighting and document length normalisation.

3.3. Feed-level Relevance Features (Query-dependent)
Content-match evidence at feed level has been widely applied in the feed dis-

tillation task. Our proposed set of features capture evidence of matching between
the query and different subparts of the feeds (Titles, Titles+Bodies, Comments);
and apply different search and query expansion models. Given a topic, expressed
as a textual query, the following features model the relevance of the feed:

• RelBM25Feed Titles. This is the BM25 estimation of relevance between
the query and the document constructed by concatenating all titles of the
feed’s posts. The sequence of titles in the feed is a succinct representation of
the topics discussed in the blog.

• RelBM25Feed Titles + Body, RelDirichletFeed Titles + Body. These are
the BM25 and Dirichlet estimations of relevance between the query and the
document constructed by concatenating all titles and body content of the
feed’s posts. This full-text representation of the feeds considers all the con-
tent of every blog post but it is potentially noisy.

7We used default smoothing values: µ = 1000.
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• RelBM25Feed Comments, RelDirichletFeed Comments. These are the B-
M25 and Dirichlet estimations of relevance between the query and the doc-
ument constructed by concatenating all comments associated to any of the
blog’s posts. The importance of the comments has been demonstrated in
many experiments with blog datasets [36, 37].

• ExpansionFeed Titles + Body. Applying Pseudo Relevance Feeedback (P-
RF) and Query Expansion (QE) is an efficient, effective and natural way to
improve the quality of the original query [38]. In this paper we use a popular
expansion method based on Relevance Models (RM1 PRF) [39]. After doing
some assumptions the RM1 method is defined as:

P(w|R) ∝
∑
d∈C

P(d) · P(w|d) ·
n∏

i=1

P(qi|d) (7)

P(d) is the document prior (usually assumed to be uniform),
∏n

i=1 P(qi|d) is
the query likelihood given the document model, which is traditionally com-
puted using Dirichlet smoothing. P(w|d) accounts for the importance of the
word w within the document d. C is the collection of documents.

The terms with highest estimated probability under the Relevance Model (R)
are selected to conform the expanded query8.

The feature ExpansionFeed Titles + Body represents the score of relevance
of the feed obtained with the expanded query. The feed is represented as the
concatenation of all post titles and post bodies.

• ExpansionFeed Comments. This is equivalent to ExpansionFeed Titles+
Body but the feed is represented as the concatenation of all comments.

3.4. Intra-feed Relevance Features (query dependent)
Rather than aggregating the contents of all blog posts, these features try to

infer the relevance of a blog by analysing individual scores of relevance between
the query and the blog’s posts. All these features represent a blog post as the
concatenation of the title and body of the post.

• MaxRelBM25P. The maximum BM25 score of relevance between the query
and the blog posts. The most relevant blog post is therefore the one that
determines the MaxRelBM25P value of the feed.

8We took the top 100 terms as expansion terms and the Relevance Model was estimated from the
top 100 documents retrieved given the initial query.
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• MeanRelP. The average BM25 score of relevance between the query and
the blog posts. Rather than representing the feed with the most relevant
post, this feature opts for computing the mean estimated relevance across all
blog posts. In this way, we can estimate whether or not the feed’s recurrent
interests overlap with the query topic.

• VarRelP. The variance of BM25 scores of relevance between the query and
the blog posts. By modelling the matching tendency throughout the whole
feed we expect to model scoring trends that distinguish relevant feeds from
non-relevant ones. The variance of matching scores –e.g., query-sentence
scores– has been successfully exploited in the literature of IR [40, 41].

• #PostsRankedF . This feature is based on indexing all blog posts from all
feeds, running the query against this index, and counting the number of blog
posts that belong to a specific feed (in the top 1000 retrieved posts). Ev-
ery retrieved blog post from the feed is therefore a vote for the relatedness
between the query and the feed.

This set of features helps to capture different aspects of relevance of the feeds.
MaxRelBM25P and #PostsRankedF are focused on the most salient blog posts
from the feed, while MeanRelP and VarRelP analyse the whole distribution of
relevance scores to determine whether the blog has a recurring interest in the query
topic.

3.5. Social and Temporal Features
The flow of comments in the feed is as an important indication of the social

impact of the blog posts. Popular and authoritative blogs attract attention and their
posts have many comments from other users. Comments are therefore a meaning-
ful source of evidence. As a matter of fact, blog comments have supported a wide
range of tasks, such as opinion retrieval [37] or summarisation [42].

Time is another important dimension. For instance, if the most relevant blog
post is too old then it is likely useless for the user. Temporal information is avail-
able in the feeds and it helps to understand what are the main topics of the blogs
through time.

This leads to the following set of social and temporal features:

• MeanCommF The average of number of comments to the blog posts of the
feed.

• RelBM25RecentP. The BM25 score of relevance of the most recent post
of the feed. This helps to determine whether or not the query topic was
addressed in the newest contents from the feed.
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• RelBM25OldP. The BM25 score of the oldest post of the feed. In this way,
we know whether or not the query topic was addressed in the early days of
the feed.

• RangeRelP. This feature represents the time range between the newest rel-
evant blog post and the oldest relevant blog post. We index all blog posts
from all feeds, run the query against this index, extract the newest and oldest
blog post from each feed, and compute the difference (in days) between the
dates of these two posts. A feed with a narrow time range only addressed
the query topic during a small temporal window. This feed is probably less
relevant than a feed whose time range is larger.

MeanCommF is query-independent and the other three features are query-
dependent.

3.6. Optimisation Methods
Our Information Fusion approach is not parameter-free. All signals that are

combined need to be properly weighted (parameters αi and β j in eq. 3). To optimise
these parameters, we follow a methodology that is independent of the analytical
form of the retrieval methods.

We select two population-based search methods, Differential Evolution (DE)
and Particle Swarm Optimisation (PSO), as representative and current search meth-
ods with proved robustness and efficiency against other classical evolutionary algo-
rithms. Since the focus of the paper is not on providing a comparison of different
search algorithms and variants of these, we selected the standard DE and PSO to
perform the required optimisation of the weight parameters involved in the fusion
of evidences. For the same task, we also select a local search method (Line Search)
useful in Information retrieval and, in addition, we implement a hybrid version for
integrating the advantages of the two methods (global and local search methods),
comparing the efficiency of the different alternatives.

3.6.1. Line Search
Line Search (LS) is a general class of optimisation methods that first find a de-

scent direction along which the objective function will be reduced and then com-
pute a step size that decides how far the parameter values should move along that
direction [43]. Here, we employ the Line Search procedure proposed by Taylor
et al. [14], who concluded that Line Search and Gradient Descent (which takes
advantage of the knowledge about the analytical form of the retrieval function)
perform similarly in terms of effectiveness.

From an initial random point in the parameter space, a search in each dimension
is performed, moving each time the parameter value in one dimension while fixing
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the values of the other dimensions. The procedure is summarised in the pseudo-
code of Algorithm 1. For each dimension, N sample points are selected with equal
inter-distance in the axis and around the initial parameter value (taking into account
the limits of the parameter space). To assess the optimality of each point, a fitness
value is calculated for each of these sample points, and the point with the best
fitness is stored. The fitness function will be dependent on the problem and will
measure the quality of a parameter setting for the given task. This basic procedure
is repeated for each of the dimensions or parameters (Step 1 of the algorithm).

Algorithm 1 Line Search Algorithm.
1: N=Number of sample points in each dimension, D=number of dimensions, I=Sampling interval.
2: Select an initial random point.
3: Step 1 of the algorithm (for dimension d)
4: min← max(0, initial position[d] − I

2 ); (0 is the parameter lower limit)
5: max← min(1, initial position[d] + I

2 ); (1 is the parameter upper limit)
6: increment ← (max−min)

N ;
7: best position[d]← min; (Best initial position)
8: for n← 1 to N do
9: p← min + increment ∗ n;
10: new position[d]← p;
11: if ( f itness(new position[d]) < f itness(best position[d]))) then
12: best position[d]← new position[d];
13: end if
14: end for
15: return best position[d]
16: Step 2 of the algorithm
17: for d ← 1 to D do
18: max dim[d]← max(initial point[d], best position[d]);
19: min dim[d]← min(initial point[d], best position[d]);
20: increment[d]← (max dim[d]−min dim[d])

N ;
21: end for
22: best position← initial position
23: for n← 1 to N do
24: for d ← 1 to D do
25: new position[d]← min dim[d] + increment[d] ∗ n;
26: end for
27: if ( f itness(new position) < f itness(best position)) then
28: best position← new position
29: end if
30: end for
31: return best position

In a second step of the algorithm, a line between the original point and the new
computed point is defined. This new point is built by taking for each dimension
the parameter value with the best fitness in the first step. This line represents the
promising direction. Again, the same procedure is repeated, selecting a number of
equidistant points (samples) between the two extremes of the promising segment.
The point with the best fitness is selected and acts as the new starting point in the
next iteration of the algorithm.
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An iteration is defined as one cycle through all the parameters, plus the final
search along the promising direction. With P parameters, the procedure performs
P + 1 line search operations per iteration. Finally, the scale over which the samples
are taken is reduced by a factor of 0.85 at the beginning of each new iteration,
allowing higher exploration in the first iterations and higher exploitation in the
final iterations.

3.6.2. Particle Swarm Optimisation
Particle Swarm Optimisation (PSO) [44] is a class of swarm intelligence tech-

niques [45] inspired by the social behaviour of bird flocking or fish schooling. It
is a population-based stochastic method where the potential solutions, called par-
ticles, fly through the problem space following the current optimum particles. The
movements of the particles are guided by the best known position of each particle
in the search space as well as the entire swarm’s best known position. The process
is repeated until a satisfactory solution is discovered.

The basic PSO algorithm is summarised in Algorithm 2. Each particle i stores
its current position xt

i, velocity vt
i and its best known position pbt

i at time t. The
algorithm stores the best known position of the entire swarm (gbt).

Algorithm 2 PSO basic Algorithm.
1: Initialise all particles i with random positions x0

i in search space as well as random velocities v0
i .

2: Initialise the particle’s best known position (pb0
i ) to its initial position.

3: Calculate the initial swarm’s best known position gb0.
4: repeat
5: for all Particle i in the swarm do
6: Pick random numbers: rp, rg ε (0, 1)
7: Update the particle’s velocity: vt+1

i = a ∗ vt
i + b ∗ rp ∗ (pbt

i − xt
i) + c ∗ rg ∗ (gbt − xt

i)
8: Compute the particle’s new position: xt+1

i = xt
i + vt+1

i
9: if f itness(xt+1

i ) < f itness(pbt
i) then

10: Update the particle’s best known position: pbt+1
i = xt+1

i
11: end if
12: if f itness(pbt+1

i ) < f itness(gbt) then
13: Update the swarm’s best known position: gbt+1 = pbt+1

i
14: end if
15: end for
16: until termination criterion is met
17: return The best known position: gb.

In the algorithm, a, b and c are constants that separately control the importance
of the three directions that determine the next velocity and position of the particle.
The three components are usually referred as inertia (vt

i), personal influence (pbt
i −

xt
i) and social influence (gbt − xt

i). By updating the velocities with some element
of randomness, the exploration of novel areas of the search space is enabled. This
avoids stagnation in local minima and it is achieved by injecting random values, in
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the range (0,1), for the terms rp and rg. This yields a region of uncertainty around
both positions, pbt

i and gbt.
PSO is an attractive solution for many optimisation or search problems. It has

fewer parameters than popular simulated evolution methods, such as classic genetic
algorithms [46]. Furthermore, with standard genetic algorithms, it is difficult to
control the balance between exploration and exploitation. Even with low selective
pressures there is a high probability that the population converges to a local opti-
mum in few generations. Therefore, there is no guaranty that different potentially
good areas in the space are simultaneously searched. Another alternative to deal
with this problem comes from the niche and speciation techniques based on fitness
sharing [46], or the distribution of the population in races or islands that evolve in-
dependently and simultaneously, which periodically interchange their best genetic
material. PSO, in contrast, intrinsically explores the search space with a concen-
tration of the population around the promising areas.

3.6.3. Differential Evolution
Differential Evolution (DE) [47][48] is a population-based search method. DE

creates new candidate solutions by combining existing ones according to a simple
formula of vector crossover and mutation. Then the algorithm keeps whichever
candidate solution that has the best score or fitness on the optimisation problem at
hand. The central idea of the algorithm is the use of difference vectors for generat-
ing perturbations in a population of vectors. This algorithm is specially suited for
optimisation problems where possible solutions are defined by a real-valued vector.
The basic DE algorithm is sketched in the pseudo-code of Algorithm 3.

Algorithm 3 Differential Evolution Algorithm.
1: Initialize the population randomly
2: repeat
3: for all individual x in the population do
4: Let x1, x2, x3 ∈ population, randomly obtained {x1, x2, x3, x different from each other.}
5: Let R ∈ {1, ..., n}, randomly obtained {n is the length of the chain.}
6: for i = 1 to n do
7: Pick ri ∈ U(0, 1) uniformly from the open range (0,1).
8: if (i = R) ∨ (ri < CR) then
9: yi ← x1i + F(x2i − x3i)

10: else
11: yi = xi
12: end if
13: end for{y = [y1, y2...yn] is a new generated candidate individual}
14: if f (y) < f (x) then
15: Replace individual x by y
16: end if
17: end for
18: until termination criterion is met
19: return z ∈ population \∀t ∈ population , f (z) <= f (t)
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Differential Evolution, like PSO, requires a reduced number of parameters. The
parameters are F (differential weight) and CR (crossover probability). The weight
factor F (usually in [0, 2]) is applied over the vector resulting from the difference
between pairs of vectors (x2 and x3). CR is the probability of crossing over a given
vector of the population (x) and a candidate vector (y) created from the weighted
difference of the two vectors (x1 + F(x2 − x3)). The index R guarantees that at least
one of the parameters (genes) changes when generating the candidate solution.

Unlike classical evolutionary algorithms, DE reduces parameter tuning and
provides an automatic balance in search. As Feoktistov [49] points out, the funda-
mental idea of the algorithm is to adapt the step length (F(x2 − x3)) intrinsically
along the evolutionary process. At the beginning, the step length is large because
individuals are far away from each other. As the evolution goes on, the popula-
tion converges and the step length becomes smaller and smaller. This provides an
automatic balance in the search process.

The usual implementation of DE chooses the base vector x1 randomly (variant
DE/rand/1/bin), or uses the individual with the best fitness found so far (xbest)
(variant DE/best/1/bin). To avoid the high selective pressure of the latter ap-
proach, we followed a usual strategy that interchanges the two possibilities across
generations: DE/rand/1/bin is applied when the quality of the best individual does
not improve over selecting the best individual as base vector (DE/best/1/bin) after
a given number of generations.

DE offers fast convergence, robustness, conceptual simplicity, few parameters
with an easy implementation, and has a reliable control in the balance between
exploration and exploitation [49].

3.6.4. Hybrid Solutions
We combined the global search of the population-based algorithms (PSO and

DE) and LS to leverage the advantages of both approaches. The global search ex-
plores simultaneously in different areas of the search landscape, while LS explores
in a restricted area centered on the best found individual. A natural combination is
to apply Line Search to navigate in the immediate neighbourhood of the individ-
uals of the population, performing a fine-tune of the individuals. In this way, LS
acts as an exploitation operator.

Efficiency is a major concern in our large-scale problem. Therefore, we only
applied LS to the best individual of the genetic population. This reduces the ad-
ditional evaluations required by LS. This restricted search with the best individual
is performed at the end of each generation of the evolutionary algorithm. LS’s pa-
rameter N is set to a small value (4 in the experiments reported later). Thus, for
each dimension, only a few additional sample points are selected around the initial
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parameter value of the best individual9. Finally, the number of steps of LS was
set to 1. This selects the best individual from the final sample points of the first
promising direction (Algorithm 1, Section 3.6.1).

This hybridisation follows a Lamarckian strategy. The Lamarckian strategy
means that the changes provided by an additional search (local search procedure or
any heuristic) over any genotype of the population revert to the original genotypes
[50]. However, since we used the combination only with the best individual, this
reduces the problem of the decrease of the genetic diversity in the genetic popula-
tion, which is inherent to the Lamarck strategy [50].

4. Experiments

To test our Information Fusion models we worked with benchmarks from the
TREC 2007 and the TREC 2008 Feed Distillation task [3, 4]. The blog distillation
task consists of finding blogs with a recurrent and specific interest in a given topic
T . The task was defined as a classical IR problem in which the systems have
to retrieve a ranking of 100 blog feeds related to a query (from the BLOGS06
research collection). The testbeds are composed by 45 and 50 queries, respectively.
The BLOGS06 research collection [51] is a large data set (more than 140 GB)
composed of blog home pages, XML feed documents and its blog entry pages
(permalinks). Some statistics about this collection can be found in Table 1.

This collection is a standard benchmark to perform experiments on blog search.
Each TREC topic contains three fields (title, description and narrative). We exper-
imented with short queries obtained from the title field. These queries are good
representatives of real user web queries [3, 4]. Text pre-processing was merely
based on removing common words (from Fox’s list of 733 stopwords [52]). We
did not apply stemming.

4.1. Setup of Optimisation Algorithms

For LS we used 8 samples per dimension (parameter N) and 50 iterations or
epochs. The sampling interval was decreased after each iteration by a factor of
0.85 (Algorithm 1).

For PSO we employed the recommended settings for the parameters a, b and c
[53] (0.7, 0.9 and 0.9, respectively).

For DE we set CR to 0.9 and F to 0.5. These values belong to the intervals
suggested by Storn and Price [48] (F ∈ [0.5, 1.0], CR ∈ [0.8, 1.0]). The base

9Using a low sampling interval with value 0.5 reduced computations by a factor of 0.85 in every
generation of the evolutionary algorithm.
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Number of Unique Blogs 100649
RSS 62%
Atom 38%
First Feed Crawl 06/12/2005
Last Feed Crawl 21/02/2006
Number of Feeds Fetches 753681
Number of Permalinks 3215171
Number of Homepages 324880
Total Uncompressed Size 148GB
Feeds (Uncompressed) 38.6GB
Permalinks (Uncompressed) 88.8GB
Homepages (Uncompressed) 2.8GB

Table 1: Main statistics of the BLOGS06 collection. This collection was used in the TREC 2006,
TREC 2007 and TREC 2008 blog tracks.

vector (x1 in Algorithm 3) was chosen by interchanging the two main variants
of DE (DE/rand/1/bin and DE/best/1/bin). At the beginning, the variant that
chooses the base vector from the best in the population is used (DE/best/1/bin).
If the fitness of the best individual does not improve after 3 generations then DE
selects a random individual from the population until an improvement is obtained
(variant DE/rand/1/bin).

In both population-based search methods, DE and PSO, we used 128 particles
and 50 generations. LS needs P + 1 line search operations per iteration (Section
3.6.1), P equals 15 (number of parameters to optimise, eq. 3), and we used N = 8.
This means that 128 fitness calculations per iteration are required. So, an iteration
of LS requires the same number of fitness evaluations than a generation of PSO or
DE.

As indicated in Section 3.6.4, for the hybrid algorithms, we used N = 2 (2
samples per dimension) and 1 iteration or epoch. LS is applied only to the best
individual of the genetic population; and for this best individual we need an extra
(15 + 1) × 2 evaluations. We used a population of 96 individuals or particles in
order to have the same number of evaluations per generation.

To alleviate computational costs, we extensively exploited parallelism. The fit-
ness scores –associated to every evolution point of the algorithms– were computed
in parallel with a multi-threading approach and taking in account the necessary
synchronisation point inherent to each algorithm (with the population-based meth-
ods, the evaluation of the population members was done in parallel; with LS, the
evaluation of dimensions and samples was done in parallel).
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4.2. Fitness Function and Metrics

We chose Mean Average Precision (MAP), a popular IR performance measure,
as our fitness function. MAP is a single-figure measure that assesses the effective-
ness of a given ranking of objects.

For a single information need, Average Precision is the average of the precision
values obtained for the set of top k objects existing after each relevant object is
retrieved. This value is then averaged over queries [54], i.e.:

MAP =
1
|Q|
·

|Q|∑
j=1

1
m j
·

m j∑
k=1

Precision(R jk) (8)

where, given the set of relevant objects for a query qi ∈ Q, R jk is the set of ranked
retrieval results from the top result until you get to object ok , m j is the number of
relevant objects for query q j , and

Precision(R jk) =


#(relevant objects retrieved in R jk)

R jk
,when ok is relevant

0 , otherwise
(9)

MAP is a recall-oriented measure, which accounts for the proportion of rele-
vant objects that a system retrieves.

Another important aspect of search systems is their precision. Precision-oriented
measures are concerned with the fraction of retrieved instances that are relevant.
P@10, a popular precision measure, is the proportion of the top 10 retrieved objects
that are relevant, i.e.:

P@10 =
#(relevant objects retrieved in the top 10)

10
(10)

Given a set of queries, their respective P@10 values are averaged out to get a
single P@10 figure.

We did not use P@10 as a fitness function but we report the P@10 performance
of the different methods tested.

4.3. Results

The following experiments were run with a Supermicro Server with 4 AMD
Opteron 6376 processors (64 cores in total), 512GB of DDR3 RAM and a SSD
disk. We split each query set (2007 and 2008) into two equal-sized subsets, applied
cross-validation, and report the performance obtained with each of the two folds.
We decided to do so because applying 10-fold cross-validation would lead to tiny
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Train Test
2007a 974-995 951-973
2007b 951-973 974-995
2008a 1076-1100 1051-1075
2008b 1051-1075 1076-1100

Table 2: Training and test configurations. Each row reports the query range included in each fold.

2007a 2007b
MAP P@10 MAP P@10

BM25 f eed .2215 .4304 .2266 .3409
#PostsRankedF .2034 .4391 .1987 .3318

LS .3267 (47%)N .6000 (39%)N .3732 (65%)N .5082 (49%)N
DE .3346 (51%)N .5965 (38%)N .3724 (64%)N .5163 (51%)N

PSO .3223 (46%)N .5965 (39%)N .3653 (61%)N .4936 (45%)N
DE+LS .3323 (51%)N .6017 (40%)N .3693 (63%)N .5009 (47%)N

PSO+LS .3143 (42%)N .5739 (33%)N .3604 (59%)N .5000 (47%)N

Table 3: Test results with the 2007 dataset. Two retrieval performance measures are reported (Mean
Average Precision, MAP, and Precision at ten, P@10). The values in each column are averaged
over 5 runs. The symbols N (H) indicate a significant improvement (decrease) over both baselines
(BM25 f eed and #PostsRankedF). Percentages of improvement were calculated w.r.t. BM25 f eed, the
best performing baseline.

query sets (max size: 5 queries). We would not be able to properly apply statistical
test on the results. Furthermore, evaluating with at least 25 queries is a must in
Information Retrieval. The complete set of training and test configurations can
be found in Table 2. For each search algorithm, the training process (optimising
MAP) was repeated 5 times and the scores of performance were averaged out.

In Table 3 and 4 we report the performance of the different optimisation algo-
rithms. Two baseline methods (BM25 f eed and #PostsRankedF), which do not com-
bine multiple sources of evidence, were also tested. BM25 f eed is a search algorithm
that represents feeds as the concatenation of all their blog posts (title+body) and
does retrieval using the effective BM25 matching function. By including this model
into the evaluation we could quantify the improvement that can be obtained by us-
ing fusion methods instead of a basic full-text search on the feeds. #PostsRankedF

is a voting model with the post of the feed in the top 1000 of the retrieved post in a
post-level index, every retrieved blog post from the feed is a vote for the relatedness
between the query and the feed.

All fusion methods led to substantial improvements over the baselines (about
40%). The improvements reported correspond to the respective test folds (cross-

19



2008a 2008b
MAP P@10 MAP P@10

BM25 f eed .1567 .3560 .1469 .3160
#PostsRankedF .1293 .2959 .1611 .2840

LS .2332 (49%)N .3584 (1%) .2413 (64%)N .4360 (38%)N
DE .2281 (45%)N .3632 (2%) .2326 (58%)N .4240 (34%)N

PSO .2257 (44%)N .3544 (0%) .2454 (67%)N .4096 (30%)N
DE+LS .2347 (50%)N .3608 (1%) .2176 (48%)N .4160 (32%)N

PSO+LS .2223 (42%)N .3544 (0%) .2422 (65%)N .4264 (35%)N

Table 4: Test results with the 2008 dataset. Two retrieval performance measures are reported (Mean
Average Precision, MAP, and Precision at ten, P@10). The values in each column are averaged
over 5 runs. The symbols N (H) indicate a significant improvement (decrease) over both baselines
(BM25 f eed and #PostsRankedF). Percentages of improvement were calculated w.r.t. BM25 f eed, the
best performing baseline.

validation). This means that the maximisation of the fitness function done with the
training folds led to feature weights that worked very well for a separate test fold.

The P@10 improvements w.r.t. BM25 f eed obtained in the 2008a split (see
Table 4) are rather low (and statistically insignificant). This might be due to the
presence of some queries –e.g., funny jokes– that retrieve spam documents in the
highest positions of the ranking10. Spam detection was out of the scope of this work
and, therefore, we did not include any spam-based feature. From our analysis of the
top 10 rankings of the 2008a split we hypothesise that spam filtering may lead to
increased P@10. It can be observed how the voting model baseline performance is
also very low in this case being affected by the same phenomenon. Spam detection
for this task will be subject of further research.

The overall effectiveness of the fusion methods demonstrates that our features
and optimisation algorithms are suitable in blog distillation. In terms of retrieval
performance, we found no significant differences among the five fusion methods
tested. There is no clear winner across all splits.

As argued above, efficiency is another important dimension in our study. Figure
2a plots the evolution of the optimisation in the training collection (average MAP)
for the five algorithms. At the end of the execution, the best solution is given
by the hybrid model DE+LS. DE yields the second highest MAP, LS goes in the
third place, followed by PSO+LS and PSO. This is a fair comparison because all
methods have the same number of computations of the fitness function –the most
expensive operation– in every evolution point11 (see Section 4.1).

10The TREC Blog Track contains spam documents (approx. 15%) [51].
11Generation for the population-based methods or epoch in the case of LS.
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Figure 2: Evolution of the different algorithms in training for the 2008b split (a) evolution point vs
average MAP (b) average time in hours vs average MAP and (c) evolution point vs accumulated time
in hours.
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Figure 3: Evolution of the average execution time in hours for 50 generations when increasing the
size of the problem when working with 5 to 25 queries in steps of 5.

At first sight, LS appears to be a good choice. It is the leading algorithm during
a large part of the optimisation process. But LS does not explore appropriately the
whole search landscape, as it strongly depends on the initial point. If the optimal
solution is located at the limits of the search space then LS is much poorer than
the global search methods. This has been empirically demonstrated by previous
IR studies [29]. The second graph (2b) sheds light on a more important issue:
time taken (instead of number of generations). When accounting for computational
time, LS is not the dominant algorithm anymore. Observe (Figure 2b) that LS
almost doubles the required time of execution of the evolutionary methods. The
rest of the algorithms take 0.6 hours (or less) to finish the 50 generations, while LS
takes almost 1 hour.

Although we implemented parallel code, LS has a synchronisation bottleneck
(by design), which is the separation of Steps 1 and 2 (see Algorithm 1). This makes
that the accumulated time per evolution point (bottom graph, Fig. 2c) grows much
faster than the time for the evolutionary algorithms. Our hybrid proposals, which
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2007a 2007b
MAP P@10 MAP P@10

CMUfeedW .3525 .5696 .3871 .5000
UMaTiPCSwGR .2703 .5826 .2782 .4864
uogBDFeMNZP .2577 .5565 .3284 .5045

kudsn .2314 .5000 .2530 .4227
DUTDRun1 .2197 .4000 .2378 .3409

utblnrr .2119 .4783 .2277 .4227
uams07bdtblm .1271 .3130 .1954 .3000

TDWHU200 .0226 .0826 .0041 .0318

(a)

2008a 2008b
MAP P@10 MAP P@10

KLEDistLMT .3016 .4440 .3014 .4520
BM25LenNorm .2632 .4040 .2499 .3880

uams08bl .2627 .4120 .2649 .4280
cmuLDwikiSP .2620 .4080 .3493 .4600

UMassBlog1 .2473 .3520 .2567 .4240
uogTrBDfeNWD .2341 .3880 .2702 .4200

UBDist1 .2325 .3720 .2495 .3720
kudb .2229 .3360 .2615 .3520

PermMeWhu .1848 .3400 .1948 .2960
DUTIR08DRun1 .1579 .2960 .1621 .2240

FEEDKGP .1528 .2680 .1550 .2680
feupbase .1366 .2600 .1460 .2520

(b)

Table 5: Retrieval Performance Results (MAP and P@10) of TREC systems with the four query
subsets.

apply LS to the best individual of each generation, are a good trade-off between
effectiveness and computational effort.

Moreover, recent paradigms and technologies such as MapReduce, Hadoop or
Apache Shark can be used in order to implement our solution when the vertical
scalability limit is reached. For instance, in IR it is very common to use Hadoop
in order to process the document collections and extract the features from the in-
dices [55], allowing the indexing of big data scale collections. Furthermore, recent
works [56, 57] tackled the derivation of the proposed methods into the MapReduce
paradigm, facilitating the use of those distributed implementations, when required
by the data size.

The presented fusion approaches are expected to be linear when increasing the
size of the problem. For assessing this, we performed experiments varying the
number of queries in the benchmark. The results are plotted in Figure 3. As ex-
pected, the evolution of the computational time for 50 generations reflects a linear
behaviour.

4.4. Comparison with TREC systems

To put things in perspective, we compare now the retrieval performance of the
fusion methods with the retrieval performance of the systems that participated in
the TREC Blog Track competition. This comparison needs to be taken with care.
On one hand, the 2007 participants did not have relevance judgements available
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2008a 2008b
MAP P@10 MAP P@10

BM25 f eed .1567 .3560 .1469 .3160
LS .2688 (72%)N .3896 (9%) .2550 (74%)N .4320 (37%)N
DE .2882 (84%)N .3952 (11%) .2667 (82%)N .4352 (38%)N

PSO .2558 (63%)N .3608 (1%) .2426 (65%)N .4128 (31%)N
DE+LS .2852 (82%)N .3856 (8%) .2650 (80%)N .4320 (37%)N

PSO+LS .2433 (55%)N .3712 (4%) .2643 (80%)N .4232 (34%)N

Table 6: Test results with the 2008 dataset after incorporating the average retrieval performance of
TREC systems. The symbols N (H) indicate a significant improvement (decrease) over the baseline
(BM25 f eed).

and, therefore, they could not apply any sort of train-test methodology12. On the
other hand, many TREC systems incorporated evidence from a variety of sources
(e.g., link analysis and spam filtering), and employed massive external datasets
(e.g., Wikipedia). This luxury was not afforded to our fusion models because test-
ing every single type of feature is out of the scope of this work.

In TREC 2007 (Table 3 vs Table 5a), the fusion models outperform all TREC
systems (P@10). In terms of MAP, only the run from Carnegie Mellon (CMUfeedW)
was better than the fusion models. This run made extensive use of external data
(from the Wikipedia), which explains its increased recall of relevant feeds.

In TREC 2008 (Table 4 vs Table 5b), the fusion models rank in the middle of
the pack. This might be due to the high variance in the degree of relevance of the
feeds. The 2008 queries and relevance judgements were constructed in a way that
blogs are assigned non-binary assessments. The human assessors were asked to
label a feed as relevant when it contains enough on-topic posts. This loose notion
of relevance potentially leads to relevant feeds that do not have a recurring principle
interest in the topic area13. Some of our features directly estimate how recurrent
the query topic is within the feed and, therefore, they might be unsuitable for low
relevant feeds. This effect will be subject of further research.

Since our information fusion models can naturally encompass new types of
evidence, it is possible to test what is the effect of including evidence from the
TREC systems. As argued above, these systems incorporate signals that are com-
plementary to ours. We made an additional experiment based on replacing the

12The 2008 participants did not have relevance judgements for the 2008 topics but they could use
the 2007 topics for training.

13Instead, the 2007 assessors were explicitly told to make a judgement on whether the feed has a
recurring principle interest in the topic area.
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content-based features RelBM25Feed Titles, RelBM25Feed Titles + Body, and
RelBM25Feed Comments by a feature computed as the average score of rele-
vance given to the feed by the TREC systems (after removing the best and the
worst TREC systems). Table 6 shows the results of this experiment. Injecting
evidence from the TREC systems makes that the information fusion methods are
among the best performing systems. DE and DE+LS are the most dominant algo-
rithms among our proposals. This demonstrates the good performance of DE when
optimising real values [49].

5. Conclusions

In this paper we have approached Blog Distillation as an Information Fusion
problem. The massive number of feeds in the blogosphere, the huge number of
blog posts and comments, and the multiple signals available to estimate relevance
turn this problem into a Big Data challenge. We have demonstrated that features
of different nature can be combined in simple ways to estimate the relevance of a
feed.

The high number of parameters and the size of the training sets demand so-
lutions based on efficient optimisation. Therefore, we have compared the relative
merits of different search algorithms, such as Line Search and population-based
methods (Particle Swarm Optimisation and Differential Evolution). We have also
designed novel hybrid methods that trade between computational effort and effec-
tiveness. Not only we showed that the algorithms are efficient, but we also demon-
strated that the resulting retrieval performance is competitive when compared to
state-of-the-art methods. In summary, the main novelty of the paper is the use of
population-based search algorithms and the defined hybrid versions with a local
search method to optimise the parameter weights that are required for combining
multiple types of evidence in blog distillation search. To the best of our knowledge,
there is no previous work applying this methodology to this task, where combining
effectively and efficiently different types of evidence (query-independent, query-
dependent, blog-level, blog post-level, etc.) is critical.

In the near future, we plan to include additional optimisation algorithms and
fusion models into our study. Another interesting line of future work consists of
studying the interaction and dependencies among features. In this respect, we
would like to incorporate a feature selection strategy to extract the most discrimi-
native features and to skip weak features.
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