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Among the different computational intelligence techniques avalaible for hyperspectral
data classification, Support Vector Machines (SVMs) have been playing a dominant
role. Recently, a new learning algorithm for single-layer feedforward neural networks
called Extreme Learning Machine (ELM) was proposed. This technique is competitive
with SVM in terms of accuracy, learning speed and computational scalability. In this
paper we propose and evaluate the use of ELM for the land cover classification from
hyperspectral images. In addition, we consider two ELM-based techniques integrating
spectral and spatial information of the image. The first one is a scheme that uses
a majority vote approach in order to combine the results of a pixel-wise spectral
classification by ELM and a segmentation map obtained by a watershed algorithm.
The second one introduces spatial information from a small spatial neighborhood
after the classification by ELM. We show the usefulness of spatial-spectral ELM-based
classification techniques in hyperspectral imaging. The results are compared to those
obtained by similar SVM-based techniques and show improved classification results
and much lower execution time. These simple and computationally cheap methods
can be combined with others traditionally applied to hyperspectral images 1.

Keywords: hyperspectral data, remote sensing, spectral-spatial classification,
extreme learning machine, watershed, classification accuracy.

1. Introduction

Hyperspectral images are currently widely available as a result of advances in re-
mote sensor technology such as the reduction in the size and cost of the sensors and
the increase in spectral resolution. For example, AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) records 220 spectral bands in a spectral range from 0.4 to
2.5 µm, corresponding to the visible and infrared spectrum. ROSIS-03 (Reflective
Optics System Imaging Spectrometer) captures 115 spectral bands in the spectral
range from 0.43 to 0.86 µm, corresponding mainly to the visible spectrum. Differ-
ent applications of remote sensing images can be found in the literature: vegetation
applications such as forest degradation analysis (Cao et al. 2009), identification of
urban areas such as road extraction and urban change detection (Nemmour and
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Chibani 2006), and mineral mapping (Kruse, Boardman and Huntington 2003),
among others. Hyperspectral images consist of hundreds of spectral bands at dif-
ferent wavelength channels, hence efficient techniques are required to extract the
huge amount of information they contain. We focus on remote sensing images, i.e.
images obtained by airborne or satellite hyperspectrometers corresponding to ar-
eas of the surface of the Earth. The problems that are typically addressed for such
hyperspectral data include anomaly detection, target recognition and background
characterization, including land cover classification, which is the aim of this work.
Although many methods have been applied to different problems associated

to classification of multispectral and hyperspectral data (Fauvel, Chanussot, and
Benediktsson 2006; Mountrakis, Im, and Ogole 2011; Fauvel et al. 2013), SVM is
generally recognized as the method that offers the best results in terms of accu-
racy of the classification, even when the number of training samples is small or
noise caused by measurement errors due to limited precision of sensors, and by
atmospheric and topographic distortions, is present. SVM permits the analysis of
high-dimensional input spaces where traditional methods are not effective (Moun-
trakis, Im, and Ogole 2011). SVMs are also, as shown by (Melgani and Bruzzone
2004), more effective than other conventional non-parametric classifiers, such as
RBF (radial basis function) neural networks and the KNN (K-nearest neighbor)
classifier, in terms of accuracy, computational time, and stability to parameter
setting.
For hyperspectral data and, in particular, for remote sensing, SVM-based tech-

niques have recently been extensively applied to different fields demonstrating self-
adaptability, rapid learning and limited requirements in the number of training
samples (Mountrakis, Im, and Ogole 2011), making them reliable for the intelli-
gent processing of data acquired through remote sensing. SVM provides excellent
results when applied to pixel-wise classification (Fauvel, Chanussot, and Benedik-
tsson 2006; Melgani and Bruzzone 2004).
The standard two-class SVM training phase builds a model which is used to

predict whether new samples belong to one category or another in a posterior
phase of classification (Vapnik 1995). When the data belong to more than two
classes it is necessary to define a method in order to solve the multiclass problem.
These methods may be of the type one-against-all (OAA), one-against-one (OAO)
and all-at-once (Shiego 2005). The SVM classification in the multiclass case always
requires classification by pairs of classes to be performed in a OAO fashion, even
when the OAA option provided by some libraries is selected (Chang and Lin 2011).

If N is the number of classes, N2−N
2 is the number of OAO classifications that must

be performed.
Raw SVM pixel-wise classification considers only spectral information but not

information on the spatial structures present in the image. The accuracy of the
results obtained is limited in this case (Mountrakis, Im, and Ogole 2011). The
spatial relationships among pixels can be integrated with the spectral information
following mainly two different approaches. The first one consists in introducing
spatial information into the kernel function used by the non linear SVM calculation
(Camps et al. 2006; Fauvel, Chanussot, and Benediktsson 2006, 2012; Plaza et al.
2009). The second one consists in processing the spatial information outside the
SVM and joining the spatial results to the spectral classification results obtained
by the raw SVM classification (Bai and Sapiro 2007; Linden et al. 2007; Fauvel,
Chanussot, and Benediktsson 2008; Tarabalka, Benediktsson and Chanussot 2009;
Tarabalka, Chanussot, and Benediktsson 2010a,b; Tarabalka et al. 2010; Fauvel
et al. 2013).
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Regarding the last approach, that has been chosen for the present work, the
spatial information introduced can be obtained from the closest neighborhood of a
pixel by any object-based classification method. This approach uses, for example,
Markov random fields (Tarabalka et al. 2010) or morphological profiles (Benedik-
tsson, Palmason and Sveinsson 2005; Fauvel, Chanussot, and Benediktsson 2008).
Another option is to consider spatial information in a broader neighborhood and it
is based on a segmentation of the image by graph-based segmentation algorithms
such as partitional clustering techniques (Tarabalka, Benediktsson and Chanussot
2009), minimum spanning forests (Tarabalka, Chanussot, and Benediktsson 2010b),
shortest paths (Bai and Sapiro 2007) or watershed (Tarabalka, Benediktsson and
Chanussot 2009) among others.
The spatial and spectral information must be combined in order to compute the

final classification map. Three main approaches have been identified in the litera-
ture for this task (Fauvel et al. 2013). The first one assigns each region identified by
a segmentation map to one of the classes using the vector mean of each class as a
feature. This approach has been shown to have low classification accuracy because
the use of the vector mean results in a loss of spectral information (Linden et al.
2007). The second one is based on combining the spatial and spectral information
in a feature vector that is defined for each pixel and later used for the classification
process. The third option is based on combining the spatial segmentation results
with the pixel-wise spectral classification results by the known as a plurality vote
step, that is usually implemented by majority vote (MV) (Tarabalka, Benediktsson
and Chanussot 2009). Different possible schemes based on this approach, and which
combine different methods for segmentation with SVM as a spectral classifier, have
been studied extensively in (Tarabalka, Chanussot, and Benediktsson 2010a) for
remote-sensing images, obtaining good results.
Recently Huang et al. (Huang, Zhu, and Siew 2004) have proposed a technique

known as Extreme Learning Machine (ELM) to train Single-hidden Layer Feed-
forward Neural Networks (SLFNs). Compared to more traditional computational
intelligence techniques, including SVM, ELM has proved to be an alternative in
terms of generalization performance, learning speed and computational scalabil-
ity. The principle which ELM is based on is that of an SFLN. The method uses
random computational nodes which are independent of the training samples. This
makes the algorithm independent of a tuning process, except for the election of
the network architecture (number of nodes in the hidden layer) so the number of
user-defined parameters is lower than for the SVM with the subsequent saving in
computational time. The learning process is faster than traditional gradient-based
approaches, such as the back-propagation algorithm (Haykin 2001) and it has good
generalization performance (Huang, Zhu, and Siew 2004). The hidden nodes can
be radial basis function (RBF) nodes (Huang, Chen, and Siew 2008) or wavelets
(Cao, Lin and Huang 2011), among others. The random selection of hidden node
parameters and the lack of tuning lead to low computational times for the ELM
training phase (Rong et al. 2008). Regarding the universal approximation capabil-
ity of ELM (Huang, and Chen 2007, 2008) provide a more general theorem which
avoids the differential condition on activation functions.
The use of ELM for hyperspectral images has only recently been explored in a

small number of works (Pal 2009; Chang 2011; Pal, Maxwell, and Warner 2013).
In (Pal 2009) a pixel-wise ELM with the sigmoid activation function applied to
land cover classification offers slightly higher accuracy results than a backpropa-
gation trained multilayer neural network for the two datasets considered. (Chang
2011) has applied the PL-ELM classifier (Partial Lanczos ELM) to analyze the
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change of land use detected in hyperspectral images. The results indicate that
PL-ELM outperforms other classification methods, including SVM. More recently
(Pal, Maxwell, and Warner 2013) compares a raw pixel-wixe SVM algorithm to a
kernel-based ELM algorithm using a RBF function. The ELM results are slightly
better in terms of accuracy. Moreover, the method has notably lower computational
cost and does not require the implementation of a multiclass strategy.
In this work we study and evaluate the application of two spatial-spectral ELM-

based techniques to the land cover classification from hyperspectral images com-
pared to similar published SVM-based techniques. The main contributions of this
paper are:

• The use of ELM for the classification of hyperspectral images is validated
by its application to real test images extensively used in the literature. Very
low execution times for the ELM implementation in OpenMP are obtained
on a 4-core multicore CPU. The higher accuracy values obtained by the
classification and regularity among classes of the accuracy values as well as
the lower execution times in comparison with the SVM classifier, indicate
that ELM is a promising classification approach.

• The application of ELM to remote sensing images is further explored. Two
spatial-spectral classification techniques based on ELM are proposed. The
proposed techniques apply majority vote in order to incorporate the spa-
tial/textural information.
The first technique, which we call watershed-based ELM, combines,

through a majority vote approach, the results of ELM with the spatial infor-
mation of a segmentation map obtained by a watershed algorithm. In this case
the neighborhood is of the variable size of a watershed region. The second
technique, which we call spatially regularized ELM, introduces the spatial
information of the local neighborhood by taking into account information
from the ELM classification on each pixel and on the neighbors in a fixed
neighborhood.

The rest of this paper is organized as follows: Section 2 presents the ELM applica-
tion to pixel-wise classification of hyperspectral images; in Section 3 two proposals
are presented for integrating the spatial information with the spectral ELM classi-
fication; classification results and execution times for the proposed techniques are
included in Section 4; and, finally, in Section 5 the conclusions are presented.

2. ELM

This section briefly describes the raw pixel-wise ELM algorithm. ELM was pro-
posed as an efficient learning algorithm for single-hidden layer feedforward neural
networks (SLFNs) (Huang, Zhu, and Siew 2006). The structure of an SLFN is
shown in Fig.1. The output function of an SLFN with L hidden nodes an x the
input vector can be written as

fL(x) =

L
∑

i=1

βiG(ai, bi,x), x ∈ Rd, βi ∈ Rm, (1)

where G(ai, bi,x) denotes the output function of the ith hidden node, being ai,
bi and βi the hidden node parameters and the weight vector connecting the ith

4



February 4, 2015 International Journal of Remote Sensing manuscriptCITIUS

hidden node to the output nodes, respectively. For the case of additive nodes with
activation function g, it can be expressed as

G(ai, bi,x) = g(ai · x+ bi), ai ∈ Rd, bi ∈ R, (2)

An SLFN with L hidden nodes can approximate N arbitrary distinct samples
(xi, ti) ∈ Rd ×Rm, i.e.,

N
∑

j=1

||fL(xj)− tj || = 0, (3)

if there exist ai, bi and βi such that

L
∑

i=1

βiG(ai, bi,xj) = tj , j = 1, . . . , N. (4)

The above N equations can be written compactly as:

Hβ = T (5)

where

H =







h(x1)
...

h(xN )






=






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... . . .

...
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




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, (6)
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





βT
1
...

βT
L







L×N

, and T =







t1
T

...
tN

T







N×m

. (7)

H is called the hidden layer output matrix of the neural network. Huang et al.
(Huang, Chen, and Siew 2006; Huang, Wang and Lan 2011) have proved that an
SLFN with randomly generated additive or RBF nodes in the hidden layer can
universally approximate any continuous target function over any compact subset
X ∈ Rd. For the case of additive nodes, the activation function g can be any
infinitely differentiable function, and this includes the sigmoidal functions, as well
as the radial basis, sine, cosine and exponential functions among others. Hidden
node parameters (ai, bi) remain fixed after randomly generated and training an

SLFN is equivalent to finding a least-squares solution β̂ of the linear system Hβ =
T:

||Hβ̂ −T|| = min
β

||Hβ −T||. (8)
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If the number L of hidden nodes is equal to the number N of training samples,
L = N , according to Theorem 2.1 in (Huang, Chen, and Siew 2006), matrix H is
square and invertible when hidden node parameters (ai, bi) are randomly chosen,
and thus SLFNs can approximate these training samples with zero error without
the need of the iterative tuning required for other learning mechanisms. However,
in most cases the number of hidden nodes is much lower than the number of
distinct training samples, therefore H is a nonsquare matrix and there may not
exist ai, bi,βi (i = 1, . . . , L) such that Hβ = T. The smallest norm least-squares
solution of the above linear system is:

β̂ = H†T, (9)

where H† is the Moore-Penrose generalized inverse of matrix H [37, 38]. Thus,
ELM can be summarized as follows (Huang, Chen, and Siew 2006; Huang, Wang
and Lan 2011):

Algorithm ELM: Given a training set ℵ = {(xi, ti)|xi ∈ Rd, ti ∈ Rm, i =
1, . . . , N}, hidden node output function G(ai, bi,x), and hidden node number L,

(1) Randomly generate hidden node parameters (ai, bi), i = 1, . . . , L where ai

and bi are the input weight and bias values.

(2) Calculate the hidden layer output matrix H.

(3) Calculate the output weight vector, β = H†T.

As it was stated in (Huang et al. 2012), ELM requires less human intervention
than SVM. It also achieves similar or better generalization performance for binary
class classification cases, and much better for multiclass classification. In addition,
ELM has better scalability and it runs at much faster learning speed than SVM.

3. ELM-based spatial-spectral methods

In this section, two possible schemes for the classification of hyperspectral images,
combining spatial and spectral information by different methods, are applied to
ELM in order to show its effectiveness as a spectral classifier. Both methods apply
a process known as plurality vote or majority vote (Tarabalka, Benediktsson and
Chanussot 2009; Cao et al. 2011) in the sense that, in some step, they calculate
the class to one pixel based on the class that is majority in a neighborhood of a
size depending on the technique. In Section 3.1 a spectral-spatial scheme based on
combining the results of spectral classification with the result of a separate non-
supervised segmentation is presented. In order to increase the spatial information
included in the process, a spatial regularization of the results obtained by ELM is
proposed in Section 3.2.

3.1 Watershed-based spatial-spectral ELM

The first spatial-spectral classification technique selected is based on capturing the
spatial/textural information on the hyperspectral image using an unsupervised wa-
tershed algorithm. The segmentation map and the classification outcome obtained

6



February 4, 2015 International Journal of Remote Sensing manuscriptCITIUS

by a pixel-wise classifier are combined using a majority vote (MV) process. This
approach, first proposed in (Tarabalka, Chanussot, and Benediktsson 2010a) for
the case of the SVM classifier, has been successfully applied to a variety of remote
sensing images by different authors (Tarabalka, Benediktsson and Chanussot 2009;
Tarabalka, Chanussot, and Benediktsson 2010a,b; Fauvel et al. 2013). We propose
to extend it for the ELM classifier.
The scheme consists of the stages described in Fig. 2. On one hand, a pixel-wise

classifier is applied over the hyperspectral image producing a classification map,
as shown in the top of the figure for the case of three classes. The tag of each
pixel indicates the class for the pixel, represented in the figure by a color. On the
other hand, the spatial processing is performed. The region-based segmentation by
a watershed transform is a sound choice as it obtains good results even when the
contrast of the image is poor (Serra 1983).
Computing the gradient over a multiband image can proceed in different ways

(Tarabalka, Benediktsson and Chanussot 2009). The option selected here is to
compute a vectorial gradient than reduces the original multiband image to a one-
band image. In this scheme a vectorial gradient operator based on the Euclidean
distances of pixel vectors, called Robust Color Morphological Gradient (RCMG),
is applied (Evans and Liu 2006). RCMG reduces the dimensionality of the original
hyperspectral image so that finally a one-band image whose borders are enhanced
and thinned is obtained. Afterwards, a watershed algorithm based on a cellular
automaton (Quesada-Barriuso, Argello, and Heras 2012) generates a segmentation
map. The watershed algorithm follows the Hill-Climbing algorithm based on the
topographical distance by Meyer (Meyer 1994). In this map the different regions
are labelled by different letters, as can be shown in the bottom of Fig. 2.
Finally the spectral and the spatial results are combined using a majority vote

(MV) process (Tarabalka, Benediktsson and Chanussot 2009). The MV is per-
formed after the ELM within each watershed region in such a way that each pixel
in the region is assigned to the most predominant class within the region. The
output of this scheme is a more accurate hyperspectral classification of the image
compared to the standalone spectral classification. Fig. 3 shows the process of MV
considering three classes in the classification map and three watershed regions in
the segmentation map, so the neighborhood considered by each pixel is variable
and of the size of the watershed region it belongs to.

3.2 Spatially regularized ELM

The classification technique described in this section introduces spatial information
from the closest neighborhood of a pixel by a regularization process applied over
the classification map.
ELM adopts a One-Against-All (OAA) method to decompose multi-classifica-

tion applications into multiple binary classifiers and transforms the classification
application to a multi-output function regression problem (Cao et al. 2011). Con-
sidering m possible different class labels, a m-dimensional vector (ti1, ti2, . . . tim)
with tic ∈ {1,−1} (c = 1, 2, . . . ,m) will be computed for each sample xi in the
training phase. With this One-Against-All approach, if the sample xi belongs with
the highest probability to a class c, in the training phase the class label tic of the
sample xi will be set to 1 and the other values of the vector will set to -1. According
to this, in the testing phase, for a testing sample xi the index j of the largest value
tij in the output vector will indicate the class of the sample.
With the spatially regularized ELM approach the OAA solution is slightly
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changed by considering spatial information in the closest neighborhood. First the
ELM is applied. For each test sample not only the most probable class, but also
the second and the third most probable classes are stored. Afterwards, when all the
samples have their class, the set of samples is traversed again and for each sample
the class will be set to the most prevalent class in the set of the closest neighbor-
hood if this value is among the three most probable classes for the sample. In other
case, the class does not change. The process is repeated over all the samples until
stability is achieved.
Thereby disconnected points, which are frequently misclassified (Cao et al. 2011),

initially change their class label depending on the class assigned to the neighbors,
hence the accuracy of the classification increases. An additional effect is that the
edges of the classes are smoothed out solving the problem of classification accuracy
usually present in these points. The problem of avoiding disconnected points in the
classification map was also studied in (Tarabalka, Benediktsson and Chanussot
2009), in which a regularization step is performed after a spatial-spectral scheme
based on SVM by filtering the classification map using Chamfer neighborhood
masks.
Figure 4 displays the effect of the regularization explained above. First the pixel-

wise ELM classification is performed and, as a result, each pixel is tagged as be-
longing to one of the three possible classes. Some disconnected points, i.e., which
belong to one class but are surrounded by pixels of other classes, are present. Then,
the classification map obtained by ELM is regularized. The class for each pixel is
decided by analyzing information of other pixels in a fixed size 8-cell neighborhood.
As a result, indicated as regularization in the figure, the size and shape of the classes
change. In a final step, the regularized classification map is combined with the wa-
tershed segmentation map using a majority vote with an adaptive neighborhood
of the size of the watershed region in question. All the pixels are assigned to the
most frequent class within their region.

4. Evaluation

In this section we present and discuss the results obtained after applying the spatial-
spectral ELM techniques proposed in the previous sections to land cover from
hyperspectral images. A comparison with the results obtained after applying similar
SVM-based techniques is studied. The results are analyzed in terms of classification
accuracy, quantity and allocation disagreements and computational cost of the
methods. First, in Section 4.1 we present the experimental conditions. The results
of applying raw pixel-wise ELM and SVM classifiers are compared in Section 4.3.
Finally in Sections 4.4 and 4.5 the results applying the proposed spatial-spectral
ELM techniques are analyzed.

4.1 Hyperspectral image dataset and experimental conditions

The land cover classification is made on publicly available hyperspectral datasets.
All experiments with ELM are performed in OpenMP language using the Open-
BLAS library (OpenBLAS 2013). The computer platform is a four-core Intel Core
i7 860 CPU with 8 GB of RAM using a 64-bit Linux GNU compiler with the -O3
flag.
For the ELM experiments the random values for the input weights and biases

were generated by the rand48 generator from the standard C library. For the inverse
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calculation the Moore-Penrose generalized method was used (Courrieu 2005). The
activation function selected is the sigmoidal activation function g(x) = 1

1+e−x
.

As it was explained in Section 2, for the ELM the user only has to decide two
parameters: the number of neurons in the hidden layer of the SLFN and the number
of training samples per class. An analysis varying these parameters for the two
datasets considered is shown in the next section.
In the case of SVM the Gaussian radial basis function (RBF) is used as the

activation function. The user must decide the number of training samples per class.
Using RBF, two parameters (C and γ) need also to be optimized, corresponding to
a penalty term and the width of the radius of the Gaussian function, respectively. In
this work, the number of samples per class and the parameters C and γ were chosen
as in (Tarabalka, Chanussot, and Benediktsson 2010a,b), because a comparison to
results published in that work is performed. The parameters for training the SVM
extracted from these publications are C = 128 and γ = 26 for the Indian Pines
image, and C = 128, γ = 0.125 for the University of Pavia image. The number of
training samples per class will be shown in the next sections. The SVM execution
times presented in Section 4.3 were obtained with the same parameters and using
the standard LIBSVM library (Chang and Lin 2011).
The hyperspectral datasets used in the experiments are the University of Pavia

image (Rosis 2013), which was obtained by the ROSIS-03 optical sensor, and the
Indian Pines image (AVIRIS 2013), obtained by the AVIRIS. Reference data, also
called ground truth, are avalaible for both images in order to evaluate the classi-
fication results. The input data for the experiments are normalized in the range
[0, 1].
The first dataset for the experiments is a 103-band image from the University

of Pavia at Pavia, Italy, with a spatial dimension of 610× 340 pixels with spatial
resolution of 1.3 m per pixel. The ROSIS-03 sensor captures 115 spectral bands
(the twelve most noisy bands of this image were removed) in the spectral range
from 0.43 to 0.86 µm, corresponding mainly to the visible spectrum. The reference
data contain 9 classes of interest corresponding to different urban elements. A false
color image and the reference data are presented in Fig.5. The ground truth covers
only 20.62% of this image.
The second image, see Fig.6, is a 220-band dataset of a 2 × 2 mile portion of

agricultural area in Northwest Indiana. The image has spatial dimensions of 145×
145 pixels with a spatial resolution of 20 m per pixel. The AVIRIS sensor has
220 spectral bands and a spectral range from 0.4 to 2.5 µm, corresponding to the
visible and infrared spectrum. The scene contains two-thirds agriculture and one-
third forest or other natural perennial vegetation. Some of the crops present (corn,
soybeans, etc) are in early stages of growth with less than 5% coverage. There are
two major dual lane highways, smaller roads, a rail line, some low density housing
and other built structures. The reference data contain 16 classes of interest, which
cover 49.30% of the full 145× 145 image.
In all the experiments performed using the different classification methods, a

random training sample of pixels for each class was selected from the ground truth.
When the SVM is applied, the number of training pixels per class is the same as
in (Tarabalka, Chanussot, and Benediktsson 2010a) and the trained classifiers are
applied to the remaining known ground pixels. The SVM results for the test images
are taken from the literature.
For the case of the ELM in order to select the model a number of trials changing

the configuration were conducted, as it will be explained in the next section. Finally,
500 and 950 neurons in the hidden layer for the University of Pavia and the Indian
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Pines images, respectively, and 200 training samples per class, or half the number
of samples in the class when this number is lower than 200, were selected for the
remaining of the paper. And since, as some authors have reported (Zhu et al. 2005;
Wang, Cao, and Yan 2011), the efficiency of the classification is dependent on the
random assignment of input weights and biases, we have repeated 100 experiments
for each ELM configuration. The result for each pixel is the most repeated class in
the 100 experiments.
The classification results are always validated by comparing to the ground truth

and in terms of overall accuracy (OA), average accuracy (AA), Kappa coefficient
(κ). The OA is the percentage of correctly classified pixels in the whole image. The
AA is the mean of the class accuracy for all classes considering that the class-specific
accuracy is the percentage of correctly classified pixels for a given class. κ is the
percentage of agreement among the classification results and the information from
the ground truth corrected by the number of agreements that would be expected
accidentally (Richards and Jia 1999). Besides, as (Pontius, and Millones 2010)
recommend, two new components of disagreement between classification maps in
terms of quantity and spatial allocation of the classes are also computed for the
proposed techniques. The quantity disagreement (QD) is defined as the amount of
difference between the ground truth and a comparison map that is due to the less
than perfect match in the proportions of the classes. The allocation disagreement
(AD) is defined as the amount of difference between the ground truth and a clas-
sification map that is due to the less than optimal match in the spatial allocation
of the categories, given the proportions of the classes in the ground truth and the
classification map.

4.2 ELM model structure

In the literature, a variety of methods for the proper selection of the model structure
of ELM were proposed (Heeswijk et al 2011). Nevertheless, Huang et al. (Huang
et al. 2012) proved that with sigmoid additive hidden nodes, as in the present
case, ELM can achieve a good generalization performance provided the number of
hidden nodes is large enough. Here a study on the influence of the structure of the
ELM, number of training samples per class and number of neurons in the hidden
layer, is explained.
Figures 7 and 8 show the results of varying the parameters for both test images.

Each experimental point in the graphs is the results of 100 executions, as explained
in Section 4.1. Considering the relevance of achieving near real-time processing,
especially for certain applications, the execution times must also be tested. The
ELM implementation has been performed in OpenMP with calls to the OpenBLAS
library for the matricial operations. The results are also displayed in the figures
(bottom graphs).
The graphs on the left of Figs. 7 and 8 display the classification accuracy and

execution times when varying the number of neurons in the hidden layer and con-
sidering 200 samples per class or 50% of the available samples of the class are
selected. It is interesting to note that for both images when the number of neurons
is increased, the accuracy also increases until one value where it becomes constant.
If the number of neurons is further increased, beyond one point the accuracy begins
to decrease again. The limits for these behaviors depend on the number of channels
per pixel and on the number of training and classification samples, so the tuning
process must be repeated for each image in order to achieve the best configuration
possible. Nevertheless, the low sensitivity to the change in the number of neurons
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observed in the accuracy indicates that, in line with (Huang et al. 2012), a sufficient
number of hidden neurons would provide good enough results.
It can be observed that, for the case of the University of Pavia image (Fig.

7), the best number of neurons is around 500. For the case of the Indian Pines
image (Fig. 8) the best values are obtained around 950 neurons. Comparing the
outcomes for both images, as other authors have reported by using different classi-
fication methods, worse results are obtained for the Indian Pines image as the low
spatial resolution of the image leads to the presence of highly mixed pixels which
complicates the classification problem (Tarabalka, Chanussot, and Benediktsson
2010a). Furthermore, there are some very small classes for this image.
Regarding the execution times, when the number of neurons in the hidden layer

is varied, the values for the whole process are also below 4.5 and 3 seconds for the
University of Pavia and the Indian Pines images respectively. The execution times
continuously increase with the number of neurons, the classification time always
being higher than the training time.
The results when the number of training samples is modified are displayed on

the graphs on the right of Figs. 7 and 8, considering 500 and 950 neurons in the
hidden layer for the University of Pavia and Indian Pines images, respectively. The
figures indicate similar trends in accuracy and execution times when the number
of samples is increased. It is worthy of note that for these experiments the times
are below 2.5 and 1.7 seconds for the University of Pavia and Indian Pines images
respectively.

4.3 ELM versus SVM

In this section, the raw pixel-wise ELM method (Huang, Wang and Lan 2011)
described in Section 2 is applied to the datasets. The classification results are
analyzed and compared to those obtained by the pixel-wise SVM classifier. The
analysis is based on the standard accuracy indices OA, AA and κ, and on execution
times.
The execution times for the training and classification stages comparing the pixel-

wise SVM and ELM classifiers for the test images and for the configurations that
will be used in the remaining of the paper are summarized in Table 1. L denotes
the number of neurons in the hidden layer. Lower values are obtained for ELM,
around 35 and 6 times lower than for SVM. It is well known that SVM is a compu-
tationally demanding algorithm for high-dimensional data or when the number of
samples is large (Fauvel, Chanussot, and Benediktsson 2008; Tarabalka, Benedik-
tsson and Chanussot 2009). The main difference between SVM and ELM is on the
classification time because the SVM classification always requires classification by
pairs of classes to be performed in a OAO fashion, as we have explained in Section
1. The classification time increases with the number of classes as where N is the
number of classes, N2−N

2 is the number of one-to-one classifications that must be
performed. In the case of the ELM, however only one matrix operation is performed
for classification, increasing the size of the matrix with the number of classes. In
addition, in this work a very efficient implementation of the ELM for multicore
architectures has been performed using OpenMP language and performing calls to
the OpenBLAS library, thus, the multicore CPU avalaible is fully exploited.
Tables 2 and 3 compare the pixel-wise ELM classifier with SVM highlighting the

best results in bold. The SVM results are taken directly from (Tarabalka, Benedik-
tsson and Chanussot 2009) and (Tarabalka, Chanussot, and Benediktsson 2010b)
where a 5-fold cross validation was used in order to tune the SVM parameters.
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Given that these papers do not include the confusion matrices, QD and AD values
can not be calculated for the SVM. The same will be observed in the remaining
tables. Better accuracy results are obtained in general for the Indian Pines image
as for each class the points are more clustered (see the ground truths in Figs. 5
and 6). Inspecting the classification accuracies for the different classes the ELM
accuracy results are higher and more uniform among classes than in the case of
SVM. As a result, ELM obtains in all cases better OA and AA results than SVM.
For the case of the University of Pavia image the increase in OA of ELM over SVM
is of 5.66 points, and for the case of the Indian Pines image, for which the SVM
already gives very good results, 2.48.

4.4 Watershed-based ELM results

In these experiments, the spatial-spectral classification scheme described in Section
3.1 is tested. First, an unsupervised segmentation by watershed is performed over
the test images. The segmentation map is combined with the classification map
obtained by SVM or ELM by majority vote inside the watershed regions.
Tables 4 and 5 give class specific accuracies and global OA, AA, and κ values for

the spatial-spectral classification schemes based on applying the watershed-based
classification to the test images. Additional results in terms of QD and AD are also
offered for the ELM-based schemes. Results are shown for the case of considering
SVM (SVM+wat column in the table) and ELM (ELM+wat column in the table)
as the spectral classifiers. The first conclusion, comparing to the previous Tables
2 and 3, is that the spatial-spectral scheme outperforms the pixel-wise results in
all cases. Overall, the University of Pavia image gives the best results with an OA
improvement of 8.03 points of the spatial-spectral scheme based on ELM over the
raw ELM. A similar behavior is observed for the Indian Pines image obtaining 9.78
points of maximum improvement. The best overall results are those obtained by
the spatial-spectral scheme based on ELM with with OA of 94.70% for Pavia and
90.43% for Indiana.

4.5 Spatially regularized ELM results

In these experiments the spatial regularization process explained in Sect. 3.2 is ap-
plied to the pixel-wise ELM classifier, as well as, to the spatial-spectral technique
based on the watershed application. The regularization introduces additional spa-
tial/textural information by considering separately for each pixel the classes that
the ELM classifier assigns to the neighbors and repeating the regularization pro-
cess till stabilization of the class tags. All the experiments involving the spatially
regularized technique were applied using a fixed 8-cell neighborhood.
Tables 6 and 7 summarize the results obtained by applying the spatial regu-

larization process to the test images. The third column in the tables shows the
results of the regularization over the raw ELM. The pixel-wise results are clearly
improved by the regularization. The fourth and fifth columns show the effect of
the regularization process applied after the watershed-based scheme. Although the
spatial-spectral scheme ELM+wat already introduces spatial information from the
watershed segmentation, there is still a margin for the improvement, especially, as
explained in Section 3.2, on the borders of the classes and on the disconnected
points inside the classes that are the objectives of the regularization. The OA val-
ues obtained by ELM+wat+reg are 95.12 and 90.93 for the Indian Pines and the
University of Pavia images, respectively. This scheme also offers the best results in
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terms of QD and AD.
An study of the regularization technique applied after a spatial-spectral SVM

scheme is published in the literature (Tarabalka, Benediktsson and Chanussot
2009). In particular, in this last work the regularization is called post-regularization,
the segmentation algorithms are ISODATA and EM clustering considering 4 neigh-
bors and the results are available for our test images. Although the method is
slightly different from the applied here with ELM, as the regularization is applied
after the majority vote, in Tables 8 and 9 the best results for each image, extracted
from (Tarabalka, Benediktsson and Chanussot 2009), are incorporated. They are
also outperformed by the spatially regularized based ELM combined with water-
shed (ELM+wat+reg). These tables summarize the OA, AA and κ values for the
avalaible techniques and the QD and AD values for the ELM-based techniques.
Although good results have been obtained for the spatial-spectral classifier based
on SVM, the results show that the same technique with ELM surpasses the SVM-
based one, and that the best values in all the parameters are obtained for the
spatially regularized watershed-based technique with ELM.
Figures 9 and 10 help in understanding the results. They show, from left to

right, the color composite classification maps for the pixel-wise ELM classifier, the
watershed-based ELM spatial-spectral technique and the regularized watershed-
based ELM spatial-spectral technique. The incorporation of spatial information
into the classifier using the majority vote approach (watershed-based ELM) leads
to more homogeneous objects than the pixel-wise ELM in the same fashion as it
can be observed for SVM in (Tarabalka, Benediktsson and Chanussot 2009) and
(Tarabalka, Chanussot, and Benediktsson 2010b). The improvement for the case
of spatial regularization is not so obvious from the figures. The reason is that the
effect is small and only happens for some classes. In the case of the Pavia image
the improvement is mainly on the bricks class, as can be seen in Table 7, for which
there are a large number of edges that are smoothed by the regularization step
(See the reference data for the different classes in Fig. 5). For the case of the
Indiana image, it can be seen in Table 7 that the improvement is mainly on the
Corn-nontill, Corn-mintill and Soybean-mintill classes. In particular, in the last of
the three classes (see the reference data in Fig. 6) it can be seen that the spatial
regularization removes the disconnected points in the flat zone that represents the
class, thus avoiding missclassification of that points.

5. Conclusions

In this paper the spatial-spectral classification of land cover from hyperspectral
images is addressed. In particular, the benefits of an ELM classification over the
traditionally used SVM classification is studied. In addition, two spatial-spectral
techniques based on a pixel-wise ELM classifier are explored and compared to the
analogous techniques based on a pixel-wise SVM.
The first spatial-spectral technique called ELM+wat leads to more homogeneous

regions and higher classification accuracy when compared to pixel-wise classifica-
tion. The second one, called ELM+wat+reg avoids the missclasification that is
usual on isolated pixels and smooths the edges of the classes, solving the classifi-
cation accuracy problem usually present in this kind of pixels.
The experiments have being carried out on two frequently used land cover images:

the University of Pavia image and the Indian Pines image. The OA values for ELM
are 5.66 points over SVM for the University of Pavia image and 1.22 points for
the Indian Pines image. In terms of execution time the ELM is a lower demanding
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algorithm and thus the times are divided by 35.7 and 6.1 with respect to the SVM.
The best results are obtained when the spatial/textural information is introduced
in the classification ELM scheme not only by regularization but also by watershed
followed by majority vote inside the watershed regions (ELM+wat+reg). For this
case, the best results are obtained, OA values of 95.12% and 90.93% for Pavia and
Indian Pines.
The techniques based on ELM yielded higher classification accuracy, more regu-

larity among classes and lower execution time than the analogous SVM-based tech-
niques showing that ELM is competitive with SVM. Hence, more spatial-spectral
classification techniques based on ELM need to be explored for land cover classifi-
cation from hyperspectral images.
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Table 1. Execution times in seconds for the raw pixel-wise ELM and SVM classifiers.
For ELM 200 training samples per class.

No. of nodes (L) training time class. time total

University of Pavia image
ELM 500 0.14 2.01 2.15

SVMa - 0.58 76.27 76.85
Indian Pines image
ELM 950 0.76 0.55 1.31

SVMa - 0.28 7.67 7.95

aFor SVM the parameter values and number of training samples are taken from (Tara-
balka, Chanussot, and Benediktsson 2010a).

Table 2. University of Pavia image. For ELM average results of 100 exe-
cutions, L = 500 nodes in the hidden layer, and 200 training samples per
class or 50% of the avalaible.

Class
No. of samples
in reference data

ELM SVMa

1-asphalt 6631 76.36 84.93
2-meadows 18649 87.71 70.79
3-gravel 2099 80.71 67.16
4-trees 3064 94.56 97.77
5-metal sheets 1345 99.24 99.49
6-bare soil 5029 90.21 92.83
7-bitumen 1330 94.06 90.42
8-bricks 3682 82.71 92.78
9-shadows 947 99.78 98.11
overall accuracy (OA) 86.67 81.01
average accuracy (AA) 89.48 88.25
kappa (κ) 82.50 75.86
quantity disagreement (QD) 7.69 -
allocation disagreement (AD) 5.64 -

aFor SVM results taken from (Tarabalka, Chanussot, and Benediktsson
2010b).

Table 3. Indian Pines image. For ELM average results of 100 executions,
L = 950 nodes in the hidden layer, and 200 training samples per class or
50% of the avalaible.

Class
No. of samples
in reference data

ELM SVMa

1-alfalfa 54 79.19 74.36
2-corn-no till 1434 81.32 78.18
3-corn-min till 834 76.12 69.64
4-corn 234 94.09 91.85
5-grass-pasture 497 95.51 92.17
6-grass-trees 747 96.96 91.68
7-grass-pasture-mowed 26 78.92 100
8-hay-windrowed 489 99.22 97.72
9-oats 20 77.90 100
10-soybean-no till 968 83.29 82.03
11-soybean-min till 2468 65.09 58.95
12-soybean-clean 614 91.32 87.94
13-wheat 212 99.67 98.77
14-woods 1294 90.26 93.01
15-bldgs-grass-grees-drives 380 89.32 61.52
16-stone-steel-towers 95 69.73 97.78
overall accuracy (OA) 80.65 78.17
average accuracy (AA) 85.49 85.97

kappa (κ) 77.61 75.33
quantity disagreement (QD) 9.28 -
allocation disagreement (AD) 10.07 -

aFor SVM results taken from (Tarabalka, Chanussot, and Benediktsson
2010b).

17



February 4, 2015 International Journal of Remote Sensing manuscriptCITIUS

Table 4. Results of the watershed-based ELM and watershed-based SVM
classifiers for the University of Pavia image. For ELM average results of 100 executions,
L = 500 nodes, and 200 training samples per class.

Class
No. of samples
in reference data

ELM ELM+wat SVM+wata

1-asphalt 6631 76.36 88.02 93.64
2-meadows 18649 87.71 95.42 75.09
3-gravel 2099 80.71 90.13 66.12
4-trees 3064 94.56 97.00 98.56
5-metal sheets 1345 99.24 99.91 99.91
6-bare soil 5029 90.21 98.71 97.35
7-bitumen 1330 94.06 99.86 96.23
8-bricks 3682 82.71 93.80 97.92
9-shadows 947 99.78 99.85 96.98
overall acc. (OA) 86.67 94.70 85.42
average acc. (AA) 89.48 95.86 91.31
kappa (κ) 82.50 92.95 81.30
quantity disagreement (QD) 7.69 3.68 -
allocation disagreement (AD) 5.64 1.62 -

aFor SVM+wat data taken from (Tarabalka, Chanussot, and Benediktsson 2010b).

Table 5. Results of the watershed-based ELM and SVM classifiers for the Indian Pines
image. For ELM average results of 100 executions, L = 950 nodes in the hidden layer, and
200 training samples per class.

Class
No. of samples
in reference data

ELM ELM+wat SVM+wata

1-alfalfa 54 81.32 96.56 94.87
2-corn-no till 1434 76.12 95.35 94.22
3-corn-min till 834 94.09 86.77 78.06
4-corn 234 94.09 97.66 88.59
5-grass-pasture 497 95.51 97.26 95.08
6-grass-trees 747 96.96 98.84 97.99
7-grass-pasture-mowed 26 78.92 91.62 100
8-hay-windrowed 489 99.22 99.57 99.54
9-oats 20 77.90 43.90 100
10-soybean-no till 968 83.29 93.96 96.30
11-soybean-min till 2468 65.09 80.87 68.82
12-soybean-clean 614 91.32 97.02 90.78
13-wheat 212 99.67 100 99.38
14-woods 1294 90.26 92.87 97.11
15-buildings-grass-grees-drives 380 89.32 94.62 69.39
16-stone-steel-towers 95 69.73 84.88 95.56
overall accuracy (OA) 80.65 90.43 86.63
average accuracy (AA) 85.49 90.74 91.61

kappa (κ) 77.61 88.84 84.83
quantity disagreement (QD) 9.28 6.14 -
allocation disagreement (AD) 10.07 3.43 -

aFor SVM+wat results are taken from Table I of (Tarabalka, Chanussot, and Benediktsson
2010b).
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Figure 1. Single-hidden layer feedforward network (SLFN).
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Table 6. Application of the regularization technique over the ELM and the watershed-
based ELM classifiers. University of Pavia image. For ELM the same conditions as in
Table 4. For SVM, data are not avalaible.

Class ELM+reg ELM+wat ELM+wat+reg
1-asphalt 6631 83.49 88.02 88.88
2-meadows 18649 93.16 95.42 95.83
3-gravel 2099 85.30 90.13 89.59
4-trees 3064 95.93 97.00 97.09
5-metal sheets 1345 99.67 99.91 99.92
6-bare soil 5029 96.92 98.71 99.25
7-bitumen 1330 97.45 99.86 99.93
8-bricks 3682 89.55 93.80 94.48
9-shadows 947 99.78 99.85 99.85
over. acc. (OA) 92.09 94.70 95.12

aver. acc. (AA) 93.52 95.86 96.09

kappa (κ) 89.53 92.95 93.51

quantity disagreement (QD) 4.93 3.68 3.45

allocation disagreement (AD) 2.97 1.62 1.43

Table 7. Application of the regularization technique over the ELM and watershed-based ELM clas-
sifiers. Accuracies in percentage for the Indian Pines image. For ELM the same conditions as in
Table 5. For SVM, data are not avalaible.

Class
No. of samples
in reference data

ELM+reg ELM+wat ELM+wat+reg

1-alfalfa 54 80.63 96.56 96.59
2-corn-no till 1434 88.21 95.35 96.02
3-corn-min till 834 81.37 86.77 87.52
4-corn 234 94.09 97.76 97.80
5-grass-pasture 497 95.85 97.26 97.32
6-grass-trees 747 98.25 98.84 98.93
7-grass-pasture-mowed 26 81.13 91.62 90.35
8-hay-windrowed 489 99.27 99.57 99.57
9-oats 20 78.45 43.90 43.12
10-soybean-no till 968 89.98 93.96 94.47
11-soybean-min till 2468 73.25 80.87 82.02
12-soybean-clean 614 94.55 97.02 97.23
13-wheat 212 99.67 100.00 100.00
14-woods 1294 91.93 92.87 92.53
15-bldgs-grass-grees-drives 380 91.07 94.62 94.18
16-stone-steel-towers 95 74.93 84.88 85.79
over. acc. (OA) 85.71 90.43 90.93

aver. acc. (AA) 88.28 90.74 90.85

kappa (κ) 83.41 88.84 89.42

quantity disagreement (QD) 7.67 6.14 5.98

allocation disagreement (AD) 6.62 3.43 3.08

Table 8. Global classification accuracies in percentage for the
University of Pavia image. ”wat” indicates spatial processing
by watershed. ”reg” indicates that the results of the spectral
classifier are spatially regularized.

OA AA κ QD AD
SVM 81.01 82.85 75.86 - -
SVM+wat 86.63 91.61 84.83 - -
SVM+EM+PR 94.68 95.21 92.92 - -
ELM 86.67 89.48 82.50 7.69 5.64
ELM+wat 94.70 95.86 92.95 3.68 1.62
ELM+reg 92.09 93.52 89.53 4.93 2.97
ELM+wat+reg 95.12 96.09 93.51 3.45 1.43

aData for SVM are taken from (Tarabalka, Chanussot, and
Benediktsson 2010b) (SVM and SVM+wat) and from (Tara-
balka, Benediktsson and Chanussot 2009) (SVM+EM+PR).
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Table 9. Global classification accuracies for the Indian Pines image.
”wat” indicates spatial processing by watershed. ”reg” indicates that
the results of the spectral classifier are spatially regularized.

OA AA κ QD AD
SVMa 78.17 85.97 75.33 - -
SVM+wat 86.63 91.61 84.83 - -
SVM+ISODATA+PR 90.64 80.60 89.31 - -
ELM 80.65 85.49 77.61 9.28 10.07
ELM+wat 90.43 90.74 88.84 6.14 3.43
ELM+reg 85.71 88.28 83.41 7.67 6.62
ELM+wat+reg 90.93 90.85 89.42 5.98 3.08

aData for SVM are taken from (Tarabalka, Chanussot, and Benedik-
tsson 2010b) (SVM and SVM+wat) and from (Tarabalka, Benedik-
tsson and Chanussot 2009) (SVM+ISODATA+PR).

Figure 2. Spectral-spatial classification scheme, which consists of a spectral stage (top), a spatial stage
(bottom), and a final result combination stage.

Figure 3. Example of majority vote application for spectral–spatial classification. (a) spectral classification
map, (b) three segmented regions represented with different labels, and (c) results combining (a) with (b)
using a majority vote process.
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Figure 4. Application of the spatial regularization technique to the result of the spatial-spectral classifi-
cation scheme based on pixel-wise classification, segmentation and majority vote.

(a) Color composite of the im-
age.

(b) Reference data.

Figure 5. University of Pavia image.

(a) Color composite of the
image.

(b) Reference data.

Figure 6. Indian Pines image.
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(a) Results varying the number of neurons in the hidden layer.
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(b) Results varying the number of training samples for the case of 500 neurons in the hidden layer.

Figure 7. ELM accuracy and execution times for the University of Pavia image considering 200 samples
per class.
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(a) Results varying the number of neurons in the hidden layer.
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(b) Results varying the number of training samples for the case of 950 neurons in the hidden layer.

Figure 8. ELM accuracy and execution times for the Indian Pines image considering 200 samples per
class.
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(a) ELM. (b) Watershed-based ELM. (c) Regularized watershed-
based ELM.

Figure 9. Classification maps for the University of Pavia image.

(a) ELM. (b) watershed-based ELM. (c) Regularized watershed-based
ELM.

Figure 10. Classification maps for the Indian Pines image.
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