2884

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

Efficient ELM-Based Techniques for the
Classification of Hyperspectral Remote Sensing
Images on Commodity GPUs

Javier Lépez-Fandifio, Pablo Quesada-Barriuso, Dora B. Heras, and Francisco Argiiello

Abstract—Extreme learning machine (ELM) is an efficient
learning algorithm that has been recently applied to hyperspec-
tral image classification. In this paper, the first implementation of
the ELM algorithm fully developed for graphical processing unit
(GPU) is presented. ELM can be expressed in terms of matrix
operations so as to take advantage of the single instruction mul-
tiple data (SIMD) computing paradigm of the GPU architecture.
Additionally, several techniques like the use of ensembles, a spa-
tial regularization algorithm, and a spectral-spatial classification
scheme are applied and projected to GPU in order to improve the
accuracy results of the ELM classifier. In the last case, the spatial
processing is based on the segmentation of the hyperspectral image
through a watershed transform. The experiments are performed
on remote sensing data for land cover applications achieving com-
petitive accuracy results compared to analogous support vector
machine (SVM) strategies with significantly lower execution times.
The best accuracy results are obtained with the spectral-spatial
scheme based on applying watershed and a spatially regularized
ELM.

Index Terms—Compute unified device architecture (CUDA),
extreme learning machine, graphical processing unit (GPU),
hyperspectral images, remote sensing, spectral-spatial classifica-
tion, support vector machine (SVM), watershed.

I. EFFICIENT ELM-BASED CLASSIFICATION
OF HYPERSPECTRAL DATASETS

OWADAYS, hyperspectral datasets are readily available
thanks to the recent advances in sensor technology [1],
[2]. These datasets provide information on hundreds of spectral
bands at different wavelengths for each pixel, allowing to dis-
criminate among different physical materials and objects. This
work focuses on classification applied to land cover hyperspec-
tral images and computed on commodity GPU platforms.
Supervised classification methods like support vector
machine (SVM) [3] or extreme learning machine (ELM) [4]

Manuscript received May 06, 2014; revised October 09, 2014; accepted
December 05, 2014. Date of publication January 08, 2015; date of current
version July 30, 2015. This work was supported in part by the Ministry of
Science and Innovation, Government of Spain, in part by the FEDER funds
of European Union, under contract TIN2013-41129-P, and in part by Xunta
de Galicia, Programme for Consolidation of Competitive Research Groups ref.
2014/008. The work of J. Lépez-Fandifio was supported by Xunta de Galicia,
under a predoctoral grant. The work of P. Quesada-Barriuso was supported
by the Ministry of Science and Innovation, Government of Spain, under a
MICINN-FPI Grant.

The authors are with the Centro de Investigacion en Tecnoloxias da
Informacién (CITIUS), University of Santiago de Compostela, Santiago
de Compostela 15782, Spain (e-mail: javier.lopez.fandino@usc.es; pablo.
quesada@usc.es; dora.blanco@usc.es; francisco.arguello@usc.es).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2014.2384133

are suitable to deal with all the information available in these
datasets. Additionally, ELM is a suitable algorithm to be imple-
mented on commodity GPUs and other parallel architectures
because the required operations are mostly matrix operations
that can be computed in independent blocks, i.e., without data
dependencies among them.

Different ELM-based techniques have been proposed: online
sequential ELM, incremental ELM, pruned ELM [4], ker-
nel ELM [5], or direct kernel perceptron (DKP) [6]. Another
approach consists in the use of ensembles, combining the
results obtained by different ELM classifiers [7], [8] or by the
same classifier with different training datasets [9]. The well-
known techniques Bagging and AdaBoost can also be applied
to deal with ensembles of ELM [10]. ELM has been recently
used in remote sensing [11]-[15] and slightly improves SVM
results.

In general, the accuracy of the classification of hyperspec-
tral datasets is improved when spatial information is considered
[16]. The most widely used methods introducing spatial infor-
mation consist in carrying out a segmentation of the image
generated through unsupervised methods like partitional clus-
tering [17] or watershed [18]. Spatial information can also
be added through a spatial denoising based on wavelets and
partial differential equations [19], or by a data fusion pro-
cess performed via kernels methods [20], [21]. Other works
consider mathematical morphology [22] and use the morpho-
logical information as an input to other processing stages [23].
Principal component analysis (PCA) is computed in [24] to
build the morphological profiles. Independent component anal-
ysis (ICA) can also be used as an input to later processing
stages. For instance, Dalla Mura et al. [25] use ICA as a pre-
processing tool for a later spectral-spatial classification using
extended morphological attribute profiles and SVM. Another
approach consists in the use of multihypothesis prediction to
achieve less intraclass variability and greater spatial regularity
[26]. Furthermore, a spatial regularization based on the neigh-
borhood can be added after the spectral classification [13] or at
the end of the spatial-spectral processing [15].

Regarding computing platforms for a computationally effi-
cient hyperspectral processing, commodity GPUs have been
demonstrated to be appropriate. Recent works have explored
how well-known algorithms like SVM [27], the maximum like-
lihood classifier (MLC) [28], or the automatic target detection
and classification algorithm (ATDCA) [29] can be adapted
to this kind of SIMD architectures. GPUs were also consid-
ered to optimize other hyperspectral image related problems

1939-1404 © 2014 1IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LOPEZ-FANDINO e al.: EFFICIENT ELM-BASED TECHNIQUES FOR CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES

like parallel unmixing [30], target identification [31], or unsu-
pervised band selection [32] achieving also good results. van
Heeswijk et al. [33] develop a GPU implementation of some
parts of a classification scheme based on ensembles of ELM;
however, a complete and efficient GPU implementation of ELM
to classify hyperspectral images has not been developed until
now.

In this work, the first complete GPU implementation of
the ELM algorithm is presented and applied to hyperspectral
remote sensing images for land cover purposes. Additionally,
several techniques to improve the results of the raw ELM classi-
fier are implemented on GPU. We also adopt a spectral—spatial
classification scheme for hyperspectral images based on the use
of a pixelwise spectral classifier (ELM) and a spatial segmen-
tation process by watershed applied to the result of a robust
color morphogical gradient (RCMG). This gradient reduces the
dataset to one band. Finally, a majority vote (MV) process is
used to combine the spatial and spectral results obtaining the
classification results [18].

The remaining sections of this paper are organized as fol-
lows: Sections II-A and II-B introduce the ELM algorithm as
well as a version based on applying ensembles. Section II-C
presents a spatially regularized version of the ELM, while
Section II-D explains the spectral—spatial classification scheme.
Section III details the GPU implementations of the algorithms.
The experimental results are discussed in Section IV. Finally,
the conclusion is summarized in Section V.

II. ELM-BASED SPECTRAL—SPATIAL CLASSIFICATION
OF HYPERSPECTRAL IMAGES

This section introduces the ELM algorithm and different
variants used to improve the accuracy results. Their GPU
implementations will be studied in Section III.

A. ELM-Based Classification Algorithms

The raw pixelwise ELM algorithm was proposed as an effi-
cient learning algorithm for single-hidden layer feedforward
neural networks (SLFNs) [34]. Fig. 1 shows the structure of an
SLFN. The output function of an SLFN with L hidden nodes,
being x the input vector, can be written as

L
fL(iL‘) = Z,@G(ai,bi,ac), x € Rd7 B; eR™ (1)
i=1

where G(a;, b;,) denotes the output function of the ith hidden
node, being a;, b; the hidden node parameters and (3; the weight
vector connecting the ¢th hidden node to the output nodes. For
the case of additive nodes with activation function g, it can be

expressed as
G(G,Z‘, bi, :13) = g(al x4+ bz), a; € Rd, bl e R. (2)

An SLFN with L hidden nodes can approximate N arbi-
trary distinct samples and targets (x;,t;) € R x R™, if the
following equation system can be solved:

HB=T 3)

2885
Fig. 1. SLEN as used by ELM.
ELM training algorithm.
Input: training set {(x;,t;)|x; € R, ¢; €R™,i=1,...,N}.
Qutput: SLFN parameters.
1: Randomly generate hidden node parameters (a@;, b;), i = 1,..., L where
a; and b; are the input weight and bias values and L is the hidden node
number.
2: Calculate the hidden layer output matrix H.
3: Calculate the output weight vector, 3 = HTT.
Fig. 2. ELM training algorithm.
where
h(iﬂl) G(al,bhwl) G((IL7bL7w1)
H= : = : . :
h(wN) G(al,bth) G(aL,bwa) NxL
“)
T T
Bi t
B=]": and T = : . 5)
ﬁT t T
Ll ILxN N Nxm

H is called the hidden layer output matrix of the neural net-
work. Huang et al. [4] and [35] have proved that once they are
randomly generated, the hidden node parameters (a;,b;) can
remain fixed and training an SLFN is equivalent to finding a
least-squares solution B of the linear system H3 = T, i.e.,

B=HT (6)

where H' is the Moore—Penrose generalized inverse of matrix
H [36].

So, ELM can be summarized as shown in Fig. 2 [4], [35]. As
it was stated in [5], ELM requires less human intervention than
SVM because a single parameter, the number of neurons in the
hidden layer, needs to be optimized, since all the other param-
eters are randomly initialized. In addition, ELM has better
scalability and it runs at much faster learning speed than SVM.

B. Voting-Based ELM

An approach based on ensembles [7]-[10], [15], [33] com-
putes a number of independent ELMs with the same number of
hidden nodes and the same activation function in each hidden
node and combines the results obtained by the different clas-
sifiers. The individual ELMs are randomly and independently

2886

Fig. 3. Example of spatial regularization applied to a classification map.

(I) Raw ELM pixel-wise classifier.
Input: hyperspectral dataset.
Output: classification map.

(1) Preprocessing stage.
(2) Training stage.
(3) Test stage.

(II) Gradient calculation.

Input: hyperspectral dataset.
Output: single band image.

(1) Calculate the distances among pixels.
(2) Compute the gradient.

(IIT) Segmentation.

Input: single band image from gradient calculation.
Qutput: segmentation map.

(1) Initialization stage.

(2) Updating stage.

(IV) Combination of maps.

Input: ELM classification map, segmentation map.
Output: spectral-spatial classification map.

(1) Voting stage.

(2) Winner stage.

(3) Updating stage.

Fig. 4. Spectral-spatial classification scheme. (I) Spectral stage; (II-1II) spatial
stage; and (IV) combination stage.

initialized. The individual classification results are combined
using a simple method called majority vote [37].

C. Spatially Regularized ELM

This postprocessing technique introduces spatial informa-
tion of the closest neighborhood of a pixel to the classification
map. It is specially helpful, as shown in Fig. 3, to remove
disconnected points, which are commonly misclassified, and
to smooth the edges among classes, solving the classification
accuracy problem frequently present in these areas. Once the
pixelwise classification map is generated, an iterative process
starts where each pixel checks the class label of its neighbors
and all the pixels do it simultaneously. If more than half of the
neighbors share the same label, and this label is different from
that of the pixel, the pixel updates his own class. This process
lasts until stability is reached, i.e., until there are no changes
between two consecutive iterations in any of the pixels [13].

D. ELM-Based Spectral-Spatial Classification Scheme

An efficient approach to integrate both the spectral and spa-
tial information could follow the scheme presented in Fig. 4
and illustrated in Fig. 5. On the one hand, a classification map
is produced through a pixelwise classifier. On the other hand,
a segmentation map is created from a one-band image gener-
ated through a gradient calculation. Finally, spectral and spatial
results are combined.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

|NPU Hypersped:ra | i
SRR

Segmg'ntation

(Classification map) y

OO > >
>
w|m|>| > >
> >
o|lo|o|>|>

Segmentation map) :
L

Combination of maps

OUTPUT

Fig. 5. Spectral-spatial classification scheme.

Different versions of this scheme using SVM [27], and
ELM [13] as pixelwise classifiers have been proposed. In this
work, the ELM-based scheme of [13] is projected to efficient
execution on GPU. Additionally, spatial regularization is also
applied to the classification map generated by the ELM before
combining it with the segmentation map. The segmentation is
calculated through an asynchronous watershed algorithm ade-
quate for its implementation on GPU that we call cellular
automaton watershed (CA-Watershed) [38].

At the end of the process, spectral and spatial results are com-
bined through an MV process in which every pixel inside a
watershed region is assigned to the most repeated class assigned
by the pixelwise classifier within the pixels in the region.

III. SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE
CLASSIFICATION IN GPU

In this section we introduce some compute unified device
architecture (CUDA) programming fundamentals as well as
the implementation in GPU of the algorithms proposed in
Section II. The MAGMA library [39] is used to achieve opti-
mal GPU linear algebra operations since this library has proven
to be more efficient than others like CUBLAS [39], [40].

A. CUDA GPU Programming Fundamentals

CUDA is a combination hardware/software platform that
enables NVIDIA GPUs to execute programs invoking parallel

LOPEZ-FANDINO e al.: EFFICIENT ELM-BASED TECHNIQUES FOR CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES

functions called kernels that execute across many parallel
threads [41]. These threads are organized into blocks so that
each thread executes an instance of the kernel following a sin-
gle instruction multiple data (SIMD) programming model. The
blocks are arranged in a grid that is mapped to a hierarchy of
CUDA cores in the GPU.

Threads can access data from multiple memory spaces. First,
each thread has a private local memory and registers. Each
block of threads has a shared memory visible, exclusively, to the
threads within this block and whose lifetime equals the block
lifetime. Finally, all threads access the same global memory
space (DRAM) which is persistent across kernel launches by
the same application. The lower the memory level, the faster the
read/write access to the data. Shared memory lifetime makes
it difficult to share data among thread blocks thus it implies
the use of global memory whose access is slower than shared
memory access.

The Kepler architecture [41] includes a two-level cache hier-
archy. There are 64 KB of on-chip memory for each streaming
multiprocessor (SMX), which can be configured as half each for
the shared memory and the L1 cache, 48 KB of shared memory
and 16 KB of L1 cache or vice versa. There is also a unified L.2
cache of 1536 KB that is shared among all the SMX units.

Different performance optimization strategies have been
applied in this work.

1) Maximize parallel execution. It is important to organize
the algorithm in computational blocks that can be exe-
cuted independently minimizing communications among
them.

2) Improve the efficiency in the use of the memory hierar-
chy. Tt is essential to perform the maximum number of
computations on data already stored in shared memory.
This strategy is applied in the RCMG and CA-Watershed
algorithms.

3) Exploit the available optimized CUDA libraries. The
main stages of the ELM algorithm implementation take
advantage of these tools.

4) Add a border to the data regions. Thus, in the gradient
and segmentation stages, processing each pixel requires
data from its neighbors, each data region is extended with
a border of size one in order to minimize dependencies
and contribute to point 1.

B. ELM-Based Classification in GPU

In this section, we describe the GPU implementation of
the ELM algorithm introduced in Section II-A. The algorithm
has three main phases: preprocessing, training, and test. The
pseudocode in Fig. 6 shows the algorithm that has been imple-
mented, including host and device codes. The kernels executed
in GPU are placed between <> symbols. The pseudocode also
includes the GM and SM acronyms to indicate kernels executed
in global memory and shared memory, respectively.

First, all the data are scaled in the range [0 : 1] (line 1 in
the pseudocode). The pixels (pixel vectors) of each dataset are
randomly distributed between two nonoverlapping sets: train-
ing and test. These two sets are stored in matrices X445, and
X¢est, respectively, where each row represents a sample and

2887

GPU ELM.
Input: hyperspectral dataset X, label set T, L: number of neurons in the
hidden layer, C: number of classes, N: number of samples.
Qutput: classification map.
1: Scale hyperspectral dataset in [0:1] > Preprocessing phase (1)
2: Randomly choose the training points
3: Take the remaining points for test
4: Store data in column major order matrices X¢rqin and Xiest
5: Process target matrices Tyrgin and Tiest
> Training phase (2)
6: <Generate random weights (a;) and biases (b;), i=1,...,.L> > GM
7: <Transpose the weight matrix and multiply by Xirain > > SM
8: <Add the biases> > SM
9: <Apply activation (sigmoid) function to obtain H > > GM
10: <Calculate H' as the Moore-Penrose pseudoinverse of H > > SM
11: <Calculate output as B = H' X Tirain > > SM
> Test phase (3)
12: <Transpose weight matrix and multiply by X¢est > > SM
13: <Add the biases> > SM
14: <Apply activation (sigmoid) function to obtain H > > GM
15: <Calculate output as Y = (H)T x 8 > > SM
16: <Calculate the estimated output label> > GM
> GM: Global Memory, SM: Shared Memory

Fig. 6. Pseudocode for the ELM algorithm [stage (I) in Fig. 4].

each column a spectral band (lines 2 and 3 in the pseudocode).
Data matrices are converted to column major format in order
to be used by the MAGMA library (line 4 in the pseudocode).
The ground truth labels are also split into two target matrices,
T4rain, Which is used during the learning phase, and Ty.s,
which will be used to check the accuracy results. Finally, the
training and test target matrices are processed so that each row
represents a sample and each column a class, where a value of
1 indicates membership to a class and a value of —1 is assigned
otherwise (line 5 in the pseudocode). The preprocessing phase
is computed in CPU and the results are stored in the global
memory of the GPU. All the remaining steps will be computed
in GPU.

The training phase starts by generating random weights and
biases (line 6 in the pseudocode). The weights matrix must have
values in the range [—1 : 1], being its dimensions the number
of neurons in the hidden layer and the number of input neu-
rons (equal to the spectral band number). The bias vector will
have values in the range [0 : 1] and a size equal to the num-
ber of neurons in the hidden layer. These two matrices are
then stored in the global memory before calculating the hid-
den layer output matrix H. To do this, we first multiply the
transpose of the weights matrix by the training matrix, then
we add the bias vector to the result and, finally, we apply an
activation function to each element of the matrix [lines 7-9 in
the pseudocode corresponding to (2)]. In our case, a sigmoid
function (g(z) = 1/(1 + e~ ")) is applied through a CUDA ker-
nel with each thread operating over a single element of the
matrix. The final training step consists in calculating the out-
put weights multiplying the transpose of the pseudoinverse of
matrix H by the training targets matrix [line 11 in the pseu-
docode corresponding to (6)]. The steps to efficiently calculate
the pseudoinverse of a matrix will be explained below.

The test phase (lines 12-16 in the pseudocode) starts by
multiplying the transpose of the previously generated weights
matrix by the data matrix X;.s;. Then, the bias vector is added
and the activation function is applied just like in the train-
ing phase to obtain the test hidden layer matrix H. These

2888

operations are analogous to those of lines 7-9 in the training
phase. Afterward, the output matrix Y is calculated multiply-
ing H” by the output weights matrix (3 obtained in the training
phase. Finally, the estimated output label T'; is calculated as the
class ¢ that maximizes Y; for each sample

T; =argmax Y, .. @)
c=1,...,C

1) Efficient GPU Computation of the Moore—Penrose
Inverse of a Matrix: The calculation of the pseudoinverse of
a matrix is the most computationally costly operation in the
training phase (line 11 in the pseudocode). We implement it
as described in [36] to run it efficiently in CUDA using the
MAGMA library.

We first check the dimensions of the input H matrix in order
to know whether the number of rows is smaller than the number
of columns. If this is the case, we use MAGMA to compute
a matrix A as the multiplication of the original matrix by its
transpose, otherwise we compute A as the multiplication of the
transpose matrix by the original matrix. This operation ensures
that A is a symmetric positive definite matrix.

The next step consists in calculating the Cholesky factoriza-
tion of A with the MAGMA dpotrf function and then applying
a kernel to nullify the upper triangle of the factorized matrix
obtaining matrix L. Unlike the other steps, this last kernel is
launched in global memory.

Afterward, an M matrix is calculated multiplying L” by
L and then computing the inverse of this matrix using the
MAGMA dgetrf and dgetri functions.

Finally, once all of these matrices have been calculated,
we obtain the inverse of the original H matrix through a set
of consecutive multiplications computed using the MAGMA
dgemm function. If the dimension check of the H matrix at
start resulted in that the row number is lower than the column
number, we compute H as

H =H" xLxMxM x LT (8)
otherwise we compute

H =LxMxMx LT x H”. 9)

C. Voting-Based ELM GPU Implementation

The voting algorithm used in this work comprises a set of
independent ELMs whose outputs are stored in a matrix. After
all the computations we will obtain an N by C matrix (being N
the number of pixels and C the number of classes in the dataset)
with the vote of each ELM for every pixel of the image. A sim-
ilar use of ensembles in CPU is [8]. In the MV phase on GPU,
the final label is calculated as the most repeated output value
produced by the different ELMs for the sample. A CUDA ker-
nel is launched and computed in global memory where each
thread computes the MV for one pixel of the image.

D. GPU Projection of the Spatially Regularized ELM

This postprocessing technique compares the label of each
pixel to that of its neighbors. It is computed by a single ker-
nel that is executed as many times as it takes to reach stability.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

GPU RCMG kernel.
Input: hyperspectral dataset X.
Qutput: single band image.
: for each band i of X do
Load band ¢ in shared memory
for each pixel = in band i do
Compute and accumulate the corresponding term in the euclidean
distances D, . | Y,z € X, where X is the set of neighbours of
pixel =
end for
Synchronize threads within the block
end for

> Distances step (1)

B

> Gradient step (2)
: Compute CMG(X) = max, Dy, -

Y,
: Find the pair of pixels » = (y, z)’l Dy,. = CMG(X)
: Compute RCMG(X) = max %

y,2EX—
: Write RCMG(X) to global memory

TP R o

—_ =

Fig. 7. Pseudocode for the RCMG kernel (shared memory) corresponding to
stage (IT) in Fig. 4.

The kernel is launched in bidimensional blocks of threads cov-
ering the entire classification map in each call. Each pixel of the
image is processed by a thread.

E. Efficient GPU Processing of the Classification Scheme

In the spectral—spatial classification, a pipeline processing
scheme is applied in GPU to combine the different stages of
the algorithm reducing data movement through global memory.

1) RCMG GPU Implementation: The gradient calculation
is divided into two steps whose pseudocode is introduced in
Fig. 7 [42]. First, for all the pixel vectors, the threads within
the same block cooperate to calculate the distances of the set .
For each region, data are stored in row-major order for each
band. The kernel is configured to work in two-dimensional (2-
D) thread blocks. Threads within a block process a region of
each spectral band in a sequentially processed loop through all
the bands. In each iteration, data corresponding to a new band
are loaded in shared memory (line 2 in the pseudocode of Fig. 7)
and the partial results are computed and stored (loop in lines 3—
5). When the outer loop is finished (lines 1-7), all the distances
for each pixel are available in shared memory.

In the second step, each thread finds the maximum of the dis-
tances of its set x (line 8) and the corresponding pair of pixels
which generated the maximum (line 9). Once the two farthest
pixel vectors are identified and removed, each thread computes
the RCMG with the remaining distances (line 10) and writes
the result in the global memory of the device (line 11).

2) GPU Implementation of the CA-Watershed: The seg-
mentation map is calculated through the CA-Watershed algo-
rithm [38]. The input data to this algorithm are directly the
output obtained by the RCMG. The CA-Watershed can be asyn-
chronously implemented, which is up to five times faster than
the CUDA synchronous implementation [43]. The implemen-
tation includes intra-block asynchronous updates computed in
shared memory and inter-block synchronous updates computed
in global memory to efficiently deal with the fact that the cel-
lular automaton (CA) algorithm needs data of the neighbors of
each pixel. This implementation has the advantage of reusing
information within a block to efficiently exploit the shared and
cache memories of the device.

LOPEZ-FANDINO e al.: EFFICIENT ELM-BASED TECHNIQUES FOR CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES

GPU Asynchronous CA-Watershed.
Input: single band image from RCMG.
Quitput: segmentation map.
1: <Initialize CA data (labels, distances and states)>

> Initialization stage (1)
> GM

> Updating stage (2)

> inter-block updating
> intra-block updating (SM)

while CA is not stable do
< Asynchronous updating of the CA>
Global synchronization among blocks
end while

> GM: Global Memory, SM: Shared Memory

Fig. 8. Pseudocode for the host and device asynchronous CA-Watershed
scheme corresponding to the stage (IIT) in Fig. 4.

GPU Asynchronous CA-Watershed updating kernel.
Input: image CA data (labels, distances and states).
Qutput: updated image CA data.
Load CA data in shared memory
while CA is not stable at block level do
Update labels, distances and states within the block
Local synchronization among threads
end while
Write CA data to global memory

> intra-block updating

OV B Lo v

Fig. 9. Pseudocode for the asynchronous updating kernel corresponding to the
intra-block updating stage (line 3 in Fig. 8).

GPU MV kernels.
Input: ELM classification map, watershed segmentation map.
Qutput: spectral-spatial classification map.

1: <Count number of watershed regions> > GM
> Voting stage (1)

2: <Count number of pixels of each class in each region> > GM
> Winner stage (2)

3: <Obtain the winner class for each region> > GM
> Updating stage (3)

4: <Update the pixels inside each region to the winner class> > GM

> GM: Global Memory

Fig. 10. Pseudocode for the MV corresponding to stage (IV) in Fig. 4.

The algorithm used (a pseudocode of the algorithm is shown
in Figs. 8 and 9), as further described in [38], comprises two
kernels implementing the initialization and updating stages of
the CA-Watershed which are configured to work in 2-D thread
blocks operating in same-size pixel regions of the image. The
updating stage is an iterative process that lasts until no modi-
fications are made to the available data inside the region (lines
2-5 in Fig. 8). This implementation generates a segmentation
map where the pixels are connected so that every pixel in the
same region has the same label.

3) MV GPU Implementation: In the spectral-spatial
scheme, the MV processes the pixels within each segmented
region. In this implementation, a region can be assigned to
different thread blocks as long as all the pixels belonging to the
same region are connected.

A MYV per watershed region is needed. As the number of
regions is unknown beforehand, they are counted before the
voting step (line 1 in Fig. 10). Afterward, a 2-D data structure is
allocated in global memory whose dimensions are the number
of watershed regions and the number of spectral classes.

The MV algorithm consists of three steps: voting, winner,
and updating that are listed in Fig. 10. In the first step (line 2),
for each watershed region the number of pixels for each class

2889

is counted. In the voting kernel, the voting is done by atomic
operations where each thread adds one vote to the appropri-
ate class in the region as more than one thread can vote in the
same region to the same class with no predictable order. Then,
the winner step finds the most repeated class inside each region
(line 3). Finally, the updating kernel assigns all the pixels inside
aregion to the winning classes producing a new spectral—spatial
classification map (line 4). Each step is performed by a sepa-
rate kernel configured to work in one-dimensional (1-D) blocks
of threads. In the first and third step kernels (lines 2 and 4),
one thread operates on one pixel, while in the second one each
thread operates on the information collected for one region of
the segmentation map.

IV. REMOTE SENSING CLASSIFICATION RESULTS

This section is intended to show the experimental results
obtained by the ELM classifier in GPU as well as the different
variations used to improve the accuracy results that have been
previously presented. First, the experimental conditions will be
described in Section IV-A. Then, the pixelwise ELM results will
be detailed in Section IV-B. Finally, Section IV-C is devoted to
the spectral-spatial scheme.

A. Hyperspectral Dataset and Experimental Conditions

The proposed algorithms have been evaluated on a PC with a
quad-core Intel Core 15-3470 at 3.20 GHz and 8 GB of RAM.
The code has been compiled using the gcc 4.6.3 version with
OpenMP 3.0 support under Linux. Regarding the GPU imple-
mentation, CUDA codes run on an NVIDIA GeForce GTX
Titan with 14 SMXs and 192 CUDA cores each. The CUDA
code has been compiled using nvcc with version 5.5 of the
toolkit under Linux.

The accuracy results are expressed in terms of overall accu-
racy (OA), average accuracy (AA), and kappa coefficient [44].
We provide the average and standard deviation of one hun-
dred independent executions for all the previously introduced
metrics. The performance results are expressed in terms of
execution times and speedups compared to an OpenMP CPU
optimized version of the algorithms parallelized using four
threads and whose algebra operations are accelerated with the
LAPACK library [45]. For comparison purposes, the accuracies
of the ELM scheme are compared to the SVM results available
in [17], [18], and [46]. Regarding performance, the speedups
of the ELM implementations are also calculated comparing to
an SVM implementation with the parameter values and num-
ber of training samples taken from [46] to [47]. This SVM
implementation is an optimized version of [27] using OpenMP
and CUDA for the CPU and GPU implementations, respec-
tively, in the classification stage. In [27], the execution times
were obtained by using publicly available libraries for both the
training and the classification stages. The parameters chosen for
ELM will be described in the next section.!

The tests were run on three hyperspectral airborne datasets
[48]. A 103-band ROSIS image of the University of Pavia

![Online]. Available: http://wiki.citius.usc.es/software/gpu-elm-rs

2890

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

TABLE I

CLASSIFICATION ACCURACY AS PERCENTAGES (AND STANDARD
DEVIATIONS BETWEEN BRACKETS)

Pavia Univ.

Indian Pines

Salinas

OA AA kappa

OA AA kappa

OA AA kappa

SVM [18]
ELM

V-ELM-1

ST.01 8825 75.86
86.75 89.55 82.61
(0.71) (0.26) (0.87)
90.32 91.81 85.77
(0.31) (0.20) (0.43)

7876 69.66 75.75
80.72 85.48 77.70
(0.58) (1.31) (0.64)
79.84 90.62 72.40
(0.83) (2.82) (1.08)

8125 - -

91.55 95.97 90.55
0.27) (0.13) (0.29)
90.74 96.22 89.18
(0.11) (0.15) (0.13)

The ELMs contained 500, 950, and 350 nodes in the hidden layer, respectively.

(Pavia Univ.) with a spatial dimension of 610 x 340 pixels,
a 220-band AVIRIS image of 145 x 145 pixels taken over
Northwest Indiana (Indian Pines), and a 204-band AVIRIS
image of 512 x 217 pixels taken over the Salinas Valley,
California (Salinas).

B. ELM-Based Classification Results

We compare two different GPU optimized configurations
using ELM.

1) A single ELM trained with 200 samples for each class

(ELM).

2) A V-ELM comprising 8 ELMs trained with 200 samples
for each class for each one of the ELMs, so that each ELM
is the same as in the first configuration (V-ELM-1).

The number of training samples for the ELM is 200 per class,
or half the number of samples in the class if there are not
enough samples. These samples are randomly chosen and all
the remaining samples are used for test. The number of hidden
layer neurons employed is 500 for Pavia Univ., 950 for Indian
Pines, and 350 for Salinas in all the cases [13].

Table I shows accuracy results for the images in terms of
OA, AA, and kappa. The best results are highlighted in bold in
the table. The first thing to highlight is that both configurations
obtain acceptable accuracy results, being slightly better than the
SVM for the three datasets.

For the Pavia Univ. image, the V-ELM-1 configuration
clearly improves on the ELM configuration in terms of accuracy
results while for the Indian Pines and Salinas images both con-
figurations obtain similar results, being the ELM configuration
only slightly better. Finally, it is worth noting than the standard
deviation values remain low in all the cases. Fig. 11 shows the
ground truths and false color classification maps obtained by
the ELM algorithm.

The performance results in terms of execution times and
speedups calculated over the OpenMP multicore implemen-
tations are detailed in Table II. It has been observed in the
experiments that the V-ELM-1 configuration provides more sta-
ble accuracy results than a single ELM at the cost of slightly
higher execution times.

The speedups of the ELM as compared to the SVM in both,
the CPU and GPU architectures, are shown in Table III. For
the three images, the single ELM configuration is faster than
SVM, achieving, for the Pavia Univ. image, a speedup of 8.8x
in CPU and 8.4x in GPU. The V-ELM-1 configuration is more
adequate when the dataset size is large because otherwise (as in

@ ®

Fig. 11. (a—c) Ground truths and (d—f) classification maps for the (a and d)
Pavia Univ.; (b and d) Indian Pines; and (c and f) Salinas images.

TABLE I1
PERFORMANCE RESULTS
Pavia Univ. SVM ELM V-ELM-1
OpenMP CPU 20.5876s 2.3304s 18.9022s
CUDA GPU 2.5834s 0.3063s 2.4501s
Speedup 8.0x 7.6% FI%
Indian Pines SVM ELM V-ELM-1
OpenMP CPU 3.0084s 1.1653s 9.6903s
CUDA GPU 0.7652s 0.3096s 2.6058s
Speedup 3.9% 3.8x 3.7x
Salinas SVM ELM V-ELM-1
OpenMP CPU 5.6018s 1.1023s 8.7055s
CUDA GPU 0.8708s 0.3439s 3.0114s
Speedup 6.4% 3.2x% 2.9x%
TABLE III
SPEEDUPS AGAINST SVM
Pavia Univ. Indian Pines Salinas
CPU GPU CPU GPU CPU GPU
ELM 8.8x 8.4x 2.6% 2.5% 5.1x 2.5%
V-ELM-1 1.1x 1.1x 0.3x 0.3x 0.6x 0.3x

the case of Indian Pines) there are not enough samples to take
advantage of the voting to improve accuracy results.

Summarizing, on the one hand, for the remote sensing
datasets considered the raw ELM algorithm described in this
paper is significantly faster than SVM and, on the other hand,
the V-ELM-1 algorithm always approaches or improves the raw
ELM accuracy although it requires a higher number of training
samples. This last one is a good configuration if we want to
prioritize execution times.

C. Spectral-Spatial Classification Results

In this section, the experimental results obtained by the appli-
cation of the spectral—spatial classification scheme introduced

LOPEZ-FANDINO e al.: EFFICIENT ELM-BASED TECHNIQUES FOR CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES 2891
TABLE 1V
CLASSIFICATION ACCURACY AS PERCENTAGES (AND STANDARD DEVIATIONS BETWEEN BRACKETS)
Pavia Univ. Indian Pines Salinas
OA AA kappa OA AA kappa OA AA kappa

SVM [18] 81.01 88.25 75.86 78.76 69.66 75.75 81.25 - -

SVM+reg [17] 84.27 90.89 79.90 88.58 77.27 86.93 = = -

SVM-+wat con(8) [18] 85.42 91.31 81.30 92.48 77.26 91.39 - — -

SVM+EM [17] 93.59 94.39 91.48 87.25 70.34 85.43 = = =

SVM+EM+reg [17] 94.68 95.21 92.02 88.83 71.90 87.24 - - -

V-ELM [15] 89.18 - - 70.08 - - 93.88 - -
ELM | 86.75(0.71) 89.55(0.26) 82.61(0.87)| 80.72(0.58) 85.48(1.31) 77.70(0.64) | 91.55(0.27) 95.97(0.13) 90.55(0.29)
ELM+reg | 95.13(0.65) 95.51(0.40) 93.50(0.86) | 91.04(0.82) 92.32(1.25) 89.54(0.94) | 93.56(0.28) 97.02(0.15) 92.78(0.32)
ELM+wat con(4) | 93.84(0.83) 94.05(0.47) 91.79(1.08) | 88.73(0.67) 90.76(1.55) 86.90(0.76) | 92.91(0.25) 96.15(0.18) 92.06(0.27)
ELM+wat con(8) | 95.09(0.71) 95.14(0.47) 93.44(0.93) | 91.41(0.97) 93.91(1.32) 89.98(1.12) | 93.31(0.33) 96.52(0.17) 92.51(0.37)
ELM-+reg+wat con(4) | 95.37(0.67) 95.00(0.47) 93.81(0.88) | 90.90(0.96) 91.47(1.63) 89.38(1.10) | 93.46(0.31) 96.48(0.18) 92.67(0.35)
ELM-+regtwat con(8) | 95.65(0.77) 95.52(0.52) 94.18(1.02) | 92.67(1.08) 94.29(1.22) 91.43(1.24) | 93.70(0.35) 96.78(0.16) 92.95(0.39)
V-ELM-1+regt+wat con(8) | 96.66(0.28) 95.92(0.29) 95.00(0.42) | 90.41(1.06) 95.35(1.83) 86.21(1.43) | 92.43(0.31) 96.75(0.16) 91.15(0.36)

“reg” indicates that the pixelwise classifier was spatially regularized.
“wat” indicates spatial processing by watershed.
“con(x)” indicates connectivity of “x” neighbors.

(@) (b) (©

(d)

Fig. 12. Spectral-spatial phases for the Pavia Univ. image. (a) ELM; (b) Spatial regularization; (c) RCMG:; (d) Watershed; and (e) MV.

(©)

Fig. 13. Spectral-spatial phases for the Indian Pines image. (a) ELM; (b) Spatial regularization; (c) RCMG; (d) Watershed; and (e) MV.

in Fig. 5 are shown. The impact of spatial regularization over
an ELM classification map is also studied.

The classification accuracy of the proposed method is com-
pared to results published in the literature, as the pixel-
wise spectral classification by an SVM, spatial regularization
(SVM+reg) [17], and the similar spectral-spatial schemes
based on segmentation (SVM+wat) [18] and (SVM+EM)
[17]. In addition, the combination of segmentation and spa-
tial regularization (SVM+EM-+reg) [17] is also included in the
results. SVM+wat denotes that the segmentation map of the

spectral-spatial scheme is created by watershed, and SVM+EM
the same but using expectation maximization (EM) [49] for
segmentation by partitional clustering. In all the schemes,
the spectral-spatial information is combined by the major-
ity vote algorithm within each segmented region. The spa-
tial regularization of SVM+reg and SVM+EM-+reg is done
using Chamfer connectivities of eight and sixteen neigh-
bors [17]. Results for another work based on ensembles of
ELM and a similar spectral-spatial scheme (V-ELM) are also
included [15].

2892

TABLE V
PERFORMANCE RESULTS OF THE SPECTRAL—SPATIAL SCHEME BASED ON
ELM (ELM+REG+WAT CON(8))

Pavia Univ. ELM Reg RCMG Watershed MV Total
OpenMP CPU | 2.3164s 0.1674s 0.3740s 0.0232s 0.0010s 2.8820s
CUDA GPU | 0.3066s 0.0070s 0.1710s 0.0020s 0.0004s 0.4870s
Speedup 7.6% 23.9x 2.2% 11.6x 2.5% 5.9x%
Indian Pines | ELM Reg RCMG Watershed MV Total
OpenMP CPU | 1.1701s 0.0194s 0.0871s 0.0016s 0.0004s 1.2786s
CUDA GPU | 0.3293s 0.0011s 0.0402s 0.0007s 0.0001s 0.3714s
Speedup 3.6% 17.6x 22X 2.3 4.0x 3.4x
Salinas | ELM Reg RCMG Watershed MV Total
OpenMP CPU | 1.1017s 0.0984s 0.3957s 0.0159s 0.0006s 1.6123s
CUDA GPU | 0.2110s 0.0039s 0.1829s 0.0017s 0.0001s 0.3996s
Speedup 5.2x 25.2% 2.2% 9.4x 6.0x 4.0x

Table IV shows the accuracy obtained using the developed
classification scheme (best results for each dataset in bold).
Results from the literature obtained using an SVM pixelwise
classifier are also included for comparison purposes.

As it can be observed in Table IV, the ELM-based strategy
obtains better results for the three datasets. Therefore, it can be
stated that in accuracy terms ELM is suitable to replace SVM in
this spectral-spatial scheme. The connectivity of eight neigh-
bors, as expected, improves the results of the four neighbors
one. Table IV also shows that the spatially regularized con-
figurations always give better results. It is worth noting that
the spectral-spatial scheme using a spatially regularized ELM
[ELM-+reg+wat con(8)] requires less computation time that the
one based in ensembles of ELM [V-ELM-1+reg+wat con(8)]
but achieves better results.

Figs. 12 and 13 show the results of the spectral-spatial
scheme using a spatially regularized ELM [ELM+reg+wat
con(8)] for the Pavia Univ. and Indian Pines datasets, respec-
tively, while performance results are detailed in Table V. For
all the datasets, the GPU implementation improves the CPU
implementation achieving speedups up to 5.9x. It can also be
noticed that the larger the number of pixel vectors in the dataset,
the better the speedup. This is due to, specially, the ELM and
watershed phases, that achieve better speedup when the dataset
is larger in the spatial domain as it can be observed in Table V.

V. CONCLUSION

In this paper, the first complete CUDA GPU implemen-
tation of the ELM algorithm to efficiently classify remote
sensing hyperspectral datasets is presented. Different ELM-
based variations designed to improve the accuracy results are
also explored. The GPU implementation takes advantage of the
thousands of threads available, using shared memory to make
an effective use of the memory hierarchy, and exploiting a linear
algebra library in order to take advantage of the GPU architec-
ture. First, we have explored the performance of a raw-ELM
pixelwise classification. A ensemble configuration was also
considered to achieve better classification accuracies as well
as a spatially regularized version of the algorithm. Finally, we
have studied the results of incorporating the ELM to a spectral—
spatial classification scheme. A comparison to similar schemes
based on SVM was also performed.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

In accuracy terms, the spectral-spatial scheme using a
spatially regularized ELM [ELM+reg+wat con(8)] has been
confirmed as a good candidate for the classification of hyper-
spectral datasets applied to remote sensing. In our experiments,
accuracy results up to ten percentage points better than a raw
ELM were achieved. The best accuracy result was 96.66% for
the Pavia Univ. image.

Results have shown that commodity GPUs are good candi-
dates to reduce computation times in order to achieve real-time
hyperspectral processing. For the ELM+reg+wat con(8) con-
figuration, an execution time of 0.4870 seconds in GPU and
a speedup of 5.9x compared to an OpenMP multicore CPU
classification were achieved for the Pavia Univ. image.

REFERENCES

[1] E D. van der Meer et al., “Multi and hyperspectral geologic remote sens-
ing: A review,” Int. J. Appl. Earth Observ. Geoinformat., vol. 14, no. 1,
pp. 112-128, 2012.

[2] J. Bioucas-Dias et al., “Hyperspectral remote sensing data analysis and
future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2,
pp. 636, Jun. 2013.

[3] F.Melgani and L. Bruzzone, “Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.

[4] G.-B. Huang, D. H. Wang, and Y. Lan, “Extreme learning machines: A
survey,” Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107-122, 2011.

[5] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.
Man Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.

[6] M. Fernandez-Delgado, E. Cernadas, S. Barro, J. Ribeiro, and J. Neves,
“Direct kernel perceptron (DKP): Ultra-fast kernel ELM-based classifi-
cation with non-iterative closed-form weight calculation,” Neural Netw.,
vol. 50, pp. 60-71, 2014.

[7] N. Liu and H. Wang, “Ensemble based extreme learning machine,” /[EEE
Signal Process. Lett., vol. 17, no. 8, pp. 754-757, Aug. 2010.

[8] J.Cao, Z. Lin, G.-B. Huang, and N. Liu, “Voting based extreme learning
machine,” Inf. Sci., vol. 185, no. 1, pp. 6677, 2012.

[9] Y. Lan, Y. C. Soh, and G.-B. Huang, “Ensemble of online sequential
extreme learning machine,” Neurocomputing, vol. 72, no. 13, pp. 3391—
3395, 2009.

[10] A.Samat, P. Du, S. Liu, J. Li, and L. Cheng, “E2LMs: Ensemble extreme
learning machines for hyperspectral image classification,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1060-1069,
Apr. 2014.

[11] M. Pal, “Extreme-learning-machine-based land cover classification,” Int.
J. Remote Sens., vol. 30, no. 14, pp. 3835-3841, 2009.

[12] M. Pal, A. E. Maxwell, and T. A. Warner, “Kernel-based extreme learn-
ing machine for remote-sensing image classification,” Remote Sens. Lett.,
vol. 4, no. 9, pp. 853-862, 2013.

[13] D. B. Heras, F. Argiiello, and P. Quesada-Barriuso, “Exploring ELM-
based spatial-spectral classification of hyperspectral images,” Int. J.
Remote Sens., vol. 35, no. 2, pp. 401423, 2014.

[14] R. Moreno, F. Corona, A. Lendasse, M. Grafia, and L. S. Galvio,
“Extreme learning machines for soybean classification in remote sensing
hyperspectral images,” Neurocomputing, vol. 128, pp. 207-216, 2014.

[15] B. Ayerdi, I. Marqués, and M. Grafia, “Spatially regularized semisu-
pervised ensembles of extreme learning machines for hyperspec-
tral image segmentation,” Neurocomputing, 2014 [Online]. Available:
http://dx.doi.org/10.1016/j.neucom.2014.01.068i

[16] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and

J. C. Tilton, “Advances in spectral—spatial classification of hyperspectral

images,” Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.

Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, “Spectral-spatial

classification of hyperspectral imagery based on partitional clustering

techniques,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973—

2987, Aug. 2009.

[18] Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmentation and
classification of hyperspectral images using watershed transformation,”
Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, 2010.

[17]

LOPEZ-FANDINO e al.: EFFICIENT ELM-BASED TECHNIQUES FOR CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

[37]

[38]

[39]

S. Velasco-Forero and V. Manian, “Improving hyperspectral image clas-
sification using spatial preprocessing,” IEEE Geosci. Remote Sens. Lett.,
vol. 6, no. 2, pp. 297-301, Apr. 2009.

G. Camps-Valls, L. Gomez-Chova, J. Mufioz-Mari, J. Vila-Francés, and
J. Calpe-Maravilla, “Composite kernels for hyperspectral image classifi-
cation,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93-97, Jan.
2006.

M. Fauvel, J. Chanussot, and J. A. Benediktsson, “A spatial-spectral
kernel-based approach for the classification of remote-sensing images,”
Pattern Recognit., vol. 45, no. 1, pp. 381-392, 2012.

A. Plaza et al., “Recent advances in techniques for hyperspectral image
processing,” Remote Sens. Environ., vol. 113, pp. S110-S122, 2009.

P. R. Marpu et al., “Classification of hyperspectral data using extended
attribute profiles based on supervised and unsupervised feature extraction
techniques,” Int. J. Image Data Fusion, vol. 3, no. 3, pp. 269-298, 2012.
J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491,
Mar. 2005.

M. Dalla Mura, A. Villa, J. A. Benediktsson, J. Chanussot, and
L. Bruzzone, “Classification of hyperspectral images by using extended
morphological attribute profiles and independent component analysis,”
IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 542-546, May 2011.
C. Chen et al., “Spectral—spatial preprocessing using multihypothesis pre-
diction for noise-robust hyperspectral image classification,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1047-1059,
Apr. 2014.

P. Quesada-Barriuso, F. Argiiello, and D. B. Heras, “Computing effi-
ciently spectral-spatial classification of hyperspectral images on com-
modity GPUs,” in Recent Advances in Knowledge-Based Paradigms and
Applications. New York, NY, USA: Springer, 2014, pp. 19-42.

S. Rosario-Torres and M. Vélez-Reyes, “Speeding up the MATLAB
hyperspectral image analysis toolbox using GPUs and the jacket tool-
box,” in Proc. IEEE 1st Workshop Hyperspectral Image Signal Process.
Evol. Remote Sens. (WHISPERS’09), 2009, pp. 1-4.

S. Bernabe, S. Lopez, A. Plaza, and R. Sarmiento, “GPU implementation
of an automatic target detection and classification algorithm for hyper-
spectral image analysis,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2,
pp. 221-225, Mar. 2013.

S. Sénchez, A. Paz, G. Martin, and A. Plaza, “Parallel unmixing of
remotely sensed hyperspectral images on commodity graphics processing
units,” Concurrency Comput. Pract. Exper., vol. 23, no. 13, pp. 1538—
1557, 2011.

D. B. Heras, F. Argiiello, J. L. Gomez, J. Becerra, and R. J. Duro,
“Towards real-time hyperspectral image processing, a GP-GPU imple-
mentation of target identification,” in Proc. IEEE 6th Int. Conf. Intell.
Data Acquis. Adv. Comput. Syst. (IDAACS), 2011, vol. 1, pp. 316-321.
H. Yang, Q. Du, and G. Chen, “Unsupervised hyperspectral band selec-
tion using graphics processing units,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 4, no. 3, pp. 660-668, Sep. 2011.

M. van Heeswijk, Y. Miche, E. Oja, and A. Lendasse, “GPU-
accelerated and parallelized ELM ensembles for large-scale regression,”
Neurocomputing, vol. 74, no. 16, pp. 2430-2437, 2011.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489-501,
2006.

G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using
incremental constructive feedforward networks with random hidden
nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006.
P. Courrieu, “Fast computation of moore-penrose inverse matrices,” arXiv
preprint arXiv: 0804.4809, 2008.

L. Lam and C. Y. Suen, “Application of majority voting to pattern recog-
nition: An analysis of its behavior and performance,” IEEE Trans. Syst.
Man. Cybern. A, vol. 27, no. 5, pp. 553-568, Sep. 1997.

P. Quesada-Barriuso, D. B. Heras, and F. Arguello, “Efficient GPU asyn-
chronous implementation of a watershed algorithm based on cellular
automata,” in Proc. IEEE 10th Int. Symp. Parallel Distrib. Process. Appl.
(ISPA), 2012, pp. 79-86.

S. Tomov, R. Nath, P. Du, and J. Dongarra, MAGMA Users Guide. ICL,
UTK, 2011 [Online]. Available: http://icl.cs.utk.edu/magma/

2893

[40] Nvidia, CUBLAS Library User Guide, 2013 [Online]. Available:
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf

Nvidia, NVIDIA Kepler GK110 Architecture Whitepaper, 2012 [Online].
Available: http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-
GK110-Architecture-Whitepaper.pdf

P. Quesada-Barriuso, F. Argiiello, and D. B. Heras, “Efficient segmen-
tation of hyperspectral images on commodity GPUs,” in Proc. Conf.
Knowl.-Based Intell. Inf. Eng. Syst. (KES), 2012, vol. 243, pp. 2130-
2139.

P. Quesada-Barriuso, D. B. Heras, and F. Argiiello, “Efficient 2D and 3D
watershed on graphics processing unit: Block-asynchronous approaches
based on cellular automata,” Comput. Elect. Eng., vol. 39, no. 8,
pp. 2638-2655, 2013.

J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, vol. 3.
New York, NY, USA: Springer, 1999.

E. Anderson et al., LAPACK Users’ Guide, 3rd ed. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1999, ISBN
0-89871-447-8.

J. Plaza, A. J. Plaza, and C. Barra, “Multi-channel morphological profiles
for classification of hyperspectral images using support vector machines,”
Sensors, vol. 9, no. 1, pp. 196-218, 2009.

Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmentation and
classification of hyperspectral images using minimum spanning forest
grown from automatically selected markers,” IEEE Trans. Syst. Man
Cybern. B, vol. 40, no. 5, pp. 1267-1279, Oct. 2010.

C. I. G. from the Basque University (UPV/EHU). (2014). Hyperspectral
Remote Sensing Scenes [Online]. Available: http://www.ehu.es

A. P. Dempster et al., “Maximum likelihood from incomplete data via the
EM algorithm,” J. Roy. Stat. Soc., vol. 39, no. 1, pp. 1-38, 1977.

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

Javier Lopez-Fandiiio received the B.S. degree in computer science and the
M.S. degree in information technologies from the University of Santiago de
Compostela, Santiago de Compostela, Spain, in 2012 and 2014, respectively.
He is currently pursuing the Ph.D. degree in computer science from the same
university.

His research interests include image processing, parallel algorithms, and
computer graphics.

Pablo Quesada-Barriuso received the B.S. degree in computer science from
University of Las Palmas de Gran Canaria, Las Palmas, Spain, and the M.S.
degree in graphics, games, and virtual reality from University Rey Juan Carlos
(URJC), Madrid, Spain, in 2007 and 2010, respectively, where he is currently
pursuing the Ph.D. degree in computer science from University of Santiago de
Compostela, Santiago de Compostela, Spain.

He joined the Computer Architecture Group, University of Santiago de
Compostela, Santiago de Compostela, Spain, as a Research Assistant. His
research interests include image processing, parallel algorithms, and GPUs.

Dora B. Heras received the M.S. degree in physics and the Ph.D. degree from
the University of Santiago de Compostela, Santiago de Compostela, Spain, in
1994 and 2000, respectively.

She is currently an Associate Professor with the Department of Electronics
and Computer Engineering, University of Santiago de Compostela. Her
research interests include parallel and distributed computing, software opti-
mization techniques for emerging architectures, computer graphics, and image
processing.

Francisco Argiiello received the B.S. and Ph.D. degrees in physics from the
University of Santiago de Compostela, Santiago de Compostela, Spain, in 1988
and 1992, respectively.

He is currently an Associate Professor with the Department of Electronic and
Computer Engineering, University of Santiago de Compostela. His research
interests include signal and image processing, computer graphics, parallel and
distributed computing, and quantum computing.

